WO2006098296A1 - Optical storage medium making use of oligothiophene - Google Patents

Optical storage medium making use of oligothiophene Download PDF

Info

Publication number
WO2006098296A1
WO2006098296A1 PCT/JP2006/304952 JP2006304952W WO2006098296A1 WO 2006098296 A1 WO2006098296 A1 WO 2006098296A1 JP 2006304952 W JP2006304952 W JP 2006304952W WO 2006098296 A1 WO2006098296 A1 WO 2006098296A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
energy
storage medium
optical storage
excited state
Prior art date
Application number
PCT/JP2006/304952
Other languages
French (fr)
Japanese (ja)
Inventor
Tamejiro Hiyama
Masaki Shimizu
Yukio Kawanami
Hirohisa Kanbara
Yuhei Mori
Takashi Kurihara
Masafumi Adachi
Yutaka Sasaki
Seiji Akiyama
Original Assignee
Kyoto University
Nippon Telegraph And Telephone Corporation
Pioneer Corporation
Mitsubishi Chemical Corporation
Rohm Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Nippon Telegraph And Telephone Corporation, Pioneer Corporation, Mitsubishi Chemical Corporation, Rohm Co., Ltd. filed Critical Kyoto University
Publication of WO2006098296A1 publication Critical patent/WO2006098296A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/72Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705
    • G03C1/73Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705 containing organic compounds
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/245Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing a polymeric component
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/026Recording materials or recording processes
    • G03H2001/0264Organic recording material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24044Recording layers for storing optical interference patterns, e.g. holograms; for storing data in three dimensions, e.g. volume storage
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/249Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing organometallic compounds

Definitions

  • the present invention relates to an organic composition comprising a two-stage excited energy donor via a highly excited triplet state, an energy acceptor that receives energy from the energy donor, and an organic composition.
  • the present invention relates to an optical storage medium having an organic mixture power produced by using the same.
  • a holographic memory As a holographic memory, a one-step excitation type holographic memory, that is, by simultaneously irradiating an object beam carrying data on an optical storage medium and a reference beam to form interference fringes of these two beams, this interference A hologram memory is known in which the intensity distribution of fringes is stored as data, and then diffracted light is generated by irradiating the optical memory medium with reference light, and data is reproduced from the diffracted light.
  • the recording layer is usually a single layer, and there is a limit to meet the recent demand for large capacity storage.
  • One effective method for overcoming such a limit is to stack a plurality of recording layers.
  • the layer that has not been irradiated with the first excitation light is not in a state that can be memorized to the lowest triplet excited state. Even if it is irradiated with (body light), triplet excited state is not obtained, so two-beam interference does not occur and optical storage is not performed. For this reason, even if there is already stored data, the layer not irradiated with the first excitation light is not erased.
  • Biacetyl butane 2, 3 dione, see Non-Patent Document 1
  • force rubazole (9H force)
  • Livazole see Non-Patent Document 2
  • Non-Patent Documents 1 and 2 when biacetyl or force rubazole is excited to a highly excited triplet excited state (T 1), a structural change occurs, and as a result, It is described that the interference fringes formed by the reference light are fixed as a change in the refractive index in the medium, so that the hologram can be recorded and reproduced.
  • oligothiophene compounds are known as organic materials that generate highly excited triplet states.
  • Non-Patent Document 1 Opt. Lett., 7, 177 (1982) (Chr. Brauchle et al)
  • Non-Patent Document 2 Opt. Lett., 6, 159 (1981) (G. C. Bjorklund et al)
  • Non-Patent Document 3 J. Phys. Chem., 100, 18683 (1996) (R. S. Becker et al) Disclosure of the Invention
  • the oligothiophene compound is conventionally predicted by theory or the like to have high generation efficiency of a singlet excited state or a triplet excited state.
  • chemical reactions such as structural changes are unlikely to occur immediately, and cannot be applied to optical storage media such as hologram memory.
  • the present invention uses a compound such as an oligothiophene compound that has high generation efficiency of a singlet excited state or a triplet excited state, but hardly causes a chemical reaction such as a structural change immediately.
  • An object of the present invention is to provide an optical storage medium such as a highly efficient two-stage excitation type hologram memory, and an organic composition for forming an organic mixture constituting the optical storage medium.
  • the first excitation light irradiation is excited to a singlet excited state, and then a transition to the lowest triplet excited state is made by intersystem crossing, followed by second excitation light irradiation.
  • the present invention uses a specific energy donor and energy acceptor, energy is transferred from the energy donor excited to the triplet excited state to the energy acceptor, and the passed energy is used for a chemical reaction. Can be provided.
  • energy can be appropriately supplied to the chemical reaction, optical recording can be performed more reliably, and an optical storage medium such as a highly efficient two-stage excitation type hologram memory can be provided.
  • This can also be applied to the case where the refractive index change is caused at low power.
  • it can be realized with two beams of the first excitation light and the second excitation light. For example, it is possible to cause a refractive index change at an arbitrary spot where two beams overlap with a three-dimensional medium. It becomes possible.
  • FIG. 1 Schematic diagram of energy-excited states, showing the energy acceptance relationship between energy donors and energy acceptors.
  • FIG.2 Diagram showing manufacturing process of optical storage media by blade coating method and thermocompression bonding method
  • FIG. 3 Schematic diagram showing a transient absorption measurement device that measures the excitation energy of a compound.
  • FIG.4 Schematic diagram showing the method of hologram experiment
  • the present invention is directed to an optical storage medium comprising an organic composition containing a predetermined energy donor and an energy acceptor, and an organic mixture prepared using the organic composition.
  • the energy donor refers to a compound that has high generation efficiency of a singlet excited state and a triplet excited state, such as an oligothiophene compound, but is unlikely to cause a chemical reaction such as a structural change immediately.
  • the generation efficiency of the singlet excited state or the triplet excited state is high, and the compound is high in the efficiency of being excited to the singlet excited state by the first excitation light irradiation. It refers to a two-stage excitation type compound that has high efficiency for intersystem crossing to a state and high efficiency for excitation to a higher triplet excited state by irradiation with second excitation light.
  • the energy acceptor refers to a compound that receives energy from the energy donor and is in a lowest triplet excited state and can easily donate energy to a chemical reaction. That is, since the energy level of the triplet excited state of the energy acceptor is about the same or slightly smaller than the energy level of the triplet excited state of the energy donor, the energy acceptor of the energy acceptor becomes easy. A compound that can donate most of the obtained energy to the chemical reaction is preferable.
  • FIG. 1 An example of the energy accepting relationship between the energy donor and the energy acceptor can be shown in FIG. First, by providing the energy donor with the first excitation light that is the gate light, the energy donor is changed from the ground state (S 1) to the singlet excited state (S 1), etc.
  • the energy acceptor becomes the lowest triplet excited state ( ⁇ ) etc. And Does the energy acceptor donate the obtained energy to the chemical reaction and return to the ground state (S)?
  • the difference that is larger than the S-T excitation energy of the container falls within the above range.
  • optical recording is performed.
  • the energy donor and energy acceptor are not particularly limited as long as they can exhibit the above functions. However, among them, there are preferable energy donors and energy acceptors, and examples thereof will be described here.
  • Examples of the preferable energy donor include an oligothiophene compound represented by any one of the following formulas (11 :! to (14).
  • ⁇ x may be the same or different.
  • oligothiophene compounds as shown in the following formula (2) are more preferable.
  • R to R are hydrogen atom, alkyl group, halogen, hydroxyl group, alkyloxy group, aryl
  • n 4 or 5.
  • oligothiophene compound represented by the above formula (2) include compounds represented by the following formulas (2— :! to (2-5).
  • an alkyl group having 1 to 2 carbon atoms, an alkyl group having 6 to 10 carbon atoms, an aryleno group, an alkenyl group, an alkynyl group, an alkoxy group, a pyridinole group, or a compound having a thiophenone ring is used as the energy donor.
  • R For each of R, at least one of them is an alkyl group having 6 to 10 carbon atoms, an aryl group,
  • a compound showing an alkenyl group, an alkynyl group, an alkoxy group, a pyridinole group or a thiophene ring is more preferred. Specific examples thereof include compounds represented by the above formulas (2-2) to (2-5).
  • a compound represented by the following formula (2_5) has a solubility in chloroform of less than 0.05 mg / ml, a solubility in toluene of less than 0.05 mgZml, and
  • the compound represented by the formula (2-5) has a solubility in chloroform of 200 mgZml or more, a solubility in toluene of 300 mgZml or more, and a solubility in hexane. Indicates 100 mg / ml or more.
  • the oligothiophene When the trioctylsilyl group is substituted, the oligothiophene can be liquefied even at a temperature close to room temperature, and an amorphous medium having a concentration of 100% can be formed.
  • a compound can be used, for example, as an optical recording medium or a non-linear optical medium by enclosing it in a hollow chiral container.
  • substitution of the alkylsilyl group allows other low-molecular compounds to be dissipated near the oligothiophene site by allowing the substituted compound to be dispersed in the matrix at a high concentration. Inclusive molecular interactions that can be selectively placed into can be expressed.
  • 5 "" bis (decinoledimethylsilyl) pentathiophene represented by the formula (2-5) and the azide compound represented by the formula (3-2) Near-neighbor placement is possible, and it is possible to achieve high-efficiency optical writing that cannot be achieved with other combinations.
  • the oligothiophene-based compound has a singlet excited state (S) and a triplet excited state (T).
  • the 1 n production rate is usually 1 digit or more, preferably 2 digits or more, and more preferably 3 digits or more, compared to biacetyl, which is conventionally known as a compound that can be excited in two steps.
  • the compound represented by the general formulas (1 D to 4) has a production rate several thousand times higher than that of biacetyl, and is particularly preferably used as the energy donor of the present invention.
  • the energy acceptor is not particularly limited as long as it is a compound that receives energy from the energy donor and is in the lowest triplet excited state and can easily donate energy to a chemical reaction.
  • preferred energy acceptors include azide compounds represented by the following formula (3).
  • Y represents an alkyl group, a halogen, an azide group, a sulfonyl group, an aryl group, a hydroxy acid A group having at least one group selected from a group and an alkoxy group, or a hydrogen atom;
  • azide compounds include azide compounds represented by the following formula (3-1) or (3-2).
  • the optical storage medium is uniform and excellent in flatness.
  • the beam of the object beam and the reference beam hardly overlap each other. This is because the interference fringes created by this phenomenon are difficult to fix as a refractive index change in the medium. Therefore, as shown in FIG. 2, a method for producing an optical storage medium uniformly and flatly by combining the blade coating method and the thermocompression bonding method will be described.
  • the above-mentioned energy donor and energy acceptor are mixed and dispersed at a predetermined ratio to obtain an organic composition which is a solution for an optical storage medium.
  • Each of the energy donor and energy acceptor may be a single compound or a mixture of two or more compounds.
  • the energy donor and the solvent for dispersing the energy acceptor are not particularly limited as long as the energy donor and the energy acceptor have sufficient solubility and do not damage the material of the substrate. It is not limited.
  • this solvent include tetrahydrofuran (THF), xylene, monochrome benzene, toluene, mesitylene and the like.
  • polymethylmetatalylate PMMA
  • cyanoacrylate PMMA
  • optical cycloolefin polymer manufactured by Nippon Zeon Co., Ltd .: trade name
  • a sweeping process is performed in which the optical storage medium solution is flattened by sweeping the substrate with a blade that maintains a constant distance from the substrate (see FIG. 2 (c)). )).
  • the solvent is removed by heating (Fig. 2 (d)), and then the obtained medium is peeled from the substrate (Fig. 2 (e)).
  • a heating process is performed in which the obtained medium is sandwiched between two substrates and heated under pressure (FIG. 2 (f)). Thereafter, by peeling the medium from the substrate (FIG. 2 (g)), a thin film type optical storage medium with improved flatness can be produced.
  • the step of FIG. 2 (f) may be performed by placing the substrate on the medium without performing the steps of FIG. 2 (d) and (e).
  • a coating method such as a spin coating method, a spray method, a wire bar method, or a U method may be used as a method for applying the optical storage medium solution to the substrate. Can do.
  • the reaction solution was concentrated under reduced pressure to remove toluene, and the residue was washed with dry ethyl acetate and extracted with dichloromethane.
  • the dichloromethane solution was concentrated to obtain 0.1 llg (0.17 mmol) of an orange powder of the compound represented by the formula (2-1). The yield was 42%.
  • the reaction solution was concentrated under reduced pressure to remove toluene, and the residue was washed with dry ethyl acetate and extracted with dichloromethane.
  • the dichloromethane solution was concentrated to obtain 0.31 g (0.46 mmol) of an orange powder of the compound represented by the formula (2-2). The yield was 57%.
  • a compound represented by formula (2-4) (5,5 ′ ′ ′ monobis (decyldimethylsilyl) quaterthiophene) and a compound represented by formula (2-5) (5,5 ′ ′ ′ ′-bis
  • the production method and compound data of (decinoledimethylsilyl) pentathiophene) are shown.
  • the mixture was warmed to room temperature and stirred overnight, and then 50 mL of a saturated aqueous solution of ammonium chloride was added to stop the reaction.
  • the aqueous phase was extracted 3 times with 50 mL of jetyl ether, and the combined organic phase was washed with 50 mL of saturated brine and dried over anhydrous magnesium sulfate.
  • the organic solvent was concentrated by an evaporator, and the obtained yellow crude product (5.44 g, 9.52 mmol, 95%) was directly used for the next coupling reaction without purification.
  • reaction solution was then heated at 120 ° C. for 24 hours. After the solvent was distilled off under reduced pressure, the crude product was washed with acetonitrile. The remaining solid was dissolved in 10 mL dichloromethane and filtered. B Silica gel was added to the liquid to adsorb the product, and then the solvent was distilled off under reduced pressure to obtain silica gel carrying the product. This was packed in a column tube, and the product was purified using a hexane / dichloromethane mixed solvent to obtain the desired product as a yellow solid (551 mg, yield 79%).
  • Mp of the obtained compound (melting point.
  • the solvent in parentheses indicates the recrystallization solvent of the crystal used for the melting point measurement.)
  • R value of TLC 'H-NMR, 13 C_NMR, IR, MS SPET
  • the tuttle is as follows.
  • Example 2 [Excitation energy of oligothiophene compound and azide compound] Using the transient absorption measuring apparatus shown in Fig. 3, the energy donor of the compound represented by the formula (2-3) Measure T-T absorption and measure phosphorescence when falling to T force S
  • the second harmonic or the third harmonic obtained through the second harmonic generator (SHG) or third harmonic generator (THG) of the Q switch YAG laser is used as pump light.
  • SHG second harmonic generator
  • TMG third harmonic generator
  • T absorption is 650nm
  • T-S enenoregi is 820nm
  • ⁇ IJ clear n 1 0
  • Torr measurements also showed that the S-S absorption was 405 nm.
  • a suitable energy acceptor for the thiophene compound represented by the formula (2_3) is an azide compound represented by the formula (3-1) or the formula (3-2). It was done.
  • the side chain shape is slightly different. However, the energy level force will not be significantly different from the current measurement value.
  • an azide compound represented by the formula (3-1) or the formula (3-2) can be used as an energy acceptor.
  • THF was used as a solvent for dissolving pentathiophene of formula (2-1) and azide DZDS or BAP-P (THF can be dissolved at room temperature), but in addition, four solvents ( It was confirmed that it can also be dissolved under heating in (xylene, monochlorobenzene, toluene, mesitylene). Of these four solvents, mesitylene was the best and had the greatest transparency when the solution returned to room temperature after heating.
  • PMMA polymethylmethalate
  • optical cycloolefin polymer Japan
  • Zeonetas optical cycloolefin polymer
  • PMMA cancyanacrylate can be a good dispersion medium if the side chain of pentathiophene is chemically modified to increase solubility.
  • Mesitylene was the most suitable solvent for dissolving optical cycloolefin polymer (product name: Zeonex, manufactured by Nippon Zeon Co., Ltd.), and pentathiophene and azide DZDS of formula (2-1) Alternatively, since mesitylene was also suitable as a solvent for dissolving BAP-P, an optical cycloolefin polymer (made by Nippon Zeon Co., Ltd .: trade name ZEONEX) added to the THF solution of pentathiophene and azide of formula (2-1) ) Mesitylene as solvent of the solution used. This mixed solution also had transparency and uniformity suitable for optical experiments when it returned to room temperature.
  • Figure 2 (b) (c) This substrate was used as a substrate for creating a flat solution for an optical storage medium by sweeping the substrate with a blade that keeps the distance from the substrate constant.
  • an ordinary glass slide glass was used, but the present invention is not limited to this, and any glass substrate may be used as long as the surface of the quartz substrate and the like itself is flat.
  • the solvent THF, mesitylene
  • the concentration of each component after beta is 0.3 wt% for thiophene, 1. Owt% for both DZ DS or BAP-P, and 98 for optical cycloolefin polymer (Nippon ZEON Co., Ltd .: trade name ZEONEX). It became 7wt%. If the beta time was 90 ° C and 60 minutes, the amount of residual solvent could be reduced to a level that would not interfere with optical experiments. Since the distance between the blade and the substrate can be arbitrarily changed, the film thickness after film formation can be controlled by this distance.
  • the film when reaching Fig. 2 (g) is the film when the distance between the blade and the substrate in Figs. 2 (b) and (c) is 500 ⁇ m. Both thicknesses were 170 ⁇ m. The film quality was confirmed not only to show no striae but also to have a flatness on the surface of the medium that sufficiently contributed to the hologram experiment described later.
  • Example 3 Using the medium obtained in Example 3, a hologram experiment was conducted with the system shown in FIG. 4, and the time dependence of the diffraction efficiency was measured.
  • the obtained medium thickness 250 ⁇
  • the obtained medium was placed at the position of Sample in Fig. 4 and irradiated with gate light (Gate Laser) for the first excitation.
  • Gate Laser gate light
  • BS beam splitter
  • object light object light
  • interference fringes generated by the object light and the reference light which are the second excitation light, are fixed in the memory medium as the refractive index change in the area in the memorizable state first excited by the gate light.
  • a GaN laser (continuous light) with a wavelength of 410 nm was used for the first excitation light
  • a semiconductor laser (continuous light) with a wavelength of 660 nm was used for the second excitation light.
  • the angle between the object beam and the reference beam was 2 degrees.
  • the spot size of incident light was 250 xm.
  • the intensity of the incident light was 0.10 W / cm 2 for the first excitation light, and 20 W / cm 2 for the second excitation light for both the reference light and the object light.
  • the diffraction efficiency is measured by temporarily blocking the object light during the measurement and measuring the ratio of the reference light diffracted by the interference fringes generated in the memory medium. That power S.
  • Figure 5 shows the results of measuring the time dependence of the diffraction efficiency. This is a graph in which the amount of reference light passing through the sample is measured, and then the ratio of the diffracted light (Efficiency ⁇ (%)) is measured, and the time dependence thereof is plotted.
  • (1) indicates the case where the first excitation light is blocked and the second excitation light (both reference light and object light) is incident
  • (2) indicates that the first excitation light is incident.
  • the figure shows the case where both light and second excitation light (both reference light and object light) are input.
  • Example 2 shows that the energy level investigated in Example 2 is correct, and that the above-described interference transfer fringes due to structural changes caused by the energy transfer from thiophene to azide can be formed. It proves that the inventors' idea is correct.
  • the absolute value of the diffraction efficiency in Fig. 5 is as small as about 0.01%.
  • the pentathiophene film has sufficient light resistance.
  • FIG. 6 shows the results of normalizing and plotting the diffraction efficiency (experimental results) of the conventional material biacetyl in accordance with the experimental conditions such as the irradiation light intensity in FIG.
  • the wavelength of the first excitation light is 410 nm, which is the same as that of thiophene, and the wavelength of the second excitation light is 830 nm. This is based on energy level differences.
  • the thickness of the biacetyl film was 500 ⁇ m.
  • Biacetyl was prepared by enclosing a biacetyl solution in a quartz cell with an optical path length of 500 xm. For the dispersion medium of biacetyl, use of cyanoacrylate, via The concentration of cetyl was 10 wt%.
  • Figure 6 shows that the potential of thiophene is about two orders of magnitude higher than that of biacetyl, considering that the concentration of thiophene in the media produced this time is 1/30 times that of biacetyl and the difference in film thickness.
  • a medium having a thiophene concentration of 0.3 wt% was produced, but an optical storage medium was produced by setting the thiophene concentration to the same level as that of biacetyl (and increasing the azide concentration accordingly)
  • the film thickness is equivalent to that of thiophene, the efficiency of the actually obtained medium is more than two orders of magnitude.
  • Example 4 the state in which the structural change (refractive index change) based on light irradiation occurs in the optical storage medium through the two-step excitation process is shown in the area excited by the first excitation light (gate light).
  • the observation light was observed by the phenomenon that the reference light was diffracted by the interference fringes generated by the two-beam interference between the object light as the second excitation light and the reference light, it passed through the two-step excitation process intended by the present invention.
  • the optical storage medium is not limited to this, and the second excitation light may be one. As shown in Fig.
  • the lowest triplet state that can be recorded by the first excitation is obtained, and even if only one second excitation light is irradiated there, the structural change (refractive index change) occurs. If the change caused by the irradiation of the second excitation light is read by irradiating another light and observing the change in transmittance, etc., optical storage and reproduction can be performed. In Example 4, the appearance of structural change (refractive index change) was only confirmed by observation of diffracted light.
  • the structural change occurs only in the overlapping portion of the two.
  • optical storage can be performed without the problem of data erasure as in the one-step excitation process described in Fig. 7. It becomes.
  • the prepared spin coat thin film was 0.3 wt% of thiophene represented by the formulas (2-4) and (2-5), 1.0 wt% of DZDS, an optical cycloolefin polymer (manufactured by Nippon Zeon Co., Ltd.). : Product name ZEONEX) is 98.7 wt. /. Met. Both film thicknesses were 45 ⁇ m.
  • Example 4 A hologram experiment similar to that in Example 4 was performed using the film prepared according to Example 5 using the thiophene represented by the formula (2_5). As a result of using a medium manufactured by the same method as in Example 3 (the optical system including the applied wavelength is the same), similar hologram diffraction could be observed.
  • the experiment using the spin coat thin film although the signal intensity decreased corresponding to the decrease in the film thickness, the produced thin film had sufficient light resistance. As a result, it was possible to obtain results having the same efficiency as in FIGS. However, for materials with a large absorption coefficient of the first excitation light, such as thiophene, the physical thickness and the effective length become closer as the physical thickness of the medium decreases (the effective length decreases as the physical thickness decreases).
  • the results examined in this example show that the difference in physical thickness between the 170 ⁇ m medium produced by the same method as in Example 3 and the spin coat thin film of 45 ⁇ m is about twice that expected. It was possible to obtain a large diffraction efficiency. That is, the result of the spin coat thin film of this example is based on the thiophene film of the present invention, in addition to the conclusion of the thick film produced by the method of Example 3, and the thiophene thin film even when the thickness force is in the S micron unit. It supported that practical hologram diffraction could be realized by the medium.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Holo Graphy (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

A highly efficient two-stage-excited hologram memory or other optical storage medium making use of a compound, such as an oligothiophene compound, that although being high in the efficiency of generation of singlet excited state and triplet excited state, is not apt to immediately induce a chemical reaction involving a structural change, etc.; and an organic composition for production of optical storage medium wherein an organic mixture constituting this optical storage medium is contained. There is provided an optical storage medium of organic mixture characterized by having not only a two-stage-excited energy donor capable of being excited to a singlet excited state by irradiation with a first exciting light, subsequently being transferred to the lowest triplet excited state by intersystem crossing and thereafter being excited to a higher triplet excited state by irradiation with a second exciting light but also an energy acceptor capable of receiving energy from the energy donor and feeding the energy to a chemical reaction.

Description

明 細 書  Specification
オリゴチォフェンを用いた光記憶媒体  Optical storage media using oligothiophene
技術分野  Technical field
[0001] この発明は、高励起三重項状態を経由する二段階励起型のエネルギー供与体及 びこのエネルギー供与体からエネルギーを受け取るエネルギー受容体を含有する有 機組成物、及びこの有機組成物を用いて作製される有機混合体力 なる光記憶媒 体に関する。  [0001] The present invention relates to an organic composition comprising a two-stage excited energy donor via a highly excited triplet state, an energy acceptor that receives energy from the energy donor, and an organic composition. The present invention relates to an optical storage medium having an organic mixture power produced by using the same.
背景技術  Background art
[0002] ホログラムメモリとして、一段階励起型のホログラムメモリ、すなわち、光記憶媒体に データを載せた物体光と参照光を同時に照射して、この 2つの光の干渉縞を形成さ せ、この干渉縞の強度分布をデータとして保存し、次に、参照光をこの光メモリ媒体 に照射することにより、回折光を生成させ、この回折光からデータを再生するホロダラ ムメモリが知られている。  [0002] As a holographic memory, a one-step excitation type holographic memory, that is, by simultaneously irradiating an object beam carrying data on an optical storage medium and a reference beam to form interference fringes of these two beams, this interference A hologram memory is known in which the intensity distribution of fringes is stored as data, and then diffracted light is generated by irradiating the optical memory medium with reference light, and data is reproduced from the diffracted light.
[0003] このホログラムメモリを始めとする光記憶媒体が層構造をとる場合、その記録層は、 通常、単層からなり、近年の大容量ィ匕への要望に応えるには限界がある。かかる限 界を打破する有力な方法の一つとして、複数の記録層を積層することがあげられる。  [0003] When an optical storage medium such as this hologram memory has a layer structure, the recording layer is usually a single layer, and there is a limit to meet the recent demand for large capacity storage. One effective method for overcoming such a limit is to stack a plurality of recording layers.
[0004] しかし、複数の記録層を積層した積層体を用いる場合、前記一段階励起型による 場合は実現が困難である。すなわち、複数層の記録層にデータを記録する場合、ま ず、図 7 (a)に示すように、ある一つの記憶層 alに、データを記憶するべく参照光及 び物体光を照射する。続いて、図 7 (b)に示すように、他の記憶層 a2に、別のデータ を記録すべく参照光及び物体光を照射する。このとき、物体光は、図 7 (a) (b)に示 すように、物体光は層 a2のみならず、層 alを含む他の層を通過する。このとき、層 al 等のデータが記憶された層のデータが消去されてしまうという問題が生じる。さらに、 データの再生時においても同様で、図 7 (c)に示すように、ある一つの層のデータを 再生すると、再生光が他の層のデータを消去してしまうという問題が生じる。  [0004] However, in the case of using a laminate in which a plurality of recording layers are laminated, it is difficult to realize the case of the one-step excitation type. That is, when recording data on a plurality of recording layers, first, as shown in FIG. 7 (a), a single storage layer al is irradiated with reference light and object light to store the data. Subsequently, as shown in FIG. 7 (b), the other storage layer a2 is irradiated with reference light and object light to record other data. At this time, as shown in FIGS. 7 (a) and 7 (b), the object light passes not only the layer a2 but also other layers including the layer al. At this time, there arises a problem that the data of the layer in which the data of the layer al and the like are stored is erased. Furthermore, the same applies to data reproduction. As shown in Fig. 7 (c), when data in one layer is reproduced, the reproduction light erases data in the other layer.
[0005] この問題を解決する有望な手法として、図 8に示すような、高励起三重項状態を経 由する二段階励起型の光記憶媒体を適用する方法がある。ホログラムメモリの例で 説明すると、図 8 (a)に示すように、第一励起光(=ゲート光)を照射すると、その層の みが最低三重項励起状態となって記録可能となり、ここに、第二励起光(=参照光 + 物体光)を照射することにより、高励起の三重項励起状態になって二光束干渉による 干渉縞が媒体内に構造変化 (屈折率変化)として定着され、その結果、光記憶が行 われる。他方、図 8 (b)に示すように、第一励起光を照射していない層は、最低三重 項励起状態になぐ記憶できる状態にないので、たとえ、第二励起光(=参照光 +物 体光)を照射しても、三重項励起状態にならないため、二光束干渉が生じず、光記憶 が行われなレ、。このため、第一励起光を照射していない層は、既に記憶されたデー タがあっても、消去されることはない。 [0005] As a promising technique for solving this problem, there is a method of applying a two-stage excitation type optical storage medium via a highly excited triplet state as shown in FIG. In the example of hologram memory For example, as shown in FIG. 8 (a), when the first excitation light (= gate light) is irradiated, only that layer becomes the lowest triplet excited state and recording becomes possible. By irradiating (= reference light + object light), it becomes a highly excited triplet excited state, and interference fringes due to two-beam interference are fixed in the medium as a structural change (refractive index change), resulting in optical storage Is performed. On the other hand, as shown in Fig. 8 (b), the layer that has not been irradiated with the first excitation light is not in a state that can be memorized to the lowest triplet excited state. Even if it is irradiated with (body light), triplet excited state is not obtained, so two-beam interference does not occur and optical storage is not performed. For this reason, even if there is already stored data, the layer not irradiated with the first excitation light is not erased.
[0006] すなわち、二段階励起型においては、光記録のためには、第一励起光及び第二励 起光の両方の照射が必要であり、図 8 (a)に示すように、ゲート光を照射させて記録 可能な最低三重項励起状態に励起させた上で、データを載せる物体光、及びこの物 体光と干渉して干渉縞を生じさせる参照光とを照射させることで初めて、エネルギー 供与体をより高い三重項励起状態にすることができ、光記録が可能となる。  That is, in the two-stage excitation type, irradiation with both the first excitation light and the second excitation light is necessary for optical recording. As shown in FIG. It is the first time to irradiate the object light on which data is loaded and the reference light that interferes with this object light and generates interference fringes after being excited to the recordable triplet excited state. The donor can be in a higher triplet excited state, and optical recording is possible.
[0007] これに対し、ゲート光を照射せずに、物体光と参照光のみを照射しても、図 8 (b)に 示すように、エネルギー供与体は記録可能な最低三重項励起状態に励起できない ため、光記録は不可能であり、また、このゲート光の照射されない層では、データが 消去されることもない。  [0007] On the other hand, even if only the object light and the reference light are irradiated without irradiating the gate light, as shown in FIG. 8 (b), the energy donor is in the lowest triplet excited state that can be recorded. Since it cannot be excited, optical recording is impossible, and data is not erased in the layer not irradiated with the gate light.
[0008] このような高励起三重項状態を経由する二段階励起型のホログラムメモリを構成す る有機材料として、ビアセチル (ブタン 2, 3 ジオン、非特許文献 1参照)や力ルバ ゾール(9H 力ルバゾール、非特許文献 2参照)が知られている。  [0008] Biacetyl (butane 2, 3 dione, see Non-Patent Document 1) and force rubazole (9H force) are used as organic materials for such a two-stage excitation type hologram memory via a highly excited triplet state. Luvazole, see Non-Patent Document 2) is known.
[0009] この非特許文献 1や 2に記載の方法においては、ビアセチルや力ルバゾールが高 励起の三重項励起状態 (T )に励起されると、構造変化を起し、その結果、物体光と 参照光とが作る干渉縞が媒質内の屈折率変化として定着され、ホログラムの記録'再 生が可能と記載されている。  In the methods described in Non-Patent Documents 1 and 2, when biacetyl or force rubazole is excited to a highly excited triplet excited state (T 1), a structural change occurs, and as a result, It is described that the interference fringes formed by the reference light are fixed as a change in the refractive index in the medium, so that the hologram can be recorded and reproduced.
[0010] し力、し、これらのビアセチルや力ルバゾールは、それら自体の効率が低いため、ホロ グラムの記憶'再生効率を示す指標となる参照光の回折効率が低ぐ回折効率 1 %を 得るためには、最低でも 200 x m程度の厚みが必要となる。このため、ビアセチルや 力ルバゾールを用いる限り、実用的な膜厚とされる数/ mの薄膜型の光記憶媒体の 実現は難しレ、のが現状である。 [0010] Since these biacetyls and force rubazoles have low efficiency, the diffraction efficiency of the reference light, which is an index indicating the hologram memory's reproduction efficiency, is 1%. For this purpose, a thickness of at least 200 xm is required. For this reason, biacetyl and As long as strong rubazole is used, it is difficult to realize a thin film type optical storage medium with a practical thickness of several meters per meter.
[0011] ところで、回折効率を向上させる方法としては、光源の強度をあげる方法や、集光レ ンズの焦点距離を短くして光密度をあげる等の方法があげられる。しかし、これらの 方法によると、前記のビアセチルや力ルバゾールでは、必要なゲート光の照射強度 が高くなりすぎ、光損傷が生じてしまうという問題点を有していた。  By the way, as a method for improving the diffraction efficiency, there are a method of increasing the intensity of the light source and a method of increasing the light density by shortening the focal length of the condensing lens. However, according to these methods, the above-mentioned biacetyl and force rubazole had a problem that the necessary gate light irradiation intensity becomes too high and photodamage occurs.
[0012] これらに対し、高励起三重項状態を生成する有機材料として、オリゴチォフェン系 化合物(非特許文献 3参照)が知られてレ、る。  On the other hand, oligothiophene compounds (see Non-Patent Document 3) are known as organic materials that generate highly excited triplet states.
[0013] 非特許文献 1 : Opt. Lett., 7, 177 (1982) (Chr. Brauchle et al)  [0013] Non-Patent Document 1: Opt. Lett., 7, 177 (1982) (Chr. Brauchle et al)
非特許文献 2 : Opt. Lett., 6, 159 (1981) (G. C. Bjorklund et al) 非特許文献 3 :J. Phys. Chem. , 100, 18683 (1996) (R. S. Becker et al) 発明の開示  Non-Patent Document 2: Opt. Lett., 6, 159 (1981) (G. C. Bjorklund et al) Non-Patent Document 3: J. Phys. Chem., 100, 18683 (1996) (R. S. Becker et al) Disclosure of the Invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0014] しかしながら、オリゴチォフェン系化合物を用いる場合、高励起の三重項励起状態 However, when using an oligothiophene compound, a highly excited triplet excited state
(T )に励起されても、そこから直ちに構造変化等の化学反応を起こすことは期待で きず、このままでは、光記録を行うことはできない。  Even if excited by (T), it cannot be expected that a chemical reaction such as a structural change will immediately occur from there, and optical recording cannot be performed as it is.
[0015] すなわち、非特許文献 3に記載されているように、オリゴチォフェン系化合物は、従 来、一重項励起状態や三重項励起状態の生成効率が高いことが理論等で予測され ているものの、直ちに構造変化等の化学反応は生じにくぐそれだけではホログラムメ モリなどの光記憶媒体に適用することはできないのである。 That is, as described in Non-Patent Document 3, the oligothiophene compound is conventionally predicted by theory or the like to have high generation efficiency of a singlet excited state or a triplet excited state. However, chemical reactions such as structural changes are unlikely to occur immediately, and cannot be applied to optical storage media such as hologram memory.
[0016] そこで、この発明は、オリゴチォフェン系化合物のような一重項励起状態や三重項 励起状態の生成効率が高いものの、直ちに構造変化等の化学反応は生じにくいィ匕 合物を用いた高効率な二段階励起型のホログラムメモリを始めとする光記憶媒体、及 びこの光記憶媒体を構成する有機混合体を形成するための有機組成物を提供する ことを目的とする。 Therefore, the present invention uses a compound such as an oligothiophene compound that has high generation efficiency of a singlet excited state or a triplet excited state, but hardly causes a chemical reaction such as a structural change immediately. An object of the present invention is to provide an optical storage medium such as a highly efficient two-stage excitation type hologram memory, and an organic composition for forming an organic mixture constituting the optical storage medium.
課題を解決するための手段  Means for solving the problem
[0017] この発明においては、第一励起光照射により、一重項励起状態に励起され、その 後、項間交差により最低三重項励起状態に移行し、続いて、第二励起光照射により 、より高い三重項励起状態に励起される二段階励起型のエネルギー供与体と、その エネルギー供与体からエネルギーを受け取り、力かるエネルギーを化学反応に供与 するエネルギー受容体とを有することを特徴とする有機混合体力 なる光記憶媒体を 用いることにより、前記課題を解決したのである。 [0017] In the present invention, the first excitation light irradiation is excited to a singlet excited state, and then a transition to the lowest triplet excited state is made by intersystem crossing, followed by second excitation light irradiation. Characterized in that it has a two-stage excitation type energy donor excited to a higher triplet excited state and an energy acceptor that receives energy from the energy donor and donates powerful energy to a chemical reaction. By using an optical storage medium having an organic mixture power, the above-mentioned problems have been solved.
発明の効果  The invention's effect
[0018] この発明は特定のエネルギー供与体及びエネルギー受容体を用いるので、三重項 励起状態に励起されたエネルギー供与体から、エネルギー受容体へエネルギーが 渡され、その渡されたエネルギーを化学反応に供与することができる。これにより、適 切にエネルギーが化学反応に供与され、光記録をより確実に行うことができ、高効率 な二段階励起型のホログラムメモリを始めとする光記憶媒体を提供することができる。  [0018] Since the present invention uses a specific energy donor and energy acceptor, energy is transferred from the energy donor excited to the triplet excited state to the energy acceptor, and the passed energy is used for a chemical reaction. Can be provided. Thus, energy can be appropriately supplied to the chemical reaction, optical recording can be performed more reliably, and an optical storage medium such as a highly efficient two-stage excitation type hologram memory can be provided.
[0019] また、エネルギー供与体としてオリゴチォフェン系化合物を用いる場合、この化合 物は、一重項励起状態や三重項励起状態の生成効率が高いので、これを用いてホ ログラムメモリを作製すると、高い回折効率を得ることが可能となり、メモリ媒体を実用 的な数/ mの薄膜にすることが可能となる。  [0019] Further, when an oligothiophene compound is used as an energy donor, this compound has high generation efficiency of a singlet excited state or a triplet excited state. Therefore, when a hologram memory is produced using this compound, High diffraction efficiency can be obtained, and the memory medium can be made into a practical number / m thin film.
[0020] さらに、この発明の適用用途は、ホログラムメモリに止まらず、光照射により、二段階 励起のプロセスを通して、媒体の内部の任意のスポット(=ドット)において、干渉縞 に対応したものでない通常の屈折率変化を低パワーで起こさせる場合にも適用可能 である。この場合は、第一励起光と第二励起光の 2つのビームで実現でき、たとえば 、三次元媒体にぉレ、て二つのビームの重なった任意のスポットで屈折率変化を起こ させること等が可能となる。  [0020] Further, the application of the present invention is not limited to the hologram memory, and is not usually adapted to interference fringes at any spot (= dot) inside the medium through the two-step excitation process by light irradiation. This can also be applied to the case where the refractive index change is caused at low power. In this case, it can be realized with two beams of the first excitation light and the second excitation light. For example, it is possible to cause a refractive index change at an arbitrary spot where two beams overlap with a three-dimensional medium. It becomes possible.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1]エネルギー供与体及びエネルギー受容体のエネルギー受容の関係を示す、ェ ネルギー励起状態の模式図  [0021] [Fig. 1] Schematic diagram of energy-excited states, showing the energy acceptance relationship between energy donors and energy acceptors.
[図 2]ブレードコート法と熱圧着法とによる光記憶媒体の作製工程を示す図  [Fig.2] Diagram showing manufacturing process of optical storage media by blade coating method and thermocompression bonding method
[図 3]化合物の励起エネルギーを測定する過渡吸収測定装置を示す模式図  [Fig. 3] Schematic diagram showing a transient absorption measurement device that measures the excitation energy of a compound.
[図 4]ホログラム実験の方法を示す模式図  [Fig.4] Schematic diagram showing the method of hologram experiment
[図 5]ホログラム実験の結果を示すグラフ(回折光のできる割合一時間)  [Figure 5] Graph showing the results of the hologram experiment (percentage of diffracted light generated for one hour)
[図 6]ホログラム実験の結果を示すグラフ(従来材料ビアセチルとの比較) [図 7]従来の一段階励起型メモリの問題点を示す模式図 [Figure 6] Graph showing the results of the hologram experiment (comparison with the conventional material biacetyl) [Fig. 7] Schematic diagram showing the problems of conventional one-step excitation memory
[図 8]データ記録と光励起の関係を示す、エネルギー励起状態の模式図  [Figure 8] Schematic diagram of the energy excitation state showing the relationship between data recording and photoexcitation
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下において、ホログラムメモリへの適用を中心に、本発明の光記憶媒体について 詳細に説明する。本発明は、所定のエネルギー供与体及びエネルギー受容体とを 含有する有機組成物、及びこの有機組成物を用いて作製される有機混合体からなる 光記憶媒体に力かる。 Hereinafter, the optical storage medium of the present invention will be described in detail with a focus on application to a hologram memory. The present invention is directed to an optical storage medium comprising an organic composition containing a predetermined energy donor and an energy acceptor, and an organic mixture prepared using the organic composition.
[0023] 前記エネルギー供与体とは、オリゴチォフェン系化合物等の一重項励起状態及び 三重項励起状態の生成効率が高いものの、直ちに構造変化等の化学反応は生じに くい化合物をレ、う。前記の一重項励起状態や三重項励起状態の生成効率が高レ、ィ匕 合物とは、第一励起光照射により、一重項励起状態に励起される効率が高ぐまた、 最低三重項励起状態への項間交差への効率も高ぐさらに、第二励起光照射により 、より高い三重項励起状態に励起される効率も高い二段階励起型の化合物をいう。  [0023] The energy donor refers to a compound that has high generation efficiency of a singlet excited state and a triplet excited state, such as an oligothiophene compound, but is unlikely to cause a chemical reaction such as a structural change immediately. The generation efficiency of the singlet excited state or the triplet excited state is high, and the compound is high in the efficiency of being excited to the singlet excited state by the first excitation light irradiation. It refers to a two-stage excitation type compound that has high efficiency for intersystem crossing to a state and high efficiency for excitation to a higher triplet excited state by irradiation with second excitation light.
[0024] また、前記エネルギー受容体とは、前記エネルギー供与体からエネルギーを受け 取って最低三重項励起状態となり、化学反応へのエネルギーを供与し易い化合物を いう。すなわち、前記エネルギー受容体の三重項励起状態のエネルギーレベルが、 前記エネルギー供与体の三重項励起状態のエネルギーレベルに比べて、同様又は 少し小さい程度であるので、エネルギー受容体のエネルギー受容が容易となり、かつ 、得たエネルギーのほとんどを化学反応に供与できる化合物がよい。  [0024] The energy acceptor refers to a compound that receives energy from the energy donor and is in a lowest triplet excited state and can easily donate energy to a chemical reaction. That is, since the energy level of the triplet excited state of the energy acceptor is about the same or slightly smaller than the energy level of the triplet excited state of the energy donor, the energy acceptor of the energy acceptor becomes easy. A compound that can donate most of the obtained energy to the chemical reaction is preferable.
[0025] 前記のエネルギー供与体とエネルギー受容体とのエネルギーの受容関係の例を、 図 1に示すことができる。まず、エネルギー供与体にゲート光である第一励起光を与 えることにより、エネルギー供与体は、基底状態(S )から、一重項励起状態(S )等と  [0025] An example of the energy accepting relationship between the energy donor and the energy acceptor can be shown in FIG. First, by providing the energy donor with the first excitation light that is the gate light, the energy donor is changed from the ground state (S 1) to the singlet excited state (S 1), etc.
0 1 なる。次いで、項間交差で、最低三重項励起状態 (τ )に移行する。そして、第二励 起光(ホログラムの場合、物体光及び参照光)を与えることによって、より高い三重項 励起状態 (τ )になる。  0 1 Next, the transition to the lowest triplet excited state (τ) occurs at the intersystem crossing. Then, by applying the second excitation light (in the case of a hologram, object light and reference light), a higher triplet excited state (τ) is obtained.
[0026] 次に、三重項励起状態 (T )のエネルギー供与体から、エネルギーがエネルギー受 容体にエネルギー移動 (ET)される。これにより、エネルギー供与体は基底状態(S )  [0026] Next, energy is transferred (ET) from the energy donor in the triplet excited state (T) to the energy acceptor. As a result, the energy donor is in the ground state (S)
0 に戻り、一方、エネルギー受容体は、最低三重項励起状態 (τ )等になる。そして、ェ ネルギー受容体は得たエネルギーを化学反応に供与して、基底状態(S )に戻るか On the other hand, the energy acceptor becomes the lowest triplet excited state (τ) etc. And Does the energy acceptor donate the obtained energy to the chemical reaction and return to the ground state (S)?
0 0
、または、反応生成物へ変化する。 Or the reaction product.
[0027] このような状態を発揮させるためには、エネルギー供与体の S — T励起エネルギ  [0027] In order to exert such a state, the S — T excitation energy of the energy donor
0 n  0 n
一と、エネルギー受容体の S — T励起エネルギーとの差の絶対値が、 0〜1. 5eVが  And the absolute value of the difference between the S — T excitation energy of the energy acceptor is 0 to 1.5 eV
0 1  0 1
よぐ 0〜1. OeVが好ましい。 1. 5eVより大きいと、エネルギー移動がうまくおこらな い傾向がある。なお、エネルギー供与体の S — T励起エネルギーが、エネルギー受  0 to 1. OeV is preferred. 1. If it is greater than 5 eV, energy transfer tends to not be successful. It should be noted that the S — T excitation energy of the energy donor
0 n  0 n
容体の S -T励起エネルギーよりも大きぐその差が上記の範囲内となることがより  The difference that is larger than the S-T excitation energy of the container falls within the above range.
0 1  0 1
好ましい。  preferable.
[0028] 前記のようなエネルギー供与体とエネルギー受容体を用いる場合、エネルギー受 容体が得たエネルギーによる化学反応によって、構造変化(=屈折率変化)が起こり [0028] When the energy donor and the energy acceptor as described above are used, a structural change (= refractive index change) occurs due to a chemical reaction by the energy obtained by the energy acceptor.
、結果として光記録が行われたことになる。 As a result, optical recording is performed.
[0029] 次に、前記光記憶媒体を構成するエネルギー供与体及びエネルギー受容体につ いて記載する。このエネルギー供与体及びエネルギー受容体としては、前記の機能 を発揮し得るものであれば特に限定されなレ、。ただし、その中でも、好ましいェネル ギー供与体及びエネルギー受容体があり、ここでは、その例について説明する。 [0029] Next, an energy donor and an energy acceptor constituting the optical storage medium will be described. The energy donor and energy acceptor are not particularly limited as long as they can exhibit the above functions. However, among them, there are preferable energy donors and energy acceptors, and examples thereof will be described here.
[0030] 前記の好ましいエネルギー供与体として、下記式(1一:!)〜(1 4)のいずれかに 示されるオリゴチォフェン系化合物をあげることができる。 [0030] Examples of the preferable energy donor include an oligothiophene compound represented by any one of the following formulas (11 :!) to (14).
[0031] [化 11] [0031] [Chemical 11]
Figure imgf000009_0001
Figure imgf000009_0001
(1 -2)
Figure imgf000009_0002
(1 -2)
Figure imgf000009_0002
Figure imgf000009_0003
Figure imgf000009_0003
[0032] 前記式(1一:!)〜(1 4)において、 X〜X , X 〜X , X 〜X , X 〜X は、水 [0032] In the formulas (11 :!) to (14), X to X, X to X, X to X, and X to X are water.
1 6 7a 7b 8a 8d 9a 9f 素原子、アルキル基、アルキル基の一部の炭素原子をケィ素原子と置き換えた基、 ハロゲン、水酸基、アルキルォキシ基、ァリールォキシ基、ジアルキルアミノ基等があ げられる。そして、前記の、 X〜X , X 〜χ , X 〜Χ , X  1 6 7a 7b 8a 8d 9a 9f Elementary atoms, alkyl groups, groups in which some carbon atoms of alkyl groups are replaced with silicon atoms, halogens, hydroxyl groups, alkyloxy groups, aryloxy groups, dialkylamino groups and the like can be mentioned. And the above-mentioned X to X, X to χ, X to Χ, X
1 6 7a 7b 8a 8d 9a  1 6 7a 7b 8a 8d 9a
〜x は、それぞれ同じであっても異なってもよい。  ˜x may be the same or different.
9f  9f
[0033] これらの中でも、下記式(2)に示されるようなオリゴチォフェン系化合物がより好まし レ、。この式(2)で示される化合物は、式(1 3)又は式(1 4)に示される化合物であ つて、 x =x =x =x =x =x =x =x =x =x =x =x =x =x = [0033] Of these, oligothiophene compounds as shown in the following formula (2) are more preferable. The compound represented by the formula (2) is a compound represented by the formula (13) or the formula (14), and x = x = x = x = x = x = x = x = x = x = x = x = x = x = x =
2 3 4 5 8a 8b 8c 8d 9a 9b 9c 9d 9e 9f 水素原子であり、 Xは Si (R ) (R ) (R )を示し、 Xは Si (R ) (R ) (R )を示す。また、 R〜Rは、水素原子、アルキル基、ハロゲン、水酸基、アルキルォキシ基、ァリール2 3 4 5 8a 8b 8c 8d 9a 9b 9c 9d 9e 9f A hydrogen atom, X represents Si (R) (R) (R), and X represents Si (R) (R) (R). Also, R to R are hydrogen atom, alkyl group, halogen, hydroxyl group, alkyloxy group, aryl
1 6 1 6
ォキシ基、ジアルキルアミノ基から選ばれる基を示す。さらに、 R〜Rは、同じであつ  A group selected from an oxy group and a dialkylamino group; Furthermore, R to R are the same.
1 6  1 6
ても異なってもよレ、。さらにまた、 nは、 4又は 5を示す。  But it's different. Furthermore, n represents 4 or 5.
[化 12]  [Chemical 12]
Figure imgf000010_0001
Figure imgf000010_0001
[0035] このような前記式(2)に示されるオリゴチォフェン系化合物の具体例としては、下記 の式(2— :!)〜(2— 5)に示されるような化合物があげられる。 [0035] Specific examples of the oligothiophene compound represented by the above formula (2) include compounds represented by the following formulas (2— :!) to (2-5).
[0036] [化 13] [0036] [Chemical 13]
[0037] [化 14] [0037] [Chemical 14]
Figure imgf000010_0002
Figure imgf000010_0002
[0038] [化 15] [0038] [Chemical 15]
(2-3)
Figure imgf000010_0003
[0039] [化 16]
(2-3)
Figure imgf000010_0003
[0039] [Chemical 16]
Figure imgf000011_0001
Figure imgf000011_0001
[0041] さらにまた、前記式(2)に示されるオリゴチォフェン系化合物の中でも、 R〜R力 S [0041] Furthermore, among the oligothiophene compounds represented by the formula (2), R to R force S
1 6 、 炭素数 1〜2のアルキル基、炭素数 6〜10のアルキル基、ァリーノレ基、アルケニル基 、アルキニル基、アルコキシ基、ピリジノレ基、チオフヱン環を示す化合物が、前記のェ ネルギー供与体としての機能をより顕著に有するので好ましぐ特に、 R〜R、 R〜  16, an alkyl group having 1 to 2 carbon atoms, an alkyl group having 6 to 10 carbon atoms, an aryleno group, an alkenyl group, an alkynyl group, an alkoxy group, a pyridinole group, or a compound having a thiophenone ring is used as the energy donor. In particular, R ~ R, R ~
1 3 4 1 3 4
Rの各々について、その少なくとも 1つが炭素数 6〜10のアルキル基、ァリール基、For each of R, at least one of them is an alkyl group having 6 to 10 carbon atoms, an aryl group,
6 6
アルケニル基、アルキニル基、アルコキシ基、ピリジノレ基、チォフェン環を示す化合 物がより好ましい。この具体例としては、前記の式(2— 2)〜式(2— 5)に示されるよう な化合物があげられる。  A compound showing an alkenyl group, an alkynyl group, an alkoxy group, a pyridinole group or a thiophene ring is more preferred. Specific examples thereof include compounds represented by the above formulas (2-2) to (2-5).
[0042] シリコン原子を介したアルキル基の導入力 溶解性に寄与するとレ、う知見は、例え ば、 J. Mater. Chem. , 10, 1471— 1507, (2000) .などで知られているが、共役 分子長の限られたオリゴチォフェンの場合は、さらにその効果が顕在化される。  [0042] The ability to introduce alkyl groups via silicon atoms is known to contribute to solubility, for example, J. Mater. Chem., 10, 1471–1507, (2000). However, in the case of oligothiophene with a limited conjugated molecular length, the effect becomes even more apparent.
[0043] すなわち、ペンタチォフェンに対して、その分子両端に η—デシル基を置換した場 合 (下記式 (2— 5) 'で示される化合物)と、デシルジメチルシリル基を置換した場合( 前記式(2 _ 5)で示される化合物)では、同一溶媒に対して、後者は前者の 3〜4桁 多レ、重量を溶解することができる。  That is, when pentathiophene is substituted with η-decyl groups at both ends of the molecule (a compound represented by the following formula (2-5) ′) and when substituted with decyldimethylsilyl groups ( In the above formula (compound represented by 2_5)), the latter can dissolve 3-4 orders of magnitude and weight of the former in the same solvent.
[0044] 具体的には、下記式(2_ 5) 'で示される化合物のクロ口ホルムに対する溶解性は 0 . 05mg/ml未満、トルエンに対する溶解性は 0. 05mgZml未満、かつ、へキサン に対しては非溶解性であるのに対し、前記式(2— 5)で示される化合物のクロ口ホル ムに対する溶解性は 200mgZml以上、トルエンに対する溶解性は 300mgZml以 上、かつ、へキサンに対する溶解性は 100mg/ml以上を示すのである。  [0044] Specifically, a compound represented by the following formula (2_5) 'has a solubility in chloroform of less than 0.05 mg / ml, a solubility in toluene of less than 0.05 mgZml, and In contrast, the compound represented by the formula (2-5) has a solubility in chloroform of 200 mgZml or more, a solubility in toluene of 300 mgZml or more, and a solubility in hexane. Indicates 100 mg / ml or more.
[0045] [化 18]
Figure imgf000012_0001
[0045] [Chemical 18]
Figure imgf000012_0001
[0046] また、トリオクチルシリル基を置換すると、室温に近い温度でも、オリゴチォフェンを 液状化することが可能であり、 100%濃度のアモルファス媒体を構成することが可能 である。このような化合物は、例えば、中空キヤビラリ型の容器に封入して、光記録媒 体、非線形光学媒体として活用することができる。 [0046] When the trioctylsilyl group is substituted, the oligothiophene can be liquefied even at a temperature close to room temperature, and an amorphous medium having a concentration of 100% can be formed. Such a compound can be used, for example, as an optical recording medium or a non-linear optical medium by enclosing it in a hollow chiral container.
[0047] このように、アルキルシリル基を置換することは、置換された化合物を高濃度にマトリ タス中に分散させることを可能にするば力 でなぐ他の低分子化合物を、オリゴチォ フェン部位近くに選択的に配置させる包摂的分子相互作用を発現させることができる 。後述するように、式(2— 5)で示される 5, 5 " " ビス(デシノレジメチルシリル)ペン タチォフェンと、式(3— 2)で示されるアジド化合物では、前記包摂的相互作用により 、近傍位配置が可能となり、他の組み合わせでは得られない高効率の光書込を実現 すること力 Sできる。  [0047] Thus, substitution of the alkylsilyl group allows other low-molecular compounds to be dissipated near the oligothiophene site by allowing the substituted compound to be dispersed in the matrix at a high concentration. Inclusive molecular interactions that can be selectively placed into can be expressed. As will be described later, in the 5, 5 "" bis (decinoledimethylsilyl) pentathiophene represented by the formula (2-5) and the azide compound represented by the formula (3-2), Near-neighbor placement is possible, and it is possible to achieve high-efficiency optical writing that cannot be achieved with other combinations.
[0048] 前記オリゴチォフェン系化合物は、一重項励起状態(S )、三重項励起状態 (T )の  [0048] The oligothiophene-based compound has a singlet excited state (S) and a triplet excited state (T).
1 n 生成率が、従来二段階励起する化合物として知られているビアセチルに比べて、通 常 1桁以上、好ましくは 2桁以上、さらに好ましくは 3桁以上大きい。中でも、一般式( 1 D〜 4)に示す化合物は、ビアセチルに比べて当該生成率が数千倍高ぐ この発明のエネルギー供与体として使用することが、特に好ましい。 The 1 n production rate is usually 1 digit or more, preferably 2 digits or more, and more preferably 3 digits or more, compared to biacetyl, which is conventionally known as a compound that can be excited in two steps. Among them, the compound represented by the general formulas (1 D to 4) has a production rate several thousand times higher than that of biacetyl, and is particularly preferably used as the energy donor of the present invention.
[0049] 次に、前記エネルギー受容体としては、前記エネルギー供与体からエネルギーを 受け取って最低三重項励起状態となり、化学反応へのエネルギーを供与し易い化合 物であれば特に限定されなレ、。中でも、好ましいエネルギー受容体として、下記式(3 )に示されるアジド系化合物をあげることができる。  [0049] Next, the energy acceptor is not particularly limited as long as it is a compound that receives energy from the energy donor and is in the lowest triplet excited state and can easily donate energy to a chemical reaction. Among these, preferred energy acceptors include azide compounds represented by the following formula (3).
[0050] [化 19]  [0050] [Chemical 19]
Figure imgf000012_0002
Figure imgf000012_0002
[0051] 式(3)中、 Yは、アルキル基、ハロゲン、アジド基、スルホニル基、ァリール基、水酸 基及びアルコキシ基から選ばれる少なくとも 1種の基を有する基、又は水素原子を示 す。 [0051] In the formula (3), Y represents an alkyl group, a halogen, an azide group, a sulfonyl group, an aryl group, a hydroxy acid A group having at least one group selected from a group and an alkoxy group, or a hydrogen atom;
このようなアジド系化合物の具体例としては、下記式(3— 1)又は(3— 2)に示され るアジド系化合物があげられる。  Specific examples of such azide compounds include azide compounds represented by the following formula (3-1) or (3-2).
[化 20]  [Chemical 20]
Figure imgf000013_0001
Figure imgf000013_0001
[0054] 前記アジド系化合物は、三重項励起状態となると、下記反応式 < 1 >に示す反応 を生じ、三重項ナイトレン及び窒素分子を生成する。次いで、この三重項ナイトレンは 、カップリング反応、二重結合への付加反応、水素引き抜き反応等の化学反応を起 こす。このため、前記アジド系化合物からなるエネルギー受容体を用いると、光照射 された部分で、三重項ナイトレンが、エネルギー供与体及びエネルギー受容体を分 散させる高分子化合物において構造変化を生じさせ、これにより屈折率変化を生じさ せること力 S可肯 となる。 [0054] When the azide-based compound is in a triplet excited state, the reaction shown in the following reaction formula <1> occurs to generate triplet nitrene and nitrogen molecules. This triplet nitrene then undergoes chemical reactions such as coupling reactions, addition reactions to double bonds, and hydrogen abstraction reactions. For this reason, when an energy acceptor composed of the azide compound is used, triplet nitrene causes a structural change in the polymer compound that disperses the energy donor and the energy acceptor in the irradiated portion. Due to this, the force S for generating a change in refractive index is positive.
[0055] [化 22] [0055] [Chemical 22]
( -Ns )* ^ R-F+ z <1 > (-Ns) * ^ R-F + z <1>
[0056] また、密度汎関数理論を用いて計算すると、前記オリゴチォフェン系化合物の S — [0056] When calculated using density functional theory, S — of the oligothiophene compound
0 0
Tの励起エネノレギ一は、 3. 65eV (340nm、 n= 2のとき)、 3. 05eV (407nm, n= 3のとき)であり、一方、前記アジド系化合物の S — Tの励起エネルギーは、 3. 64e V (340nm,化合物(3— 1)のとき)、 3. 47eV (357nm、化合物(3— 2)のとき)であ る。数値に多少の高低はあるものの、これらから、これらの化合物は、エネルギー供 与体とエネルギー受容体として組み合わせて使用することが可能である。 The excitation energies of T are 3.65eV (when 340nm, n = 2) and 3.05eV (when 407nm, n = 3), while the excitation energy of S — T of the azide compound is 3. 64e V (340 nm, for compound (3-1)), 3.47 eV (357 nm, for compound (3-2)). Although there are some high and low numerical values, these compounds can be used in combination as an energy donor and energy acceptor.
[0057] ところで、光記憶媒体は、均一かつ平坦性に優れることが重要である。例えば、ホロ グラム実験においては、媒体表面が平坦でない場合や、媒体内部に脈理が発生して レ、る場合には、物体光と参照光とのビームが重なりにくぐまた、この二光束干渉が起 こっても、これが作り出す干渉縞を媒体内に屈折率変化として定着しがたいからであ る。このため、図 2に示すように、ブレードコート法および熱圧着法を組み合せること により、光記憶媒体を均一かつ平坦に作製する方法を説明する。  By the way, it is important that the optical storage medium is uniform and excellent in flatness. For example, in a hologram experiment, when the surface of the medium is not flat or striae occur inside the medium, the beam of the object beam and the reference beam hardly overlap each other. This is because the interference fringes created by this phenomenon are difficult to fix as a refractive index change in the medium. Therefore, as shown in FIG. 2, a method for producing an optical storage medium uniformly and flatly by combining the blade coating method and the thermocompression bonding method will be described.
[0058] まず、前記のエネルギー供与体及びエネルギー受容体を所定割合で混合、分散さ せて光記憶媒体用溶液である有機組成物を得る。前記エネルギー供与体及びエネ ルギー受容体は、それぞれ 1種類の化合物であってもよぐまた、 2種類以上の化合 物の混合物であってもよレ、。  [0058] First, the above-mentioned energy donor and energy acceptor are mixed and dispersed at a predetermined ratio to obtain an organic composition which is a solution for an optical storage medium. Each of the energy donor and energy acceptor may be a single compound or a mixture of two or more compounds.
[0059] 前記エネルギー供与体及びエネルギー受容体を分散させる溶媒は、前記エネルギ 一供与体及びエネルギー受容体が十分な溶解性を有し、かつ、基板の材質をいた めないものであれば、特に限定されない。この溶媒の好ましい例としては、テトラヒドロ フラン(THF)、キシレン、モノクロ口ベンゼン、トルエン、メシチレン等があげられる。  [0059] The energy donor and the solvent for dispersing the energy acceptor are not particularly limited as long as the energy donor and the energy acceptor have sufficient solubility and do not damage the material of the substrate. It is not limited. Preferable examples of this solvent include tetrahydrofuran (THF), xylene, monochrome benzene, toluene, mesitylene and the like.
[0060] また、前記エネルギー供与体及びエネルギー受容体を分散させる高分子化合物と して、ポリメチルメタタリレート(PMMA)、シァノアクリレート、光学用シクロォレフィン ポリマー(日本ゼオン (株)製:商品名 ゼォネックス)等があげられる。  [0060] Further, as the polymer compound in which the energy donor and the energy acceptor are dispersed, polymethylmetatalylate (PMMA), cyanoacrylate, optical cycloolefin polymer (manufactured by Nippon Zeon Co., Ltd .: trade name) ZEONEX).
[0061] 次いで、図 2 (a)に示すように、基板上に光記憶媒体用溶液を滴下する。そして、図  Next, as shown in FIG. 2 (a), the optical storage medium solution is dropped onto the substrate. And figure
2 (b)に示すように、前記基板との距離を一定に保つ刃(ブレード)によってこの基板 上を掃引して、前記光記憶媒体用溶液を平坦化する掃引工程を行う(図 2 (c) )。次 いで、かかる掃引後、加熱により溶媒を除去し(図 2 (d) )、続いて、得られた媒体を基 板から剥離する(図 2 (e) )。次いで、得られた媒体を 2枚の基板に挟み、加圧下で加 熱する加熱工程を行う(図 2 (f) )。その後、基板から媒体を剥離する(図 2 (g) )ことに より、平坦性を高めた薄膜型の光記憶媒体を作製することができる。得られた光記憶 媒体が薄い場合、 2枚等、複数枚を積層し、図 2 (f)の方法と同様に熱圧縮することに より、厚膜の光記憶媒体が得られる(図 2 (h) )。なお、図 2 (c)の工程後、図 2 (d) (e) の工程をせず、基板を媒体の上に載せ、図 2 (f)の工程を行ってもよい。 2 As shown in FIG. 2 (b), a sweeping process is performed in which the optical storage medium solution is flattened by sweeping the substrate with a blade that maintains a constant distance from the substrate (see FIG. 2 (c)). )). Next, after such sweeping, the solvent is removed by heating (Fig. 2 (d)), and then the obtained medium is peeled from the substrate (Fig. 2 (e)). Next, a heating process is performed in which the obtained medium is sandwiched between two substrates and heated under pressure (FIG. 2 (f)). Thereafter, by peeling the medium from the substrate (FIG. 2 (g)), a thin film type optical storage medium with improved flatness can be produced. When the obtained optical storage medium is thin, a plurality of sheets such as two are stacked and thermally compressed in the same manner as in the method of FIG. As a result, a thick-film optical storage medium is obtained (FIG. 2 (h)). After the step of FIG. 2 (c), the step of FIG. 2 (f) may be performed by placing the substrate on the medium without performing the steps of FIG. 2 (d) and (e).
[0062] なお、光記憶媒体用溶液の基板への塗工方法としては、前記したブレードコート法 以外に、スピンコート法、スプレー法、ワイヤーバー法、 U法等の塗工方法を用いるこ とができる。 [0062] In addition to the blade coating method described above, a coating method such as a spin coating method, a spray method, a wire bar method, or a U method may be used as a method for applying the optical storage medium solution to the substrate. Can do.
実施例  Example
[0063] 以下、実施例を用いて、この発明をさらに具体的に説明する。  Hereinafter, the present invention will be described more specifically with reference to examples.
[0064] (実施例 1) (オリゴチォフェン系化合物の製造) Example 1 (Production of oligothiophene compound)
[式(2— 1)で示される化合物の製造]  [Production of compound represented by formula (2-1)]
式(2— 1)で示される化合物(5, 5' " ' ビス(tーブチルジメチルシリル) 2, 2': Compound represented by formula (2-1) (5, 5 '"' bis (t-butyldimethylsilyl) 2, 2 ':
5' , 2" : 5", 2" ' : 5 " ' , 2' ' ' '—キンカチォフェン)の製造方法及び化合物データ を示す。 5 ', 2 ": 5", 2 "': 5" ', 2' '' '—kincatiophene) production method and compound data are shown.
[0065] [1] 2 トリブチルスタニルー 5 (tーブチルジメチルシリル)チォフェンの製造  [0065] [1] Production of 2 tributylstannyl-5 (t-butyldimethylsilyl) thiophene
アルゴン雰囲気下、テトラヒドロフラン 18mlにチォフェン(アルドリッチ社製) 0· 74g (8. 8mmol)を溶解して— 30°Cに保った溶液に、ブチルリチウム(アルドリッチ社製) 5. 8ml (8. 8mmol、へキサン溶液)を滴下した。この混合溶液を同温度で 2時間撹 拌した後、 t_ブチルクロロジメチルシラン(アルドリッチ社製) 1. 4g (9. Immol)を加 え、さらに同温度で 1時間撹拌した。この混合溶液に、ブチルリチウム 6. Oml (9. lm mol、へキサン溶液)を滴下し、同温度で 2時間撹拌した後、クロロトリブチルスズ (ァ ルドリッチ社製) 2. 8g (8. 8mmol)を加え、さらに同温度で 1時間撹拌した。この混 合溶液を室温で一晩撹拌した後、ジェチルエーテルで希釈し、激しく撹拌した氷冷 飽和食塩水に投入した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥 した後、減圧下で濃縮し、粗生成物 5. lgを得た。  In an argon atmosphere, 0 · 74 g (8.8 mmol) of thiophene (Aldrich) in 18 ml of tetrahydrofuran was dissolved in a solution kept at −30 ° C., 5.8 ml (8.8 mmol, Hexane solution) was added dropwise. After stirring the mixed solution at the same temperature for 2 hours, 1.4 g (9. Immol) of t_butylchlorodimethylsilane (manufactured by Aldrich) was added, and the mixture was further stirred at the same temperature for 1 hour. To this mixed solution, butyl lithium 6. Oml (9. lm mol, hexane solution) was added dropwise and stirred at the same temperature for 2 hours. Then, 2.8 g (8.8 mmol) of chlorotributyltin (manufactured by Aldrich) was added. In addition, the mixture was further stirred at the same temperature for 1 hour. The mixed solution was stirred overnight at room temperature, diluted with jetyl ether, and poured into vigorously stirred ice-cold saturated brine. The organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure to obtain 5. lg of a crude product.
この粗生成物を 170。C、 0. 3Torrで Kugelrohr蒸留することにより、 2_トリブチル スタニルー 5—(tーブチルジメチルシリル)チォフェン 2· 6gを得た。収率は 60%であ つに。  170. This crude product. By performing Kugelrohr distillation at C, 0.3 Torr, 2.6 g of 2_tributylstannyl-5- (t-butyldimethylsilyl) thiophene was obtained. Yield is 60%.
[0066] [2]式(2— 1)で示される化合物の製造  [0066] [2] Production of compound represented by formula (2-1)
トルエン 4mlに、前記の 2 トリブチルスタニルー 5—(tーブチルジメチルシリル)チ ォフェン 0.59g(0.80mmol)と、 5, 5,,—ジブロモ— 2, 2' :5', 2,,—ターチォフエ ン(アルドリッチ社製) 0· 16g(0.4mmol)とテトラキス(トリフエニルホスフィン)パラジ ゥム(0) (アルドリッチ社製) 46mg(0.040mmol)を混合した溶液を、アルゴン雰囲 気下油浴中、 120°Cで 18時間加熱撹拌した。 To 4 ml of toluene, add 2 tributylstannyl-5- (t-butyldimethylsilyl) 0.59 g (0.80 mmol) of ophen, 5, 5 ,,-dibromo-2,2 ': 5', 2,-terthiophene (Aldrich) 0 · 16 g (0.4 mmol) and tetrakis (triphenylphosphine) A solution in which 46 mg (0.040 mmol) of palladium (0) (manufactured by Aldrich) was mixed was heated and stirred at 120 ° C. for 18 hours in an oil bath under an argon atmosphere.
反応溶液を減圧濃縮してトルエンを除レ、た後、残渣を乾燥酢酸ェチルで洗浄し、 ジクロロメタンで抽出した。このジクロロメタン溶液を濃縮し、式(2— 1)で示される化 合物の橙色粉末を 0. llg(0.17mmol)得た。収率は 42%であった。  The reaction solution was concentrated under reduced pressure to remove toluene, and the residue was washed with dry ethyl acetate and extracted with dichloromethane. The dichloromethane solution was concentrated to obtain 0.1 llg (0.17 mmol) of an orange powder of the compound represented by the formula (2-1). The yield was 42%.
[0067] 得られた化合物の1 H_NMR、 13C_NMR、 MSスペクトルは次の通りである。 [0067] The 1 H_NMR, 13 C_NMR, and MS spectra of the obtained compound are as follows.
•'H-NMR (200MHz, CDCI ) σ 7.24 (AB, J = 3.5Hz, 2H)、 7.14 (AB, J =  'H-NMR (200MHz, CDCI) σ 7.24 (AB, J = 3.5Hz, 2H), 7.14 (AB, J =
3  Three
3.5Hz, 2H)、 7.10 (AB, J = 3.8Hz, 2H)、 7.07 (AB, J = 3.8Hz, 2H)7.07 (s, 2H)、 0.94 (s, 18H)、 0.31 (s, 12H)ppm  3.5Hz, 2H), 7.10 (AB, J = 3.8Hz, 2H), 7.07 (AB, J = 3.8Hz, 2H) 7.07 (s, 2H), 0.94 (s, 18H), 0.31 (s, 12H) ppm
[0068] -13C-NMR(50MHz, CDCI ) σ 141.98, 137.09, 136.29, 135.89, 135 [0068] - 13 C-NMR (50MHz, CDCI) σ 141.98, 137.09, 136.29, 135.89, 135
3  Three
.83, 135.66, 124.77, 124.34, 124.26, 124. 18, 26.42, 17.02—4.8 3ppm  .83, 135.66, 124.77, 124.34, 124.26, 124. 18, 26.42, 17.02—4.8 3ppm
[0069] -FAB-LRMS for C H S Si : 641 ([M + H] + , 60) , 640 (M+, 100) , 583  [0069] -FAB-LRMS for C H S Si: 641 ([M + H] +, 60), 640 (M +, 100), 583
32 40 5 2  32 40 5 2
([M-tBu]+, 25) ([M-tBu] + , 25)
[0070] また、洗浄で用いた乾燥酢酸ェチル層を濃縮し、得られた残渣を乾燥ァセトニトリ ルで洗浄し、 5, 5 '—ビス(tーブチルジメチルシリル)ー 2, 2'—ビチォフェン 0· 006 8g(0.017mmol)の黄色粉末を得た。収率は 43%であった。  [0070] Further, the dry ethyl acetate layer used in the washing was concentrated, and the resulting residue was washed with dry acetonitrile to give 5,5'-bis (t-butyldimethylsilyl) -2,2'-bithiphene. · 006 8 g (0.017 mmol) of yellow powder was obtained. The yield was 43%.
[0071] 得られた化合物の1 H— NMR、 MSスペクトルは次の通りである。 [0071] 1 H-NMR and MS spectra of the obtained compound are as follows.
•'H-NMR (200MHz, CDCI ) σ 7.25 (AB, J = 3.5Hz, 2H)、 7.13 (AB, J =  'H-NMR (200MHz, CDCI) σ 7.25 (AB, J = 3.5Hz, 2H), 7.13 (AB, J =
3  Three
3.5Hz, 2H)、 7.13 (AB, J = 3.5Hz, 2H)0.95 (s, 18H)、 0.30 (s, 12H)pp m  3.5Hz, 2H), 7.13 (AB, J = 3.5Hz, 2H) 0.95 (s, 18H), 0.30 (s, 12H) pp m
[0072] -FAB-LRMS for C H S Si :396([M + 2]+, 4), 395([M+l]+, 7), 39  [0072] -FAB-LRMS for C H S Si: 396 ([M + 2] +, 4), 395 ([M + l] +, 7), 39
30 34 2 2  30 34 2 2
4(M+, 13), 379([M_Me]+, 1), 337 ({M_t_Bu} + , 14)  4 (M +, 13), 379 ([M_Me] +, 1), 337 ({M_t_Bu} +, 14)
[0073] [式(2— 2)で示される化合物の製造] [0073] [Production of compound represented by formula (2-2)]
式(2— 2)で示される化合物(5, 5'"'_ビス(ジメチルフヱニルシリル)一 2, 2' :5 ', 2" :5", 2"' :5"', 2'"'_キンカチオフヱン)の製造方法及び化合物データを 示す。 Compound represented by formula (2-2) (5, 5 '"' _ bis (dimethylphenylsilyl) 1 2, 2 ': 5', 2": 5 ", 2"': 5 "', 2 Manufacturing method and compound data of Show.
[0074] [1] 2—トリブチルスタニル—5— (ジメチルフエエルシリル)チォフェンの製造  [0074] [1] Production of 2-tributylstannyl-5- (dimethylfuelsilyl) thiophene
アルゴン雰囲気下、テトラヒドロフラン 10mlにチォフェン 0· 42g (5. Ommol)を溶 解して— 30°Cに保った溶液に、ブチルリチウム 1. 9ml (5. Ommol、へキサン溶液) を滴下した。この混合溶液を同温度で 2時間撹拌した後、クロ口ジメチルフヱ二ルシラ ン (アルドリッチ社製) 0. 88g (5. 2mmol)を加え、さらに同温度で 1時間撹拌した。こ の混合溶液に、ブチルリチウム 2. 4ml (6. 2mmol、へキサン溶液)を滴下し、同温度 で 2時間撹拌した後、クロロトリブチルスズ 2. 0g (6. Ommol)をカ卩え、さらに同温度で 1時間撹拌した。この混合溶液を室温で一晩撹拌した後、ジェチルエーテルで希釈 し、激しく撹拌した氷冷飽和食塩水に投入した。有機層を飽和食塩水で洗浄し、無 水硫酸ナトリウムで乾燥した後、減圧下で濃縮し、粗生成物 2. 9gを得た。  Under an argon atmosphere, 1.9 ml of butyllithium (5.Ommol, hexane solution) was added dropwise to a solution kept at -30 ° C by dissolving 0.42 g (5.Ommol) of thiophene in 10 ml of tetrahydrofuran. After stirring this mixed solution at the same temperature for 2 hours, 0.88 g (5.2 mmol) of Kokuguchi dimethylvinylsilan (manufactured by Aldrich) was added, and the mixture was further stirred at the same temperature for 1 hour. To this mixed solution, 2.4 ml (6.2 mmol, hexane solution) of butyllithium was added dropwise and stirred at the same temperature for 2 hours. Then, 2.0 g (6. Ommol) of chlorotributyltin was added. Stir at temperature for 1 hour. The mixed solution was stirred overnight at room temperature, diluted with jetyl ether, and poured into ice-cooled saturated brine that was vigorously stirred. The organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure to obtain 2.9 g of a crude product.
この粗生成物を 200。C、 0. 3Torrで Kugelrohr蒸留することにより、 2_トリブチル スタニルー 5— (ジメチルフエニルシリル)チォフェン 1 · 6gを得た。収率は 64%であつ た。  200 of this crude product. Kugelrohr distillation at C, 0.3 Torr gave 2_tributylstannyl-5- (dimethylphenylsilyl) thiophene 1 · 6 g. The yield was 64%.
[0075] [2]式(2— 2)で示される化合物の製造  [0075] [2] Production of compound represented by formula (2-2)
トルエン 8mlに、前記の 2—トリブチルスタニルー 5—(ジメチルフエニルシリル)チォ フェン 0· 81g (l . 6mmol)と、 5, 5"—ジブ口モー 2, 2 ' : 5 ' , 2"—ターチォフェン 0· 32g (0. 8mmol)とテトラキス(トリフエニルホスフィン)パラジウム(0) 92mg (0. 080m mol)を混合した溶液を、アルゴン雰囲気下油浴中、 120°Cで 18時間加熱撹拌した。 反応溶液を減圧濃縮してトルエンを除レ、た後、残渣を乾燥酢酸ェチルで洗浄し、 ジクロロメタンで抽出した。このジクロロメタン溶液を濃縮し、式(2— 2)で示される化 合物の橙色粉末を 0. 31g (0. 46mmol)得た。収率は 57%であった。  To 8 ml of toluene, 0 · 81 g (l.6 mmol) of 2-tributylstannyl-5- (dimethylphenylsilyl) thiophene was added, and 5, 5 "—dib-mouthed 2, 2, ': 5', 2" — A solution in which 0. 32 g (0.8 mmol) of terthiophene and 92 mg (0.080 mmol) of tetrakis (triphenylphosphine) palladium (0) were mixed was heated and stirred at 120 ° C. for 18 hours in an oil bath under an argon atmosphere. The reaction solution was concentrated under reduced pressure to remove toluene, and the residue was washed with dry ethyl acetate and extracted with dichloromethane. The dichloromethane solution was concentrated to obtain 0.31 g (0.46 mmol) of an orange powder of the compound represented by the formula (2-2). The yield was 57%.
[0076] 得られた化合物の1 H_NMR、 13C_NMR、 MSスペクトルは次の通りである。 [0076] 1 H_NMR, 13 C_NMR, and MS spectra of the obtained compound are as follows.
•'H-NMR (200MHz, CDC1 ) σ 7. 55— 7. 62 (m, 4Η)、 7. 35— 7. 43 (m, 6  • 'H-NMR (200MHz, CDC1) σ 7.55—7.62 (m, 4Η), 7.35—7.43 (m, 6
3  Three
H)、 7. 24 (AB, J = 3. 6Hz, 2H)、 7. 16 (AB, J = 3. 6Hz, 2H)、 7. 09 (AB, J = 3. 8Hz, 2H) 7. 07 (s, 2H)、 7. 06 (AB, J = 3. 8Hz, 2H)、 0. 61 (s, 12H) ppm [0077] - 13C-NMR (50MHz, CDC1 ) σ 142. 72, 137. 95, 137. 93, 136. 37, 136 H), 7.24 (AB, J = 3.6 Hz, 2H), 7.16 (AB, J = 3.6 Hz, 2H), 7.09 (AB, J = 3.8 Hz, 2H) 7.07 (s, 2H), 7. 06 (AB, J = 3. 8Hz, 2H), 0. 61 (s, 12H) ppm [0077] - 13 C-NMR (50MHz, CDC1) σ 142. 72, 137. 95, 137. 93, 136. 37, 136
3  Three
. 07, 136. 04, 135. 97, 133. 85, 129. 41, 127. 88, 125. 04, 124. 55、 12 4. 34, 124. 29, —1. 22ppm 07, 136. 04, 135. 97, 133. 85, 129. 41, 127. 88, 125. 04, 124. 55, 12 4. 34, 124. 29, —1. 22ppm
[0078] [式(2— 3)で示される化合物の製造]  [0078] [Production of compound represented by formula (2-3)]
式(2— 3)で示される化合物(5, 5,,,,一ビス(トリオクチルシリル)ー 2, 2,:5,, 2" : 5", 2" ' : 5" ' , 2" "—キンカチオフヱン)の製造方法及び化合物データを示す  Compound represented by formula (2-3) (5, 5, ..., bis (trioctylsilyl) -2, 2,: 5, 2 ": 5", 2 "': 5"', 2 " "—Kinkachiobean) production method and compound data are shown.
[0079] [1] 2_トリブチルスタニル _ 5_ (トリオクチルシリル)チォフェンの製造 [0079] [1] Production of 2_tributylstannyl _ 5_ (trioctylsilyl) thiophene
アルゴン雰囲気下、テトラヒドロフラン 10mlにチォフェン 0. 42g (5. Ommol)を溶 解して— 30°Cに保った溶液に、ブチルリチウム 3. 3ml (5mmol、へキサン溶液)を滴 下した。この混合溶液を同温度で 2時間撹拌した後、クロロトリオクチルシラン (アルド リッチ社製) 1. 9g (5. 2mmol)をカ卩え、さらに同温度で 1時間撹拌した。この混合溶 液に、ブチルリチウム 3. 4ml (5. 2mmol、へキサン溶液)を滴下し、同温度で 2時間 撹拌した後、クロロトリブチルスズ 1. 9g (5. 2mmol)をカ卩え、さらに同温度で 1時間撹 拌した。この混合溶液を室温で一晩撹拌した後、ジェチルエーテルで希釈し、激しく 撹拌した氷冷飽和食塩水に投入した。有機層を飽和食塩水で洗浄し、無水硫酸ナト リウムで乾燥した後、減圧下で濃縮し、粗生成物 3. 7gを得た。  Under an argon atmosphere, 0.42 g (5 Ommol) of thiophene was dissolved in 10 ml of tetrahydrofuran, and 3.3 ml (5 mmol, hexane solution) of butyllithium was added dropwise to a solution kept at -30 ° C. After the mixed solution was stirred at the same temperature for 2 hours, 1.9 g (5.2 mmol) of chlorotrioctylsilane (manufactured by Aldrich) was added and further stirred at the same temperature for 1 hour. To this mixed solution, 3.4 ml (5.2 mmol, hexane solution) of butyllithium was added dropwise and stirred at the same temperature for 2 hours. Then, 1.9 g (5.2 mmol) of chlorotributyltin was added, and the same solution was added. Stir at temperature for 1 hour. The mixed solution was stirred overnight at room temperature, diluted with jetyl ether, and poured into ice-cooled saturated brine that was vigorously stirred. The organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure to obtain 3.7 g of a crude product.
この粗生成物を 250°C、 0. 3Torrで Kugelrohr蒸留することにより、 2—トリブチル スタニルー 5—(トリオクチルシリル)チォフェン 2· 3gを得た。収率は 63%であった。  This crude product was subjected to Kugelrohr distillation at 250 ° C. and 0.3 Torr to obtain 2.3 g of 2-tributylstannyl-5- (trioctylsilyl) thiophene. The yield was 63%.
[0080] [2]式(2— 3)で示される化合物の製造  [0080] [2] Production of compound represented by formula (2-3)
トルエン 6mlに、前記の 2—トリブチルスタニルー 5—(トリオクチルシリル)チォフェン 0. 90g (l . 22mmol)と、 5, 5,,—ジブロモ— 2, 2' : 5' , 2,,—ターチォフェン 0. 25g (0. 61mmol)とテトラキス(トリフエニルホスフィン)パラジウム(0) 70mg (0. 061mm ol)を混合した溶液を、アルゴン雰囲気下油浴中、 120°Cで 18時間加熱撹拌した。  To 6 ml of toluene, 0.90 g (l. 22 mmol) of 2-tributylstannyl-5- (trioctylsilyl) thiophene, 5, 5 ,,-dibromo-2,2 ': 5', 2, ...- terthiophene A solution in which 0.25 g (0.61 mmol) and tetrakis (triphenylphosphine) palladium (0) 70 mg (0.061 mmol) were mixed was heated and stirred at 120 ° C. for 18 hours in an oil bath under an argon atmosphere.
120°C、 0. 3Τοιτで減圧蒸留して揮発成分を除去した残渣を、体積排除クロマトグ ラフィーによって精製し、式(2— 3)で示される化合物の橙色油状物質を 0. 26g (0. 22mmol)得た。収率は 37。/。であった。  The residue from which volatile components were removed by vacuum distillation at 120 ° C and 0.3Τοιτ was purified by volume exclusion chromatography, and 0.26 g (0.22 mmol) of an orange oily substance represented by the formula (2-3) was obtained. )Obtained. Yield 37. /. Met.
[0081] 得られた化合物の1 H_NMR、 13C_NMR、 MSスペクトルは次の通りである。 [0081] The 1 H_NMR, 13 C_NMR, and MS spectra of the obtained compound are as follows.
•'H-NMR (200MHz, CDCI ) σ 7. 24 (AB, J = 3. 5Hz, 2H)、 7. 12 (AB, J =  'H-NMR (200MHz, CDCI) σ 7. 24 (AB, J = 3.5Hz, 2H), 7. 12 (AB, J =
3  Three
3. 5Hz, 2H)、 7. 10 (AB, J = 3. 8Hz, 2H)、 7. 07 (AB, J = 3. 8Hz, 2H)、 7. 0 7(s, 2H)、 1.22— 1.46 (m, 72H)、 0.76— 0.96 (m, 30H)ppm 3.5 Hz, 2H), 7.10 (AB, J = 3.8Hz, 2H), 7.07 (AB, J = 3.8Hz, 2H), 7.0 7 (s, 2H), 1.22— 1.46 (m, 72H), 0.76— 0.96 (m, 30H) ppm
[0082] -13C-NMR(50MHz, CDCI ) σ 141.85, 137.61, 136.48, 135.97, 135 [0082] - 13 C-NMR (50MHz, CDCI) σ 141.85, 137.61, 136.48, 135.97, 135
3  Three
.66, 135.34, 124.84, 124.31, 124.26, 124. 16, 33.69, 31.94, 29.2 8, 29.21, 23.73, 22.70, 14.13, 13.37ppm  .66, 135.34, 124.84, 124.31, 124.26, 124. 16, 33.69, 31.94, 29.2 8, 29.21, 23.73, 22.70, 14.13, 13.37ppm
[0083] -FAB-LRMS for C H S Si : 1146 ([M + H]+, 87), 1145(M+, 100), [0083] -FAB-LRMS for C H S Si: 1146 ([M + H] +, 87), 1145 (M +, 100),
68 112 5 2  68 112 5 2
1033([M— Oct + H]+, 10), 1032 ([M— Oct] +, 10)  1033 ([M—Oct + H] +, 10), 1032 ([M—Oct] +, 10)
[0084] また、副生生物として、 5, 5,, ',,,, _ビス(トリオクチルシリル)_2, 2' :5', 2" :5" , 2"' :5" \ 2"" :5"", 2"" :5""', 2""" :5""", 2,,,,,,,—オタ タチォフェン 0.077g(0.055mmol)の赤色ペースト状固体を得た。収率は 18%で あった。 [0084] As a by-product, 5, 5,, ',,, _bis (trioctylsilyl) _2, 2': 5 ', 2 ": 5", 2 "': 5" \ 2 " ": 5" ", 2" ": 5" "', 2" "": 5 "" ", 2,,,,, --Otathiophene 0.077g (0.055mmol) of red pasty solid was obtained . The yield was 18%.
[0085] 得られた化合物の1 H_NMR、 MSスペクトルは次の通りである。 [0085] The 1 H_NMR and MS spectra of the obtained compound are as follows.
•'H-NMR (200MHz, CDCI ) σ 7.23 (AB, J = 3.5Hz, 2H)、 7.12 (AB, J =  'H-NMR (200MHz, CDCI) σ 7.23 (AB, J = 3.5Hz, 2H), 7.12 (AB, J =
3  Three
3.5Hz, 2H)、 7.07 (br s, J = 3.8Hz, 12H)1.22— 1.46 (m, 72H)、 0.76 -0.96 (m, 30H)ppm  3.5Hz, 2H), 7.07 (br s, J = 3.8Hz, 12H) 1.22— 1.46 (m, 72H), 0.76 -0.96 (m, 30H) ppm
[0086] -13C-NMR(50MHz, CDCI ) σ 141.71, 137.62, 136.50, 136.12, 135 [0086] - 13 C-NMR (50MHz, CDCI) σ 141.71, 137.62, 136.50, 136.12, 135
3  Three
.79, 135.63, 135.49, 135.25, 124.81, 124.29, 124.12, 33.75, 32. 01, 31.66, 29.34, 29.28, 23.81, 22.78, 22.74, 14.22, 13.49ppm [0087] -FAB-LRMS for C H S Si : 1391 ([M + H] +), 1390 (M+)  .79, 135.63, 135.49, 135.25, 124.81, 124.29, 124.12, 33.75, 32. 01, 31.66, 29.34, 29.28, 23.81, 22.78, 22.74, 14.22, 13.49 ppm [0087] -FAB-LRMS for CHS Si: 1391 ( [M + H] +), 1390 (M +)
80 118 8 2  80 118 8 2
[0088] [式(2— 4)及び式(2— 5)で示される化合物の製造]  [0088] [Production of compounds represented by formula (2-4) and formula (2-5)]
式(2— 4)で示される化合物(5,5' ' ' 一ビス(デシルジメチルシリル)クォーターチォ フェン)、及び式(2— 5)で示される化合物(5,5 ' ' ' '—ビス(デシノレジメチルシリル)ぺ ンタチオフヱン)の製造方法及び化合物データを示す。  A compound represented by formula (2-4) (5,5 ′ ′ ′ monobis (decyldimethylsilyl) quaterthiophene) and a compound represented by formula (2-5) (5,5 ′ ′ ′ ′-bis The production method and compound data of (decinoledimethylsilyl) pentathiophene) are shown.
[0089] [ 1 ]デシノレジメチル( 2 ' _チェニル)シラン(下記式 (4 _ 1 )で示される化合物)の製 造 [0089] [1] Manufacture of decinoredimethyl (2'_chenyl) silane (compound represented by the following formula (4_1))
[化 23]  [Chemical 23]
(4- 1 )  (4-1)
Si(Me)2C10H21 [0090] 無水 THF40mLに溶かしたチォフェン(1. 68g, 20. Ommol)を一 20°Cに冷却し 、そこへブチノレリチウム(13. OmL, 20. Ommol, 1. 6M in hexanes)を 30分力、 けてゆっくり滴下した。混合溶液を室温まで昇温し 1時間攪拌した。再び、溶液を 2 0°Cに冷却したあと、クロ口デシルジメチルシラン(4. 70g, 20. Ommol)の THF溶液 (10mL)を素早く加えた。溶液を室温まで昇温して終夜攪拌したあと、塩ィ匕アンモニ ゥム水溶液 50mLを加えた。水相をジェチルエーテル lOOmLで 3回抽出したあと、 合わせた有機相を飽和食塩水 150mLで洗浄した。有機相を無水硫酸マグネシウム で乾燥したのち、エバポレーターを使って濃縮し、得られた粗生成物をシリカゲル力 ラムクロマトグラフィー(溶媒へキサン)で精製し、 目的物(5. 03g)を収率 89。/0で得た Si (Me) 2 C 10 H 21 [0090] Thiophene (1.68 g, 20. Ommol) dissolved in anhydrous THF (40 mL) was cooled to 20 ° C and butynolethium (13. OmL, 20. Ommol, 1.6 M in hexanes) was added to it for 30 minutes. It was dripped slowly. The mixed solution was warmed to room temperature and stirred for 1 hour. Again, after the solution was cooled to 20 ° C., a THF solution (10 mL) of black-decyldimethylsilane (4.70 g, 20. Ommol) was quickly added. The solution was warmed to room temperature and stirred overnight, and then 50 mL of an aqueous salt ammonium solution was added. The aqueous phase was extracted three times with 10 mL of jetyl ether, and the combined organic phases were washed with 150 mL of saturated brine. The organic phase is dried over anhydrous magnesium sulfate and concentrated using an evaporator. The resulting crude product is purified by silica gel chromatography (solvent hexane) to yield the desired product (5.03 g) in 89% yield. . / Obtained at 0
[0091] 得られた化合物の TLCの R値、 H— NMR 13C_NMR、 IR、 MSの各スぺクトノレ [0091] TLC R value, H-NMR 13 C_NMR, IR, MS spectrum of the obtained compound
f  f
は次の通りである。  Is as follows.
•TLC : R =0. 85 (hexanes) .  • TLC: R = 0.85 (hexanes).
f  f
[0092] •'H-NMR (400MHz, CDC1 ) : σ =0. 31 (s, 6H) , 0. 77 (dd, J = 9. 2, J = 6.  [0092] • 'H-NMR (400MHz, CDC1): σ = 0.31 (s, 6H), 0.77 (dd, J = 9.2, J = 6.
3  Three
4Hz, 2H) , 0. 87 (t, J = 6. 6 Hz, 3H  4Hz, 2H), 0. 87 (t, J = 6.6 Hz, 3H
) , 1. 21— 1. 41 (m, 16H) , 7. 06 (dd, J = 3. 8, J = 3. 2Hz, 1H) , 7. 27 (d, J = 3. 2Hz, 1H) , 7. 60 (d, J = 3. 8Hz, lH) ppm.  ), 1.21—1.41 (m, 16H), 7.06 (dd, J = 3. 8, J = 3.2 Hz, 1H), 7.27 (d, J = 3.2 Hz, 1H) , 7. 60 (d, J = 3.8Hz, lH) ppm.
[0093] •13C— NMR (100MHz, CDC1 ): σ =— 1. 81 , 14. 13, 16. 61, 22. 69, 23. [0093] • 13 C—NMR (100 MHz, CDC1): σ = — 1. 81, 14. 13, 16. 61, 22. 69, 23.
3  Three
76, 29. 29, 29. 34, 29. 58, 29. 65, 31. 92, 33. 49, 128. 02, 130. 33, 13 4. 10, 139. 21ppm.  76, 29. 29, 29. 34, 29. 58, 29. 65, 31. 92, 33. 49, 128. 02, 130. 33, 13 4. 10, 139. 21 ppm.
[0094] •IR (KBr) : 3076, 2922, 2853, 1499, 1465, 1407, 1250, 1213, 1082, 99 1 , 810, 704cm—1. [0094] • IR (KBr): 3076, 2922, 2853, 1499, 1465, 1407, 1250, 1213, 1082, 99 1, 810, 704cm— 1 .
•FAB-MS : m/z = 283/282 (5/34, M+) .  FAB-MS: m / z = 283/282 (5/34, M +).
[0095] [2] 2-デシルジメチルシリル— 5 -トリブチルスタニルチオフェン(下記式(4 - 2)で 示される化合物)の製造  [0095] [2] Production of 2-decyldimethylsilyl-5-tributylstannylthiophene (compound represented by the following formula (4-2))
[化 24]
Figure imgf000020_0001
[0096] 前記の方法で得られたデシルジメチル(2 ' チェニル)シラン(式(4 1)で示され る化合物) (2. 82g、 10. Ommol)のジェチルエーテル溶液(30mL)を 0°Cに冷却し 、そこにブチノレリチウム(6. 25mL, 10. Ommol, 1. 6M in hexanes)を 15分力、け て滴下した。その懸濁液を室温まで昇温して 1時間攪拌した。黄色い反応溶液を 0°C に冷却してクロロトリブチルスタンナン(3. 26g, 10. Ommol)を素早く加えた。その 混合液を室温まで昇温して終夜攪拌したあと、飽和塩ィ匕アンモニゥム水溶液 50mL をカロえ、反応を停止した。水相をジェチルエーテル 50mLで 3回抽出したあと、合わ せた有機相を飽和食塩水 50mLで洗浄し、無水硫酸マグネシウムで乾燥した。有機 溶媒をエバポレーターで濃縮し、得た黄色の粗生成物(5. 44g, 9. 52mmol, 95% )を精製することなぐそのまま次のカップリング反応に使用した。
[Chemical 24]
Figure imgf000020_0001
[0096] A decyldimethyl (2′-cenyl) silane (compound represented by the formula (41)) (2.82 g, 10. Ommol) obtained in the above-described method (30 mL) was added at 0 ° After cooling to C, butinorelithium (6.25 mL, 10. Ommol, 1.6 M in hexanes) was added dropwise thereto for 15 minutes. The suspension was warmed to room temperature and stirred for 1 hour. The yellow reaction solution was cooled to 0 ° C. and chlorotributylstannane (3.26 g, 10. Ommol) was added quickly. The mixture was warmed to room temperature and stirred overnight, and then 50 mL of a saturated aqueous solution of ammonium chloride was added to stop the reaction. The aqueous phase was extracted 3 times with 50 mL of jetyl ether, and the combined organic phase was washed with 50 mL of saturated brine and dried over anhydrous magnesium sulfate. The organic solvent was concentrated by an evaporator, and the obtained yellow crude product (5.44 g, 9.52 mmol, 95%) was directly used for the next coupling reaction without purification.
[0097] 得られた化合物の1 H_NMR、 13C_NMR、 IR、 MSの各スペクトルは次の通りで ある。 [0097] The 1 H_NMR, 13 C_NMR, IR, and MS spectra of the obtained compound are as follows.
[0098] - 'H-NMR (400MHz, CDC1 ): σ =0. 30 (s, 6H) , 0. 71— 0. 97 (m, 14H) ,  [0098]-'H-NMR (400MHz, CDC1): σ = 0.30 (s, 6H), 0.71— 0.97 (m, 14H),
3  Three
0. 99- 1. 21 (m, 6H) , 1. 28— 1. 42 (m, 22H) , 1. 44—1. 66 (m, 6H) , 7. 1 6 - 7. 20 (m, 1H) , 7. 39 (bs, lH) ppm.  0. 99- 1. 21 (m, 6H), 1. 28— 1. 42 (m, 22H), 1. 44— 1.66 (m, 6H), 7. 1 6-7. 20 (m, 1H), 7.39 (bs, lH) ppm.
[0099] - 13C-NMR (100MHz, CDC1 ): σ =— 1. 63, 10. 84, 13. 66, 14. 13, 16. [0099] - 13 C-NMR (100MHz, CDC1): σ = - 1. 63, 10. 84, 13. 66, 14. 13, 16.
3  Three
78, 17. 51, 22. 70, 23. 83, 27. 27, 28. 96, 29. 32, 29. 35, 29. 68, 31. 9 3, 33. 53, 134. 87, 136. 09, 142. 13, 144. 97ppm.  78, 17. 51, 22. 70, 23. 83, 27. 27, 28. 96, 29. 32, 29. 35, 29. 68, 31. 9 3, 33. 53, 134. 87, 136. 09 , 142. 13, 144. 97 ppm.
[0100] -IR (KBr) : 2955, 2922, 2853, 1466, 1250, 1200, 1105, 837, 769cm"1. [0100] -IR (KBr): 2955, 2922, 2853, 1466, 1250, 1200, 1105, 837, 769cm " 1 .
M+— C H ) . M + — C H).
4 9  4 9
[0101] [3]式(2— 4)で示される化合物の製造  [0101] [3] Production of compound represented by formula (2-4)
5, 5、_ジブロモ一2, 2' _ビチォフェン(311mg, 960mmol)の無水トルエン溶 液 15mLを注意深くアルゴンで脱気したのち、前記の方法で得られた 2 _デシルジメ チルシリル _ 5 _トリブチルスタニルチオフェン(式(4— 2)で示される化合物)(1. 65 g, 2. 88mmol)をカロ免た。 Pd (PPh ) (65. 4mg, 144mmol, 15mol%)をカロ免た  5, 5 _ Dibromo-1,2,2 '_bithiophene (311 mg, 960 mmol) in anhydrous toluene 15 mL was carefully degassed with argon, then 2 _decyldimethylsilyl _ 5 _tributylstannyl obtained by the above method Thiophene (a compound represented by the formula (4-2)) (1.65 g, 2.88 mmol) was calorie-free. Pd (PPh) (65.4 mg, 144 mmol, 15 mol%) was calorie free
3 4  3 4
あと、反応溶液を 120°Cで 24時間加熱した。溶媒を減圧留去したのち、粗生成物を ァセトニトリルで洗浄した。残った固体をジクロロメタン lOOmLに溶解し、濾過した。ろ 液にシリカゲルを加えて生成物を吸着させたのちに溶媒を減圧留去し、生成物を担 持したシリカゲルを得た。これをカラム管に充填し、へキサン/ジクロロメタン混合溶 媒をつかって生成物の精製をおこない、 目的物を黄色固体(551mg,収率 79%)と して得た。 The reaction solution was then heated at 120 ° C. for 24 hours. After the solvent was distilled off under reduced pressure, the crude product was washed with acetonitrile. The remaining solid was dissolved in 10 mL dichloromethane and filtered. B Silica gel was added to the liquid to adsorb the product, and then the solvent was distilled off under reduced pressure to obtain silica gel carrying the product. This was packed in a column tube, and the product was purified using a hexane / dichloromethane mixed solvent to obtain the desired product as a yellow solid (551 mg, yield 79%).
[0102] 得られた化合物の Mp (融点。なお、括弧内の溶媒は、融点測定に供した結晶の再 結晶溶媒を示す。)、 TLCの R値、 'H-NMR, 13C_NMR、 IR、 MSの各スぺタト [0102] Mp of the obtained compound (melting point. The solvent in parentheses indicates the recrystallization solvent of the crystal used for the melting point measurement.), R value of TLC, 'H-NMR, 13 C_NMR, IR, MS SPET
f  f
ルは次の通りである。  The rules are as follows.
[0103] -Mp:70°C (hexanes/dichloromethane) . [0103] -Mp: 70 ° C (hexanes / dichloromethane).
•TLC:R =0.70(hexanes:dich丄 ormethane = 7:丄リ .  TLC: R = 0.70 (hexanes: dich 丄 ormethane = 7: 丄
f  f
[0104] -'H-NMR (400MHz, CDCI ) : σ =0.31 (s, 12H), 0.78(dd, J = 9.2, J = 6  [0104] -'H-NMR (400MHz, CDCI): σ = 0.31 (s, 12H), 0.78 (dd, J = 9.2, J = 6
3  Three
.4Hz, 4H), 0.88(t, J = 6.6Hz, 6H), 1.22-1.42 (m, 32H), 7.06 (d, J =3.8Hz, 2H), 7.09(d, J = 3.8Hz, 2H) , 7.13(d, J = 3.4Hz, 2H) , 7.23 (d, J = 3.4Hz, 2H)ppm.  .4Hz, 4H), 0.88 (t, J = 6.6Hz, 6H), 1.22-1.42 (m, 32H), 7.06 (d, J = 3.8Hz, 2H), 7.09 (d, J = 3.8Hz, 2H) , 7.13 (d, J = 3.4Hz, 2H), 7.23 (d, J = 3.4Hz, 2H) ppm.
[0105] -13C-NMR(100MHz, CDCI ): σ =— 1.92, 14.13, 16.49, 22.69, 23. [0105] - 13 C-NMR (100MHz, CDCI): σ = - 1.92, 14.13, 16.49, 22.69, 23.
3  Three
79, 29.29, 29.35, 29.59, 29.66, 31.92, 33.47, 124.21, 124.39, 12 4.93, 134.98, 135.91, 136.30, 139.30, 141.98ppm.  79, 29.29, 29.35, 29.59, 29.66, 31.92, 33.47, 124.21, 124.39, 12 4.93, 134.98, 135.91, 136.30, 139.30, 141.98 ppm.
[0106] -IR(KBr) :3057, 2957, 2920, 2851, 1425, 1257, 1070, 984, 835, 802, 789cm"1. [0106] -IR (KBr): 3057, 2957, 2920, 2851, 1425, 1257, 1070, 984, 835, 802, 789cm " 1 .
[0107] [4]式(2— 5)で示される化合物の製造 [0107] [4] Production of compound represented by formula (2-5)
5, 5" ' ビス(デシルジメチルシリル)クォーターチォフェン(式(2— 4)で示される 化合物)と同様の手順にしたがって、 5, 5''_ジブロモ_2, 2' :5', 2''_ターチォ フェンと 2 _デシルジメチルシリル _ 5 -トリブチルスタニルチオフェン(式(4 - 2)で 示される化合物)から明るい橙色固体として収率 76%で合成した。  5, 5 "'Follow the same procedure as for bis (decyldimethylsilyl) quaterthiophene (compound of formula (2-4)), 5, 5' '_ dibromo_2, 2': 5 ', 2 It was synthesized from __tatiophene and 2_decyldimethylsilyl_5-tributylstannylthiophene (compound represented by the formula (4-2)) as a bright orange solid with a yield of 76%.
[0108] 得られた化合物の Mp、 TLCの R値、 H— NMI^ 13C_NMR、 IR、 MSの各スぺ [0108] Mp, TLC R value, H— NMI ^ 13 C_NMR, IR, MS of the obtained compound
f  f
タトルは次の通りである。  The tuttle is as follows.
[0109] ·Μρ. : 101 - 103°C (hexanes/dichloromethane) . [0109] · Μρ .: 101-103 ° C (hexanes / dichloromethane).
•TLC :R =0.り 5 (hexanes: dichlormethane = 1) . [0110] - 'H-NMR (400MHz, CDC1 ) : σ =0. 32 (s, 12H) , 0. 79 (dd, J = 9. 2, 6. 4 • TLC: R = 0.5 (hexanes: dichlormethane = 1). [0110]-'H-NMR (400MHz, CDC1): σ = 0.32 (s, 12H), 0.79 (dd, J = 9. 2, 6. 4
3  Three
Hz, 4H) , 0. 89 (t, J = 6. 6Hz, 6H) , 1. 21— 1. 41 (m, 32H) , 7. 07 (s, 2H) , 7. 07 (d, J = 3. 2Hz, 2H) , 7. 10 (d, J = 3. 2Hz, 2H) , 7. 14 (d, J = 3. 4Hz, 2 H) , 7. 23 (d, J= 3. 4Hz, 2H) ppm.  Hz, 4H), 0. 89 (t, J = 6. 6Hz, 6H), 1. 21— 1. 41 (m, 32H), 7. 07 (s, 2H), 7. 07 (d, J = 3.2Hz, 2H), 7.10 (d, J = 3.2Hz, 2H), 7.14 (d, J = 3.4Hz, 2H), 7.23 (d, J = 3.4Hz, 2H) ppm.
[0111] - 13C-NMR (100MHz, CDC1 ): σ =— 1. 93, 14. 13, 16. 48, 22. 69, 23. [0111] - 13 C-NMR (100MHz, CDC1): σ = - 1. 93, 14. 13, 16. 48, 22. 69, 23.
3  Three
74, 29. 29, 29. 35, 29. 59, 29. 65, 31. 92, 33. 47, 124. 23, 124. 32, 12 4. 40, 124. 95, 134. 98, 135. 75, 135. 97, 136. 41, 139. 34, 141. 93pp m.  74, 29. 29, 29. 35, 29. 59, 29. 65, 31. 92, 33. 47, 124. 23, 124. 32, 12 4. 40, 124. 95, 134. 98, 135. 75 , 135. 97, 136. 41, 139. 34, 141. 93 pp m.
[0112] -IR (KBr) : 3059, 2955, 2920, 2851 , 1442, 1427, 1250, 1070, 988, 837 , 791cm—1. -FAB-MS : m/z = 810/809/808/807 (14/19/26/3, M +) . [0112] -IR (KBr): 3059, 2955, 2920, 2851, 1442, 1427, 1250, 1070, 988, 837, 791cm— 1.- FAB-MS: m / z = 810/809/808/807 ( 14/19/26/3, M +).
[0113] (実施例 2) [オリゴチォフェン系化合物及びアジド系化合物の励起エネルギー] 図 3に示す過渡吸収測定装置を用いて、エネルギー供与体である式(2— 3)に示さ れる化合物の T -T吸収を測定すると共に、 T力 Sに落ちる際のリン光を測定し  [0113] (Example 2) [Excitation energy of oligothiophene compound and azide compound] Using the transient absorption measuring apparatus shown in Fig. 3, the energy donor of the compound represented by the formula (2-3) Measure T-T absorption and measure phosphorescence when falling to T force S
1 n 1 0  1 n 1 0
た。この装置では、 Qスィッチ YAGレーザーの第二高調波発生装置(SHG)あるい は第三高調波発生装置 (THG)を通して得られた第二高調波あるいは第三高調波 をポンプ光として用レ、、また、キセノンランプ光をプローブ光として用いて、チォフェン の T T吸収あるレ、は T S (りん光)を測定することができる。測定の結果、 T It was. In this device, the second harmonic or the third harmonic obtained through the second harmonic generator (SHG) or third harmonic generator (THG) of the Q switch YAG laser is used as pump light. In addition, using xenon lamp light as probe light, thiophene with TT absorption can measure TS (phosphorescence). Measurement result, T
I n 1 0 1I n 1 0 1
T吸収は 650nmであり、 T—Sエネノレギ一は、 820nmであること;^半 IJ明し、また、 n 1 0 T absorption is 650nm, T-S enenoregi is 820nm; ^ IJ clear, n 1 0
これらから、 S -Tエネノレギ一は、 360nmであることが分かった。通常の吸収スぺク  From these, it was found that S-T enenoregi was 360 nm. Normal absorption spectrum
0 n  0 n
トル測定の結果からは、 S -S吸収が 405nmであることも分かった。  Torr measurements also showed that the S-S absorption was 405 nm.
0 1  0 1
[0114] 次に、エネルギー受容体である化合物(3— 1)で示される化合物及び(3— 2)で示 される化合物 (東洋合成工業 (株)製)のトノレェン溶液の S -Tエネルギーを図 3に  [0114] Next, the S-T energy of the Tonolene solution of the compound represented by the compound (3-1) which is an energy acceptor and the compound represented by (3-2) (manufactured by Toyo Gosei Co., Ltd.) is measured. Figure 3
0 1  0 1
示す装置を用いて測定した。その結果、化合物(3— 1)は 440nm、化合物(3— 2) は、 500nmであることがわかった。  Measurements were made using the equipment shown. As a result, it was found that the compound (3-1) was 440 nm and the compound (3-2) was 500 nm.
これらから、式(2_ 3)で表されるチォフェン系化合物に対する好適なエネルギー 受容体は式(3— 1)あるいは式(3— 2)で表されるアジド系化合物であることが実験 的に確認された。もちろん、チォフェン化合物については、側鎖の形状が多少異なつ ても、そのエネルギーレベル力 今回の測定値から大きく異なった値になることはなくFrom these results, it was experimentally confirmed that a suitable energy acceptor for the thiophene compound represented by the formula (2_3) is an azide compound represented by the formula (3-1) or the formula (3-2). It was done. Of course, for thiophene compounds, the side chain shape is slightly different. However, the energy level force will not be significantly different from the current measurement value.
、例えば、式(2— 1)で表されるチォフェンを用いる場合でも、式(3— 1)あるいは式( 3— 2)で表されるアジド系化合物をエネルギー受容体として用いることができる。 For example, even when thiophene represented by the formula (2-1) is used, an azide compound represented by the formula (3-1) or the formula (3-2) can be used as an energy acceptor.
[0115] (実施例 3) [光記憶媒体の作製] [0115] (Example 3) [Fabrication of optical storage medium]
エネルギー供与体として、式(2_ 1)で示される化合物(5, 5 " "—ビス(t—ブチ ルジメチルシリル) - 2, 2' : 5' , 2" : 5", 2" ' : 5 " ' , 2" "—キンカチォフェン)を 用レ、、エネルギー受容体として、 DZDSあるレ、は BAP— Pを用いて、光学実験に好 適な薄膜を作製した。  As an energy donor, a compound represented by the formula (2_ 1) (5, 5 "" -bis (t-butyldimethylsilyl)-2, 2 ': 5', 2 ": 5", 2 "': 5 A thin film suitable for optical experiments was fabricated using “', 2” “—kinkathiophene) and DZDS with BAP-P as the energy acceptor.
[0116] 最初に、チォフェン(濃度 0. lwt%)とアジド DZDS (濃度 0. 4wt%)あるいは BAP —P (濃度 0. 4wt%)に溶媒テトラヒドロフラン (THF) (濃度 5. 6wt%)をカ卩ぇ加熱し 溶解させ、これに、光学用シクロォレフィンポリマー(日本ゼオン (株)製:商品名 ゼ ォネックス、濃度 37. 6wt%)とメシチレン (濃度 56. 3wt%)の混合溶液をさらに加え て、再び加熱し溶解させて、図 2 (a)の工程に用いる光記憶媒体用溶液 (有機組成物 )を作製した。  [0116] First, thiophene (concentration: 0.1 wt%) and azide DZDS (concentration: 0.4 wt%) or BAP-P (concentration: 0.4 wt%) were mixed with the solvent tetrahydrofuran (THF) (concentration: 5.6 wt%). Heat and dissolve, and add a mixed solution of optical cycloolefin polymer (manufactured by Nippon Zeon Co., Ltd .: trade name ZEONEX, concentration 37.6 wt%) and mesitylene (concentration 56.3 wt%). Then, the solution was heated again and dissolved to prepare an optical storage medium solution (organic composition) used in the step of FIG. 2 (a).
[0117] ここで、式(2— 1)のペンタチォフェンとアジド DZDSあるいは BAP— Pを溶解させ る溶媒として THFを用いたが (THFでは常温下でも溶解可能)、このほか、 4溶媒 (キ シレン、モノクロ口ベンゼン、トルエン、メシチレン)にも加熱下、溶解できることが確認 された。この 4溶媒の中では、メシチレンが最適であり、溶液が加熱後常温に戻った 際に最大の透明性を有していた。式(2— 1)のペンタチォフェンとアジドとを分散させ る高分子としては、ポリメチルメタタリレート(PMMA)ゃシァノアクリレート等を種々検 討した結果、光学用シクロォレフィンポリマー(日本ゼオン (株)製:商品名 ゼォネッ タス)が最適であることが分かった。ただし、 PMMAゃシァノアクリレートもペンタチォ フェンの側鎖を化学修飾し溶解度を高める等を行えば良好な分散媒になり得る。  [0117] Here, THF was used as a solvent for dissolving pentathiophene of formula (2-1) and azide DZDS or BAP-P (THF can be dissolved at room temperature), but in addition, four solvents ( It was confirmed that it can also be dissolved under heating in (xylene, monochlorobenzene, toluene, mesitylene). Of these four solvents, mesitylene was the best and had the greatest transparency when the solution returned to room temperature after heating. As a polymer that disperses pentathiophene of formula (2-1) and azide, polymethylmethalate (PMMA) cyanoacrylate was investigated, and as a result, optical cycloolefin polymer (Japan) Zeon Co., Ltd. (trade name: Zeonetas) was found to be optimal. However, PMMA cancyanacrylate can be a good dispersion medium if the side chain of pentathiophene is chemically modified to increase solubility.
[0118] 光学用シクロォレフィンポリマー(日本ゼオン (株)製:商品名 ゼォネックス)を溶か す溶媒としてメシチレンが最適であったこと、および、式(2— 1)のペンタチォフェンと アジド DZDSあるいは BAP— Pを溶解させる溶媒としてメシチレンも適していたことか ら、式(2— 1)のペンタチォフェンとアジドの THF溶液に加える光学用シクロォレフィ ンポリマー(日本ゼオン (株)製:商品名 ゼォネックス)溶液の溶媒としてメシチレンを 使った。この混合溶液も、常温に戻ったとき、光学実験に適する透明性'均一性を有 していた。 [0118] Mesitylene was the most suitable solvent for dissolving optical cycloolefin polymer (product name: Zeonex, manufactured by Nippon Zeon Co., Ltd.), and pentathiophene and azide DZDS of formula (2-1) Alternatively, since mesitylene was also suitable as a solvent for dissolving BAP-P, an optical cycloolefin polymer (made by Nippon Zeon Co., Ltd .: trade name ZEONEX) added to the THF solution of pentathiophene and azide of formula (2-1) ) Mesitylene as solvent of the solution used. This mixed solution also had transparency and uniformity suitable for optical experiments when it returned to room temperature.
[0119] 図 2 (b) (c)の基板との距離を一定に保つ刃(ブレード)によってこの基板上を掃引 して平坦ィ匕した光記憶媒体用溶液を作るための基板として、本実施例では、通常の ガラス製のスライドガラスを用いたが、これに限らず、石英基板を始めそれ自体の表 面が平坦であれば基本的には何でも良い。  [0119] Figure 2 (b) (c) This substrate was used as a substrate for creating a flat solution for an optical storage medium by sweeping the substrate with a blade that keeps the distance from the substrate constant. In the example, an ordinary glass slide glass was used, but the present invention is not limited to this, and any glass substrate may be used as long as the surface of the quartz substrate and the like itself is flat.
[0120] 図 2 (d)の工程においては、 90°Cのオーブン内にて 60分間ベータして、溶媒 (TH F、メシチレン)を除去した。ベータ後の各成分濃度は、チォフェンが 0. 3wt%、 DZ DSあるいは BAP— Pがともに 1. Owt%、光学用シクロォレフィンポリマー(日本ゼォ ン (株)製:商品名 ゼォネックス)が 98. 7wt%となった。ベータの時間は、 90°Cのも とで、 60分間とすれば、残留溶媒の量は光学実験に支障のないレベルに低減するこ とができた。ブレードと基板との距離は任意に変えることができるので、この距離によ つて成膜後の膜厚を制御することが可能である。  [0120] In the step shown in Fig. 2 (d), the solvent (THF, mesitylene) was removed by beta-treating in an oven at 90 ° C for 60 minutes. The concentration of each component after beta is 0.3 wt% for thiophene, 1. Owt% for both DZ DS or BAP-P, and 98 for optical cycloolefin polymer (Nippon ZEON Co., Ltd .: trade name ZEONEX). It became 7wt%. If the beta time was 90 ° C and 60 minutes, the amount of residual solvent could be reduced to a level that would not interfere with optical experiments. Since the distance between the blade and the substrate can be arbitrarily changed, the film thickness after film formation can be controlled by this distance.
[0121] 図 2 (d)を経た膜は、光記憶実験に十分な脈理のない均一性を有するものの、平坦 性に問題があつたので、本実施例では、媒体をスライドガラスから剥がし、万力に挟 み込んで加圧下、 100°C加熱を 30分保つ熱圧着工程(図 2 (f) )をカ卩えた。  [0121] Although the film having undergone Fig. 2 (d) has uniformity without sufficient striae for optical memory experiments, there was a problem in flatness. In this example, the medium was peeled off from the slide glass. A thermocompression bonding process (Fig. 2 (f)) was held in which a 100 ° C heating was maintained for 30 minutes under pressure.
[0122] 万力で挟む際には、膜の両面にスライドガラスを貼り付け、このスライドガラスによる サンドイッチ状態の媒体を挟むこととした。万力の圧力は、スライドガラスが破損する 寸前までの大きさとした。加える圧力は、この程度の領域で大きさを変えていくつか 試したところ、作製される膜の厚みや膜質には大きな影響を及ぼさず、スライドガラス が破損する寸前の圧力領域であれば、いかなる圧力であっても、ほぼ一定の厚膜と 膜質となることが確認された。図 2 (f)のベータは、サンプノレを万力に挟んだまま、ベ 一ク炉に入れることによって行った。  [0122] When sandwiching with a vise, a glass slide was pasted on both sides of the film, and a sandwich medium was sandwiched between the glass slides. The vise pressure was set to a level just before the slide glass was broken. The pressure to be applied was varied within this range, and several trials were conducted. As a result, the thickness and quality of the produced film were not greatly affected. It was confirmed that even with pressure, the film thickness and film quality were almost constant. The beta shown in Fig. 2 (f) was performed by putting the sampnore into a baking furnace with a vise sandwiched between them.
[0123] 図 2 (g)に至ったときの膜は、前記 DZDSおよび BAP— P溶液の場合、図 2 (b)、 (c )におけるブレードと基板との距離を 500 μ mとすると、膜厚はともに 170 μ mであつ た。膜質は、脈理が認められないのみならず、後述のホログラム実験に十分資する媒 体表面の平坦性を有してレ、ることが確認された。  [0123] In the case of the DZDS and BAP-P solutions, the film when reaching Fig. 2 (g) is the film when the distance between the blade and the substrate in Figs. 2 (b) and (c) is 500 μm. Both thicknesses were 170 μm. The film quality was confirmed not only to show no striae but also to have a flatness on the surface of the medium that sufficiently contributed to the hologram experiment described later.
[0124] なお、作製された光記憶媒体が薄い場合、例えば、図 2 (g)を経たサンプルを 2枚 積層し、図 2 (f)の方法と同様に熱圧縮すれば、厚膜の光記憶媒体が得られる(図 2 ( h) )。前記 DZDSおよび BAP— P溶液を用いて、膜厚 170 / mの膜を作製後、これ を 2枚重ねて熱圧着を行った結果、膜厚 250 μ mの光記憶薄膜を得ることができた。 ベータの温度は 100°Cとし、これを 90分間行った。この工程による場合も、膜質は、 脈理がないのみならず、実施例 4のホログラム実験に十分資する平坦性を有している ことが確認された。 [0124] In the case where the produced optical storage medium is thin, for example, two samples having undergone FIG. 2 (g) If they are stacked and thermally compressed in the same manner as in FIG. 2 (f), a thick optical storage medium can be obtained (FIG. 2 (h)). Using the DZDS and BAP-P solutions, a film with a film thickness of 170 / m was fabricated, and two of them were stacked and thermocompression bonded. As a result, an optical memory thin film with a film thickness of 250 μm could be obtained. . The beta temperature was 100 ° C and this was done for 90 minutes. Even in this process, it was confirmed that the film quality had not only striae, but also had flatness sufficiently contributing to the hologram experiment of Example 4.
[0125] 本実施例では、図 2 (c)の状態から、媒体をスライドガラスから剥がすことなぐ熱圧 着工程を行うことも可能であることを確認した。スライドガラスに付いていない側の媒 体に別のスライドガラスを貼付し、その後、図 2 (f)以下の工程によると、前記と全く同 じ膜質、膜厚を有する媒体を作製することができた。  [0125] In this example, it was confirmed from the state of Fig. 2 (c) that it is possible to perform a hot pressing process in which the medium is not peeled off from the slide glass. If another slide glass is attached to the medium on the side not attached to the slide glass, and then the process shown in FIG. 2 (f) and subsequent steps, a medium having exactly the same film quality and film thickness can be produced. It was.
[0126] (実施例 4) [ホログラム実験]  [Example 4] [Hologram experiment]
実施例 3で得られた媒体を用いて、図 4に示す系で、ホログラム実験を行レ、、回折 効率の時間依存性を測定した。ホログラム実験では、得られた媒体 (膜厚 250 μ ΐη) を図 4の Sampleの位置に設置し、ゲート光(Gate Laser)を照射し、第一励起させ た。次いで、第二励起レーザーたるホログラフィックレーザーを用いて、ビームスプリツ ター(BS)で参照光(Reference light)と物体光(Object  Using the medium obtained in Example 3, a hologram experiment was conducted with the system shown in FIG. 4, and the time dependence of the diffraction efficiency was measured. In the hologram experiment, the obtained medium (thickness 250 μΐη) was placed at the position of Sample in Fig. 4 and irradiated with gate light (Gate Laser) for the first excitation. Next, using a holographic laser as the second excitation laser, a beam splitter (BS) is used for reference light and object light (Object
light)に分け、それぞれを媒体に照射した。  light) and each medium was irradiated.
[0127] この構成では、ゲート光により第一励起された記憶可能状態にあるエリアにおいて 、第二励起光たる物体光と参照光とにより生じる干渉縞が、メモリ媒体内に屈折率変 化として定着され、その定着された干渉縞から回折される参照光の割合を測定するこ とにより、光記憶媒体としてのポテンシャルを知ることが可能である。  In this configuration, interference fringes generated by the object light and the reference light, which are the second excitation light, are fixed in the memory medium as the refractive index change in the area in the memorizable state first excited by the gate light. By measuring the ratio of the reference light diffracted from the fixed interference fringes, it is possible to know the potential as an optical storage medium.
[0128] 本実施例では、第一励起光には波長 410nmの GaNレーザー(連続光)を用レ、、第 二励起光には、波長 660nmの半導体レーザー(連続光)を用いた。物体光と参照光 とのなす角度は、 2度であった。入射光のスポットサイズは 250 x mであった。入射光 の強度は、第一励起光が 0. 10W/cm2,第二励起光が、参照光、物体光ともに 20 W/ cm2であった。 In this example, a GaN laser (continuous light) with a wavelength of 410 nm was used for the first excitation light, and a semiconductor laser (continuous light) with a wavelength of 660 nm was used for the second excitation light. The angle between the object beam and the reference beam was 2 degrees. The spot size of incident light was 250 xm. The intensity of the incident light was 0.10 W / cm 2 for the first excitation light, and 20 W / cm 2 for the second excitation light for both the reference light and the object light.
[0129] 図 4における構成では、回折効率の測定は、その測定時に物体光を一時遮断し、 参照光がメモリ媒体内に生成した干渉縞に回折される割合を測定することにより行う こと力 Sできる。図 5に、その回折効率の時間依存性を測定した結果を示す。これは、 参照光がサンプルを通過する光量を測定し、それから、回折光のできる割合 (Effici ency η (%) )を測定し、その時間依存性をプロットした図である。図中、(1)とある のは、第一励起光を遮断し、第二励起光 (参照光と物体光の双方)を入射した場合を 示し、 (2)とあるのは、第一励起光、第二励起光(参照光と物体光の双方)ともに、入 力した場合を示す。実験結果から、(2)の場合は、ほぼ計算通りに、回折効率が照射 時間の二乗に比例して増加する一方で、(1)の状態では、回折効率が増大しないこ とが分かった。第一励起光を照射し、第二励起光のうち、物体光あるいは参照光のど ちらか一方のみを照射した場合も、回折効率の増加は見られなかった。第一励起(ゲ ート)光と、第二励起光 (参照光と物体光の双方)との 3ビームがサンプノレに照射した ときのみ、干渉縞が生成し物体光の回折が観測されたという今回の結果は、本発明 の光記憶媒体内には、二段階励起過程を経て、干渉縞が形成されたことを示してい る。 In the configuration in FIG. 4, the diffraction efficiency is measured by temporarily blocking the object light during the measurement and measuring the ratio of the reference light diffracted by the interference fringes generated in the memory medium. That power S. Figure 5 shows the results of measuring the time dependence of the diffraction efficiency. This is a graph in which the amount of reference light passing through the sample is measured, and then the ratio of the diffracted light (Efficiency η (%)) is measured, and the time dependence thereof is plotted. In the figure, (1) indicates the case where the first excitation light is blocked and the second excitation light (both reference light and object light) is incident, and (2) indicates that the first excitation light is incident. The figure shows the case where both light and second excitation light (both reference light and object light) are input. From the experimental results, it was found that the diffraction efficiency increased in proportion to the square of the irradiation time in the case of (2), while the diffraction efficiency did not increase in the state of (1). When the first excitation light was irradiated and only either the object light or the reference light of the second excitation light was irradiated, no increase in diffraction efficiency was observed. Only when three beams of the first excitation (gate) light and the second excitation light (both reference light and object light) are applied to the sample, interference fringes are generated and diffraction of the object light is observed. This result indicates that interference fringes were formed in the optical storage medium of the present invention through a two-step excitation process.
また、ここでの結果は、実施例 2において調べたエネルギーレベルが正しいこと、お よび、上述した、チォフェンからアジドにエネルギー移動を行わせ、それに起因する 構造変化による干渉縞が形成できるとの本発明者の考え方が正しいことを証明して いる。  In addition, the results here show that the energy level investigated in Example 2 is correct, and that the above-described interference transfer fringes due to structural changes caused by the energy transfer from thiophene to azide can be formed. It proves that the inventors' idea is correct.
[0130] 図 5における回折効率の絶対値が 0. 01 %程度と小さいのは、本実施例で使用し たレーザー光源のパワーあるいは光パワー密度(=集光レンズの焦点距離により増 減可)が低いこと等が原因であり、より高強度のレーザーを用いる力集光レンズの焦 点距離を短いものに換えれば、向上させることが出来る。ペンタチォフェン膜は十分 な光耐性を有している。  [0130] The absolute value of the diffraction efficiency in Fig. 5 is as small as about 0.01%. The power or optical power density of the laser light source used in this example (= can be increased or decreased depending on the focal length of the condenser lens). This can be improved by changing the focal length of the force condensing lens using a higher intensity laser to a shorter focal length. The pentathiophene film has sufficient light resistance.
[0131] 図 6は、図 4での照射光強度等の実験条件に合わせて、従来材料ビアセチルの回 折効率 (実験結果)を規格化してプロットした結果である。ビアセチルでは、第一励起 光の波長はチォフェンと同じ 410nmである力 第二励起光の波長は 830nmとした。 エネルギーレベルの相違に基づくものである。ビアセチル膜の膜厚は 500 μ mであ つた。ビアセチルは、光路長 500 x mの石英セルの中にビアセチル溶液を封入する という方法により作製した。ビアセチルの分散媒には、シァノアクリレートを用レ、、ビア セチルの濃度は 10wt%とした。 FIG. 6 shows the results of normalizing and plotting the diffraction efficiency (experimental results) of the conventional material biacetyl in accordance with the experimental conditions such as the irradiation light intensity in FIG. In biacetyl, the wavelength of the first excitation light is 410 nm, which is the same as that of thiophene, and the wavelength of the second excitation light is 830 nm. This is based on energy level differences. The thickness of the biacetyl film was 500 μm. Biacetyl was prepared by enclosing a biacetyl solution in a quartz cell with an optical path length of 500 xm. For the dispersion medium of biacetyl, use of cyanoacrylate, via The concentration of cetyl was 10 wt%.
[0132] 図 6は、今回作製した媒体のチォフェンの濃度がビアセチルの 1/30倍であること や膜厚の差を考慮すると、チォフェンのポテンシャルはビアセチルの 2桁程度以上で あることを示している。すなわち、本実施例では、チオフヱンの濃度が 0. 3wt%の媒 体を作製したが、チォフェン濃度をビアセチルと同程度として(アジドの濃度も相応し て増大させて)光記憶媒体を作製し、また、膜厚もチォフェンと同等とするならば、実 際に得られる媒体としての効率も 2桁以上となることを示している。  [0132] Figure 6 shows that the potential of thiophene is about two orders of magnitude higher than that of biacetyl, considering that the concentration of thiophene in the media produced this time is 1/30 times that of biacetyl and the difference in film thickness. Yes. That is, in this example, a medium having a thiophene concentration of 0.3 wt% was produced, but an optical storage medium was produced by setting the thiophene concentration to the same level as that of biacetyl (and increasing the azide concentration accordingly) In addition, if the film thickness is equivalent to that of thiophene, the efficiency of the actually obtained medium is more than two orders of magnitude.
[0133] したがって、チォフェンを高濃度に分散させた媒体を用いて薄膜化して行けば、例 えば、ビアセチルでは不可能と考えられる薄膜化媒体、すなわち数 z mオーダに薄 膜化した媒体においても、実用的な回折光を観測できることとなる。  [0133] Therefore, if thinning is performed using a medium in which thiophene is dispersed at a high concentration, for example, even in a thinned medium considered to be impossible with biacetyl, that is, a medium thinned to several zm order, Practical diffracted light can be observed.
[0134] なお、本実施例 4では、二段階励起過程を経て光記憶媒体に光照射に基づく構造 変化 (屈折率変化)が起こる様子を、第一励起光 (ゲート光)で励起したエリアにぉレ、 て、第二励起光である物体光と参照光との二光束干渉により生じた干渉縞により参 照光が回折される現象により観測したが、本発明の意図する二段階励起過程を経た 光記憶媒体は、それに限られず、第二励起光は一つであっても構わない。図 8に示 すように、第一励起により記録可能な最低三重項状態となり、そこに第二励起光を一 つだけ照射しても構造変化 (屈折率変化)が起こるのであるから、この一つの第二励 起光照射によって起こった変化を別の光を照射して透過率の変化を観測する等によ つて読み取ることとすれば、光記憶 ·再生を行うことができる。本実施例 4では、構造 変化 (屈折率変化)が生じた様子を回折光の観測によって確認したに過ぎない。  [0134] In Example 4, the state in which the structural change (refractive index change) based on light irradiation occurs in the optical storage medium through the two-step excitation process is shown in the area excited by the first excitation light (gate light). Although the observation light was observed by the phenomenon that the reference light was diffracted by the interference fringes generated by the two-beam interference between the object light as the second excitation light and the reference light, it passed through the two-step excitation process intended by the present invention. The optical storage medium is not limited to this, and the second excitation light may be one. As shown in Fig. 8, the lowest triplet state that can be recorded by the first excitation is obtained, and even if only one second excitation light is irradiated there, the structural change (refractive index change) occurs. If the change caused by the irradiation of the second excitation light is read by irradiating another light and observing the change in transmittance, etc., optical storage and reproduction can be performed. In Example 4, the appearance of structural change (refractive index change) was only confirmed by observation of diffracted light.
[0135] したがって、三次元の光記憶媒体において、第一励起光と第二励起光とを照射す れば、その両者の重なった部分のみにおいて構造変化(屈折率変化)が起こるので あるから、任意の形態の三次元媒体、例えば、 DVDの記憶層を多層に積層したよう な媒体において、図 7で説明した一段階励起過程のときのようなデータ消去の問題 のない光記憶'再生が可能となる。  [0135] Therefore, in the three-dimensional optical storage medium, if the first excitation light and the second excitation light are irradiated, the structural change (refractive index change) occurs only in the overlapping portion of the two. In any form of 3D media, for example, a DVD storage layer with multiple layers, optical storage can be performed without the problem of data erasure as in the one-step excitation process described in Fig. 7. It becomes.
[0136] (実施例 5)  [Example 5]
式(2_4)および(2_ 5)で表されるチォフェンを用いて、実施例 3と同様の実験を 行った (濃度、膜厚も実施例 3と同じ)ところ、媒体が良好に作製でき、さらに、スピン コート法によっても、光学的に良好な薄膜が作製できた。スピンコート法による作製で は、ペンタチォフェンをメシチレンに溶解させ DZDSを加え、加熱下、溶解させた。こ れに光学用シクロォレフィンポリマー(日本ゼオン (株)製:商品名 ゼォネックス)のメ シチレン溶液を加えて溶解させ、スピン一ターで薄膜を作製した。スピンコーターの 回転数は 1500rpmとした。作製されたスピンコート薄膜は、式(2— 4)および(2— 5) で表されるチォフェンがともに 0. 3wt%、 DZDSが 1. 0wt%、光学用シクロォレフィ ンポリマー(日本ゼオン (株)製:商品名 ゼォネックス)が 98. 7wt。 /。であった。膜厚 はともに 45 μ mであつた。 Experiments similar to Example 3 were performed using thiophene represented by the formulas (2_4) and (2_5) (concentration and film thickness are the same as in Example 3). ,spin An optically good thin film was also produced by the coating method. In the spin coating method, pentathiophene was dissolved in mesitylene and DZDS was added and dissolved under heating. A mesitylene solution of an optical cycloolefin polymer (manufactured by ZEON CORPORATION: trade name ZEONEX) was added and dissolved therein, and a thin film was prepared with a spin counter. The rotation speed of the spin coater was 1500 rpm. The prepared spin coat thin film was 0.3 wt% of thiophene represented by the formulas (2-4) and (2-5), 1.0 wt% of DZDS, an optical cycloolefin polymer (manufactured by Nippon Zeon Co., Ltd.). : Product name ZEONEX) is 98.7 wt. /. Met. Both film thicknesses were 45 μm.
[0137] (実施例 6) [Example 6]
式(2_ 5)で表されるチオフヱンを用いて実施例 5に従って作製した膜を用レ、、実 施例 4と同様のホログラム実験を行った。実施例 3と同様の方法により作製した媒体を 用いた結果 (適用波長など光学系は同じ)、同様なホログラム回折を観測することが できた。次に、スピンコート薄膜を用いた実験でも、膜厚が減少したことに相応して、 信号強度は低下したものの、作製された薄膜が十分な光耐性を有していることから、 使用したレーザの光強度を上げて補うことにより、図 5及び図 6と同様の効率を有する 結果を得ることが可能であった。ただし、チォフェンのように、第一励起光の吸収係数 が大きい材料では、媒体の物理的厚みが薄くなるほど、その物理的厚みと実効長は 接近してくる(物理的厚みの減少ほどに実効長が減少しない)。このため、本実施例 で検討した結果では、実施例 3と同様の方法により作製した媒体 170 μ mとスピンコ ート薄膜 45 μ mの物理的厚みの差力 予想されるよりも、 2倍程度大きな回折効率を 得ることが可能であった。すなわち、本実施例のスピンコート薄膜での結果は、実施 例 3の方法により作製した厚い膜での結論に加え、本発明のチオフヱン膜によれば、 厚み力 Sミクロン単位となってもチォフェン薄膜媒体により実用的なホログラム回折を実 現できることを支持するものであった。  A hologram experiment similar to that in Example 4 was performed using the film prepared according to Example 5 using the thiophene represented by the formula (2_5). As a result of using a medium manufactured by the same method as in Example 3 (the optical system including the applied wavelength is the same), similar hologram diffraction could be observed. Next, in the experiment using the spin coat thin film, although the signal intensity decreased corresponding to the decrease in the film thickness, the produced thin film had sufficient light resistance. As a result, it was possible to obtain results having the same efficiency as in FIGS. However, for materials with a large absorption coefficient of the first excitation light, such as thiophene, the physical thickness and the effective length become closer as the physical thickness of the medium decreases (the effective length decreases as the physical thickness decreases). Does not decrease). For this reason, the results examined in this example show that the difference in physical thickness between the 170 μm medium produced by the same method as in Example 3 and the spin coat thin film of 45 μm is about twice that expected. It was possible to obtain a large diffraction efficiency. That is, the result of the spin coat thin film of this example is based on the thiophene film of the present invention, in addition to the conclusion of the thick film produced by the method of Example 3, and the thiophene thin film even when the thickness force is in the S micron unit. It supported that practical hologram diffraction could be realized by the medium.
[0138] 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れるこ となく様々な変更が可能であることは当業者に明らかである。 [0138] Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
なお、本出願は、 2005年 3月 14日付で出願された日本特許出願(特願 2005— 0 71431)および 2005年 11月 28日付で出願された日本特許出願(特願 2005— 342 451)に基づいており、その全体が引用により援用される。 This application is based on Japanese patent applications filed on March 14, 2005 (Japanese Patent Application No. 2005-071431) and Japanese patent applications filed on November 28, 2005 (Japanese Patent Application No. 2005-342). 451), which is incorporated by reference in its entirety.

Claims

請求の範囲 第一励起光照射により、一重項励起状態に励起され、その後、項間交差により最低 三重項励起状態に移行し、続いて、第二励起光照射により、より高い三重項励起状 態に励起される二段階励起型のエネルギー供与体と、そのエネルギー供与体からェ ネルギーを受け取り、力かるエネルギーを化学反応に供与するエネルギー受容体と を有することを特徴とする有機混合体からなる光記憶媒体。 前記エネルギー供与体力 S、下記式(1 1)〜(1 4)のレ、ずれかに示されるオリゴ チォフェン系化合物であることを特徴とする請求項 1に記載の光記憶媒体。 Claims Excited to the singlet excited state by irradiation with the first excitation light, then transitioned to the lowest triplet excited state by intersystem crossing, and then to the higher triplet excited state by irradiation with the second excitation light. A light comprising an organic mixture characterized by comprising: a two-stage excitation type energy donor excited by an electron; and an energy acceptor for receiving energy from the energy donor and donating energetic energy to a chemical reaction. Storage medium. 2. The optical storage medium according to claim 1, wherein the optical storage medium is an oligothiophene compound represented by the energy donor force S, the following formulas (11) to (14).
[化 1][Chemical 1]
Figure imgf000031_0001
Figure imgf000031_0002
Figure imgf000031_0003
Figure imgf000031_0001
Figure imgf000031_0002
Figure imgf000031_0003
X2 X3 X9a X¾ X9o X9d Xge A9f 4 Χδ (式(1一:!)〜(1 4)において、 X〜X , X 〜Χ , X 〜Χ , X 〜Χ は、水素原 X2 X3 X9a X¾ X9o X9d Xge A9f 4 Χδ (In the formulas (11 :!) to (14), X to X, X to Χ, X to ,, and X to Χ are hydrogen fields.
1 6 7a 7b 8a 8d 9a 9f 子、アルキル基、アルキル基の一部の炭素原子をケィ素原子と置き換えた基、ハロゲ ン、水酸基、アルキルォキシ基若しくはァリールォキシ基を有する基、又はジアルキ ルァミノ基力 選ばれる基を示す。また、 X〜x, X 〜x , X 〜x , X 〜χ は、  1 6 7a 7b 8a 8d 9a 9f Group, alkyl group, group in which some carbon atoms of alkyl group are replaced with silicon atom, group having halogen, hydroxyl group, alkyloxy group or aryloxy group, or dialkylamino group power Represents a group. X to x, X to x, X to x, X to χ are
1 6 7a 7b 8a 8d 9a 9f それぞれ同じであっても異なってもよい。)  1 6 7a 7b 8a 8d 9a 9f may be the same or different. )
[3] 前記エネルギー供与体が、下記式(2)に示されるオリゴチォフェン系化合物である ことを特徴とする請求項 2に記載の光記憶媒体。  [3] The optical storage medium according to [2], wherein the energy donor is an oligothiophene compound represented by the following formula (2).
[化 2]  [Chemical 2]
Figure imgf000032_0001
式(2)において、 R〜Rは、水素原子、アルキル基、ハロゲン、水酸基、アルキルォ
Figure imgf000032_0001
In the formula (2), R to R are a hydrogen atom, an alkyl group, a halogen, a hydroxyl group, an alkyl group.
1 6  1 6
キシ基若しくはァリールォキシ基を有する基、又はジアルキルァミノ基から選ばれる 基を示す。また、 R〜Rは、同じであっても異なってもよレ、。さらに、 nは、 4又は 5を  A group having a xyl group or an aryloxy group, or a group selected from dialkylamino groups; R to R may be the same or different. N is 4 or 5
1 6  1 6
示す。)  Show. )
[4] 前記 R〜Rは、炭素数 1〜2のアルキル基、炭素数 6〜10のアルキル基、ァリール  [4] R to R are alkyl groups having 1 to 2 carbon atoms, alkyl groups having 6 to 10 carbon atoms, aryl
1 6  1 6
基、アルケニル基、アルキニル基、アルコキシ基、ピリジノレ基、チォフェン環から選ば れる請求項 3に記載の光記憶媒体。  4. The optical storage medium according to claim 3, selected from a group, an alkenyl group, an alkynyl group, an alkoxy group, a pyridinole group, and a thiophene ring.
[5] 前記エネルギー供与体が、下記式(2_:!)〜(2— 5)のいずれかに示されるオリゴ チォフェン系化合物であることを特徴とする請求項 3に記載の光記憶媒体。 [5] The optical storage medium according to [3], wherein the energy donor is an oligothiophene compound represented by any one of the following formulas (2_ :!) to (2-5).
[化 3]  [Chemical 3]
Figure imgf000032_0002
[化 4]
Figure imgf000032_0002
[Chemical 4]
Figure imgf000033_0001
Figure imgf000033_0001
[化 5] [Chemical 5]
(octy Ds— S S i— (octy l )3 (2-3)
Figure imgf000033_0002
(octy Ds— SS i— (octy l) 3 (2-3)
Figure imgf000033_0002
[化 6]
Figure imgf000033_0003
[Chemical 6]
Figure imgf000033_0003
[化 7]
Figure imgf000033_0004
前記エネルギー受容体が、下記式(3)で示されるアジド系化合物であることを特徴 とする請求項 1乃至 5のいずれかに記載の光記憶媒体。
[Chemical 7]
Figure imgf000033_0004
6. The optical storage medium according to claim 1, wherein the energy acceptor is an azide compound represented by the following formula (3).
[化 8] [Chemical 8]
Figure imgf000033_0005
Figure imgf000033_0005
(式(3)中、 Yは、アルキル基、ハロゲン、アジド基、スルホニル基、ァリール基、水酸 基及びアルコキシ基から選ばれる少なくとも 1種の基を有する基、又は水素原子を示 す。) (In Formula (3), Y represents a group having at least one group selected from an alkyl group, a halogen, an azide group, a sulfonyl group, an aryl group, a hydroxyl group and an alkoxy group, or a hydrogen atom. The )
[7] 前記エネルギー受容体が、下記式(3— 1)又は(3— 2)であることを特徴とする請求 項 6に記載の光記憶媒体。  7. The optical storage medium according to claim 6, wherein the energy acceptor is represented by the following formula (3-1) or (3-2).
[化 9]  [Chemical 9]
Figure imgf000034_0001
Figure imgf000034_0001
[8] 基板上に請求項 1乃至 5のいずれかに記載のエネルギー供与体、及び請求項 6又 は 7に記載のエネルギー受容体を分散させた光記憶媒体用溶液を滴下し、その後、 この基板との距離を一定に保つ刃によってこの基板上を掃引して、前記光記憶媒体 用溶液を平坦化する掃引工程、さらに加圧下で加熱することにより平坦性を高める加 熱工程を含む薄膜型の光記憶媒体を作製する、光記憶媒体の作製方法。 [8] A solution for an optical storage medium in which the energy donor according to any one of claims 1 to 5 and the energy acceptor according to claim 6 or 7 are dispersed is dropped on a substrate, and thereafter A thin film type including a sweeping step of flattening the optical storage medium solution by sweeping the substrate with a blade that maintains a constant distance from the substrate, and a heating step of increasing the flatness by heating under pressure. A method for manufacturing an optical storage medium.
[9] 第一励起光照射により、一重項励起状態に励起され、その後、項間交差により三重 項励起状態に移行し、続いて、第二励起光照射により、より高い三重項励起状態に 励起される二段階励起型のエネルギー供与体と、そのエネルギー供与体からェネル ギーを受け取り、力かるエネルギーを化学反応供与するエネルギー受容体とを含有 することを特徴とする光記憶媒体作製用有機組成物。  [9] Excited to singlet excited state by first excitation light irradiation, then transitioned to triplet excited state by intersystem crossing, then excited to higher triplet excited state by second excitation light irradiation An organic composition for producing an optical storage medium, comprising: a two-stage excitation type energy donor, and an energy acceptor that receives energy from the energy donor and chemically imparts energetic energy. .
PCT/JP2006/304952 2005-03-14 2006-03-14 Optical storage medium making use of oligothiophene WO2006098296A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005071431 2005-03-14
JP2005-071431 2005-03-14
JP2005-342451 2005-11-28
JP2005342451A JP4623515B2 (en) 2005-03-14 2005-11-28 Optical storage media using oligothiophene

Publications (1)

Publication Number Publication Date
WO2006098296A1 true WO2006098296A1 (en) 2006-09-21

Family

ID=36991639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304952 WO2006098296A1 (en) 2005-03-14 2006-03-14 Optical storage medium making use of oligothiophene

Country Status (3)

Country Link
JP (1) JP4623515B2 (en)
TW (1) TW200705090A (en)
WO (1) WO2006098296A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007075951A2 (en) * 2005-12-22 2007-07-05 General Electric Company Methods for storing holographic data and articles having enhanced data storage lifetime derived therefrom
JP2007193008A (en) * 2006-01-18 2007-08-02 Kyoto Univ Multilayer waveguide and its manufacturing method
WO2009096432A1 (en) * 2008-01-30 2009-08-06 Osaka University Optical recording material, optical recording method, photosensitive material, photolithography method, photopolymerization initiator and photosensitizing agent

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8124299B2 (en) * 2009-08-31 2012-02-28 General Electric Company Methods for using optical data storage media

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08320536A (en) * 1995-03-17 1996-12-03 Victor Co Of Japan Ltd Photoresponsive composition containing polymethine pigment, optical element using the composition and optical control method
JPH11503248A (en) * 1995-04-03 1999-03-23 ザ ダウ ケミカル カンパニー Photo-resolution composition
JP2004346238A (en) * 2003-05-23 2004-12-09 Fuji Photo Film Co Ltd Two-photon absorption polymerizable composition and three-dimensional optical recording medium produced by using the same
JP2005102831A (en) * 2003-09-29 2005-04-21 Japan Science & Technology Agency Biomolecule damaging method and biomolecule damaging apparatus
JP2005165195A (en) * 2003-12-05 2005-06-23 Fuji Photo Film Co Ltd Lithographic printing plate original

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005099751A (en) * 2003-08-22 2005-04-14 Fuji Photo Film Co Ltd Composition for hologram recording material, hologram recording material and hologram recording method
JP2005099754A (en) * 2003-08-25 2005-04-14 Fuji Photo Film Co Ltd Hologram recording method and hologram recording material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08320536A (en) * 1995-03-17 1996-12-03 Victor Co Of Japan Ltd Photoresponsive composition containing polymethine pigment, optical element using the composition and optical control method
JPH11503248A (en) * 1995-04-03 1999-03-23 ザ ダウ ケミカル カンパニー Photo-resolution composition
JP2004346238A (en) * 2003-05-23 2004-12-09 Fuji Photo Film Co Ltd Two-photon absorption polymerizable composition and three-dimensional optical recording medium produced by using the same
JP2005102831A (en) * 2003-09-29 2005-04-21 Japan Science & Technology Agency Biomolecule damaging method and biomolecule damaging apparatus
JP2005165195A (en) * 2003-12-05 2005-06-23 Fuji Photo Film Co Ltd Lithographic printing plate original

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BARBARELLA G. ET AL.: "Structural and Electrical Characterization of Processable Bis-Silylated Thiophene Oligomers", CHEMISTRY OF MATERIALS, vol. 10, no. 11, 1998, pages 3683 - 3689, XP003003341 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007075951A2 (en) * 2005-12-22 2007-07-05 General Electric Company Methods for storing holographic data and articles having enhanced data storage lifetime derived therefrom
WO2007075951A3 (en) * 2005-12-22 2007-10-18 Gen Electric Methods for storing holographic data and articles having enhanced data storage lifetime derived therefrom
JP2007193008A (en) * 2006-01-18 2007-08-02 Kyoto Univ Multilayer waveguide and its manufacturing method
WO2009096432A1 (en) * 2008-01-30 2009-08-06 Osaka University Optical recording material, optical recording method, photosensitive material, photolithography method, photopolymerization initiator and photosensitizing agent
JP5037632B2 (en) * 2008-01-30 2012-10-03 国立大学法人大阪大学 Optical recording material, optical recording method, photosensitive material, photolithography method, photopolymerization initiator, and photosensitizer
US8518631B2 (en) 2008-01-30 2013-08-27 Osaka University Optical recording material, optical recording method, photosensitive material and method

Also Published As

Publication number Publication date
JP4623515B2 (en) 2011-02-02
TW200705090A (en) 2007-02-01
JP2006293292A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
Cho et al. Molecularly engineered azobenzene derivatives for high energy density solid-state solar thermal fuels
US6267913B1 (en) Two-photon or higher-order absorbing optical materials and methods of use
Khan et al. Mechanochromism and aggregation-induced emission in phenanthroimidazole derivatives: role of positional change of different donors in a multichromophoric assembly
Liu et al. Synthesis, crystal structures and two-photon absorption properties of a series of terpyridine-based chromophores
Dong et al. Tuning solid-state fluorescence of a twisted π-conjugated molecule by regulating the arrangement of anthracene fluorophores
WO1998021521A9 (en) Two-photon or higher-order absorbing optical materials and methods of use
JPH02502099A (en) substituted phthalocyanine
Kimura et al. Star-shaped stilbenoid phthalocyanines
TW201128641A (en) Compositions, optical data storage media and methods for using the optical data storage media
WO2015068858A1 (en) Solvent-free photon upconversion system
WO2006098296A1 (en) Optical storage medium making use of oligothiophene
EP2601556A1 (en) Photorefractive composition responsive to multiple laser wavelengths across the visible light spectrum
JP2008538822A (en) Photorefractive composition
WO2023071855A1 (en) Hydrazone-based zn (ii) coordination complex photochromic material, preparation and use thereof
JP2004002847A (en) Photochromic fluorescent polymer and method for producing the same
JP3390921B2 (en) Novel compound and optical element using the compound
Wu et al. Organic/polyoxometalate hybridization dyes: Crystal structure and enhanced two-photon absorption
JP2007505342A (en) Photorefractive composition
EP3535348A1 (en) Photochromic hydrazone switches
JP4814454B2 (en) Method for producing photochromic material
Yang et al. Synthesis, characterization, and photochemical properties of chromophores containing photoresponsive azobenzene and stilbene
Otaki et al. Synthesis of methyl‐substituted azobenzene–carbazole conjugated copolymers with photoinduced structural changes
Traskovskis et al. Stereoselective synthesis and properties of 1, 3-bis (dicyanomethylidene) indane-5-carboxylic acid acceptor fragment containing nonlinear optical chromophores
Ozols et al. Green and red laser holographic recording in different glassy azocompounds
Kabatc et al. An argon laser induced polymerization photoinitiated by both mono-and bichromophoric hemicyanine dye–borate salt ion pairs. The synthesis, spectroscopic, electrochemical and kinetic studies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06715625

Country of ref document: EP

Kind code of ref document: A1