JP2006292843A - Manufacturing method of optical fiber - Google Patents

Manufacturing method of optical fiber Download PDF

Info

Publication number
JP2006292843A
JP2006292843A JP2005110140A JP2005110140A JP2006292843A JP 2006292843 A JP2006292843 A JP 2006292843A JP 2005110140 A JP2005110140 A JP 2005110140A JP 2005110140 A JP2005110140 A JP 2005110140A JP 2006292843 A JP2006292843 A JP 2006292843A
Authority
JP
Japan
Prior art keywords
optical fiber
raw material
manufacturing
refractive index
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005110140A
Other languages
Japanese (ja)
Other versions
JP4975266B2 (en
Inventor
Masaru Inoue
大 井上
Hiroshi Oyamada
浩 小山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2005110140A priority Critical patent/JP4975266B2/en
Priority to PCT/JP2006/305432 priority patent/WO2006109426A1/en
Publication of JP2006292843A publication Critical patent/JP2006292843A/en
Application granted granted Critical
Publication of JP4975266B2 publication Critical patent/JP4975266B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical fiber capable of raising a threshold value of SBS at a low cost, and of making high energy signal light incident thereon, and to provide a manufacturing method therefor. <P>SOLUTION: The optical fiber of this invention is a single mode optical fiber having an operating wavelength band in 1.3 to 1.6 μm and is characterized by having a variation in which a radial distribution of a relative refractive-index difference in the core part of the optical fiber varies ≥±10% to an average value of the whole core part, and is further characterized in that the radial distribution form of the relative refractive-index difference varies in the longitudinal direction, and the manufacturing method therefor is characterized in that a flow rate of a dopant raw material for raising the refractive index of the core is made to vary at intervals of tens of seconds to a few minutes when manufacturing a core rod for preforming an optical fiber by supplying a glass raw material and the dopant raw material to a burner by a VAD method and depositing glass particles formed in the flame. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、比較的高い光エネルギーの信号光を投入する光通信アプリケーションに利用される光ファイバの製造方法に関する。 The present invention relates to a method of manufacturing an optical fiber used in an optical communication application in which signal light having relatively high light energy is input.

PONシステムなどのアプリケーションでは、1本の光ファイバで加入者の近くまで信号を送り、そこで加入者数に応じて分岐されている。これには分岐点が局から遠いほど、また分岐数が多いほど、送信局側で高い光エネルギーを投入する必要がある。   In an application such as a PON system, a signal is sent to the vicinity of a subscriber through a single optical fiber, and branched according to the number of subscribers. To this end, the farther the branch point is from the station and the greater the number of branches, the higher the light energy that needs to be input on the transmitting station side.

近年、EDFAなどの増幅器の開発に伴い、このような高い光エネルギーの投入が可能になってきているが、一般に、光ファイバにこのような高エネルギーの信号光を投入すると、誘導ブリルアン散乱(SBS)という現象が起こるため、実際に伝送される光エネルギーが制限される。SBSが起こる閾値[mW]は、例えば、非特許文献1に記載されているように、光ファイバの有効断面積(Aeff)に比例し、ブリルアン利得係数(gB)及び実効的相互作用長(Leff)に反比例する。 In recent years, with the development of amplifiers such as EDFA, it has become possible to input such high optical energy. Generally, when such high energy signal light is input to an optical fiber, stimulated Brillouin scattering (SBS) ) Occurs, the optical energy actually transmitted is limited. The threshold value [mW] at which SBS occurs is proportional to the effective area (A eff ) of the optical fiber, as described in Non-Patent Document 1, for example, and the Brillouin gain coefficient (gB) and the effective interaction length ( L eff ).

SBSは、音響フォノンにより光ファイバ中に周期的な密度分布が形成され、それがグレーティングとして作用し、信号光を散乱させることにより生じる。音響フォノンも移動しているため、散乱光は、ドップラー効果を受けて信号光よりもやや低い周波数を持つ。散乱光と信号光の干渉によりさらに音響フォノンが励起され、散乱の強度が強くなる。   SBS is caused by a periodic density distribution formed in an optical fiber by acoustic phonons, which acts as a grating and scatters signal light. Since the acoustic phonon is also moving, the scattered light has a slightly lower frequency than the signal light due to the Doppler effect. The acoustic phonon is further excited by the interference between the scattered light and the signal light, and the intensity of the scattering is increased.

SBSには閾値が存在し、信号光の強度がこの閾値以下では殆ど散乱の影響を受けないが、閾値を超えると急激に散乱強度が増し、ある程度以上では、投入する信号光の強度を上げても散乱される光が増すだけで、伝送される信号強度は増加しなくなる。そればかりかノイズが増えて、信号が劣化するという悪影響がある。   SBS has a threshold, and the signal light intensity is hardly affected by scattering below this threshold. However, when the threshold is exceeded, the scattering intensity suddenly increases. Above a certain level, the intensity of the input signal light is increased. However, only the scattered light increases, and the transmitted signal intensity does not increase. In addition, there is an adverse effect that noise increases and the signal deteriorates.

そこで、SBSの閾値を高めるために様々な方法が提案されている。
散乱光のスペクトル形状は、光ファイバの材料組成や歪によって変わり、このスペクトルがよりブロードであるほどSBSの閾値が増大することが知られている。
例えば、特許文献1では、光ファイバの長手方向でコア径、屈折率、歪を変えることでSBSの閾値を高める方法を開示している。
特許文献2は、2ステップ法で光ファイバ用プリフォームを製造する際に、コア部及びクラッド部の一部を製造するステップにおいて、長手方向で、例えば、フッ素などのドーパント濃度を変化させることによりSBSの閾値を高める方法を開示している。
特許文献3も同じく長手方向でドーパント濃度を変化させる方法を開示している。さらに、特許文献4は、長手方向でコア径と比屈折率差を同時に変化させる方法を開示している。
以上は、すべて光ファイバの長手方向に変化を与えて、SBSの閾値を高める方法である。
Therefore, various methods have been proposed to increase the SBS threshold.
It is known that the spectral shape of scattered light varies depending on the material composition and strain of the optical fiber, and the broader the spectrum, the higher the SBS threshold.
For example, Patent Document 1 discloses a method of increasing the SBS threshold by changing the core diameter, refractive index, and strain in the longitudinal direction of the optical fiber.
In Patent Document 2, when a preform for an optical fiber is manufactured by a two-step method, in a step of manufacturing a part of a core part and a cladding part, for example, by changing a dopant concentration such as fluorine in the longitudinal direction. A method for increasing the SBS threshold is disclosed.
Patent Document 3 also discloses a method of changing the dopant concentration in the longitudinal direction. Further, Patent Document 4 discloses a method of simultaneously changing the core diameter and the relative refractive index difference in the longitudinal direction.
The above is a method for increasing the SBS threshold by changing the longitudinal direction of the optical fiber.

その他に、特許文献5は、コア部とクラッド部の境界付近に、屈折率分布で決定される伝送特性に影響を与えないように調整された、ドーパントがドープされた熱膨張率及び粘度の異なる長手方向に均一な薄い環状領域を複数設けることにより、光ファイバの径方向に歪の分布を形成し、それによりSBSを抑制する方法を開示している。
また、特許文献6は、コア部の特に中心部の屈折率を高くすることにより、音響モードの分布を通常とは異なるものとし、SBSを抑制する方法を開示している。
In addition, Patent Document 5 is different in thermal expansion coefficient and viscosity doped with a dopant, adjusted so as not to affect the transmission characteristics determined by the refractive index distribution in the vicinity of the boundary between the core part and the clad part. Disclosed is a method of forming a strain distribution in the radial direction of an optical fiber by providing a plurality of uniform thin annular regions in the longitudinal direction, thereby suppressing SBS.
Patent Document 6 discloses a method of suppressing SBS by making the distribution of acoustic modes different from normal by increasing the refractive index of the core portion, particularly the central portion.

一方、光ファイバ用プリフォームの製造方法の中にVAD法がある。これは広く使われている技術の一つで、回転しつつ引き上げられる出発部材の先端にスート堆積体を形成し、製造されたスート堆積体を電気炉で脱水・ガラス化することにより光ファイバ母材を得る方法である。
一般的に、光ファイバ母材の製造は、先ずコア部とクラッド部の一部が形成され、更に追加のクラッド部が別の手段で付与することにより行われる。コア部には、例えば、GeO2といった屈折率を上昇させるドーパントが添加されており、ドーパントの分布により、屈折率分布が形成されている。
On the other hand, there is a VAD method as a method for manufacturing an optical fiber preform. This is one of the widely used technologies. A soot deposit is formed on the tip of a starting member that is pulled up while rotating, and the soot deposit is dehydrated and vitrified in an electric furnace. This is a method for obtaining a material.
In general, an optical fiber preform is manufactured by first forming a part of a core part and a clad part, and further applying an additional clad part by another means. For example, a dopant such as GeO 2 that increases the refractive index is added to the core, and a refractive index distribution is formed by the distribution of the dopant.

VAD法で堆積されるスートは、酸素と水素を反応させて火炎を形成するバーナに、SiCl4をガラス原料として投入することで生成するSiO2の微粒子である。原料のSiCl4にGeCl4を添加すると、その濃度に応じてSiO2微粒子内にGeO2が添加される。
現在、広く使われているシングルモード光ファイバの屈折率分布は、径方向に略矩形であり、クラッド部とコア部の屈折率差は0.3〜0.4%程度である。また、光ファイバ径は125μmであり、コア径は8μm強である。このような光ファイバは様々なシステムに用いられ、その動作波長は1.3〜1.6μmと広範囲に渡る。
Soot deposited by the VAD method is fine SiO 2 particles produced by introducing SiCl 4 as a glass material into a burner that reacts oxygen and hydrogen to form a flame. When GeCl 4 is added to the raw material SiCl 4 , GeO 2 is added into the SiO 2 fine particles according to the concentration.
At present, the refractive index distribution of a widely used single mode optical fiber is substantially rectangular in the radial direction, and the refractive index difference between the clad part and the core part is about 0.3 to 0.4%. The optical fiber diameter is 125 μm, and the core diameter is slightly over 8 μm. Such an optical fiber is used in various systems, and its operating wavelength ranges from 1.3 to 1.6 μm.

‘Optical Fiber Telecommunications IIIA’, Academic Press, p.200‘Optical Fiber Telecommunications IIIA’, Academic Press, p.200 特許第2584151号Patent No.2584151 特許第2753426号Patent No. 2753426 特開平9−301738号公報Japanese Patent Laid-Open No. 9-301738 特開平10−96828号公報JP-A-10-96828 米国特許第6,542,683号U.S. Pat.No. 6,542,683 米国公開特許US2004/0218882A1号US Published Patent US2004 / 0218882A1 特許第3580640号Patent No. 3580640

光ファイバの特性パラメータをその長手方向で変化させる場合、1km程度以下の短いスパンでの変化で顕著な効果を得られる。しかし、光ファイバの線引き速度が毎分1kmかそれ以上の高速であることと、大型のプリフォームでは1kmの光ファイバを線引きするのに光ファイバ用プリフォームの長さで1.5〜5mm程度で済むことから、光ファイバの製造に大型プリフォームを使用する低コストの製造方法では、このような短いスパンで変化を与えることは困難である。
そのため、例えば、特許文献7は、敢えて小型のプリフォームを製造することで特性の向上を図っている。
When the characteristic parameter of the optical fiber is changed in the longitudinal direction, a remarkable effect can be obtained by a change in a short span of about 1 km or less. However, the drawing speed of the optical fiber is 1 km / min or higher, and with a large preform, the length of the optical fiber preform is about 1.5 to 5 mm to draw an optical fiber of 1 km. Therefore, it is difficult to change in such a short span in a low-cost manufacturing method using a large-sized preform for manufacturing an optical fiber.
Therefore, for example, Patent Document 7 dares to improve characteristics by manufacturing a small preform.

また、特許文献5のように、光ファイバの径方向に複数のドーパントで薄い環状領域を作る方法は、製造中に径方向へのドーパントの拡散が起こるため製造が極めて困難である。さらに、このような光ファイバは、損失が通常の光ファイバと比べて大きく、ひいては実効的相互作用長Leffが小さくなるため、所望の効果を上げることが難しい。加えて投入する光エネルギーをさらに上げなくてはならないという問題点がある。 In addition, as in Patent Document 5, the method of forming a thin annular region with a plurality of dopants in the radial direction of the optical fiber is extremely difficult to manufacture because the dopant diffuses in the radial direction during the manufacturing. Further, such an optical fiber has a loss larger than that of a normal optical fiber, and as a result, the effective interaction length L eff becomes small. Therefore, it is difficult to increase a desired effect. In addition, there is a problem that light energy to be input must be further increased.

本発明は、低コストでSBSの閾値を高めることができ、高エネルギーの信号光の投入を可能とする光ファイバの製造方法の提供を目的としている。 An object of the present invention is to provide an optical fiber manufacturing method that can increase the threshold value of SBS at low cost and enables high-energy signal light to be input.

本発明の光ファイバの製造方法は、VAD法により、バーナにガラス原料及びドーパント原料を供給し、火炎中で生成するガラス微粒子を堆積させて光ファイバプリフォームのコアロッドを製造する際において、コアの屈折率を上昇させるドーパント原料の流量を数十秒から数分の間隔で変化させることを特徴としている。ドーパント原料は、GeClThe optical fiber manufacturing method of the present invention is a method of supplying a core material of an optical fiber preform by supplying a glass raw material and a dopant raw material to a burner and depositing glass fine particles generated in a flame by a VAD method. It is characterized in that the flow rate of the dopant raw material for increasing the refractive index is changed at intervals of several tens of seconds to several minutes. The dopant material is GeCl 4Four を用いるのが好ましい。ドーパント原料の流量は、周期的に変化させ、その変化量は平均値の30%以上、好ましくは50%以上とするのがよい。Is preferably used. The flow rate of the dopant material is periodically changed, and the amount of change is 30% or more of the average value, preferably 50% or more.

本発明の製造方法によれば、光ファイバのコア部における比屈折率差の径方向の分布がコア部全体の平均値に対して±10%以上変動している変動値を有し、かつ前記比屈折率差の径方向の分布形状が長手方向で周期的に変化している、1.3〜1.6μmに動作波長帯を持つシングルモード光ファイバが得られる。  According to the manufacturing method of the present invention, the radial distribution of the relative refractive index difference in the core portion of the optical fiber has a variation value that varies ± 10% or more with respect to the average value of the entire core portion, and A single mode optical fiber having an operating wavelength band in the range of 1.3 to 1.6 μm, in which the radial distribution shape of the relative refractive index difference periodically changes in the longitudinal direction, is obtained.

本発明によれば、1.3〜1.6μmに動作波長帯を持つ、SBS閾値の高いシングルモード光ファイバを低コストで製造することができ、高エネルギーの信号光の投入を可能とする。   According to the present invention, a single mode optical fiber having an operating wavelength band of 1.3 to 1.6 μm and a high SBS threshold can be manufactured at low cost, and high energy signal light can be input.

本発明者等は、VAD法によりバーナの火炎加水分解反応で生成するガラス微粒子が堆積されるコアの先端は、図1に示すように、曲面をなしていることに着目し、コア部1の成長に合わせてドーパント濃度を変化させることにより、コア部の比屈折率差の分布を径方向及び長手方向の両方で変化させることができる。バーナ2の上方には、図示を省略したクラッド堆積用バーナが配設され、クラッド部3が形成される。その結果、双方の変化が相乗的に働き、SBS閾値が効果的に上昇することが分かり、本発明を達成した。   The present inventors pay attention to the fact that the tip of the core on which the glass fine particles generated by the flame hydrolysis reaction of the burner are deposited by the VAD method has a curved surface as shown in FIG. By changing the dopant concentration in accordance with the growth, the distribution of the relative refractive index difference of the core portion can be changed both in the radial direction and in the longitudinal direction. Above the burner 2, a cladding deposition burner (not shown) is provided, and a cladding part 3 is formed. As a result, it was found that both changes work synergistically and the SBS threshold is effectively increased, thereby achieving the present invention.

すなわち、本発明の製造方法は、VAD法でコアロッドを製造する際に、コアの屈折率を上昇させるドーパント原料の流量を数十秒から数分の間隔で変化させることにある。
ドーパント原料には好ましくはGeCl4を使用し、その流量を平均流量の30%以上、好ましくは50%以上、例えば周期的に変化させて堆積させる。なお、ドーパント原料の流量の変化量が30%未満では、SBS閾値の上昇が小さく効果的でない。
この方法によれば、過去の方法では困難であった大型プリフォームの製造にも容易に対応できる。
That is, the manufacturing method of the present invention is to change the flow rate of the dopant raw material for increasing the refractive index of the core at intervals of several tens of seconds to several minutes when the core rod is manufactured by the VAD method.
Preferably, GeCl 4 is used as the dopant material, and the flow rate is 30% or more of the average flow rate, preferably 50% or more, for example, by periodically changing the deposition. Note that if the amount of change in the flow rate of the dopant material is less than 30%, the increase in the SBS threshold is small and not effective.
According to this method, it is possible to easily cope with the production of a large-size preform, which was difficult with the past method.

これにより、光ファイバのコア部における比屈折率差の径方向の分布がコア部全体の平均値に対して±10%以上変動している変動値を有し、かつ比屈折率差の径方向の分布形状が長手方向で変化し、1.3〜1.6μmに動作波長帯を持つシングルモード光ファイバが得られる。   As a result, the radial distribution of the relative refractive index difference in the core portion of the optical fiber has a variation value that varies by ± 10% or more with respect to the average value of the entire core portion, and the radial direction of the relative refractive index difference The single-mode optical fiber having an operating wavelength band of 1.3 to 1.6 μm is obtained.

VAD法により、通常の、略矩形状の比屈折率差の分布を有するコアロッド製造用装置を用いて、添加するドーパントGeCl4の流量を周期的に変化させた。変化させる前のコア部堆積バーナへの原料供給条件(定常条件)は、SiCl4 300sccm、GeCl4 16sccmであった。流量変化はこれに対し、GeCl4の流量のみを変化させて行い、1分間 8sccmを流した後、1分間24sccm流し、再び1分間8sccm流す、というように周期的にGeCl4流量を変化させた。 The flow rate of the dopant GeCl 4 to be added was periodically changed by a VAD method using an apparatus for manufacturing a core rod having a normal rectangular refractive index difference distribution. The raw material supply conditions (steady conditions) to the core deposition burner before the change were SiCl 4 300 sccm and GeCl 4 16 sccm. On the other hand, the flow rate was changed by changing only the flow rate of GeCl 4 , and after flowing 8 sccm for 1 minute, flowing 24 sccm for 1 minute, and again flowing 8 sccm for 1 minute, the GeCl 4 flow rate was changed periodically. .

1分間に堆積されるコアの厚さは、これを線引きして最終的に得られる光ファイバの長さに換算すると約2kmであった。
図1において模式的に示したように、VAD法ではコア堆積部の先端は曲面である。従って、細かくドーパント濃度を変化させた場合、得られる光ファイバの各横断面において、コア部の比屈折率差の分布形状は、図2に示した従来のプロファイルのように略矩形とはならず、図3,4のように、コア内に屈折率の高い部分と低い部分が共に現れ、かつ長手方向でプロファイルが変化している。なお、図3,4は、同一ファイバの長手方向の異なる位置で測定した、コア部の比屈折率差のプロファイルである。
The thickness of the core deposited per minute was about 2 km in terms of the length of the optical fiber finally obtained by drawing it.
As schematically shown in FIG. 1, in the VAD method, the tip of the core deposition part is a curved surface. Therefore, when the dopant concentration is finely changed, the distribution shape of the relative refractive index difference of the core portion in each cross section of the obtained optical fiber is not substantially rectangular like the conventional profile shown in FIG. 3 and 4, both the high refractive index portion and the low refractive index portion appear in the core, and the profile changes in the longitudinal direction. 3 and 4 are profiles of the relative refractive index difference of the core measured at different positions in the longitudinal direction of the same fiber.

図3,4におけるコア部の比屈折率差のプロファイルにおいて、比屈折率差の変動値(高低差)は、コア部全体の平均値に対して±15%程度であった。ドーパント原料を定常条件時の±50%で変化させたにもかかわらず、比屈折率差の変動値が±15%程度の変化に留まったのは、電気炉による脱水・ガラス化工程での熱処理により、ドーパントが拡散したためと考えられる。   In the profile of the relative refractive index difference of the core part in FIGS. 3 and 4, the fluctuation value (height difference) of the relative refractive index difference was about ± 15% with respect to the average value of the entire core part. Despite changing the dopant material at ± 50% under steady conditions, the variation in the relative refractive index difference remained at about ± 15% because of the heat treatment during the dehydration and vitrification process in the electric furnace. This is probably because the dopant diffused.

このようにして得られたコアロッドに、さらに必要な量のクラッドを付与してプリフォームとした後、線引き炉で線引きし、直径125μmの光ファイバとした。この光ファイバ30kmのSBS特性を調べたところ、波長1510nmでの閾値は、通常品の6.5dBmと比較して2dB高い8.5dBmであった。   The core rod thus obtained was further provided with a necessary amount of clad to form a preform, and then drawn in a drawing furnace to obtain an optical fiber having a diameter of 125 μm. When the SBS characteristic of this optical fiber 30 km was examined, the threshold value at a wavelength of 1510 nm was 8.5 dBm, which is 2 dB higher than 6.5 dBm of the normal product.

このような効果は、上記GeCl4の流量の変化を±30%以上として、±10%以上の比屈折率差の変化が見られた際に顕著に見られ、ドーパント流量の変化の時間間隔を数十秒から数分程度とした際に効果が大きかった。この時間間隔が10秒より短すぎると、ドーパントの拡散により大きな比屈折率差の変化が見られなくなる。逆に、この時間間隔が10分を超え長くなりすぎると、ファイバ化したときの屈折率分布の変化の周期が長すぎるため、十分な効果が得られなくなる。 Such an effect is prominent when the change in the flow rate of GeCl 4 is set to ± 30% or more, and a change in the relative refractive index difference of ± 10% or more is observed. The effect was great when the time was from several tens of seconds to several minutes. If this time interval is shorter than 10 seconds, a large change in relative refractive index difference is not observed due to dopant diffusion. Conversely, if the time interval exceeds 10 minutes and becomes too long, the period of change in the refractive index distribution when it is made into a fiber is too long, so that a sufficient effect cannot be obtained.

SBS閾値の高いシングルモード光ファイバを低コストで供給できる。   Single mode optical fiber with a high SBS threshold can be supplied at low cost.

VAD法によるコア部の堆積状態とドーパント濃度の分布を模式的に示す概略図である。It is the schematic which shows typically the deposition state of a core part by VAD method, and distribution of dopant concentration. コア部の比屈折率差の分布形状を示す、従来の光ファイバのプロファイルである。It is the profile of the conventional optical fiber which shows the distribution shape of the relative refractive index difference of a core part. コア部の比屈折率差の分布形状を示す、本発明の光ファイバのプロファイルである。It is the profile of the optical fiber of this invention which shows the distribution shape of the relative refractive index difference of a core part. 本発明のコア部のプロファイルを示す他の例である。It is another example which shows the profile of the core part of this invention.

符号の説明Explanation of symbols

1 ……コア部、
2 ……バーナ、
3 ……クラッド部。
1 ...... Core part,
2 …… Burner,
3 …… Clad part.

Claims (7)

1.3〜1.6μmに動作波長帯を持つシングルモード光ファイバであって、該光ファイバのコア部における比屈折率差の径方向の分布がコア部全体の平均値に対して±10%以上変動している変動値を有し、かつ前記比屈折率差の径方向の分布形状が長手方向で変化していることを特徴とする光ファイバ。 A single-mode optical fiber having an operating wavelength band of 1.3 to 1.6 μm, and the radial distribution of the relative refractive index difference in the core portion of the optical fiber varies by ± 10% or more with respect to the average value of the entire core portion. An optical fiber characterized in that the radial distribution shape of the relative refractive index difference varies in the longitudinal direction. 前記比屈折率差の径方向の分布形状が、長手方向に周期的に変化している請求項1に記載の光ファイバ。 The optical fiber according to claim 1, wherein the radial distribution shape of the relative refractive index difference periodically changes in the longitudinal direction. VAD法により、バーナにガラス原料及びドーパント原料を供給し、火炎中で生成するガラス微粒子を堆積させて光ファイバプリフォームのコアロッドを製造する際において、コアの屈折率を上昇させるドーパント原料の流量を数十秒から数分の間隔で変化させることを特徴とする光ファイバの製造方法。 When the core rod of an optical fiber preform is manufactured by supplying glass raw material and dopant raw material to the burner by the VAD method and depositing glass fine particles generated in the flame, the flow rate of the dopant raw material for increasing the refractive index of the core is set. A method of manufacturing an optical fiber, wherein the optical fiber is changed at intervals of several tens of seconds to several minutes. 前記ドーパント原料がGeCl4である請求項3に記載の光ファイバの製造方法。 The method for producing an optical fiber according to claim 3, wherein the dopant raw material is GeCl 4 . 前記ドーパント原料の流量を周期的に変化させる請求項3又は4に記載の光ファイバの製造方法。 The manufacturing method of the optical fiber of Claim 3 or 4 which changes the flow volume of the said dopant raw material periodically. 前記ドーパント原料の流量の変化量が、その平均流量の30%以上である請求項3乃至5のいずれかに記載の光ファイバの製造方法。 The method of manufacturing an optical fiber according to any one of claims 3 to 5, wherein a change amount of the flow rate of the dopant material is 30% or more of the average flow rate. 前記ドーパント原料の流量の変化量が、その平均流量の50%以上である請求項3乃至6のいずれかに記載の光ファイバの製造方法。
The method for manufacturing an optical fiber according to any one of claims 3 to 6, wherein a change amount of the flow rate of the dopant raw material is 50% or more of the average flow rate.
JP2005110140A 2005-04-06 2005-04-06 Optical fiber manufacturing method Active JP4975266B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005110140A JP4975266B2 (en) 2005-04-06 2005-04-06 Optical fiber manufacturing method
PCT/JP2006/305432 WO2006109426A1 (en) 2005-04-06 2006-03-17 Optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005110140A JP4975266B2 (en) 2005-04-06 2005-04-06 Optical fiber manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005162818A Division JP2006293258A (en) 2005-04-06 2005-06-02 Optical fiber

Publications (2)

Publication Number Publication Date
JP2006292843A true JP2006292843A (en) 2006-10-26
JP4975266B2 JP4975266B2 (en) 2012-07-11

Family

ID=37413513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005110140A Active JP4975266B2 (en) 2005-04-06 2005-04-06 Optical fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP4975266B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020065632A1 (en) * 2018-09-28 2020-04-02 信越化学工業株式会社 Optical fiber preform
JP2022545472A (en) * 2019-08-21 2022-10-27 オーエフエス ファイテル,エルエルシー Reduction of coupling loss between optical fibers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2584151B2 (en) * 1991-06-11 1997-02-19 株式会社フジクラ Optical fiber
JPH1096828A (en) * 1996-08-01 1998-04-14 Furukawa Electric Co Ltd:The Stimulated brillouin scattering suppressing optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2584151B2 (en) * 1991-06-11 1997-02-19 株式会社フジクラ Optical fiber
JPH1096828A (en) * 1996-08-01 1998-04-14 Furukawa Electric Co Ltd:The Stimulated brillouin scattering suppressing optical fiber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020065632A1 (en) * 2018-09-28 2020-04-02 信越化学工業株式会社 Optical fiber preform
KR20210048518A (en) * 2018-09-28 2021-05-03 신에쓰 가가꾸 고교 가부시끼가이샤 Optical fiber base material
US11274917B2 (en) 2018-09-28 2022-03-15 Shin-Etsu Chemical Co., Ltd. Method of measuring optical fiber preform
KR102434616B1 (en) 2018-09-28 2022-08-19 신에쓰 가가꾸 고교 가부시끼가이샤 optical fiber base material
JP2022545472A (en) * 2019-08-21 2022-10-27 オーエフエス ファイテル,エルエルシー Reduction of coupling loss between optical fibers
JP7352015B2 (en) 2019-08-21 2023-09-27 オーエフエス ファイテル,エルエルシー Coupling loss reduction between optical fibers

Also Published As

Publication number Publication date
JP4975266B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
CN101061403B (en) Optical fiber
JP5674593B2 (en) Low-loss optical fiber and manufacturing method thereof
JP2584151B2 (en) Optical fiber
EP2067218B1 (en) Rare earth doped optical fiber
CA2295491A1 (en) Suppression of stimulated brillouin scattering in optical fiber
CN112147738B (en) high-Raman-gain optical fiber capable of inhibiting stimulated Brillouin scattering effect and preparation method thereof
JPH09159846A (en) Rare earth element added multicore fiber and its production
WO2006090519A1 (en) Induction brillouin scatter suppresing optical fiber
JP2007230862A (en) Manufacture of depressed index optical fiber
CN103323908A (en) Single mode fiber and manufacturing method thereof
KR20000051960A (en) Optical fiber preform having OH barrier and method of fabricating the same
JP4975266B2 (en) Optical fiber manufacturing method
US6802191B2 (en) Controlled collapse of depressed index optical fiber preforms
KR100878709B1 (en) A method for fabricating optical fiber using adjustment of oxygen stoichiometry
JPH08194123A (en) Optical fiber transmission path
JP2006293258A (en) Optical fiber
JP2753426B2 (en) Method for manufacturing high input optical fiber and preform thereof
JPH09311231A (en) Dispersion shift optical fiber
JP2012193102A (en) Method for treating silica glass, and optical fiber
JPS63199303A (en) Leaky optical fiber and its production
JPH10142433A (en) Optical fiber for communication and its production
WO2006109426A1 (en) Optical fiber
JPH1096828A (en) Stimulated brillouin scattering suppressing optical fiber
JPS638707A (en) Dispersion shift type optical fiber
CA2352378C (en) Chalcogenide glass based raman optical amplifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120409

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120411

R150 Certificate of patent or registration of utility model

Ref document number: 4975266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3