WO2006090519A1 - Induction brillouin scatter suppresing optical fiber - Google Patents

Induction brillouin scatter suppresing optical fiber Download PDF

Info

Publication number
WO2006090519A1
WO2006090519A1 PCT/JP2005/022363 JP2005022363W WO2006090519A1 WO 2006090519 A1 WO2006090519 A1 WO 2006090519A1 JP 2005022363 W JP2005022363 W JP 2005022363W WO 2006090519 A1 WO2006090519 A1 WO 2006090519A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
optical fiber
core
difference
sbs
Prior art date
Application number
PCT/JP2005/022363
Other languages
French (fr)
Japanese (ja)
Inventor
Yuichi Morishita
Hiroshi Oyamada
Dai Inoue
Original Assignee
Showa Electric Wire & Cable Co., Ltd.
Shin-Etsu Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire & Cable Co., Ltd., Shin-Etsu Chemical Co., Ltd. filed Critical Showa Electric Wire & Cable Co., Ltd.
Publication of WO2006090519A1 publication Critical patent/WO2006090519A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2537Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to scattering processes, e.g. Raman or Brillouin scattering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03605Highest refractive index not on central axis
    • G02B6/03611Highest index adjacent to central axis region, e.g. annular core, coaxial ring, centreline depression affecting waveguiding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03633Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/03644Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - + -
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/28Doped silica-based glasses doped with non-metals other than boron or fluorine doped with phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point

Definitions

  • the present invention relates to an optical fiber that is required to input high power to an optical fiber transmission line, for example, an optical CATV system for FTTH.
  • FTTH Fiber To The Home
  • An optical CATV system or the like is used for the FTTH system.
  • the optical CATV system it is necessary to input a high-power optical signal into the core of a single mode optical fiber. This is because the optical CATV system power used in the FTTH system is to reduce the noise first, so that the optical input power at the receiver needs to be as high as possible, for example, to have a light receiving sensitivity of about ⁇ 10 dBm.
  • the power of the optical signal output from the optical transmitter is, for example, 16 for a 32-branch splitter. It is also a force with reasons such as having to increase it to about 5 to 17 dB.
  • the transmission line fiber from the optical transmitter to the splitter is used. It is desired to increase the length.
  • this optical fiber TVTV system has a transmission fiber that is expected to have a maximum length of 10 to 20 km in the FTTH system design and is distributed by a 32-branch splitter with a length of about 20 km. Therefore, since the transmission loss of the optical fiber is about 0.25 dBZkm at the wavelength of 1550 nm, the transmission loss between the optical transmitter and the receiver is 22 dB. In other words, the optical output at the optical transmitter needs about 12 dB. Also, if the length of the transmission line fiber is increased to 20 km or more, or the number of optical distributions is increased to more than 32 branches, the optical output will need to be increased.
  • SBS is a phenomenon in which the frequency (frequency) of light is slightly shifted by ultrasonic waves, and the power of light is scattered more backward than it is scattered in the forward emission direction. .
  • the optical power in the core of the optical fiber increases, stimulated emission of Brillouin scattering starts and the backscattered light power increases rapidly.
  • this backscattered light adversely affects the optical transmitter, increasing the noise of the light source or saturating the optical signal ratio propagating forward, resulting in an optical signal-to-noise ratio (SZN ratio). It gets worse.
  • SBS phenomenon determines the upper limit of the optical power that can be incident on the transmission line fiber.
  • Ge, P, F, and the like are used as additives in order to obtain a low-loss silica glass-based optical fiber.
  • Ge and P are often added to the core because adding them gives a refractive index higher than that of quartz glass.
  • F when F is added, the refractive index is lower than that of Sekiei glass and is often added to the clad because the refractive index is obtained.
  • co-addition of Ge, P, and F may add F into the core or add Ge or F into the cladding.
  • GeO concentration and SBS center frequency shift amount are linearly correlated.
  • the full width at half maximum of SBS (the spectral width at half the peak value of the SBS spectrum intensity) is about 30 to 100 MHz.
  • the relationship between the GeO concentration, the PO concentration, and the SBS center frequency shift amount is 125 respectively.
  • Non-Patent Document 1 There are also reports of MHzZmol% and 162MHzZmol% (for example, see Non-Patent Document 1).
  • the full width at half maximum of SBS at this time is said to be 150MHz to 270MHz.
  • Ge and P are added to the core, and the optical fiber with pure silica glass power is used as the cladding, and the optical fiber with pure silica glass and F in the cladding is used.
  • the SBS center frequency shift amount of the optical fiber with Ge and F co-attached to the core was investigated.
  • the amount of F added is shifted by about 350 MHz with a relative refractive index difference of 0.2%. This is 600 MHz Zmol% when converted to a frequency shift amount per mol% (for example, see Non-Patent Document 2).
  • Non-Patent Document 4 a method of suppressing SBS by changing the core diameter in the longitudinal direction of the optical fiber has also been proposed (see, for example, Patent Document 1 and Non-Patent Document 4).
  • Non-Patent Document 4 the Brillouin frequency is shifted by changing the core diameter, and the threshold is raised by broadening the spectrum width of SBS.
  • Non-Patent Document 1 R.W.Tkach et al., Electron.Lett., Vol.22, No.l9, p.l011,1986
  • Non-Patent Document 2 N. SWbata et al., Opt ⁇ ett., Vol.l2, No.4, p.269, 1987
  • Non-Patent Document 3 Proceedings of the 1994 IEICE Autumn Conference C 137
  • Non-Patent Document 4 Proceedings of the 1995 IEICE Communication Society Conference B-661
  • Patent Document 1 JP-A-4-367539
  • Patent Document 2 Special Table 2001-510903
  • the type and amount of the additive are changed in the longitudinal direction of the optical fiber.
  • the manufacturing process becomes complicated and the length is stabilized. It is difficult to manufacture a long optical fiber.
  • the method of changing the residual strain of the core in the longitudinal direction of the optical fiber is by using an optical fiber in which the core is pure silica glass and the cladding is silica glass with F added thereto.
  • the fiber has the advantage that the influence of the drawing tension tends to concentrate on the core because the viscosity of the clad with F is lower than that of the core made of pure silica glass.
  • it is difficult to adjust the drawing tension compared to pure quartz glass because optical fibers that are widely used for commercial use have Ge added to the core. Therefore, this method has a problem that its application is limited.
  • Non-Patent Document 3 the concentration of F added to the core and the cladding is changed so that the concentration of Ge in the core is uniform so that the entire refractive index distribution does not change.
  • the manufacturing process is complicated, it is difficult to obtain an optical fiber having a stable characteristic in the longitudinal direction, which is a problem for mass production.
  • Patent Document 2 has a problem that the manufacturing process is complicated and the cost is increased because it is necessary to form layers having different glass compositions alternately in the radial direction of the core. .
  • the present invention solves the above-described problems.
  • An SBS-suppressing optical fiber that suppresses SBS and has stable characteristics in the longitudinal direction of the optical fiber and that can be used with a normal manufacturing method is provided. It is to provide.
  • the present invention has the following constitutional power.
  • the SBS-suppressing optical fiber of the present invention is, as a first aspect, an optical fiber composed of a core having a silica glass force and a clad having a silica glass force having a refractive index lower than that of the outer peripheral core.
  • Ge or P is added to the core alone, or Ge and P are added at the same time, and the core has a step-like refractive index distribution, and GeO in adjacent steps of the step-like refractive index distribution.
  • a GeO concentration difference or a P O concentration difference or a GeO and PO difference between adjacent staircases in the stepwise refractive index distribution is a GeO concentration difference or a P O concentration difference or a GeO and PO difference between adjacent staircases in the stepwise refractive index distribution.
  • the total concentration difference is 0.6 mol% or more.
  • the refractive index difference at the staircase adjacent of the refractive index distribution of the stepwise is 3 X 10_ 4 or more.
  • the refractive index difference at the step-fit Ri next to the refractive index distribution of the stepwise is 8 X 10_ 4 or more.
  • the clad is pure quartz glass.
  • the clad is characterized in that F is added to quartz glass.
  • an optical fiber composed of a core having a quartz glass force and a clad having a lower refractive index than that of the outer peripheral core and also having a quartz glass force. Is added, and the core has a stepped refractive index distribution, and the F concentration difference in adjacent steps of the stepped refractive index distribution is 0.08 mol% or more.
  • the stepwise refractive index profile is adjacent to the stepwise refractive index distribution. It is characterized in that the difference in the concentration of F in the stairs is 0.16 mol% or more.
  • the refractive index difference at the staircase adjacent of the refractive index distribution of the stepwise is 3 X 10_ 4 or more.
  • the refractive index difference at the staircase adjacent of the refractive index distribution of the stepwise is 8 X 10_ 4 or more.
  • an optical fiber composed of a core having a quartz glass force and a clad having a quartz glass force having a refractive index lower than that of the outer peripheral core, wherein the core is made of Ge or P. Independently, or Ge and P are added at the same time, F is further added, and the core has a stepped refractive index profile, and the difference in refractive index between adjacent steps of the stepped refractive index profile. characterized in that There are 3 X 10_ 4 or more.
  • the refractive index difference at the staircase adjacent of the refractive index distribution of the stepwise is 8 X 10_ 4 or more.
  • the clad is pure quartz glass.
  • the clad is characterized in that F is added to an amorphous glass.
  • an optical fiber comprising a core having a quartz glass force and a clad having a refractive index lower than that of the outer peripheral core and also having a quartz glass force, and the core includes pure silica glass and The addition of F also adds to the quartz glass force, the addition of F to the cladding, the core has a step-like refractive index profile, and the refractive index at the adjacent steps of the step-like refractive index profile. wherein the difference is 3 X 10_ 4 or more.
  • the refractive index difference at the staircase adjacent of the refractive index distribution of the stepwise is 8 X 10_ 4 or more.
  • a difference between the maximum refractive index of the core and the refractive index of the clad is 0.008 or less. It is a feature.
  • the spectral width of stimulated Brillouin scattering of the optical fiber is 200 MHz or more. To do.
  • the spectral width of stimulated Prien scattering of the optical fiber is 300 MHz or more.
  • a zero dispersion wavelength of the optical fiber is in a range of 1300 nm to 1324 nm.
  • the mode field diameter of the optical fiber at a wavelength of 1310 nm is in the range of 8.6 to 9.5 m. It is characterized by being.
  • the amount of additive such as Ge, P, or F added to the core cladding is adjusted and the refractive index distribution of the core is stepped. It can broaden the spectrum width, suppress SBS, has stable characteristics in the longitudinal direction, can be manufactured by the conventional method, and can be stably connected to ordinary SMF.
  • FIG. 1 is a diagram for explaining a refractive index distribution of Example 1 of the present invention.
  • FIG. 2 is a diagram illustrating a measurement system for measuring SBS threshold power.
  • FIG. 3 is a diagram showing a measurement result of SBS threshold power.
  • FIG. 4 is a diagram for explaining a refractive index distribution of Example 2 of the present invention.
  • FIG. 5 is a diagram for explaining a refractive index distribution of Example 3 of the present invention.
  • FIG. 6 is a view for explaining a refractive index distribution of Example 4 of the present invention.
  • FIG. 7 is a view for explaining a refractive index distribution of Example 5 of the present invention.
  • FIG. 8 is a view for explaining a refractive index distribution of Example 6 of the present invention.
  • FIG. 9 is a view for explaining a refractive index distribution of Example 7 of the present invention.
  • FIG. 10 is a view for explaining a refractive index distribution of Example 8 of the present invention.
  • FIG. 11 is a diagram illustrating a refractive index distribution of a comparative example for the present invention.
  • the SBS threshold depends on the loss, length, mode field diameter, etc. of the optical fiber. In general, the threshold value can be simply expressed as follows.
  • Aeff and Leff can be expressed by the following equations.
  • Lef I ⁇ 1— exp ( ⁇ a L) / a ⁇
  • Aeff and Leff are related to the mode field diameter, optical fiber loss and length. Therefore, when comparing the SBS threshold value of each optical fiber, it can be seen that comparing the coefficient k does not depend on the mode field diameter, loss, length, etc. of the optical fiber. Note that the normal SMF has a k coefficient of about 7.6 x 10 14 mWZm, so if the k coefficient is larger than this value, the SBS threshold power is large.
  • the spectrum width of SBS for effectively suppressing SBS needs to be 200 MHz or more, preferably 300 MHz or more.
  • the spectrum width of SBS is 130 to 150 MHz.
  • the spectrum width of SBS refers to the spectrum width that is 1/10 of the peak value of the intensity of the SBS spectrum.
  • the SBS center frequency shift amount is approximately 150MHzZmo for GeO.
  • the shift amount of the SBS center frequency in each step portion should not overlap the SBS center frequency in other step portions. There is a need.
  • the addition amount of Ge, P, or F in the adjacent staircases is changed to the above shift amount. It is recommended to adjust optimally based on the above.
  • the difference in GeO concentration or PO concentration difference between adjacent steps in the stepwise refractive index distribution is 0.3 mol% or more, preferably 0. 6mol%
  • the total concentration difference of 2 2 5 is 0.3 mol% or more, preferably 0.6 mol% or more.
  • the reason why it is ol% or more is that if it is less than 0.3 mol%, it has only the same SBS suppression effect as ordinary SMF. The reason why it is preferably set to 0.6 mol% or more is because an SBS suppressing effect can be further exhibited. Also, GeO concentration difference, P O concentration difference, or GeO and P O concentration.
  • the upper limit of the total concentration difference of 2 2 5 2 2 is that this SBS-suppressed optical fiber is connected to normal SMF.
  • the refractive index distribution should be set appropriately so that it does not affect the transmission characteristics, such as no increase in connection loss!
  • the stepped refractive index distribution is bent in adjacent steps.
  • the folding index difference 3 X 10_ 4 or more preferably may be 8 X 10_ 4 or more.
  • the refractive index is increased because the core diameter is reduced while the force is applied, but the refractive index difference between adjacent stairs depends on the number of stairs due to the effect of diffusion of the additive during glass synthesis or spinning.
  • the upper limit is limited. For example, when the number of steps is one, the number of steps is small, so the upper limit of the difference in refractive index between adjacent stairs can be up to the maximum difference in refractive index between the core and the cladding, and the degree of freedom is large. On the other hand, when the number of steps is two or more, the length between steps becomes shorter, so it is preferable to design the refractive index distribution so that the upper limit of the difference in refractive index between adjacent steps is about 0.0015. Regardless of the number of steps, the shape of the stairs is not necessarily rectangular due to the effects of diffusion described above, but is often slightly rounded.
  • the clad may be pure quartz glass, or F may be added to pure silica glass. In other words, you can select the required characteristics of the optical fiber as appropriate!
  • F is added to the core and the clad, and the core has a step-like refractive index distribution. It is also possible to adopt a configuration in which the difference in the concentration of F in the adjacent stairs is 0.08 mol% or more, preferably 0.16 mol% or more.
  • the reason why the difference in F concentration was set to 0.08 mol% or more is that if it is less than 0.08 mol%, the SBS suppression effect is the same as that of normal SMF.
  • the reason why the content is preferably 0.16 mol% or more is that an SBS suppressing effect can be further exerted.
  • the upper limit of the F concentration difference is that transmission loss does not increase even if this SBS suppression optical fiber is connected to normal SMF.
  • the refractive index distribution may be determined appropriately so as to be within a range without affecting the characteristics.
  • the difference in refractive index between adjacent steps of this stepped refractive index distribution is obtained.
  • the 3 X 10- 4 or more preferably may be 8 X 10- 4 or more.
  • the additive is F
  • the present invention is configured with the difference in refractive index between adjacent steps in the stepwise refractive index distribution that does not depend on the concentration of the additive, The effect is the same as when configured with a density difference.
  • the refraction index difference in the staircase adjacent stepped refractive index distribution 3 X 10_ 4 or more is because there is only normal SMF and comparable SBS suppression effect is less than 3 X 10_ 4 .
  • the 8 X 10_ 4 above is because it is possible to obtain a more SBS suppression effect.
  • the upper limit of the refractive index difference between adjacent stairs is that the SBS-suppressed optical fiber is connected to normal SMF, so that the connection loss does not increase and the transmission characteristics are not affected. Depending on the design, it may be determined appropriately.
  • the SBS-suppressed optical fiber of the present invention has Ge and F, P and F, or Ge, P and F co-doped into the core, and the refractive index distribution of the core is stepped.
  • refractive index difference at adjacent stairs of the stepwise refractive index distribution 3 X 10_ 4 or more preferably be configured to be 8 X 1 0_ 4 or more. Again had a refractive index difference at stairs adjacent stepped refractive index distribution 3 X 10_ 4 or more is because there is only normal SMF and comparable SBS suppression effect is less than 3 X 10_ 4.
  • the 8 X 10_ 4 above is because it is possible to obtain a good Ri SBS suppression effect.
  • the upper limit of the refractive index difference between adjacent stairs is such that the connection loss does not increase even if this SBS-suppressed optical fiber is connected to ordinary SMF! It can be determined appropriately for the design of the refractive index distribution.
  • the upper limit of the difference in refractive index between adjacent tiers depends on the number of steps, due to the effects of diffusion during glass synthesis or spinning of an additive that increases or decreases the refractive index because the core diameter is reduced. For example, if the number of steps is 1, the number of steps is small, so the upper limit of the refractive index difference between adjacent stairs can be as high as the maximum refractive index difference between the core and the cladding. Although the degree of freedom is large, the length between steps is shortened when the number of steps is 2 or more.
  • the refractive index distribution is designed so that the upper limit of the refractive index difference between adjacent steps is about 0.0015. It is preferable to do the same as described above.
  • the shape of the staircase is not necessarily rectangular due to the influence of diffusion described above, regardless of the number of steps, and is often slightly rounded as described above.
  • F may be added to pure quartz glass, which may be pure quartz glass. In other words, select the appropriate optical fiber characteristics.
  • the SBS-suppressed optical fiber of the present invention has a core made of pure silica glass, F is added to the cladding, and F is partially added to the core pure silica glass.
  • a refractive index profile of step-like refractive index difference at stairs adjacent the stepped refractive index distribution 3 X 10_ 4 or more preferably is configured as a 8 X 10_ 4 more than it can.
  • the refractive index difference at stepped adjacent stepped refractive index distribution 3 X 10_ 4 above is for still 3 X 10_ only normal SMF and comparable SBS suppression effect is less than 4.
  • the preferred was 8 X 10_ 4 or more is because as possible out to achieve a more SBS suppression effect.
  • the upper limit of the refractive index difference between adjacent stairs is that the refractive index is adjusted so that it does not affect the transmission characteristics, such as the connection loss does not increase even if this SBS suppression fiber is connected to normal SMF. Decide on the distribution design as appropriate!
  • the upper limit of the difference in refractive index between adjacent steps depends on the number of steps, due to the effects of diffusion during glass synthesis or spinning of additives that increase or decrease the refractive index because the core diameter decreases.
  • the number of steps is 1, the number of steps is small, so the upper limit of the difference in refractive index between adjacent stairs can be up to the maximum difference in refractive index between the core and the cladding.
  • the shape of the staircase is not necessarily rectangular due to the influence of diffusion described above, regardless of the number of steps, and is often slightly rounded as described above.
  • the difference between the maximum refractive index of the core and the refractive index of the cladding of the SBS-suppressed optical fiber of the present invention is 0.008 or less.
  • the zero-dispersion wavelength of the inventive SBS-suppressing optical fiber is in the range of 1300 nm to 1324 nm.
  • the mode field diameter of the SBS-suppressed optical fiber of the present invention at a wavelength of 1310 nm is in the range of 8.6 to 9.5 / zm.
  • the mode field diameter of the DSF is 7 to 8 ⁇ m at a wavelength of 1310 nm, which is smaller than that of normal SMF. Therefore, when DSF and ordinary SMF are connected, the difference in refractive index increases the mismatching power of the mode field diameter and the connection loss does not affect the entire transmission line.
  • the SBS-suppressed optical fiber of the present invention has a zero-dispersion wavelength equivalent to that of SMF used in conventional transmission lines, that is, a zero-dispersion wavelength near 1300 nm, and the maximum refractive index of the core and the refractive index of the cladding. Even if the rate difference is connected to ordinary SMF, the connection loss does not occur. It is less than 0.008, and the mode field diameter at 1310 nm wavelength is the same value as ordinary SMF, so it is applied to the transmission line. Even so, there is no problem in characteristics.
  • the SBS-suppressing optical fiber of the present invention may be used in combination with a conventionally known technique such as changing the core diameter in the longitudinal direction or changing the residual stress. As long as it is effective in suppressing SBS, it is not particularly limited as long as it is permitted in the manufacturing method.
  • Fig. 1 (a) Ge was added to a quartz glass core, and an SMF having a refractive index distribution of this core in a single stepped shape was produced.
  • Clad C is pure quartz glass.
  • the step-like refractive index distribution if the high refractive index portion is Nh and the low refractive index portion is N1, the GeO concentration in the Nh portion is 5.2 mol%, and the GeO concentration in the N1 portion is 3 mol. %.
  • the GeO concentration difference between adjacent stairs in the step-like refractive index profile is 2.2 mol%. It has become.
  • the difference between the maximum refractive index of the core (Nh part) and the refractive index of the cladding ⁇ is 0.007
  • the difference between the refractive index of the core N1 part and the refractive index of the cladding ⁇ 2 is 0.004.
  • the refractive index difference ⁇ 3 between adjacent stairs in the stepwise refractive index distribution was 0.003.
  • the core diameter of the core part with high refractive index (Nh part) is 3 m
  • the core diameter of the core part with low refractive index (N1 part) is 8 ⁇ m.
  • An SBS suppression optical fiber having such a configuration was prepared for 20 km, and the reflected light power with respect to the incident light power at a wavelength of 1 550 nm was measured with a measurement system as shown in FIG.
  • the measurement system in Fig. 2 amplifies the light from a distributed feedback laser (DFB—LD) 1 having a wavelength of 1550 nm by an optical amplifier (EDFA; Erbium Doped Fiber Amplifier) 2 and introduces it to the optical power plastic 3.
  • This light is branched by an optical power bra 3 to an outgoing light power meter 5 for measuring the power of light transmitted from the SBS suppression optical fiber 4 to be measured, and the other is incident light for monitoring the incident light power. Branch to power meter 6.
  • the light reflected from the SBS suppression optical fiber 4 is again measured by the reflected light power meter 7 through the optical power bra 3.
  • FIG. 3 shows the result of measuring the SBS-suppressed optical fiber of Example 1 with the measurement system of FIG.
  • the horizontal axis represents the incident light power
  • the vertical axis represents the output light power and the reflected light power.
  • the k factor of ordinary SMF was 7.6 X 10 14 mWZm.
  • the transmission loss at 1550 nm of the optical fiber in Example 1 was 0.2 dBZkm, and the mode field diameter was 10.5 ⁇ m.
  • the spectral width of SBS was 330 MHz. The measurement of the spectral width of the SBS is performed using a BOTDR (Brillouin Optical Time Domain Reflectometer), and the same applies to the measurement of each of the following examples.
  • the shape of the refractive index profile is actually affected by the diffusion of the additive and the like. As shown in Fig. 1 (b), which is not a perfect rectangle, the corners often have a slightly rounded shape. However, in this embodiment and each embodiment described below, the refractive index distribution is expressed as a rectangular shape for the sake of explanation.
  • GeO concentration difference Ac between adjacent stairs of stepped refractive index profile is 3 mol%.
  • the difference between the maximum refractive index of the core (Nh part) and the refractive index of the cladding ⁇ ⁇ ⁇ ⁇ ⁇ is 0.008, and the difference between the refractive index of the N1 part of the core and the refractive index of the cladding ⁇ 2 is 0.004.
  • the refractive index difference ⁇ 3 between adjacent stairs in the stepwise refractive index distribution was 0.004.
  • the refractive index is high, the core part (Nh part) has a core diameter of 8 ⁇ m, the refractive index is low !, and the core part (N1 part) has a core diameter of 5 ⁇ m.
  • An SBS suppression optical fiber having such a configuration was prepared for 20 km, and the reflected light power with respect to the incident light power at a wavelength of 1 550 nm was measured with a measurement system as shown in FIG.
  • the SBS threshold power of the optical fiber of Example 2 is 9.5 dBm, which is 2.5 dBm higher than the normal SMF threshold power, and SBS can be suppressed.
  • the k coefficient at this time was 1.5 X 10 15 mWZm.
  • the transmission loss at a wavelength of 1550 nm was 0.2 dBZkm, and the mode field diameter was 10 m.
  • the spectrum width of SBS was 300MHz.
  • the concentration of O is 5.3 mol%, and the concentration of GeO in the N1 part is 4 mol%. That is, stepped
  • the GeO concentration difference between adjacent steps in the refractive index profile is Nh and Nm, respectively. Difference from the minute A cl force SO. 7mol%, the difference Ac2 between the Nm part and the N1 part is 1.3mol%. At this time, the difference between the maximum refractive index of the core (Nh part) and the refractive index of the cladding ⁇ ⁇ ⁇ ⁇ ⁇ is 0.008, and the difference between the refractive index of the Nm part of the core and the refractive index of the cladding ⁇ 2 is 0.007.
  • the difference between the refractive index of the N1 part of the core and the refractive index of the clad ⁇ 3 is 0.0053, and the refractive index difference between adjacent stairs in the stepwise refractive index distribution is the difference between the Nh part and the Nm part, respectively.
  • ⁇ ⁇ 4 was 0.001
  • the difference ⁇ ⁇ 5 between the Nm portion and the N1 portion was 0.0015.
  • the core diameter of the core part with high refractive index (Nh part) is 8 ⁇ m
  • the core part of the core part with refractive index (Nm part) is 5 ⁇ m
  • the refractive index is low!
  • the core diameter of the core part (N1 part) is 3 ⁇ m.
  • An SBS suppression optical fiber having such a configuration was prepared for 20 km, and the reflected light power with respect to the incident light power at a wavelength of 1 550 nm was measured with a measurement system as shown in FIG.
  • the SBS threshold power of the optical fiber of Example 3 is 10.5 dBm, which is 3.5 dBm higher than the normal SMF threshold power, and SBS can be suppressed.
  • the k coefficient at this time was 1.6 ⁇ 10 15 mWZm.
  • the transmission loss at a wavelength of 1550 nm was 0.23 dBZkm and the mode field diameter was 10.
  • the spectral width of SBS was 350 MHz.
  • the concentration difference Ac of PO in adjacent stairs of the stepped refractive index profile is 1.5 mol%.
  • the difference between the maximum refractive index of the core (Nh part) and the refractive index of the cladding ⁇ is 0.008, and the difference between the refractive index of the N1 part of the core and the refractive index of the cladding ⁇ 2 is 0.006.
  • the refractive index difference ⁇ 3 between adjacent stairs in the stepwise refractive index distribution was 0.002.
  • the refractive index is high, the core part (Nh part) has a core diameter of 4 ⁇ m, the refractive index is low, and the core part (N1 part) has a core diameter of 8 ⁇ m.
  • An SBS-suppressed optical fiber having such a configuration was prepared for 20 km, and the measurement system shown in Fig. 2 The reflected light power relative to the incident light power at a wavelength of 550 nm was measured.
  • the SBS threshold power of the optical fiber of Example 4 was 9 dBm, and the threshold power increased by 2 dBm compared to the normal SMF threshold value, and SBS could be suppressed.
  • the k coefficient at this time was 1.4 ⁇ 10 15 mWZm.
  • the transmission loss at a wavelength of 1550 nm was 0.3 dBZkm, and the mode field diameter was 10.
  • the spectral width of SBS was 250 MHz.
  • F was added to the outer periphery of a core made of pure silica glass, and an SMF having a refractive index distribution of the core in a single stepped shape was produced. F was also added to the clad C quartz glass.
  • the F concentration in the Nh portion is Omol% (pure quartz glass) and the F concentration in the N1 portion. The degree is 0.3 mol%.
  • the clad F concentration is 1.6 mol%. Therefore, the F concentration difference Ac between adjacent staircases in the refractive index profile of the staircase-shaped core is 0.3 mol%.
  • the difference ⁇ between the maximum refractive index of the core (Nh portion) and the refractive index of the cladding is 0.008, and the difference ⁇ 2 between the refractive index of the N1 portion of the core and the refractive index of the cladding is 0.007.
  • the refractive index difference ⁇ 3 between adjacent stairs in the stepwise refractive index distribution was 0.0015.
  • the core diameter of the core part with high refractive index (Nh part) is 4 m
  • the core diameter of the core part with low refractive index (N1 part) is 8 ⁇ m.
  • An SBS suppression optical fiber having such a configuration was prepared for 20 km, and the reflected light power with respect to the incident light power at a wavelength of 1 550 nm was measured with a measurement system as shown in FIG.
  • the SBS threshold power of the optical fiber of Example 5 is 10.5 dBm, which is 3.5 dBm higher than the normal SMF threshold power, and SBS can be suppressed.
  • the k coefficient at this time was 1.5 X 10 15 mWZm.
  • the transmission loss at a wavelength of 1550 nm was 0.27 dB / km, and the mode field diameter was 10.
  • the spectral width of SBS was 340 MHz.
  • the GeO concentration is 5.3 mol%, and the GeO concentration in the N1 part is 4.5 mol%.
  • the GeO concentration difference between adjacent steps in the step-shaped refractive index profile is Nh and
  • the difference A cl is 1.2 mol% from the N1 part, and the difference A c2 is 0.8 mol% between the Nm part and the N1 part.
  • the difference ⁇ between the maximum refractive index of the core (Nh portion) and the refractive index of the clad is 0.0075
  • the difference between the refractive index of the core Nm portion and the refractive index of the clad ⁇ 2 is 0.0. 07
  • the difference between the refractive index of the N1 part of the core and the refractive index of the cladding ⁇ 3 is 0.006
  • the refractive index difference between adjacent stairs of the stepwise refractive index distribution is the difference between the Nh part and the N1 part, respectively.
  • the core diameter of the core part with the high refractive index (Nh part) is 8 ⁇ m
  • the core part of the intermediate part of the refractive index (Nm part) is 4 ⁇ m
  • the refractive index is low.
  • the core diameter of the core part (N1 part) is ⁇ ⁇ m.
  • An SBS suppression optical fiber having such a configuration was prepared for 20 km, and the reflected light power with respect to the incident light power at a wavelength of 1 550 nm was measured with a measurement system as shown in FIG.
  • the SBS threshold power of the optical fiber of Example 6 is 10.5 dBm, which is 3.5 dBm higher than the normal SMF threshold power, and SBS can be suppressed.
  • the k coefficient at this time was 1.8 ⁇ 10 15 mWZm.
  • the transmission loss at a wavelength of 1550 nm was 0.19 dBZkm, and the mode field diameter was 10.
  • the spectral width of SBS was 350 MHz.
  • the concentration of GeO in the N1 part is 2.8 mol%, and the concentration of PO is 0.6 mol.
  • the difference in concentration is that the difference A cl between the Nh and Nl parts is 1. lmol%, and the difference Ac2 between the Nm and N1 parts is 0.4 mol%.
  • the difference between the maximum refractive index of the core (Nh part) and the refractive index of the cladding ⁇ ⁇ is 0.006, and the difference between the refractive index of the core Nm part and the refractive index of the cladding ⁇ 2 is 0.005.
  • the difference between the refractive index of the core N1 portion and the refractive index of the cladding ⁇ 3 is 0.0045, and the refractive index difference between adjacent steps of the stepwise refractive index distribution is Nh and N1 respectively.
  • the difference ⁇ 4 between the parts was 0.0015, and the difference ⁇ 5 between the Nm part and the N1 part was 0.0005.
  • the core diameter of the core part with high refractive index (Nh part) is 8.5 ⁇ m
  • the core part of the intermediate part of refractive index (Nm part) is 4 / ⁇ ⁇
  • the core diameter of the lower core part (N1 part) is 6 ⁇ m.
  • An SBS suppression optical fiber having such a configuration was prepared for 20 km, and the reflected light power with respect to the incident light power at a wavelength of 1 550 nm was measured with a measurement system as shown in FIG.
  • the SBS threshold power of the optical fiber of Example 7 is 9.7 dBm, which is 2.7 dBm higher than the normal SMF threshold power, and SBS can be suppressed.
  • the k coefficient at this time was 1.3 X 10 15 mWZm.
  • the transmission loss at a wavelength of 1550 nm was 0.21 dBZkm, and the mode field diameter was 10.
  • the spectral width of SBS was 230 MHz.
  • the concentration is 0.2 mol%, the GeO concentration in the N1 part is 4.5 mol%, and the PO concentration is 0
  • the difference between the maximum refractive index of the core (Nh part) and the refractive index of the cladding ⁇ is 0.007, and the difference between the refractive index of the N1 part of the core and the refractive index of the cladding ⁇ 2 is 0.004, The difference in refractive index ⁇ 3 between adjacent stairs in the stepwise refractive index distribution was 0.003.
  • the core diameter of the core part with high refractive index (Nh part) is 8 ⁇ m, the refractive index is low !, the core part (N1 part)
  • the core diameter is 4 ⁇ m.
  • An SBS suppression optical fiber having such a configuration was prepared for 20 km, and the reflected light power with respect to the incident light power at a wavelength of 1 550 nm was measured with a measurement system as shown in FIG.
  • the SBS threshold power of the optical fiber of Example 8 was lOdBm, and the threshold power increased by 3 dBm compared to the normal SMF threshold power, and SBS could be suppressed.
  • the k coefficient at this time was 1.4 ⁇ 10 15 mWZm.
  • the transmission loss at a wavelength of 1550 nm was 0.25 dBZkm, and the mode field diameter was 10.
  • the spectrum width of SBS was 300MHz.
  • all zero dispersion wavelengths were in the range of 1300 nm to 1324 nm.
  • the mode field diameter at a wavelength of 13 lOnm was all between 8.6 and 9.5 m.
  • the method for producing the base material for producing the SBS-suppressed optical fiber of the present invention is not particularly limited, such as a commonly used MCVD method, plasma CVD method, VAD method, OVD method, etc. The most suitable method may be used depending on the method.
  • an SMF having a stepped refractive index distribution was prepared by adding Ge to a quartz glass core.
  • Clad C is pure quartz glass.
  • the GeO concentration in the Nh portion is 5.3 mol% and the GeO concentration in the N1 portion is 5. lmol
  • the GeO concentration difference Ac between adjacent stairs in the step-like refractive index profile is 0.
  • the difference ⁇ between the maximum refractive index of the core (Nh part) and the refractive index of the clad is 0.007, and the difference between the refractive index of the N1 part of the core and the refractive index of the clad ⁇ 2 is 0.
  • the refractive index difference ⁇ 3 between adjacent stairs in the stepwise refractive index distribution was 0.0002.
  • the core diameter of the core part (Nh part) with a high refractive index is 8 m
  • the refractive index is low !
  • the core diameter of the core part (N1 part) is 3 ⁇ m.
  • An SBS suppression optical fiber having such a configuration was prepared for 20 km, and the reflected light power with respect to the incident light power at a wavelength of 1 550 nm was measured with a measurement system as shown in FIG.
  • the optical fiber of this comparative example has a transmission loss of 0.2 dB / km at a wavelength of 1550 nm and a mode.
  • the field diameter was 10 / xm, which was equivalent to normal SMF, but the SBS threshold power was 7.5 dBm, and the threshold power increased by 0.5 dBm compared to the normal SMF threshold power. , SBS could not sufficiently suppress the power.
  • the k coefficient at this time was 9.4 X 10 14 mW / m, and the spectral width of SBS was 180 MHz.

Abstract

An SBS suppressing optical fiber which adds additives such as Ge, P, F singly or in combination to a core consisting of quartz glass, forms a stepwise core refractive index distribution, and increases SBS threshold power by setting the difference in concentration of an additive between adjacent steps of this stepwise refractive index distribution to at least a specified concentration difference, or by setting the difference in refractive index between adjacent steps to at least a specified refractive index difference. Since the constitution of the SBS suppressing optical fiber can increase SBS threshold power, SBS can be suppressed and zero-dispersion wavelength and mode field diameter are set to function as parameters equivalent to those of a normal SMF, whereby no disadvantage such as an increase in connection loss will not occur even if applied to a transmission line.

Description

明 細 書  Specification
誘導ブリュアン散乱抑制光ファイバ  Stimulated Brillouin scattering suppression optical fiber
技術分野  Technical field
[0001] 本発明は、光ファイバ伝送路に高パワーを入力する必要のある、例えば FTTH用 光 CATVシステム等に使用される光ファイバに関する。  TECHNICAL FIELD [0001] The present invention relates to an optical fiber that is required to input high power to an optical fiber transmission line, for example, an optical CATV system for FTTH.
背景技術  Background art
[0002] 近年、 FTTH (Fiber To The Home)システムの導入が要求されてきている。 F TTHシステムには光 CATVシステムなどが用いられるが、この光 CATVシステムで はシングルモード光ファイバのコア中に高パワーの光信号を入力することが必要とな る。これは、 FTTHシステムで使用される光 CATVシステム力 まずノイズを低減する ために、受光器での光入力パワーを例えば約— lOdBmの受光感度を有するように できるだけ高くする必要があることや光信号をなるベく多く分配するために 16分岐や 32分岐というようなスプリッタが用いられる力 そのスプリッタの損失を補償するために 、光送信器から出力される光信号パワーを例えば 32分岐のスプリツタでは 16. 5〜1 7dB程度に大きくしなければならない等の理由がある力もである。  [0002] In recent years, introduction of FTTH (Fiber To The Home) system has been required. An optical CATV system or the like is used for the FTTH system. In this optical CATV system, it is necessary to input a high-power optical signal into the core of a single mode optical fiber. This is because the optical CATV system power used in the FTTH system is to reduce the noise first, so that the optical input power at the receiver needs to be as high as possible, for example, to have a light receiving sensitivity of about −10 dBm. In order to compensate for the loss of the splitter, the power of the optical signal output from the optical transmitter is, for example, 16 for a 32-branch splitter. It is also a force with reasons such as having to increase it to about 5 to 17 dB.
[0003] さらに、ユーザーまでの伝送路として使用される光ファイバの長さを短くするため、 あるいはユーザーになるべく近 、ところで光分配をするために、光送信器からスプリツ タまでの伝送路ファイバの長さを長くすることが望まれている。また、この伝送路フアイ バの長さは FTTHシステムの設計では最長 10〜20kmと想定されている力 光ファ ィバが 20km程度の長さで 32分岐のスプリツタにより分配するような光 CATVシステ ムを考えた場合、光ファイバの伝送損失が波長 1550nmで 0. 25dBZkm程度であ るから、光送信器と受光器との間の伝送損失量は 22dBとなる。即ち、光送信器での 光出力は約 12dB必要となる。また、伝送路用ファイバの長さを 20km以上としたり、 光分配数を 32分岐以上に増やしたりすることがあれば、その光出力はより高くする必 要が出てくる。  [0003] Further, in order to shorten the length of the optical fiber used as a transmission line to the user or to distribute light as close as possible to the user, the transmission line fiber from the optical transmitter to the splitter is used. It is desired to increase the length. In addition, this optical fiber TVTV system has a transmission fiber that is expected to have a maximum length of 10 to 20 km in the FTTH system design and is distributed by a 32-branch splitter with a length of about 20 km. Therefore, since the transmission loss of the optical fiber is about 0.25 dBZkm at the wavelength of 1550 nm, the transmission loss between the optical transmitter and the receiver is 22 dB. In other words, the optical output at the optical transmitter needs about 12 dB. Also, if the length of the transmission line fiber is increased to 20 km or more, or the number of optical distributions is increased to more than 32 branches, the optical output will need to be increased.
[0004] このように将来的には現在以上に光出力を大きくする必要性が出てくるものと予想 される力 光ファイバ中に高いパワーの光信号を入力すると誘導ブリュアン散乱 (以 下 SBS ; Stimulated Brillouin Scattering)と呼ばれる現象が生じることが知られ ている。 [0004] In this way, it is expected that in the future it will be necessary to increase the optical output beyond the present level. When a high-power optical signal is input into an optical fiber, stimulated Brillouin scattering ( It is known that a phenomenon called SBS (Stimulated Brillouin Scattering) occurs.
[0005] SBSは、超音波によって光の振動数 (周波数)がわずかにずれて散乱される現象 であり、光のパワーが前方の出射方向に散乱するよりも後方に散乱する方が大きくな る。また、光ファイバのコア中の光パワーが大きくなるとブリュアン散乱の誘導放出が 始まり、急激に後方散乱光パワーが増大してしまう。この結果、この後方散乱光が光 送信器に悪影響を与え、光源のノイズが増大したり、前方へ伝搬している光信号パヮ 一が飽和してしまい、光信号対ノイズ比(SZN比)が悪くなつたりする。このように、 S BS現象が伝送路用ファイバに入射できる光パワーの上限を決定することになつてし まつ。  [0005] SBS is a phenomenon in which the frequency (frequency) of light is slightly shifted by ultrasonic waves, and the power of light is scattered more backward than it is scattered in the forward emission direction. . In addition, when the optical power in the core of the optical fiber increases, stimulated emission of Brillouin scattering starts and the backscattered light power increases rapidly. As a result, this backscattered light adversely affects the optical transmitter, increasing the noise of the light source or saturating the optical signal ratio propagating forward, resulting in an optical signal-to-noise ratio (SZN ratio). It gets worse. In this way, the SBS phenomenon determines the upper limit of the optical power that can be incident on the transmission line fiber.
[0006] ところで、一般的には低損失な石英ガラス系光ファイバを得るために添加剤として は Ge、 P、 F等が用いられる。このうち Geと Pは添加すると石英ガラスの屈折率よりも 高い屈折率が得られるためにコアに添加されることが多い。また、 Fは添加すると石 英ガラスの屈折率よりも低 、屈折率が得られるためにクラッドに添加されることが多!ヽ 。しかし、 Ge、 P、 Fを共添加することによってコア中に Fが添加されたり、クラッド中に Geや Fが添加される場合もある。  [0006] By the way, in general, Ge, P, F, and the like are used as additives in order to obtain a low-loss silica glass-based optical fiber. Of these, Ge and P are often added to the core because adding them gives a refractive index higher than that of quartz glass. In addition, when F is added, the refractive index is lower than that of Sekiei glass and is often added to the clad because the refractive index is obtained. However, co-addition of Ge, P, and F may add F into the core or add Ge or F into the cladding.
[0007] ここで、石英ガラス中の添加剤と SBSの中心周波数シフト量には相関関係があるこ とが知られている。まず、 GeO濃度が 10^%以下の比較的低い濃度のところでは  [0007] Here, it is known that there is a correlation between the additive in quartz glass and the center frequency shift amount of SBS. First, at a relatively low concentration of GeO concentration of 10 ^% or less
2  2
GeO濃度と SBS中心周波数シフト量は線形に相関しており、 GeOの重量%ぁたり GeO concentration and SBS center frequency shift amount are linearly correlated.
2 2 の SBS中心周波数シフト量は 89MHzZwt% (= 154MHzZmol%)と報告されて いる(例えば、非特許文献 1参照)。この時の SBSの半値全幅(SBSスペクトルの強度 のピーク値の 2分の 1のところのスペクトル幅)は 30MHz〜100MHz程度である。 The SBS center frequency shift amount of 2 2 has been reported to be 89 MHzZwt% (= 154 MHzZmol%) (for example, see Non-Patent Document 1). At this time, the full width at half maximum of SBS (the spectral width at half the peak value of the SBS spectrum intensity) is about 30 to 100 MHz.
[0008] また、 GeO濃度と P O濃度と SBS中心周波数シフト量との関係はそれぞれ 125 [0008] The relationship between the GeO concentration, the PO concentration, and the SBS center frequency shift amount is 125 respectively.
2 2 5  2 2 5
MHzZmol%、 162MHzZmol%という報告もある(例えば、非特許文献 1参照)。 この時の SBSの半値全幅は 150MHz〜270MHzであるとされている。以上のような 報告ではコアに Geや Pが添加され、クラッドは純粋石英ガラス力もなる光ファイバゃコ ァが純粋石英ガラス、クラッドに Fが添加された光ファイバを用いている。  There are also reports of MHzZmol% and 162MHzZmol% (for example, see Non-Patent Document 1). The full width at half maximum of SBS at this time is said to be 150MHz to 270MHz. In the reports above, Ge and P are added to the core, and the optical fiber with pure silica glass power is used as the cladding, and the optical fiber with pure silica glass and F in the cladding is used.
[0009] さらに、コアに Geと Fを共添カ卩した光ファイバの SBS中心周波数シフト量を調べた 報告もある。この報告によれば、 Fの添加量が比屈折率差 0. 2%で約 350MHzだけ 周波数シフトしている。これは mol%あたりの周波数シフト量に換算すると 600MHz Zmol%となる (例えば、非特許文献 2参照)。 [0009] Furthermore, the SBS center frequency shift amount of the optical fiber with Ge and F co-attached to the core was investigated. There are also reports. According to this report, the amount of F added is shifted by about 350 MHz with a relative refractive index difference of 0.2%. This is 600 MHz Zmol% when converted to a frequency shift amount per mol% (for example, see Non-Patent Document 2).
[0010] 上記のような状況に対して、 SBSを抑制した光ファイバあるいは SBSの抑制方法が いくつか提案されている。まず、光ファイバのコア径ゃコアの屈折率、あるいはコアに 残留する歪みを光ファイバの長手方向に変化させた光ファイバが提案されている (例 えば、特許文献 1参照)。コア径を変化させる方法としては光ファイバ母材の形成条 件を適宜変化させたり、コアの屈折率を変化させる方法としてはガラスへの添加剤の 種類や添加量を変化させるようにしている。またコア中の残留歪みを変化させる方法 としては線引き張力を長手方向に変化させて残留歪みを光ファイバの長手方向に周 期的に変化させたりしている。コア中の残留歪みが変化することによって SBSの中心 周波数が変化するので SBSのスペクトルが広がり誘導放出の閾値が上昇するためで ある。 [0010] In response to the above situation, several optical fibers or SBS suppression methods that suppress SBS have been proposed. First, there has been proposed an optical fiber in which the core diameter of the optical fiber is equal to the refractive index of the core or the strain remaining in the core is changed in the longitudinal direction of the optical fiber (see, for example, Patent Document 1). As a method for changing the core diameter, the conditions for forming the optical fiber preform are changed as appropriate, and as a method for changing the refractive index of the core, the type and amount of the additive to the glass are changed. As a method of changing the residual strain in the core, the drawing tension is changed in the longitudinal direction, and the residual strain is periodically changed in the longitudinal direction of the optical fiber. This is because the SBS center frequency changes as the residual strain in the core changes, so the SBS spectrum broadens and the stimulated emission threshold rises.
[0011] また、コアとクラッド中の添加剤の濃度を光ファイバの長手方向で変化させる方法も 提案されている。即ち、コアには Geと Fを添加し、クラッドには Fを添加した光ファイバ において、コア及びクラッドの Fの濃度を長手方向で変化させたものである(例えば、 非特許文献 3参照)。  [0011] In addition, a method for changing the concentration of the additive in the core and the clad in the longitudinal direction of the optical fiber has been proposed. In other words, in an optical fiber in which Ge and F are added to the core and F is added to the cladding, the concentration of F in the core and cladding is changed in the longitudinal direction (see, for example, Non-Patent Document 3).
[0012] さらに、光ファイバの長手方向にコア径を変化させて SBSを抑制する方法も提案さ れている (例えば、特許文献 1、非特許文献 4参照)。非特許文献 4ではコア径を変化 させることによりブリュアン周波数をシフトさせ、 SBSのスペクトル幅を広げて閾値を 上げるようにしている。  [0012] Furthermore, a method of suppressing SBS by changing the core diameter in the longitudinal direction of the optical fiber has also been proposed (see, for example, Patent Document 1 and Non-Patent Document 4). In Non-Patent Document 4, the Brillouin frequency is shifted by changing the core diameter, and the threshold is raised by broadening the spectrum width of SBS.
[0013] その他、光ファイバのコアの径方向に Pまたは Fを添カ卩したガラスを層状に交互に配 置する方法も提案されている(例えば、特許文献 2参照)。この方法では、コア内に不 均一な熱膨張分布及び粘度分布を発生させることによって SBSのスペクトル幅を広 げて SBSの閾値パワーを大きくしている。  [0013] In addition, a method has also been proposed in which glass with P or F added in the radial direction of the core of the optical fiber is alternately arranged in layers (for example, see Patent Document 2). In this method, the SBS threshold power is increased by broadening the SBS spectrum width by generating non-uniform thermal expansion and viscosity distributions in the core.
[0014] 非特許文献 1 : R.W.Tkach et al.,Electron.Lett.,vol.22,No.l9,p.l011,1986  [0014] Non-Patent Document 1: R.W.Tkach et al., Electron.Lett., Vol.22, No.l9, p.l011,1986
非特許文献 2 :N.SWbata et al.,Opt丄 ett.,vol.l2,No.4,p.269,1987  Non-Patent Document 2: N. SWbata et al., Opt 丄 ett., Vol.l2, No.4, p.269, 1987
非特許文献 3: 1994年電子情報通信学会秋季大会予稿集 C 137 非特許文献 4: 1995年電子情報通信学会通信ソサイエティ大会予稿集 B— 661 特許文献 1:特開平 4— 367539号公報 Non-Patent Document 3: Proceedings of the 1994 IEICE Autumn Conference C 137 Non-Patent Document 4: Proceedings of the 1995 IEICE Communication Society Conference B-661 Patent Document 1: JP-A-4-367539
特許文献 2:特表 2001— 510903号公報  Patent Document 2: Special Table 2001-510903
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0015] ところで、上記のような従来の技術には、次のような解決すべき課題があった。 By the way, the conventional techniques as described above have the following problems to be solved.
[0016] 即ち、特許文献 1や非特許文献 4に開示されている光ファイバの長手方向にコア径 を変化させる方法では、光ファイバの構造が長手方向で変化するので SBSの抑制に は効果があってもその他のパラメータも変化するために、例えば通常の伝送用シング ルモード光ファイバ(以下、 SMF)と接続する場合などに特性上好ましくないという問 題がある。 [0016] That is, in the method of changing the core diameter in the longitudinal direction of the optical fiber disclosed in Patent Document 1 and Non-Patent Document 4, the structure of the optical fiber changes in the longitudinal direction, which is effective in suppressing SBS. However, since other parameters also change, there is a problem that it is not preferable in terms of characteristics, for example, when connecting to a normal transmission single mode optical fiber (hereinafter referred to as SMF).
[0017] また、特許文献 1におけるコアの屈折率を変化させる方法では、添加剤の種類や添 加量を光ファイバの長手方向で変化させるものであるが製造工程が煩雑になり安定 して長尺の光ファイバを製造することが困難である。さらに、コアの残留歪みを光ファ ィバの長手方向で変化させる方法は、コアが純粋石英ガラス、クラッドが石英ガラス に Fを添カ卩した光ファイバを用いて 、るが、このような光ファイバでは Fを添カ卩したクラ ッドの粘度が純粋石英ガラス力 なるコアの粘度に比べて低いために線引き張力の 影響がコアに集中しやすいという利点を有している。しかし、広く商用で用いられてい る光ファイバはコアに Geが添加されているものであるため純粋石英ガラスに比べて線 引き張力を調整することが困難である。従って、この方法は適用が限られてしまうとい う問題があった。  [0017] Further, in the method of changing the refractive index of the core in Patent Document 1, the type and amount of the additive are changed in the longitudinal direction of the optical fiber. However, the manufacturing process becomes complicated and the length is stabilized. It is difficult to manufacture a long optical fiber. Furthermore, the method of changing the residual strain of the core in the longitudinal direction of the optical fiber is by using an optical fiber in which the core is pure silica glass and the cladding is silica glass with F added thereto. The fiber has the advantage that the influence of the drawing tension tends to concentrate on the core because the viscosity of the clad with F is lower than that of the core made of pure silica glass. However, it is difficult to adjust the drawing tension compared to pure quartz glass because optical fibers that are widely used for commercial use have Ge added to the core. Therefore, this method has a problem that its application is limited.
[0018] また、非特許文献 3に開示されている方法では、コア及びクラッドに添加される Fの 濃度を変化させ、コアの Geの濃度は均一にして全体の屈折率分布は変化しないよう にしている力 やはり製造工程が複雑になるので長手方向に安定した特性の光ファ ィバを得ることが困難で、大量生産には向 ヽて 、な 、と 、う問題があった。  [0018] In addition, in the method disclosed in Non-Patent Document 3, the concentration of F added to the core and the cladding is changed so that the concentration of Ge in the core is uniform so that the entire refractive index distribution does not change. However, since the manufacturing process is complicated, it is difficult to obtain an optical fiber having a stable characteristic in the longitudinal direction, which is a problem for mass production.
[0019] さらに、特許文献 2に開示されている方法では、コアの径方向において交互に異な つたガラス組成の層を形成する必要があるので製造工程が煩雑でコストが高くなると いう問題があった。 [0020] 本発明は上記のような課題を解決したもので、 SBSを抑制するとともに光ファイバの 長手方向で安定した特性を有し、しかも通常の製造方法を用いることができる SBS 抑制光ファイバを提供するものである。 [0019] Further, the method disclosed in Patent Document 2 has a problem that the manufacturing process is complicated and the cost is increased because it is necessary to form layers having different glass compositions alternately in the radial direction of the core. . [0020] The present invention solves the above-described problems. An SBS-suppressing optical fiber that suppresses SBS and has stable characteristics in the longitudinal direction of the optical fiber and that can be used with a normal manufacturing method is provided. It is to provide.
課題を解決するための手段  Means for solving the problem
[0021] 本発明は以上の点を解決するため次のような構成力もなるものである。 [0021] In order to solve the above points, the present invention has the following constitutional power.
[0022] 即ち、本発明の SBS抑制光ファイバはまず第 1の態様として、石英ガラス力もなるコ ァ及びその外周のコアよりも屈折率の低い石英ガラス力 なるクラッドから構成された 光ファイバであって、前記コアには Geあるいは Pが単独で、若しくは Geと Pが同時に 添加されているとともに前記コアが階段状の屈折率分布を有し、前記階段状の屈折 率分布の隣り合う階段における GeOの濃度差あるいは P Oの濃度差若しくは GeO That is, the SBS-suppressing optical fiber of the present invention is, as a first aspect, an optical fiber composed of a core having a silica glass force and a clad having a silica glass force having a refractive index lower than that of the outer peripheral core. In addition, Ge or P is added to the core alone, or Ge and P are added at the same time, and the core has a step-like refractive index distribution, and GeO in adjacent steps of the step-like refractive index distribution. Concentration difference or PO concentration difference or GeO
2 2 5  2 2 5
と P Oの合計の濃度差が 0. 3mol%以上であることを特徴とする。  And the total concentration difference of P 2 O is 0.3 mol% or more.
2 2 5  2 2 5
[0023] また、第 2の態様として、前記第 1の態様において、前記階段状の屈折率分布の隣 り合う階段における GeOの濃度差あるいは P Oの濃度差若しくは GeOと P Oの  [0023] Further, as a second aspect, in the first aspect, a GeO concentration difference or a P O concentration difference or a GeO and PO difference between adjacent staircases in the stepwise refractive index distribution.
2 2 5 2 2 5 合計の濃度差が 0. 6mol%以上であることを特徴とする。  2 2 5 2 2 5 The total concentration difference is 0.6 mol% or more.
[0024] さらに、第 3の態様として、前記第 1または第 2の態様において、前記階段状の屈折 率分布の隣り合う階段における屈折率差が 3 X 10_4以上であることを特徴とする。 [0024] Further, as a third aspect, in the first or second aspect, wherein the refractive index difference at the staircase adjacent of the refractive index distribution of the stepwise is 3 X 10_ 4 or more.
[0025] また、第 4の態様として、前記第 3の態様において、前記階段状の屈折率分布の隣 り合う階段における屈折率差が 8 X 10_4以上であることを特徴とする。 [0025] Further, as a fourth aspect, in the third aspect, wherein the refractive index difference at the step-fit Ri next to the refractive index distribution of the stepwise is 8 X 10_ 4 or more.
[0026] さらに、第 5の態様として、前記第 1から第 4までのいずれかの態様において、前記 クラッドは純石英ガラスであることを特徴とする。 [0026] Further, as a fifth aspect, in any one of the first to fourth aspects, the clad is pure quartz glass.
[0027] また、第 6の態様として、前記第 1から第 4までのいずれかの態様において、前記ク ラッドは石英ガラスに Fが添加されていることを特徴とする。 [0027] Further, as a sixth aspect, in any one of the first to fourth aspects, the clad is characterized in that F is added to quartz glass.
[0028] さらに、第 7の態様として、石英ガラス力もなるコア及びその外周のコアよりも屈折率 の低 、石英ガラス力もなるクラッドから構成された光ファイバであって、前記コア及び クラッドには Fが添加されているとともに前記コアが階段状の屈折率分布を有し、前記 階段状の屈折率分布の隣り合う階段における Fの濃度差が 0. 08mol%以上である ことを特徴とする。 [0028] Further, as a seventh aspect, there is provided an optical fiber composed of a core having a quartz glass force and a clad having a lower refractive index than that of the outer peripheral core and also having a quartz glass force. Is added, and the core has a stepped refractive index distribution, and the F concentration difference in adjacent steps of the stepped refractive index distribution is 0.08 mol% or more.
[0029] また、第 8の態様として、前記第 7の態様において、前記階段状の屈折率分布の隣 り合う階段における Fの濃度差が 0. 16mol%以上であることを特徴とする。 [0029] Further, as an eighth aspect, in the seventh aspect, the stepwise refractive index profile is adjacent to the stepwise refractive index distribution. It is characterized in that the difference in the concentration of F in the stairs is 0.16 mol% or more.
[0030] さらに、第 9の態様として、前記第 7または第 8の態様において、前記階段状の屈折 率分布の隣り合う階段における屈折率差が 3 X 10_4以上であることを特徴とする。 [0030] Further, as a ninth aspect, in the seventh or eighth aspect, wherein the refractive index difference at the staircase adjacent of the refractive index distribution of the stepwise is 3 X 10_ 4 or more.
[0031] また、第 10の態様として、前記第 9の態様において、前記階段状の屈折率分布の 隣り合う階段における屈折率差が 8 X 10_4以上であることを特徴とする。 [0031] Further, as a tenth aspect, in the ninth aspect, wherein the refractive index difference at the staircase adjacent of the refractive index distribution of the stepwise is 8 X 10_ 4 or more.
[0032] さらに、第 11の態様として、石英ガラス力もなるコア及びその外周のコアよりも屈折 率の低い石英ガラス力 なるクラッドから構成された光ファイバであって、前記コアに は Geあるいは Pが単独で、若しくは Geと Pが同時に添加され、かっさらに Fが添加さ れているとともに前記コアが階段状の屈折率分布を有し、前記階段状の屈折率分布 の隣り合う階段における屈折率差が 3 X 10_4以上であることを特徴とする。 [0032] Further, as an eleventh aspect, there is provided an optical fiber composed of a core having a quartz glass force and a clad having a quartz glass force having a refractive index lower than that of the outer peripheral core, wherein the core is made of Ge or P. Independently, or Ge and P are added at the same time, F is further added, and the core has a stepped refractive index profile, and the difference in refractive index between adjacent steps of the stepped refractive index profile. characterized in that There are 3 X 10_ 4 or more.
[0033] また、第 12の態様として、前記第 11の態様において、前記階段状の屈折率分布の 隣り合う階段における屈折率差が 8 X 10_4以上であることを特徴とする。 [0033] Further, as a twelfth aspect, in the eleventh aspect, wherein the refractive index difference at the staircase adjacent of the refractive index distribution of the stepwise is 8 X 10_ 4 or more.
[0034] さらに、第 13の態様として、前記第 11または第 12の態様において、前記クラッドは 純石英ガラスであることを特徴とする。  [0034] Further, as a thirteenth aspect, in the eleventh or twelfth aspect, the clad is pure quartz glass.
[0035] また、第 14の態様として、前記第 11または第 12の態様において、前記クラッドは石 英ガラスに Fが添加されて 、ることを特徴とする。  [0035] Further, as a fourteenth aspect, in the eleventh or twelfth aspect, the clad is characterized in that F is added to an amorphous glass.
[0036] さらに、第 15の態様として、石英ガラス力もなるコア及びその外周のコアよりも屈折 率の低 、石英ガラス力もなるクラッドから構成された光ファイバであって、前記コアは 純石英ガラス及び Fが添加されて ヽる石英ガラス力もなり、前記クラッドに Fが添加さ れているとともに前記コアが階段状の屈折率分布を有し、前記階段状の屈折率分布 の隣り合う階段における屈折率差が 3 X 10_4以上であることを特徴とする。 [0036] Further, as a fifteenth aspect, there is provided an optical fiber comprising a core having a quartz glass force and a clad having a refractive index lower than that of the outer peripheral core and also having a quartz glass force, and the core includes pure silica glass and The addition of F also adds to the quartz glass force, the addition of F to the cladding, the core has a step-like refractive index profile, and the refractive index at the adjacent steps of the step-like refractive index profile. wherein the difference is 3 X 10_ 4 or more.
[0037] また、第 16の態様として、前記第 15の態様において、前記階段状の屈折率分布の 隣り合う階段における屈折率差が 8 X 10_4以上であることを特徴とする。 [0037] Further, as a sixteenth aspect, in the fifteenth aspect, wherein the refractive index difference at the staircase adjacent of the refractive index distribution of the stepwise is 8 X 10_ 4 or more.
[0038] さらに、第 17の態様として、前記第 1から第 16までのいずれかの態様において、前 記コアの最大屈折率と前記クラッドの屈折率との差が 0. 008以下であることを特徴と する。  [0038] Further, as a seventeenth aspect, in any one of the first to sixteenth aspects, a difference between the maximum refractive index of the core and the refractive index of the clad is 0.008 or less. It is a feature.
[0039] また、第 18の態様として、前記第 1から第 17までのいずれかの態様において、前記 光ファイバの誘導ブリュアン散乱のスペクトル幅が 200MHz以上であることを特徴と する。 [0039] Further, as an eighteenth aspect, in any one of the first to seventeenth aspects, the spectral width of stimulated Brillouin scattering of the optical fiber is 200 MHz or more. To do.
[0040] さらに、第 19の態様として、前記第 18の態様において、前記光ファイバの誘導プリ ュアン散乱のスペクトル幅が 300MHz以上であることを特徴とする。  [0040] Furthermore, as a nineteenth aspect, in the eighteenth aspect, the spectral width of stimulated Prien scattering of the optical fiber is 300 MHz or more.
[0041] また、第 20の態様として、前記第 1から第 19までのいずれかの態様において、前記 光ファイバの零分散波長が 1300nm〜 1324nmの範囲にあることを特徴とする。 [0041] Further, as a twentieth aspect, in any one of the first to nineteenth aspects, a zero dispersion wavelength of the optical fiber is in a range of 1300 nm to 1324 nm.
[0042] さらに、第 21の態様として、前記第 1から第 20までのいずれかの態様において、前 記光ファイバの 1310nmの波長におけるモードフィールド径が 8. 6〜9. 5 mの範 囲にあることを特徴とする。 [0042] Furthermore, as a twenty-first aspect, in any of the first to twentieth aspects, the mode field diameter of the optical fiber at a wavelength of 1310 nm is in the range of 8.6 to 9.5 m. It is characterized by being.
発明の効果  The invention's effect
[0043] 本発明の SBS抑制光ファイバによれば、コアゃクラッドに添加する Geや Pあるいは F等の添加剤の添加量を調整するとともにコアの屈折率分布を階段状にしたので SB Sのスペクトル幅を広げ、 SBSを抑制できるとともに、長手方向において安定した特 性を有し、製造も従来通りの方法で行うことができ、さらに通常の SMFと安定して接 続することができる。  [0043] According to the SBS-suppressed optical fiber of the present invention, the amount of additive such as Ge, P, or F added to the core cladding is adjusted and the refractive index distribution of the core is stepped. It can broaden the spectrum width, suppress SBS, has stable characteristics in the longitudinal direction, can be manufactured by the conventional method, and can be stably connected to ordinary SMF.
図面の簡単な説明  Brief Description of Drawings
[0044] [図 1]本発明の実施例 1の屈折率分布を説明する図である。 FIG. 1 is a diagram for explaining a refractive index distribution of Example 1 of the present invention.
[図 2]SBS閾値パワーを測定するための測定系を説明する図である。  FIG. 2 is a diagram illustrating a measurement system for measuring SBS threshold power.
[図 3]SBS閾値パワーの測定結果を表す図である。  FIG. 3 is a diagram showing a measurement result of SBS threshold power.
[図 4]本発明の実施例 2の屈折率分布を説明する図である。  FIG. 4 is a diagram for explaining a refractive index distribution of Example 2 of the present invention.
[図 5]本発明の実施例 3の屈折率分布を説明する図である。  FIG. 5 is a diagram for explaining a refractive index distribution of Example 3 of the present invention.
[図 6]本発明の実施例 4の屈折率分布を説明する図である。  FIG. 6 is a view for explaining a refractive index distribution of Example 4 of the present invention.
[図 7]本発明の実施例 5の屈折率分布を説明する図である。  FIG. 7 is a view for explaining a refractive index distribution of Example 5 of the present invention.
[図 8]本発明の実施例 6の屈折率分布を説明する図である。  FIG. 8 is a view for explaining a refractive index distribution of Example 6 of the present invention.
[図 9]本発明の実施例 7の屈折率分布を説明する図である。  FIG. 9 is a view for explaining a refractive index distribution of Example 7 of the present invention.
[図 10]本発明の実施例 8の屈折率分布を説明する図である。  FIG. 10 is a view for explaining a refractive index distribution of Example 8 of the present invention.
[図 11]本発明に対する比較例の屈折率分布を説明する図である。  FIG. 11 is a diagram illustrating a refractive index distribution of a comparative example for the present invention.
符号の説明  Explanation of symbols
[0045] 1 · · ·分布帰還型レーザ 2· · ·光増幅器 [0045] 1 · · · Distributed feedback laser 2 · · · Optical amplifier
3· · ·光力ブラ  3 · · · Light bra
4"'SBS抑制光ファイバ  4 "'SBS suppression fiber
5···出射光パワーメーター  5 ... Output light power meter
6· · ·入射光パワーメーター  6 · · · Incident light power meter
7···反射光パワーメーター  7 ... Reflected power meter
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0046] 以下、本発明の実施の形態について具体例を用いて説明する。 Hereinafter, embodiments of the present invention will be described using specific examples.
[0047] まず、誘導放出の閾値を上昇させるためには、 SBSのスペクトル幅を広くする必要 がある。 SBSの閾値は、光ファイバの損失、長さ、モードフィールド径等に依存する。 一般的に閾値は簡易的に以下のように表すことができる。 [0047] First, in order to increase the threshold of stimulated emission, it is necessary to widen the spectral width of SBS. The SBS threshold depends on the loss, length, mode field diameter, etc. of the optical fiber. In general, the threshold value can be simply expressed as follows.
[0048] Pth = k (Aeff/Leff) [0048] Pth = k (Aeff / Leff)
ここで、 Pth'—SBS閾値  Where Pth'—SBS threshold
Aeff'''有効断面積  Aeff '' 'effective area
Leff…相互作用距離  Leff ... interaction distance
k 係数  k coefficient
また、 Aeff及び Leffは次のような式で表すことができる。  Aeff and Leff can be expressed by the following equations.
[0049] Aeff W2 [0049] Aeff W2
Lef I = { 1— exp (― a L) / a }  Lef I = {1— exp (― a L) / a}
ここで、 W' · 'モードフィーノレド径  Where W '·' mode fino red diameter
L…光ファイバ長  L: Optical fiber length
«···損失係数  «Loss factor
以上のように、 Aeffと Leffは、モードフィールド径、光ファイバの損失と長さに関わ るものである。従って、各光ファイバの SBSの閾値を比較する場合には、係数 kを比 較すれば光ファイバのモードフィールド径、損失、長さ等によらずによいことがわかる 。なお、通常の SMFの k係数は 7.6X 1014mWZm程度であるので、この値よりも k 係数が大きければ SBS閾値パワーが大きいことになる。 As described above, Aeff and Leff are related to the mode field diameter, optical fiber loss and length. Therefore, when comparing the SBS threshold value of each optical fiber, it can be seen that comparing the coefficient k does not depend on the mode field diameter, loss, length, etc. of the optical fiber. Note that the normal SMF has a k coefficient of about 7.6 x 10 14 mWZm, so if the k coefficient is larger than this value, the SBS threshold power is large.
[0050] また、この k係数を大きくするためには SBSのスペクトル幅を広くすることが必要とな る。具体的には、効果的に SBSを抑制するための SBSのスペクトル幅が 200MHz以 上、好ましくは 300MHz以上必要であることがわかった。通常の SMFの場合には S BSのスペクトル幅は 130〜150MHzであるが、 SBSのスペクトル幅が 200MHz未 満では通常の SMFの SBSの抑制効果とあまり変わらず、 SBSの抑制効果が十分と はいえないからである。なお、本発明における SBSのスペクトル幅は SBSスペクトル の強度のピーク値の 10分の 1のところのスペクトル幅をいう。 [0050] In order to increase the k coefficient, it is necessary to widen the spectrum width of the SBS. The Specifically, it was found that the spectrum width of SBS for effectively suppressing SBS needs to be 200 MHz or more, preferably 300 MHz or more. In the case of normal SMF, the spectrum width of SBS is 130 to 150 MHz. However, when the spectrum width of SBS is less than 200 MHz, the SBS suppression effect of ordinary SMF is not so different, and the suppression effect of SBS is sufficient. Because I can not say. In the present invention, the spectrum width of SBS refers to the spectrum width that is 1/10 of the peak value of the intensity of the SBS spectrum.
[0051] 従来の技術より、 SBS中心周波数シフト量はおおよそ GeOの場合 150MHzZmo [0051] From the conventional technology, the SBS center frequency shift amount is approximately 150MHzZmo for GeO.
2  2
1%、 P Oの場合 160MHzZmol%、 Fの場合 600MHzZmol%であることが知ら It is known that 1%, PO is 160MHzZmol%, and F is 600MHzZmol%.
2 5 twenty five
れている。 SBSスペクトル幅を広くするために本発明のように屈折率分布を階段状に した場合、各階段部分における SBS中心周波数のシフト量が他の階段部分における SBS中心周波数に重ならな 、ようにする必要がある。  It is. When the refractive index distribution is stepped as in the present invention in order to widen the SBS spectrum width, the shift amount of the SBS center frequency in each step portion should not overlap the SBS center frequency in other step portions. There is a need.
[0052] 各階段部分における SBS中心周波数のシフト量が他の階段部分における SBS中 心周波数に重ならないようにするためには、隣り合う階段における Geや P、あるいは F の添加量を上記シフト量を踏まえて最適に調整するとよい。出願人らが検討した結果 、添加剤が Geの場合や Pの場合には階段状の屈折率分布の隣り合う階段における GeOの濃度差、あるいは P Oの濃度差が 0. 3mol%以上、好ましくは 0. 6mol%[0052] In order to prevent the shift amount of the SBS center frequency in each staircase part from overlapping the SBS center frequency in the other staircase parts, the addition amount of Ge, P, or F in the adjacent staircases is changed to the above shift amount. It is recommended to adjust optimally based on the above. As a result of examination by the applicants, when the additive is Ge or P, the difference in GeO concentration or PO concentration difference between adjacent steps in the stepwise refractive index distribution is 0.3 mol% or more, preferably 0. 6mol%
2 2 5 2 2 5
以上あることがよいことがわかった。また、 Geと Pを共添カ卩した場合にも GeOと P O  It turns out that the above is good. In addition, when Ge and P are co-added, GeO and P O
2 2 5 の合計の濃度差が 0. 3mol%以上、好ましくは 0. 6mol%以上あることがよいことが わかった。  It has been found that the total concentration difference of 2 2 5 is 0.3 mol% or more, preferably 0.6 mol% or more.
[0053] GeOの濃度差や P Oの濃度差、あるいは GeOと P Oの合計の濃度差を 0. 3m  [0053] Concentration difference of GeO, P O concentration, or total concentration difference of GeO and P O is 0.3m
2 2 5 2 2 5  2 2 5 2 2 5
ol%以上としたのは、 0. 3mol%未満では通常の SMFと同程度の SBS抑制効果し かないためである。好ましくは 0. 6mol%以上としたのは、より SBS抑制効果を奏する ことができるためである。また GeOの濃度差や P Oの濃度差、あるいは GeOと P O  The reason why it is ol% or more is that if it is less than 0.3 mol%, it has only the same SBS suppression effect as ordinary SMF. The reason why it is preferably set to 0.6 mol% or more is because an SBS suppressing effect can be further exhibited. Also, GeO concentration difference, P O concentration difference, or GeO and P O concentration.
2 2 5 2 2 の合計の濃度差の上限としてはこの SBS抑制光ファイバを通常の SMFと接続して The upper limit of the total concentration difference of 2 2 5 2 2 is that this SBS-suppressed optical fiber is connected to normal SMF.
5 Five
も接続損失が増大しな 、など伝送特性に影響を与えな 、範囲になるように屈折率分 布の設計にお 、て適宜定めればよ!、。  However, the refractive index distribution should be set appropriately so that it does not affect the transmission characteristics, such as no increase in connection loss!
[0054] なお、上記実施の形態において、コアに Geや P、あるいは Geと Pを共添加して階段 状の屈折率分布とした場合に、この階段状の屈折率分布の隣り合う階段における屈 折率差を 3 X 10_4以上、好ましくは 8 X 10_4以上としてもよい。このように添加剤の濃 度ではなぐ階段状の屈折率分布の隣り合う階段における屈折率差で本発明を構成 しても添加剤の濃度差で構成した場合と同等の効果が得られる。なお、階段状の屈 折率分布の隣り合う階段における屈折率差を 3 X 10_4以上としたのは、 3 X 10_4未 満では通常の SMFと同程度の SBS抑制効果しかないためである。好ましくは 8 X 10 _4以上としたのは、より SBS抑制効果を奏することができるためである。また隣り合う 階段の屈折率差の上限としては、この SBS抑制光ファイバを通常の SMFと接続して も接続損失が増大しな 、など伝送特性に影響を与えな 、範囲になるように屈折率分 布の設計にお 、て適宜定めればよ!、。 [0054] In the above-described embodiment, when Ge or P or Ge and P is added to the core to form a stepped refractive index distribution, the stepped refractive index distribution is bent in adjacent steps. The folding index difference 3 X 10_ 4 or more, preferably may be 8 X 10_ 4 or more. Thus, even if the present invention is configured with the difference in refractive index between the adjacent steps in the stepwise refractive index distribution that is not based on the concentration of the additive, the same effect as that obtained when the concentration difference of the additive is configured can be obtained. The reason why the refractive index difference at stepped adjacent stepped refraction index distribution 3 X 10_ 4 or more, 3 X 10_ 4 Not Mitsurude is because there is only normal SMF and comparable SBS suppression effect . The preferred was 8 X 10 _ 4 above is because it is possible to obtain a more SBS suppression effect. In addition, the upper limit of the refractive index difference between adjacent stairs is that the refractive index is adjusted so that it does not affect the transmission characteristics, such as the connection loss does not increase even if this SBS suppression optical fiber is connected to a normal SMF. Decide what you want in the design of the distribution!
[0055] し力しながらコア径が小さくなるために屈折率を上昇ある 、は下降させる添加剤の ガラス合成中や紡糸による拡散等の影響により、その階段段数によって隣り合う階段 の屈折率差の上限が制限される。例えば、階段数 1段の場合は段数が少ないため隣 り合う階段の屈折率差の上限はコアとクラッドの最大屈折率差程度まで可能であり自 由度は大きい。一方、階段数 2段以上となる場合は階段間の長さが短くなることから 隣り合う階段の屈折率差の上限は 0. 0015程度に屈折率分布を設計することが好ま しい。また段数に関わらず階段の形状は、上記で述べた拡散等の影響により矩形に なるわけではなく少し丸みの帯びたものとなることが多い。  [0055] The refractive index is increased because the core diameter is reduced while the force is applied, but the refractive index difference between adjacent stairs depends on the number of stairs due to the effect of diffusion of the additive during glass synthesis or spinning. The upper limit is limited. For example, when the number of steps is one, the number of steps is small, so the upper limit of the difference in refractive index between adjacent stairs can be up to the maximum difference in refractive index between the core and the cladding, and the degree of freedom is large. On the other hand, when the number of steps is two or more, the length between steps becomes shorter, so it is preferable to design the refractive index distribution so that the upper limit of the difference in refractive index between adjacent steps is about 0.0015. Regardless of the number of steps, the shape of the stairs is not necessarily rectangular due to the effects of diffusion described above, but is often slightly rounded.
[0056] ここで、上記実施の形態においてクラッドは純石英ガラスとしてもよぐ純石英ガラス に Fを添加してもよ 、。即ち必要とする光ファイバの特性等力も適宜選択すればよ!ヽ  [0056] Here, in the above embodiment, the clad may be pure quartz glass, or F may be added to pure silica glass. In other words, you can select the required characteristics of the optical fiber as appropriate!
[0057] また、本発明の SBS抑制光ファイバの他の実施の形態として、コア及びクラッドに F が添加されているとともにコアが階段状の屈折率分布を有し、この階段状の屈折率 分布の隣り合う階段における Fの濃度差が 0. 08mol%以上、好ましくは 0. 16mol% 以上とした構成とすることもできる。 [0057] As another embodiment of the SBS-suppressing optical fiber of the present invention, F is added to the core and the clad, and the core has a step-like refractive index distribution. It is also possible to adopt a configuration in which the difference in the concentration of F in the adjacent stairs is 0.08 mol% or more, preferably 0.16 mol% or more.
[0058] Fの濃度差を 0. 08mol%以上としたのは、 0. 08mol%未満では通常の SMFと同 程度の SBS抑制効果しかないためである。好ましくは 0. 16mol%以上としたのは、 より SBS抑制効果を奏することができるためである。また Fの濃度差の上限としてはこ の SBS抑制光ファイバを通常の SMFと接続しても接続損失が増大しないなど伝送 特性に影響を与えな 、範囲になるように屈折率分布の設計にぉ 、て適宜定めれば よい。 [0058] The reason why the difference in F concentration was set to 0.08 mol% or more is that if it is less than 0.08 mol%, the SBS suppression effect is the same as that of normal SMF. The reason why the content is preferably 0.16 mol% or more is that an SBS suppressing effect can be further exerted. In addition, the upper limit of the F concentration difference is that transmission loss does not increase even if this SBS suppression optical fiber is connected to normal SMF. The refractive index distribution may be determined appropriately so as to be within a range without affecting the characteristics.
[0059] なお、上記実施の形態にお!、て、コア及びクラッドに Fを添加して階段状の屈折率 分布とした場合に、この階段状の屈折率分布の隣り合う階段における屈折率差を 3 X 10—4以上、好ましくは 8 X 10—4以上としてもよい。このように Geや Pの場合と同様 に添加剤を Fとした場合でも添加剤の濃度ではなぐ階段状の屈折率分布の隣り合う 階段における屈折率差で本発明を構成しても添加剤の濃度差で構成した場合と同 等の効果が得られる。そして、やはり階段状の屈折率分布の隣り合う階段における屈 折率差を 3 X 10_4以上としたのは、 3 X 10_4未満では通常の SMFと同程度の SBS 抑制効果しかないためである。好ましくは 8 X 10_4以上としたのは、より SBS抑制効 果を奏することができるためである。また隣り合う階段の屈折率差の上限としてはこの SBS抑制光ファイバを通常の SMFと接続しても接続損失が増大しないなど伝送特 性に影響を与えな 、範囲になるように屈折率分布の設計にぉ 、て適宜定めればよ い。 [0059] In the above embodiment, when F is added to the core and the clad to form a stepped refractive index distribution, the difference in refractive index between adjacent steps of this stepped refractive index distribution is obtained. the 3 X 10- 4 or more, preferably may be 8 X 10- 4 or more. As in the case of Ge and P, even if the additive is F, even if the present invention is configured with the difference in refractive index between adjacent steps in the stepwise refractive index distribution that does not depend on the concentration of the additive, The effect is the same as when configured with a density difference. Then, also had a the refraction index difference in the staircase adjacent stepped refractive index distribution 3 X 10_ 4 or more is because there is only normal SMF and comparable SBS suppression effect is less than 3 X 10_ 4 . Preferably to that the 8 X 10_ 4 above is because it is possible to obtain a more SBS suppression effect. In addition, the upper limit of the refractive index difference between adjacent stairs is that the SBS-suppressed optical fiber is connected to normal SMF, so that the connection loss does not increase and the transmission characteristics are not affected. Depending on the design, it may be determined appropriately.
[0060] さらに他の実施の形態として、本発明の SBS抑制光ファイバはコアに Geと F、 Pと F 、あるいは Ge、 Pと Fを共添加するとともにコアの屈折率分布を階段状にし、この階段 状の屈折率分布の隣り合う階段における屈折率差が 3 X 10_4以上、好ましくは 8 X 1 0_4以上となるように構成することもできる。やはり階段状の屈折率分布の隣り合う階 段における屈折率差を 3 X 10_4以上としたのは、 3 X 10_4未満では通常の SMFと 同程度の SBS抑制効果しかないためである。好ましくは 8 X 10_4以上としたのは、よ り SBS抑制効果を奏することができるためである。また隣り合う階段の屈折率差の上 限としては、この SBS抑制光ファイバを通常の SMFと接続しても接続損失が増大し な!、など伝送特性に影響を与えな 、範囲になるように屈折率分布の設計にお!、て適 宜定めればよい。 [0060] As yet another embodiment, the SBS-suppressed optical fiber of the present invention has Ge and F, P and F, or Ge, P and F co-doped into the core, and the refractive index distribution of the core is stepped. refractive index difference at adjacent stairs of the stepwise refractive index distribution 3 X 10_ 4 or more, preferably be configured to be 8 X 1 0_ 4 or more. Again had a refractive index difference at stairs adjacent stepped refractive index distribution 3 X 10_ 4 or more is because there is only normal SMF and comparable SBS suppression effect is less than 3 X 10_ 4. Preferably to that the 8 X 10_ 4 above is because it is possible to obtain a good Ri SBS suppression effect. In addition, the upper limit of the refractive index difference between adjacent stairs is such that the connection loss does not increase even if this SBS-suppressed optical fiber is connected to ordinary SMF! It can be determined appropriately for the design of the refractive index distribution.
[0061] そしてやはり、コア径が小さくなるために屈折率を上昇あるいは下降させる添加剤 のガラス合成中や紡糸による拡散等の影響により、その階段段数によって隣り合う階 段の屈折率差の上限が制限されるので、例えば、階段数 1段の場合は段数が少ない ため隣り合う階段の屈折率差の上限はコアとクラッドの最大屈折率差程度まで可能 であり自由度は大きいが、階段数 2段以上となる場合は階段間の長さが短くなること 力も隣り合う階段の屈折率差の上限は 0. 0015程度になるように屈折率分布を設計 することが好ましいことは前記と同様である。また段数に関わらず階段の形状は、上 記で述べた拡散等の影響により矩形になるわけではなく少し丸みの帯びたものとなる ことが多いことも前記と同様である。なお、本実施の形態においてもクラッドは純石英 ガラスとしてもよぐ純石英ガラスに Fを添加してもよい。即ち必要とする光ファイバの 特性等から適宜選択すればょ ヽ。 [0061] Again, the upper limit of the difference in refractive index between adjacent tiers depends on the number of steps, due to the effects of diffusion during glass synthesis or spinning of an additive that increases or decreases the refractive index because the core diameter is reduced. For example, if the number of steps is 1, the number of steps is small, so the upper limit of the refractive index difference between adjacent stairs can be as high as the maximum refractive index difference between the core and the cladding. Although the degree of freedom is large, the length between steps is shortened when the number of steps is 2 or more. The refractive index distribution is designed so that the upper limit of the refractive index difference between adjacent steps is about 0.0015. It is preferable to do the same as described above. In addition, the shape of the staircase is not necessarily rectangular due to the influence of diffusion described above, regardless of the number of steps, and is often slightly rounded as described above. In this embodiment also, F may be added to pure quartz glass, which may be pure quartz glass. In other words, select the appropriate optical fiber characteristics.
[0062] またさらに他の実施の形態として、本発明の SBS抑制光ファイバはコアを純石英ガ ラスとし、クラッドに Fを添加するとともにコアの純石英ガラスに部分的に Fを添加して コアが階段状の屈折率分布を有するようにし、この階段状の屈折率分布の隣り合う階 段における屈折率差が 3 X 10_4以上、好ましくは 8 X 10_4以上となるように構成する こともできる。階段状の屈折率分布の隣り合う階段における屈折率差を 3 X 10_4以上 としたのは、やはり 3 X 10_4未満では通常の SMFと同程度の SBS抑制効果しかない ためである。好ましくは 8 X 10_4以上としたのは、より SBS抑制効果を奏することがで きるためである。また隣り合う階段の屈折率差の上限としては、この SBS抑制光フアイ バを通常の SMFと接続しても接続損失が増大しないなど伝送特性に影響を与えな V、範囲になるように屈折率分布の設計にぉ 、て適宜定めればよ!、。 [0062] As yet another embodiment, the SBS-suppressed optical fiber of the present invention has a core made of pure silica glass, F is added to the cladding, and F is partially added to the core pure silica glass. There was to have a refractive index profile of step-like refractive index difference at stairs adjacent the stepped refractive index distribution 3 X 10_ 4 or more, preferably is configured as a 8 X 10_ 4 more than it can. To that the refractive index difference at stepped adjacent stepped refractive index distribution 3 X 10_ 4 above is for still 3 X 10_ only normal SMF and comparable SBS suppression effect is less than 4. The preferred was 8 X 10_ 4 or more is because as possible out to achieve a more SBS suppression effect. In addition, the upper limit of the refractive index difference between adjacent stairs is that the refractive index is adjusted so that it does not affect the transmission characteristics, such as the connection loss does not increase even if this SBS suppression fiber is connected to normal SMF. Decide on the distribution design as appropriate!
[0063] そしてやはり、コア径が小さくなるために屈折率を上昇あるいは下降させる添加物 のガラス合成中や紡糸による拡散等の影響により、その階段段数によって隣り合う階 段の屈折率差の上限が制限されるので、例えば、階段数 1段の場合は段数が少ない ため隣り合う階段の屈折率差の上限はコアとクラッドの最大屈折率差程度まで可能 であり自由度は大きいが、階段数 2段以上となる場合は階段間の長さが短くなること 力も隣り合う階段の屈折率差の上限は 0. 0015程度になるように屈折率分布を設計 することが好ましいことは前記と同様である。また段数に関わらず階段の形状は、上 記で述べた拡散等の影響により矩形になるわけではなく少し丸みの帯びたものとなる ことが多いことも前記と同様である。  [0063] And again, the upper limit of the difference in refractive index between adjacent steps depends on the number of steps, due to the effects of diffusion during glass synthesis or spinning of additives that increase or decrease the refractive index because the core diameter decreases. For example, if the number of steps is 1, the number of steps is small, so the upper limit of the difference in refractive index between adjacent stairs can be up to the maximum difference in refractive index between the core and the cladding. As above, it is preferable to design the refractive index distribution so that the upper limit of the refractive index difference between adjacent stairs is about 0.0015. . In addition, the shape of the staircase is not necessarily rectangular due to the influence of diffusion described above, regardless of the number of steps, and is often slightly rounded as described above.
[0064] なお、前述してきた実施の形態において、本発明の SBS抑制光ファイバのコアの 最大屈折率とクラッドの屈折率との差が 0. 008以下であることが望ましい。また、本 発明の SBS抑制光ファイバの零分散波長が 1300nm〜1324nmの範囲にあること が望ましい。さらに、本発明の SBS抑制光ファイバの 1310nmの波長におけるモード フィールド径が 8. 6〜9. 5 /z mの範囲にあることが望ましい。 In the embodiment described above, it is desirable that the difference between the maximum refractive index of the core and the refractive index of the cladding of the SBS-suppressed optical fiber of the present invention is 0.008 or less. Also book It is desirable that the zero-dispersion wavelength of the inventive SBS-suppressing optical fiber is in the range of 1300 nm to 1324 nm. Furthermore, it is desirable that the mode field diameter of the SBS-suppressed optical fiber of the present invention at a wavelength of 1310 nm is in the range of 8.6 to 9.5 / zm.
[0065] これは、本発明の SBS抑制光ファイバを通常の SMFと接続した場合でも接続損失 が発生せず、伝送特性にぉ 、て光ファイバの伝送路に悪影響を及ぼさな 、ようにす るためである。即ち、コアの屈折率分布を階段状にする構成は従来力も分散シフトフ ァイノく(DSF; Dispersion Sifted Fiber)で知られている力 この DSFは零分散波 長を 1300nm付近から 1550nm付近にシフトさせたものであり、そのためにコアの最 大屈折率とクラッドの屈折率差を 0. 01以上としている。またこのような構成とした結果 、 DSFのモードフィールド径は 1310nmの波長で 7〜8 μ mと通常の SMFに比べて 小さくなつている。従って、 DSFと通常の SMFを接続した場合には、屈折率差ゃモ ードフィールド径の不整合力 接続損失が増大し、伝送路全体に良い影響を与えな いことになる。 [0065] This is so that even when the SBS-suppressing optical fiber of the present invention is connected to a normal SMF, no connection loss occurs and the transmission characteristics of the optical fiber are not adversely affected. Because. In other words, the configuration in which the refractive index distribution of the core is stepped is a force conventionally known as dispersion-shifted fiber (DSF). This DSF shifts the zero dispersion wavelength from around 1300 nm to around 1550 nm. Therefore, the difference between the maximum refractive index of the core and the refractive index of the cladding is set to 0.01 or more. As a result of such a configuration, the mode field diameter of the DSF is 7 to 8 μm at a wavelength of 1310 nm, which is smaller than that of normal SMF. Therefore, when DSF and ordinary SMF are connected, the difference in refractive index increases the mismatching power of the mode field diameter and the connection loss does not affect the entire transmission line.
[0066] 本発明の SBS抑制光ファイバは従来力 通常の伝送路に用いている SMFと同等 の零分散波長、即ち 1300nm付近の零分散波長を有し、コアの最大屈折率とクラッ ドの屈折率差も通常の SMFと接続しても接続損失が発生しな ヽような 0. 008以下と し、しかも 1310nmの波長におけるモードフィールド径も通常の SMFと同等の値にし たので伝送路に適用しても特性上の問題が生じることがないようにしたものである。  [0066] The SBS-suppressed optical fiber of the present invention has a zero-dispersion wavelength equivalent to that of SMF used in conventional transmission lines, that is, a zero-dispersion wavelength near 1300 nm, and the maximum refractive index of the core and the refractive index of the cladding. Even if the rate difference is connected to ordinary SMF, the connection loss does not occur. It is less than 0.008, and the mode field diameter at 1310 nm wavelength is the same value as ordinary SMF, so it is applied to the transmission line. Even so, there is no problem in characteristics.
[0067] なお、本発明の SBS抑制光ファイバに従来公知の例えば長手方向にコア径を変動 させたり、残留応力を変動させたりする技術を併用しても差し支えない。 SBSを抑制 するのに効果があるならば製造方法等において許容される限り特に限定されるもの ではない。  [0067] The SBS-suppressing optical fiber of the present invention may be used in combination with a conventionally known technique such as changing the core diameter in the longitudinal direction or changing the residual stress. As long as it is effective in suppressing SBS, it is not particularly limited as long as it is permitted in the manufacturing method.
実施例 1  Example 1
[0068] 図 1 (a)に示すように、石英ガラスからなるコアに Geを添カ卩して、このコアの屈折率 分布を 1段の階段状とした SMFを作製した。クラッド Cは純石英ガラスである。階段状 の屈折率分布のうち、屈折率の高い部分を Nh、屈折率の低い部分を N1とすると、 N hの部分の GeOの濃度は 5. 2mol%、 N1の部分の GeOの濃度は 3mol%である。  [0068] As shown in Fig. 1 (a), Ge was added to a quartz glass core, and an SMF having a refractive index distribution of this core in a single stepped shape was produced. Clad C is pure quartz glass. In the step-like refractive index distribution, if the high refractive index portion is Nh and the low refractive index portion is N1, the GeO concentration in the Nh portion is 5.2 mol%, and the GeO concentration in the N1 portion is 3 mol. %.
2 2  twenty two
即ち階段状の屈折率分布の隣り合う階段における GeOの濃度差 A cは 2. 2mol% となっている。なお、この時のコアの最大屈折率 (Nhの部分)とクラッドの屈折率の差 Δ ηΐは 0. 007、コアの N1の部分の屈折率とクラッドの屈折率 Δ η2の差は 0. 004で あり、階段状の屈折率分布の隣り合う階段における屈折率差 Δ η3は 0. 003であった 。また、屈折率の高いコアの部分 (Nhの部分)のコア径は 3 m、屈折率の低いコア の部分 (N1の部分)のコア径は 8 μ mである。 That is, the GeO concentration difference between adjacent stairs in the step-like refractive index profile is 2.2 mol%. It has become. At this time, the difference between the maximum refractive index of the core (Nh part) and the refractive index of the cladding Δηΐ is 0.007, and the difference between the refractive index of the core N1 part and the refractive index of the cladding Δη2 is 0.004. The refractive index difference Δη3 between adjacent stairs in the stepwise refractive index distribution was 0.003. The core diameter of the core part with high refractive index (Nh part) is 3 m, and the core diameter of the core part with low refractive index (N1 part) is 8 μm.
[0069] このような構成の SBS抑制光ファイバを 20km準備し、図 2に示すような測定系で 1 550nmの波長における入射光パワーに対する反射光パワーを測定した。図 2の測 定系は、 1550nmの波長の分布帰還型レーザ (DFB— LD) 1からの光を光増幅器( EDFA ; Erbium Doped Fiber Amplifier) 2により増幅して光力プラ 3に導入す る。この光は光力ブラ 3により一方は測定する SBS抑制光ファイバ 4から伝送された光 のパワーを測定する出射光パワーメーター 5に分岐され、他方は入射光パワーをモ 二ターするための入射光パワーメーター 6に分岐される。そして、 SBS抑制光フアイ バ 4から反射してきた光を再び光力ブラ 3を通して反射光パワーメーター 7により測定 する。この反射光パワーメーター 7により反射光を測定することによって SBSがどの程 度抑制さて 、るかわ力るようになって!/、る。  [0069] An SBS suppression optical fiber having such a configuration was prepared for 20 km, and the reflected light power with respect to the incident light power at a wavelength of 1 550 nm was measured with a measurement system as shown in FIG. The measurement system in Fig. 2 amplifies the light from a distributed feedback laser (DFB—LD) 1 having a wavelength of 1550 nm by an optical amplifier (EDFA; Erbium Doped Fiber Amplifier) 2 and introduces it to the optical power plastic 3. This light is branched by an optical power bra 3 to an outgoing light power meter 5 for measuring the power of light transmitted from the SBS suppression optical fiber 4 to be measured, and the other is incident light for monitoring the incident light power. Branch to power meter 6. Then, the light reflected from the SBS suppression optical fiber 4 is again measured by the reflected light power meter 7 through the optical power bra 3. By measuring the reflected light with this reflected light power meter 7, the degree to which SBS is suppressed and power is improved!
[0070] 図 3は、本実施例 1の SBS抑制光ファイバを図 2の測定系により測定した結果を表 したものである。横軸が入射光パワーを表し、縦軸が出射光パワー及び反射光パヮ 一を表している。図 3より、入射光パワーが lOdBmとなった時に反射光パワーが急激 に大きくなつていることがわかる。この時の k係数は 1. 5 X 1015mWZmであった。こ の lOdBmの入射光パワーが SBSが発生する閾値(Pth)となる。通常の SMFでは S BS閾値パワーは 7dBm程度であるため、本実施例 1の光ファイバでは 3dBm程度の 改善が見られ、高い入射光パワーに対しても SBS抑制効果が実現できた。また、通 常の SMFの k係数は 7. 6 X 1014mWZmであった。なお、本実施例 1における光フ アイバの 1550nmにおける伝送損失は 0. 2dBZkm、モードフィールド径は 10. 5 μ mであった。また、 SBSのスペクトル幅は 330MHzであった。この SBSのスペクトル 幅の測定は BOTDR (Brillouin Optical Time Domain Reflectometer)を用 ヽて行 、、以下の各実施例の測定にぉ 、ても同様である。 FIG. 3 shows the result of measuring the SBS-suppressed optical fiber of Example 1 with the measurement system of FIG. The horizontal axis represents the incident light power, and the vertical axis represents the output light power and the reflected light power. From Fig. 3, it can be seen that the reflected light power increases rapidly when the incident light power reaches lOdBm. The k coefficient at this time was 1.5 X 10 15 mWZm. This lOdBm incident optical power is the threshold (Pth) at which SBS occurs. In ordinary SMF, the SBS threshold power is about 7 dBm, so the optical fiber of Example 1 shows an improvement of about 3 dBm, and the SBS suppression effect can be realized even for high incident light power. In addition, the k factor of ordinary SMF was 7.6 X 10 14 mWZm. The transmission loss at 1550 nm of the optical fiber in Example 1 was 0.2 dBZkm, and the mode field diameter was 10.5 μm. The spectral width of SBS was 330 MHz. The measurement of the spectral width of the SBS is performed using a BOTDR (Brillouin Optical Time Domain Reflectometer), and the same applies to the measurement of each of the following examples.
[0071] なお、前述したように屈折率分布の形状は実際には添加剤の拡散等の影響により 完全な矩形ではなぐ図 1 (b)に示すように角の部分が少し丸みを帯びた形状になる ことが多い。しかし、本実施例及び以下に説明する各実施例においては説明上屈折 率分布を矩形の形状として表すこととする。 [0071] As described above, the shape of the refractive index profile is actually affected by the diffusion of the additive and the like. As shown in Fig. 1 (b), which is not a perfect rectangle, the corners often have a slightly rounded shape. However, in this embodiment and each embodiment described below, the refractive index distribution is expressed as a rectangular shape for the sake of explanation.
実施例 2  Example 2
[0072] 図 4に示すように、石英ガラス力 なるコアに Geを添カ卩して、このコアの屈折率分布 を 1段の階段状とした SMFを作製した。クラッド Cは純石英ガラスである。階段状の屈 折率分布のうち、屈折率の高い部分を Nh、屈折率の低い部分を N1とすると、 Nhの 部分の GeOの濃度は 6mol%、 N1の部分の GeOの濃度は 3mol%である。即ち階  [0072] As shown in FIG. 4, Ge was added to a core made of quartz glass, and an SMF having a refractive index distribution of the core in a single stepped shape was produced. Clad C is pure quartz glass. In the stepwise refractive index distribution, if the high refractive index portion is Nh and the low refractive index portion is N1, the GeO concentration in the Nh portion is 6 mol% and the GeO concentration in the N1 portion is 3 mol%. is there. Ie floor
2 2  twenty two
段状の屈折率分布の隣り合う階段における GeOの濃度差 A cは 3mol%となってい  GeO concentration difference Ac between adjacent stairs of stepped refractive index profile is 3 mol%.
2  2
る。なお、この時のコアの最大屈折率 (Nhの部分)とクラッドの屈折率の差 Δ ηΐは 0. 008、コアの N1の部分の屈折率とクラッドの屈折率の差 Δ η2は 0. 004であり、階段 状の屈折率分布の隣り合う階段における屈折率差 Δ η3は 0. 004であった。また、屈 折率の高 、コアの部分 (Nhの部分)のコア径は 8 μ m、屈折率の低!、コアの部分 (N1 の部分)のコア径は 5 μ mである。  The At this time, the difference between the maximum refractive index of the core (Nh part) and the refractive index of the cladding Δη ク ラ ッ ド is 0.008, and the difference between the refractive index of the N1 part of the core and the refractive index of the cladding Δη2 is 0.004. The refractive index difference Δη3 between adjacent stairs in the stepwise refractive index distribution was 0.004. Also, the refractive index is high, the core part (Nh part) has a core diameter of 8 μm, the refractive index is low !, and the core part (N1 part) has a core diameter of 5 μm.
[0073] このような構成の SBS抑制光ファイバを 20km準備し、図 2に示すような測定系で 1 550nmの波長における入射光パワーに対する反射光パワーを測定した。この結果、 本実施例 2の光ファイバの SBS閾値パワーは 9. 5dBmであり、通常の SMFの閾値 パワーに比べて 2. 5dBmだけ閾値パワーが上昇しており、 SBSを抑制することがで きた。この時の k係数は 1. 5 X 1015mWZmであった。また、 1550nmの波長におけ る伝送損失は 0. 2dBZkm、モードフィールド径は 10 mであった。なお、 SBSのス ぺクトル幅は 300MHzであつた。 [0073] An SBS suppression optical fiber having such a configuration was prepared for 20 km, and the reflected light power with respect to the incident light power at a wavelength of 1 550 nm was measured with a measurement system as shown in FIG. As a result, the SBS threshold power of the optical fiber of Example 2 is 9.5 dBm, which is 2.5 dBm higher than the normal SMF threshold power, and SBS can be suppressed. . The k coefficient at this time was 1.5 X 10 15 mWZm. The transmission loss at a wavelength of 1550 nm was 0.2 dBZkm, and the mode field diameter was 10 m. The spectrum width of SBS was 300MHz.
実施例 3  Example 3
[0074] 図 5に示すように、石英ガラス力 なるコアに Geを添カ卩して、このコアの屈折率分布 を 2段の階段状とした SMFを作製した。クラッド Cは純石英ガラスである。 2段の階段 状の屈折率分布のうち、屈折率の高い部分を Nh、屈折率の中間部分を Nm、屈折 率の低い部分を N1とすると、 Nhの部分の GeOの濃度は 6mol%、 Nmの部分の Ge  [0074] As shown in Fig. 5, Ge was added to a core made of quartz glass, and an SMF having a refractive index distribution of the core in two steps was produced. Clad C is pure quartz glass. In the two-step stepwise refractive index distribution, if the high refractive index portion is Nh, the middle refractive index portion is Nm, and the low refractive index portion is N1, the GeO concentration in the Nh portion is 6 mol%, Nm Part of Ge
2  2
Oの濃度は 5. 3mol%、 N1の部分の GeOの濃度は 4mol%である。即ち階段状の The concentration of O is 5.3 mol%, and the concentration of GeO in the N1 part is 4 mol%. That is, stepped
2 2 twenty two
屈折率分布の隣り合う階段における GeOの濃度差はそれぞれ Nhの部分と Nmの部 分との差 A cl力 SO. 7mol%、 Nmの部分と N1の部分の差 A c2が 1. 3mol%となって いる。なお、この時のコアの最大屈折率 (Nhの部分)とクラッドの屈折率の差 Δ ηΐは 0. 008、コアの Nmの部分の屈折率とクラッドの屈折率の差 Δ η2は 0. 007、コアの N1の部分の屈折率とクラッドの屈折率の差 Δ η3は 0. 0055であり、階段状の屈折率 分布の隣り合う階段における屈折率差はそれぞれ Nhの部分と Nmの部分の差 Δ η4 が 0. 001、 Nmの部分と N1の部分の差 Δ η5が 0. 0015であった。また、屈折率の高 いコアの部分(Nhの部分)のコア径は 8 μ m、屈折率の中間部のコアの部分(Nmの 部分)のコア径は 5 μ m、屈折率の低!、コアの部分 (N1の部分)のコア径は 3 μ mであ る。 The GeO concentration difference between adjacent steps in the refractive index profile is Nh and Nm, respectively. Difference from the minute A cl force SO. 7mol%, the difference Ac2 between the Nm part and the N1 part is 1.3mol%. At this time, the difference between the maximum refractive index of the core (Nh part) and the refractive index of the cladding Δη ク ラ ッ ド is 0.008, and the difference between the refractive index of the Nm part of the core and the refractive index of the cladding Δη2 is 0.007. The difference between the refractive index of the N1 part of the core and the refractive index of the clad Δη3 is 0.0053, and the refractive index difference between adjacent stairs in the stepwise refractive index distribution is the difference between the Nh part and the Nm part, respectively. Δ η4 was 0.001, and the difference Δ η5 between the Nm portion and the N1 portion was 0.0015. In addition, the core diameter of the core part with high refractive index (Nh part) is 8 μm, the core part of the core part with refractive index (Nm part) is 5 μm, and the refractive index is low! The core diameter of the core part (N1 part) is 3 μm.
[0075] このような構成の SBS抑制光ファイバを 20km準備し、図 2に示すような測定系で 1 550nmの波長における入射光パワーに対する反射光パワーを測定した。この結果、 本実施例 3の光ファイバの SBS閾値パワーは 10. 5dBmであり、通常の SMFの閾値 パワーに比べて 3. 5dBmだけ閾値パワーが上昇しており、 SBSを抑制することがで きた。この時の k係数は 1. 6 X 1015mWZmであった。また、 1550nmの波長におけ る伝送損失は 0. 23dBZkm、モードフィールド径は 10. であった。なお、 SBS のスペクトル幅は 350MHzであった。 [0075] An SBS suppression optical fiber having such a configuration was prepared for 20 km, and the reflected light power with respect to the incident light power at a wavelength of 1 550 nm was measured with a measurement system as shown in FIG. As a result, the SBS threshold power of the optical fiber of Example 3 is 10.5 dBm, which is 3.5 dBm higher than the normal SMF threshold power, and SBS can be suppressed. . The k coefficient at this time was 1.6 × 10 15 mWZm. The transmission loss at a wavelength of 1550 nm was 0.23 dBZkm and the mode field diameter was 10. The spectral width of SBS was 350 MHz.
実施例 4  Example 4
[0076] 図 6に示すように、石英ガラス力 なるコアに Pを添カ卩して、このコアの屈折率分布を 1段の階段状とした SMFを作製した。クラッド Cは純石英ガラスである。階段状の屈折 率分布のうち、屈折率の高い部分を Nh、屈折率の低い部分を N1とすると、 Nhの部 分の P Oの濃度は 6mol%、 N1の部分の P Oの濃度は 4. 5mol%である。即ち階 [0076] As shown in FIG. 6, P was added to a core made of quartz glass to produce an SMF having a refractive index profile of the core in a single stepped shape. Clad C is pure quartz glass. In the stepwise refractive index distribution, if the high refractive index portion is Nh and the low refractive index portion is N1, the PO concentration in the Nh portion is 6 mol% and the PO concentration in the N1 portion is 4.5 mol. %. Ie floor
2 5 2 5 2 5 2 5
段状の屈折率分布の隣り合う階段における P Oの濃度差 A cは 1. 5mol%となって  The concentration difference Ac of PO in adjacent stairs of the stepped refractive index profile is 1.5 mol%.
2 5  twenty five
いる。なお、この時のコアの最大屈折率 (Nhの部分)とクラッドの屈折率の差 Δ ηΐは 0. 008、コアの N1の部分の屈折率とクラッドの屈折率の差 Δ η2は 0. 006であり、階 段状の屈折率分布の隣り合う階段における屈折率差 Δ η3は 0. 002であった。また、 屈折率の高 、コアの部分 (Nhの部分)のコア径は 4 μ m、屈折率の低!、コアの部分( N1の部分)のコア径は 8 μ mである。  Yes. The difference between the maximum refractive index of the core (Nh part) and the refractive index of the cladding Δηΐ is 0.008, and the difference between the refractive index of the N1 part of the core and the refractive index of the cladding Δη2 is 0.006. The refractive index difference Δη3 between adjacent stairs in the stepwise refractive index distribution was 0.002. In addition, the refractive index is high, the core part (Nh part) has a core diameter of 4 μm, the refractive index is low, and the core part (N1 part) has a core diameter of 8 μm.
[0077] このような構成の SBS抑制光ファイバを 20km準備し、図 2に示すような測定系で 1 550nmの波長における入射光パワーに対する反射光パワーを測定した。この結果、 本実施例 4の光ファイバの SBS閾値パワーは 9dBmであり、通常の SMFの閾値パヮ 一に比べて 2dBmだけ閾値パワーが上昇しており、 SBSを抑制することができた。こ の時の k係数は 1. 4 X 1015mWZmであった。また、 1550nmの波長における伝送 損失は 0. 3dBZkm、モードフィールド径は 10. であった。なお、 SBSのスぺク トル幅は 250MHzであった。 [0077] An SBS-suppressed optical fiber having such a configuration was prepared for 20 km, and the measurement system shown in Fig. 2 The reflected light power relative to the incident light power at a wavelength of 550 nm was measured. As a result, the SBS threshold power of the optical fiber of Example 4 was 9 dBm, and the threshold power increased by 2 dBm compared to the normal SMF threshold value, and SBS could be suppressed. The k coefficient at this time was 1.4 × 10 15 mWZm. The transmission loss at a wavelength of 1550 nm was 0.3 dBZkm, and the mode field diameter was 10. The spectral width of SBS was 250 MHz.
実施例 5  Example 5
[0078] 図 7に示すように、純石英ガラス力 なるコアの外周部に Fを添カ卩して、このコアの 屈折率分布を 1段の階段状とした SMFを作製した。クラッド Cの石英ガラスにも Fを添 加した。階段状の屈折率分布のうち、屈折率の高い部分を Nh、屈折率の低い部分 を N1とすると、 Nhの部分の Fの濃度は Omol% (純石英ガラス)、 N1の部分の Fの濃 度は 0. 3mol%である。また、クラッドの Fの濃度は 1. 6mol%である。従って、階段 状のコアの屈折率分布の隣り合う階段における Fの濃度差 A cは 0. 3mol%となって いる。なお、この時のコアの最大屈折率 (Nhの部分)とクラッドの屈折率の差 Δ ηΐは 0. 008、コアの N1の部分の屈折率とクラッドの屈折率の差 Δ η2は 0. 0065であり、 階段状の屈折率分布の隣り合う階段における屈折率差 Δ η3は 0. 0015であった。ま た、屈折率の高いコアの部分 (Nhの部分)のコア径は 4 m、屈折率の低いコアの部 分 (N1の部分)のコア径は 8 μ mである。  [0078] As shown in FIG. 7, F was added to the outer periphery of a core made of pure silica glass, and an SMF having a refractive index distribution of the core in a single stepped shape was produced. F was also added to the clad C quartz glass. In the step-like refractive index distribution, if the high refractive index portion is Nh and the low refractive index portion is N1, the F concentration in the Nh portion is Omol% (pure quartz glass) and the F concentration in the N1 portion. The degree is 0.3 mol%. The clad F concentration is 1.6 mol%. Therefore, the F concentration difference Ac between adjacent staircases in the refractive index profile of the staircase-shaped core is 0.3 mol%. At this time, the difference Δηΐ between the maximum refractive index of the core (Nh portion) and the refractive index of the cladding is 0.008, and the difference Δη2 between the refractive index of the N1 portion of the core and the refractive index of the cladding is 0.007. The refractive index difference Δη3 between adjacent stairs in the stepwise refractive index distribution was 0.0015. The core diameter of the core part with high refractive index (Nh part) is 4 m, and the core diameter of the core part with low refractive index (N1 part) is 8 μm.
[0079] このような構成の SBS抑制光ファイバを 20km準備し、図 2に示すような測定系で 1 550nmの波長における入射光パワーに対する反射光パワーを測定した。この結果、 本実施例 5の光ファイバの SBS閾値パワーは 10. 5dBmであり、通常の SMFの閾値 パワーに比べて 3. 5dBmだけ閾値パワーが上昇しており、 SBSを抑制することがで きた。この時の k係数は 1. 5 X 1015mWZmであった。また、 1550nmの波長におけ る伝送損失は 0. 27dB/km,モードフィールド径は 10. であった。なお、 SBS のスペクトル幅は 340MHzであった。 [0079] An SBS suppression optical fiber having such a configuration was prepared for 20 km, and the reflected light power with respect to the incident light power at a wavelength of 1 550 nm was measured with a measurement system as shown in FIG. As a result, the SBS threshold power of the optical fiber of Example 5 is 10.5 dBm, which is 3.5 dBm higher than the normal SMF threshold power, and SBS can be suppressed. . The k coefficient at this time was 1.5 X 10 15 mWZm. The transmission loss at a wavelength of 1550 nm was 0.27 dB / km, and the mode field diameter was 10. The spectral width of SBS was 340 MHz.
実施例 6  Example 6
[0080] 図 8に示すように、石英ガラス力 なるコアに Geを添カ卩して、このコアの屈折率分布 を 2段の階段状とした SMFを作製した。クラッド Cは純石英ガラスである。 2段の階段 状の屈折率分布のうち、屈折率の高い部分を Nh、屈折率の中間部分を Nm、屈折 率の低い部分を N1とすると、 Nhの部分の GeOの濃度は 5. 7mol%、 Nmの部分の [0080] As shown in Fig. 8, Ge was added to a core made of quartz glass, and an SMF having a refractive index distribution of the core in two steps was fabricated. Clad C is pure quartz glass. Two steps If the refractive index distribution is Nh for the high refractive index portion, Nm for the middle refractive index portion and N1 for the low refractive index portion, the GeO concentration in the Nh portion is 5.7 mol%, the Nm portion. of
2  2
GeOの濃度は 5. 3mol%、 N1の部分の GeOの濃度は 4. 5mol%である。即ち階 The GeO concentration is 5.3 mol%, and the GeO concentration in the N1 part is 4.5 mol%. Ie floor
2 2 twenty two
段状の屈折率分布の隣り合う階段における GeOの濃度差はそれぞれ Nhの部分と  The GeO concentration difference between adjacent steps in the step-shaped refractive index profile is Nh and
2  2
N1の部分との差 A clが 1. 2mol%、 Nmの部分と N1の部分との差 A c2が 0. 8mol %となっている。なお、この時のコアの最大屈折率 (Nhの部分)とクラッドの屈折率の 差 Δ ηΐは 0. 0075、コアの Nmの部分の屈折率とクラッドの屈折率の差 Δ η2は 0. 0 07、コアの N1の部分の屈折率とクラッドの屈折率の差 Δ η3は 0. 006であり、階段状 の屈折率分布の隣り合う階段における屈折率差はそれぞれ Nhの部分と N1の部分の 差 Δ η4力 S0. 0015、 Nmの部分と N1の部分の差 Δ η5が 0. 001であった。また、屈 折率の高いコアの部分 (Nhの部分)のコア径は 8 μ m、屈折率の中間部のコアの部 分 (Nmの部分)のコア径は 4 μ m、屈折率の低!、コアの部分 (N1の部分)のコア径は Ό μ mで &)る。  The difference A cl is 1.2 mol% from the N1 part, and the difference A c2 is 0.8 mol% between the Nm part and the N1 part. At this time, the difference Δηΐ between the maximum refractive index of the core (Nh portion) and the refractive index of the clad is 0.0075, and the difference between the refractive index of the core Nm portion and the refractive index of the clad Δη2 is 0.0. 07, the difference between the refractive index of the N1 part of the core and the refractive index of the cladding Δη3 is 0.006, and the refractive index difference between adjacent stairs of the stepwise refractive index distribution is the difference between the Nh part and the N1 part, respectively. The difference Δη4 force S0. 0015, the difference Δη5 between the Nm part and the N1 part was 0.001. In addition, the core diameter of the core part with the high refractive index (Nh part) is 8 μm, the core part of the intermediate part of the refractive index (Nm part) is 4 μm, and the refractive index is low. ! The core diameter of the core part (N1 part) is Ό μm.
[0081] このような構成の SBS抑制光ファイバを 20km準備し、図 2に示すような測定系で 1 550nmの波長における入射光パワーに対する反射光パワーを測定した。この結果、 本実施例 6の光ファイバの SBS閾値パワーは 10. 5dBmであり、通常の SMFの閾値 パワーに比べて 3. 5dBmだけ閾値パワーが上昇しており、 SBSを抑制することがで きた。この時の k係数は 1. 8 X 1015mWZmであった。また、 1550nmの波長におけ る伝送損失は 0. 19dBZkm、モードフィールド径は 10. であった。なお、 SBS のスペクトル幅は 350MHzであった。 [0081] An SBS suppression optical fiber having such a configuration was prepared for 20 km, and the reflected light power with respect to the incident light power at a wavelength of 1 550 nm was measured with a measurement system as shown in FIG. As a result, the SBS threshold power of the optical fiber of Example 6 is 10.5 dBm, which is 3.5 dBm higher than the normal SMF threshold power, and SBS can be suppressed. . The k coefficient at this time was 1.8 × 10 15 mWZm. The transmission loss at a wavelength of 1550 nm was 0.19 dBZkm, and the mode field diameter was 10. The spectral width of SBS was 350 MHz.
実施例 7  Example 7
[0082] 図 9に示すように、石英ガラス力 なるコアに Geと Pをともに添カ卩して、このコアの屈 折率分布を 2段の階段状とした SMFを作製した。クラッド Cは純石英ガラスである。 2 段の階段状の屈折率分布のうち、屈折率の高い部分を Nh、屈折率の中間部分を N m、屈折率の低い部分を N1とすると、 Nhの部分の GeOの濃度は 4mol%、 P Oの  [0082] As shown in FIG. 9, Ge and P were added together to a quartz glass-powered core, and an SMF having a two-step staircase distribution was produced. Clad C is pure quartz glass. In a two-step stepwise refractive index distribution, if the high refractive index portion is Nh, the middle refractive index portion is N m, and the low refractive index portion is N1, the GeO concentration in the Nh portion is 4 mol%. PO
2 2 5 濃度は 0. 5mol%であり、 Nmの部分の GeOの濃度は 3mol%、 P Oの濃度は 0. 8  2 2 5 Concentration is 0.5 mol%, GeO concentration in Nm part is 3 mol%, PO concentration is 0.8
2 2 5  2 2 5
mol%であり、また N1の部分の GeOの濃度は 2. 8mol%、 P Oの濃度は 0. 6mol  The concentration of GeO in the N1 part is 2.8 mol%, and the concentration of PO is 0.6 mol.
2 2 5  2 2 5
%である。即ち階段状の屈折率分布の隣り合う階段における GeOと P Oの合計の 濃度差はそれぞれ Nhの部分と Nlの部分との差 A c lが 1. lmol%、 Nmの部分と N1 の部分の差 A c2が 0. 4mol%となっている。なお、この時のコアの最大屈折率 (Nh の部分)とクラッドの屈折率の差 Δ ηΐは 0. 006、コアの Nmの部分の屈折率とクラッド の屈折率の差 Δ η2は 0. 005、コアの N1の部分の屈折率とクラッドの屈折率の差 Δ η 3は 0. 0045であり、階段状の屈折率分布の隣り合う階段における屈折率差はそれ ぞれ Nhの部分と N1の部分の差 Δ η4が 0. 0015、 Nmの部分と N1の部分の差 Δ η5 が 0. 0005であった。また、屈折率の高いコアの部分(Nhの部分)のコア径は 8. 5 μ m、屈折率の中間部のコアの部分 (Nmの部分)のコア径は 4 /ζ πι、屈折率の低いコ ァの部分 (N1の部分)のコア径は 6 μ mである。 %. In other words, the total of GeO and PO in adjacent stairs with a step-like refractive index profile. The difference in concentration is that the difference A cl between the Nh and Nl parts is 1. lmol%, and the difference Ac2 between the Nm and N1 parts is 0.4 mol%. The difference between the maximum refractive index of the core (Nh part) and the refractive index of the cladding Δη 屈折 is 0.006, and the difference between the refractive index of the core Nm part and the refractive index of the cladding Δη2 is 0.005. The difference between the refractive index of the core N1 portion and the refractive index of the cladding Δη3 is 0.0045, and the refractive index difference between adjacent steps of the stepwise refractive index distribution is Nh and N1 respectively. The difference Δη4 between the parts was 0.0015, and the difference Δη5 between the Nm part and the N1 part was 0.0005. Also, the core diameter of the core part with high refractive index (Nh part) is 8.5 μm, the core part of the intermediate part of refractive index (Nm part) is 4 / ζ πι, and the refractive index The core diameter of the lower core part (N1 part) is 6 μm.
[0083] このような構成の SBS抑制光ファイバを 20km準備し、図 2に示すような測定系で 1 550nmの波長における入射光パワーに対する反射光パワーを測定した。この結果、 本実施例 7の光ファイバの SBS閾値パワーは 9. 7dBmであり、通常の SMFの閾値 パワーに比べて 2. 7dBmだけ閾値パワーが上昇しており、 SBSを抑制することがで きた。この時の k係数は 1. 3 X 1015mWZmであった。また、 1550nmの波長におけ る伝送損失は 0. 21dBZkm、モードフィールド径は 10. であった。なお、 SBS のスペクトル幅は 230MHzであった。 [0083] An SBS suppression optical fiber having such a configuration was prepared for 20 km, and the reflected light power with respect to the incident light power at a wavelength of 1 550 nm was measured with a measurement system as shown in FIG. As a result, the SBS threshold power of the optical fiber of Example 7 is 9.7 dBm, which is 2.7 dBm higher than the normal SMF threshold power, and SBS can be suppressed. . The k coefficient at this time was 1.3 X 10 15 mWZm. The transmission loss at a wavelength of 1550 nm was 0.21 dBZkm, and the mode field diameter was 10. The spectral width of SBS was 230 MHz.
実施例 8  Example 8
[0084] 図 10に示すように、石英ガラス力もなるコアに Geと Pと Fをともに添カロして、このコア の屈折率分布を 1段の階段状とした SMFを作製した。クラッド Cは純石英ガラスであ る。階段状の屈折率分布のうち、屈折率の高い部分を Nh、屈折率の低い部分を N1 とすると、 Nhの部分の GeOの濃度は 4. 5mol%、 P Oの濃度は 1. 5mol%、 Fの  [0084] As shown in Fig. 10, Ge, P, and F were added together to a core that also has quartz glass power, and an SMF having a refractive index distribution of this core in one stepped shape was produced. Clad C is pure silica glass. In the stepwise refractive index distribution, Nh is the high refractive index part and N1 is the low refractive index part. The GeO concentration in the Nh part is 4.5 mol%, the PO concentration is 1.5 mol%, F of
2 2 5  2 2 5
濃度は 0. 2mol%であり、 N1の部分の GeOの濃度は 4. 5mol%、 P Oの濃度は 0  The concentration is 0.2 mol%, the GeO concentration in the N1 part is 4.5 mol%, and the PO concentration is 0
2 2 5  2 2 5
. 8mol%、 Fの濃度は 0. 4mol%である。即ち階段状の屈折率分布の隣り合う階段 における GeOと P Oと Fの合計の濃度差 A cは 0. 5mol%となっている。なお、この  8mol%, F concentration is 0.4mol%. In other words, the total concentration difference Ac of GeO, PO, and F in adjacent stairs in the step-like refractive index profile is 0.5 mol%. In addition, this
2 2 5  2 2 5
時のコアの最大屈折率 (Nhの部分)とクラッドの屈折率の差 Δ ηΐは 0. 007、コアの N1の部分の屈折率とクラッドの屈折率の差 Δ η2は 0. 004であり、階段状の屈折率 分布の隣り合う階段における屈折率差 Δ η3は 0. 003であった。また、屈折率の高い コアの部分 (Nhの部分)のコア径は 8 μ m、屈折率の低!、コアの部分 (N1の部分)の コア径は 4 μ mである。 The difference between the maximum refractive index of the core (Nh part) and the refractive index of the cladding Δηΐ is 0.007, and the difference between the refractive index of the N1 part of the core and the refractive index of the cladding Δη2 is 0.004, The difference in refractive index Δη3 between adjacent stairs in the stepwise refractive index distribution was 0.003. In addition, the core diameter of the core part with high refractive index (Nh part) is 8 μm, the refractive index is low !, the core part (N1 part) The core diameter is 4 μm.
[0085] このような構成の SBS抑制光ファイバを 20km準備し、図 2に示すような測定系で 1 550nmの波長における入射光パワーに対する反射光パワーを測定した。この結果、 本実施例 8の光ファイバの SBS閾値パワーは lOdBmであり、通常の SMFの閾値パ ヮーに比べて 3dBmだけ閾値パワーが上昇しており、 SBSを抑制することができた。 この時の k係数は 1. 4 X 1015mWZmであった。また、 1550nmの波長における伝 送損失は 0. 25dBZkm、モードフィールド径は 10. であった。なお、 SBSのス ぺクトル幅は 300MHzであつた。 [0085] An SBS suppression optical fiber having such a configuration was prepared for 20 km, and the reflected light power with respect to the incident light power at a wavelength of 1 550 nm was measured with a measurement system as shown in FIG. As a result, the SBS threshold power of the optical fiber of Example 8 was lOdBm, and the threshold power increased by 3 dBm compared to the normal SMF threshold power, and SBS could be suppressed. The k coefficient at this time was 1.4 × 10 15 mWZm. The transmission loss at a wavelength of 1550 nm was 0.25 dBZkm, and the mode field diameter was 10. The spectrum width of SBS was 300MHz.
[0086] ここで、上記各実施例の SBS抑制光ファイバにおいて、零分散波長はすべて 130 0nm〜1324nmの範囲にあった。また、波長 13 lOnmにおけるモードフィールド径 はすべて 8. 6〜9. 5 mの間に入っていた。  Here, in the SBS-suppressed optical fibers of the above-described embodiments, all zero dispersion wavelengths were in the range of 1300 nm to 1324 nm. In addition, the mode field diameter at a wavelength of 13 lOnm was all between 8.6 and 9.5 m.
[0087] 本発明の SBS抑制光ファイバを作製するための母材を製造する方法としては通常 用いられている MCVD法、プラズマ CVD法、 VAD法、 OVD法など特に限定される ものではなく、目的に応じて最も適した方法を用いればよい。  [0087] The method for producing the base material for producing the SBS-suppressed optical fiber of the present invention is not particularly limited, such as a commonly used MCVD method, plasma CVD method, VAD method, OVD method, etc. The most suitable method may be used depending on the method.
(比較例)  (Comparative example)
[0088] 比較のために図 11に示すように、石英ガラスからなるコアに Geを添カ卩して、このコ ァの屈折率分布を階段状とした SMFを作製した。クラッド Cは純石英ガラスである。 階段状の屈折率分布のうち、屈折率の高い部分を Nh、屈折率の低い部分を N1とす ると、 Nhの部分の GeOの濃度は 5. 3mol%、 N1の部分の GeOの濃度は 5. lmol  [0088] For comparison, as shown in FIG. 11, an SMF having a stepped refractive index distribution was prepared by adding Ge to a quartz glass core. Clad C is pure quartz glass. In the step-like refractive index distribution, if the high refractive index portion is Nh and the low refractive index portion is N1, the GeO concentration in the Nh portion is 5.3 mol% and the GeO concentration in the N1 portion is 5. lmol
2 2  twenty two
%である。即ち階段状の屈折率分布の隣り合う階段における GeOの濃度差 A cは 0  %. That is, the GeO concentration difference Ac between adjacent stairs in the step-like refractive index profile is 0.
2  2
. 2mol%となっている。なお、この時のコアの最大屈折率 (Nhの部分)とクラッドの屈 折率の差 Δ ηΐは 0. 007、コアの N1の部分の屈折率とクラッドの屈折率の差 Δ η2は 0. 0068であり、階段状の屈折率分布の隣り合う階段における屈折率差 Δ η3は 0. 0 002であった。また、屈折率の高いコアの部分 (Nhの部分)のコア径は 8 m、屈折 率の低!、コアの部分 (N1の部分)のコア径は 3 μ mである。  It is 2mol%. At this time, the difference Δηΐ between the maximum refractive index of the core (Nh part) and the refractive index of the clad is 0.007, and the difference between the refractive index of the N1 part of the core and the refractive index of the clad Δη2 is 0. The refractive index difference Δη3 between adjacent stairs in the stepwise refractive index distribution was 0.0002. In addition, the core diameter of the core part (Nh part) with a high refractive index is 8 m, the refractive index is low !, and the core diameter of the core part (N1 part) is 3 μm.
[0089] このような構成の SBS抑制光ファイバを 20km準備し、図 2に示すような測定系で 1 550nmの波長における入射光パワーに対する反射光パワーを測定した。この結果、 本比較例の光ファイバは 1550nmの波長における伝送損失は 0. 2dB/km,モード フィールド径は 10 /x mであり、通常の SMFと同等だったが SBS閾値パワーは 7. 5d Bmであり、通常の SMFの閾値パワーに比べて 0. 5dBmだけ閾値パワーが上昇して はいたが、 SBSを十分に抑制することができな力つた。この時の k係数は 9. 4 X 1014 mW/m, SBSのスペクトル幅は 180MHzであった。 [0089] An SBS suppression optical fiber having such a configuration was prepared for 20 km, and the reflected light power with respect to the incident light power at a wavelength of 1 550 nm was measured with a measurement system as shown in FIG. As a result, the optical fiber of this comparative example has a transmission loss of 0.2 dB / km at a wavelength of 1550 nm and a mode. The field diameter was 10 / xm, which was equivalent to normal SMF, but the SBS threshold power was 7.5 dBm, and the threshold power increased by 0.5 dBm compared to the normal SMF threshold power. , SBS could not sufficiently suppress the power. The k coefficient at this time was 9.4 X 10 14 mW / m, and the spectral width of SBS was 180 MHz.

Claims

請求の範囲 The scope of the claims
[1] 石英ガラス力 なるコア及びその外周のコアよりも屈折率の低 、石英ガラス力 なる クラッドから構成された光ファイバであって、前記コアには Geあるいは Pが単独で、若 しくは Geと Pが同時に添加されているとともに前記コアが階段状の屈折率分布を有し 、前記階段状の屈折率分布の隣り合う階段における GeOの濃度差あるいは P Oの  [1] An optical fiber composed of a quartz glass-powered core and a cladding having a lower refractive index than that of the core around the silica glass-powered silica glass. The core is composed of Ge or P alone, or Ge And P are added at the same time, and the core has a step-like refractive index profile, and the difference in GeO concentration in the adjacent steps of the step-like refractive index profile or PO
2 2 5 濃度差若しくは GeOと P Oの合計の濃度差が 0. 3mol%以上であることを特徴と  2 2 5 The difference in concentration or the total concentration difference between GeO and PO is 0.3 mol% or more.
2 2 5  2 2 5
する誘導ブリュアン散乱抑制光ファイバ。  Stimulated Brillouin scattering suppression optical fiber.
[2] 前記階段状の屈折率分布の隣り合う階段における GeOの濃度差あるいは P Oの [2] GeO concentration difference between adjacent steps of the step-like refractive index profile or P O
2 2 5 濃度差若しくは GeOと P Oの合計の濃度差が 0. 6mol%以上であることを特徴と  2 2 5 The difference in concentration or the total concentration difference between GeO and PO is 0.6 mol% or more.
2 2 5  2 2 5
する請求項 1記載の誘導ブリュアン散乱抑制光ファイバ。  The stimulated Brillouin scattering suppressing optical fiber according to claim 1.
[3] 前記階段状の屈折率分布の隣り合う階段における屈折率差が 3 X 10_4以上である ことを特徴とする請求項 1または請求項 2記載の誘導ブリュアン散乱抑制光ファイバ。 [3] according to claim 1 or claim 2 stimulated Brillouin scattering suppression optical fiber, wherein the refractive index difference at stepped adjacent of the refractive index distribution of the stepwise is 3 X 10_ 4 or more.
[4] 前記階段状の屈折率分布の隣り合う階段における屈折率差が 8 X 10_4以上である ことを特徴とする請求項 3記載の誘導ブリュアン散乱抑制光ファイバ。 [4] stimulated Brillouin scattering suppression optical fiber according to claim 3, wherein the refractive index difference at stepped adjacent of the refractive index distribution of the stepwise, characterized in that it is 8 X 10_ 4 or more.
[5] 前記クラッドは純石英ガラスであることを特徴とする請求項 1から請求項 4までの ヽ ずれかの請求項に記載の誘導ブリュアン散乱抑制光ファイバ。 [5] The stimulated Brillouin scattering-suppressing optical fiber according to any one of claims 1 to 4, wherein the clad is pure silica glass.
[6] 前記クラッドは石英ガラスに Fが添加されていることを特徴とする請求項 1から請求 項 4までのいずれかの請求項に記載の誘導ブリュアン散乱抑制光ファイバ。 [6] The stimulated Brillouin scattering suppression optical fiber according to any one of claims 1 to 4, wherein F is added to quartz glass in the cladding.
[7] 石英ガラス力 なるコア及びその外周のコアよりも屈折率の低 、石英ガラス力 なる クラッドから構成された光ファイバであって、前記コア及びクラッドには Fが添加されて いるとともに前記コアが階段状の屈折率分布を有し、前記階段状の屈折率分布の隣 り合う階段における Fの濃度差が 0. 08mol%以上であることを特徴とする誘導ブリュ アン散乱抑制光ファイバ。 [7] An optical fiber composed of a quartz glass-powered core and a cladding having a lower refractive index than that of a core around the silica-glass power, and a silica glass-powered clad, wherein F is added to the core and the cladding, and the core A stimulated Brillouin scattering-suppressing optical fiber, characterized in that has a step-like refractive index distribution, and the F concentration difference between adjacent steps in the step-like refractive index distribution is 0.08 mol% or more.
[8] 前記階段状の屈折率分布の隣り合う階段における Fの濃度差が 0. 16mol%以上 であることを特徴とする請求項 7記載の誘導ブリュアン散乱抑制光ファイバ。 8. The stimulated Brillouin scattering-suppressing optical fiber according to claim 7, wherein the difference in F concentration in adjacent steps of the step-like refractive index profile is 0.16 mol% or more.
[9] 前記階段状の屈折率分布の隣り合う階段における屈折率差が 3 X 10_4以上である ことを特徴とする請求項 7または請求項 8記載の誘導ブリュアン散乱抑制光ファイバ。 [9] according to claim 7 or claim 8 stimulated Brillouin scattering suppression optical fiber, wherein the refractive index difference at stepped adjacent of the refractive index distribution of the stepwise is 3 X 10_ 4 or more.
[10] 前記階段状の屈折率分布の隣り合う階段における屈折率差が 8 X 10—4以上である ことを特徴とする請求項 9記載の誘導ブリュアン散乱抑制光ファイバ。 [10] refractive index difference at stepped adjacent of the refractive index distribution of the stepwise is 8 X 10- 4 or more 10. The stimulated Brillouin scattering suppression optical fiber according to claim 9,
[11] 石英ガラス力 なるコア及びその外周のコアよりも屈折率の低い石英ガラス力 なる クラッドから構成された光ファイバであって、前記コアには Geあるいは Pが単独で、若 しくは Geと Pが同時に添加され、かっさらに Fが添加されているとともに前記コアが階 段状の屈折率分布を有し、前記階段状の屈折率分布の隣り合う階段における屈折 率差が 3 X 10_4以上であることを特徴とする誘導ブリュアン散乱抑制光ファイバ。 [11] An optical fiber composed of a silica glass-powered core and a silica glass-powered clad having a refractive index lower than that of the outer peripheral core. The core is composed of Ge or P alone, or Ge. P is added simultaneously, cut further has a refractive index profile of the core is stairs like with F is added, the refractive index difference at stepped adjacent of the refractive index distribution of the stepwise 3 X 10_ 4 or more A stimulated Brillouin scattering-suppressing optical fiber, characterized in that
[12] 前記階段状の屈折率分布の隣り合う階段における屈折率差が 8 X 10—4以上である ことを特徴とする請求項 11記載の誘導ブリュアン散乱抑制光ファイバ。 [12] stimulated Brillouin scattering suppression optical fiber of claim 11 wherein the refractive index difference at stepped adjacent of the refractive index distribution of the stepwise, characterized in that it is 8 X 10- 4 or more.
[13] 前記クラッドは純石英ガラスであることを特徴とする請求項 11または請求項 12記載 の誘導ブリュアン散乱抑制光ファイバ。  13. The stimulated Brillouin scattering suppression optical fiber according to claim 11 or 12, wherein the clad is pure silica glass.
[14] 前記クラッドは石英ガラスに Fが添加されて 、ることを特徴とする請求項 11または請 求項 12記載の誘導ブリュアン散乱抑制光ファイバ。  [14] The stimulated Brillouin scattering-suppressing optical fiber according to [11] or [12], wherein the clad is obtained by adding F to quartz glass.
[15] 石英ガラス力 なるコア及びその外周のコアよりも屈折率の低い石英ガラス力 なる クラッドから構成された光ファイバであって、前記コアは純石英ガラス及び Fが添加さ れている石英ガラス力もなり、前記クラッドに Fが添加されているとともに前記コアが階 段状の屈折率分布を有し、前記階段状の屈折率分布の隣り合う階段における屈折 率差が 3 X 10_4以上であることを特徴とする誘導ブリュアン散乱抑制光ファイバ。 [15] An optical fiber composed of a quartz glass force core and a clad glass force clad having a refractive index lower than that of the outer peripheral core, wherein the core is pure silica glass and quartz glass to which F is added. becomes a force, wherein the core with cladding to F are added has a refractive index distribution of the stairs-like, the refractive index difference at stepped adjacent of the refractive index distribution of the stepwise is 3 X 10_ 4 or more A stimulated Brillouin scattering-suppressing optical fiber.
[16] 前記階段状の屈折率分布の隣り合う階段における屈折率差が 8 X 10—4以上である ことを特徴とする請求項 15記載の誘導ブリュアン散乱抑制光ファイバ。 [16] stimulated Brillouin scattering suppression optical fiber of claim 15 wherein the refractive index difference at stepped adjacent of the refractive index distribution of the stepwise, characterized in that it is 8 X 10- 4 or more.
[17] 前記コアの最大屈折率と前記クラッドの屈折率との差が 0. 008以下であることを特 徴とする請求項 1から請求項 16までのいずれかの請求項に記載の誘導ブリュアン散 乱抑制光ファイバ。  [17] The induction Brillouin according to any one of claims 1 to 16, wherein a difference between a maximum refractive index of the core and a refractive index of the clad is 0.008 or less. Scatter suppression optical fiber.
[18] 前記光ファイバの誘導ブリュアン散乱のスペクトル幅が 200MHz以上であることを 特徴とする請求項 1から請求項 17までのいずれかの請求項に記載の誘導ブリュアン 散乱抑制光ファイバ。  18. The stimulated Brillouin scattering-suppressed optical fiber according to any one of claims 1 to 17, wherein the spectral width of the stimulated Brillouin scattering of the optical fiber is 200 MHz or more.
[19] 前記光ファイバの誘導ブリュアン散乱のスペクトル幅が 300MHz以上であることを 特徴とする請求項 18記載の誘導ブリュアン散乱抑制光ファイバ。  [19] The stimulated Brillouin scattering-suppressed optical fiber according to [18], wherein the spectrum width of the stimulated Brillouin scattering of the optical fiber is 300 MHz or more.
[20] 前記光ファイバの零分散波長が 1300ηπ!〜 1324nmの範囲にあることを特徴とす る請求項 1から請求項 19までのいずれかの請求項に記載の誘導ブリュアン散乱抑 制光ファイバ。 [20] The zero-dispersion wavelength of the optical fiber is 1300ηπ! ~ 1324nm range The stimulated Brillouin scattering-suppressing optical fiber according to any one of claims 1 to 19.
前記光ファイバの 1310nmの波長におけるモードフィールド径が 8. 6〜9. 5 ^ m の範囲にあることを特徴とする請求項 1から請求項 20までのいずれかの請求項に記 載の誘導ブリュアン散乱抑制光ファイバ。  21. The guided Brillouin according to claim 1, wherein a mode field diameter of the optical fiber at a wavelength of 1310 nm is in a range of 8.6 to 9.5 ^ m. Scatter-suppressing optical fiber.
PCT/JP2005/022363 2005-02-24 2005-12-06 Induction brillouin scatter suppresing optical fiber WO2006090519A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005048472A JP4664703B2 (en) 2005-02-24 2005-02-24 Stimulated Brillouin scattering suppression optical fiber
JP2005-048472 2005-02-24

Publications (1)

Publication Number Publication Date
WO2006090519A1 true WO2006090519A1 (en) 2006-08-31

Family

ID=36927168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022363 WO2006090519A1 (en) 2005-02-24 2005-12-06 Induction brillouin scatter suppresing optical fiber

Country Status (3)

Country Link
JP (1) JP4664703B2 (en)
TW (1) TW200630309A (en)
WO (1) WO2006090519A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1930753A1 (en) * 2006-12-04 2008-06-11 Draka Comteq B.V. Optical fiber with high Brillouin threshold power and low bending losses
US7889960B2 (en) 2008-05-06 2011-02-15 Draka Comteq B.V. Bend-insensitive single-mode optical fiber
US7995889B2 (en) 2005-11-10 2011-08-09 Draka Comteq, B.V. Single mode optical fiber
US8103143B2 (en) 2006-04-10 2012-01-24 Draka Comteq, B.V. Single-mode optical fiber
US8145027B2 (en) 2007-11-09 2012-03-27 Draka Comteq, B.V. Microbend-resistant optical fiber

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4630124B2 (en) * 2005-05-12 2011-02-09 古河電気工業株式会社 Optical fiber
WO2008032779A1 (en) * 2006-09-14 2008-03-20 Fujikura Ltd. Optical fiber and optical fiber base material
JP5113400B2 (en) * 2007-02-08 2013-01-09 株式会社フジクラ Optical fiber, optical fiber device and bundle fiber
JP5000363B2 (en) * 2007-04-10 2012-08-15 日本電信電話株式会社 Hole dispersion control fiber and optical transmission system
WO2009047782A2 (en) * 2007-06-05 2009-04-16 Sterlite Technologies Ltd Optical fiber having high sbs threshold as well as minimized marcobending loss
CN115650578B (en) * 2022-11-10 2023-03-31 中国航天三江集团有限公司 Optical fiber for inhibiting periodic variation of axial component of SBS and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07157328A (en) * 1993-12-08 1995-06-20 Fujikura Ltd Production of optical fiber
JP2004126141A (en) * 2002-10-01 2004-04-22 Furukawa Electric Co Ltd:The Optical fiber and its manufacturing method
JP2004126148A (en) * 2002-10-01 2004-04-22 Furukawa Electric Co Ltd:The Optical fiber and optical transmission line using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2584151B2 (en) * 1991-06-11 1997-02-19 株式会社フジクラ Optical fiber
JP2753426B2 (en) * 1991-11-01 1998-05-20 日本電信電話株式会社 Method for manufacturing high input optical fiber and preform thereof
JP3434428B2 (en) * 1996-11-12 2003-08-11 古河電気工業株式会社 Optical fiber for communication and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07157328A (en) * 1993-12-08 1995-06-20 Fujikura Ltd Production of optical fiber
JP2004126141A (en) * 2002-10-01 2004-04-22 Furukawa Electric Co Ltd:The Optical fiber and its manufacturing method
JP2004126148A (en) * 2002-10-01 2004-04-22 Furukawa Electric Co Ltd:The Optical fiber and optical transmission line using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7995889B2 (en) 2005-11-10 2011-08-09 Draka Comteq, B.V. Single mode optical fiber
US8837889B2 (en) 2005-11-10 2014-09-16 Draka Comteq, B.V. Single mode optical fiber
US8103143B2 (en) 2006-04-10 2012-01-24 Draka Comteq, B.V. Single-mode optical fiber
EP1930753A1 (en) * 2006-12-04 2008-06-11 Draka Comteq B.V. Optical fiber with high Brillouin threshold power and low bending losses
US7555186B2 (en) 2006-12-04 2009-06-30 Draka Comteq B.V. Optical fiber
US7894698B2 (en) 2006-12-04 2011-02-22 Draka Comteq B.V. Optical fiber
US8145027B2 (en) 2007-11-09 2012-03-27 Draka Comteq, B.V. Microbend-resistant optical fiber
US8385705B2 (en) 2007-11-09 2013-02-26 Draka Comteq, B.V. Microbend-resistant optical fiber
US7889960B2 (en) 2008-05-06 2011-02-15 Draka Comteq B.V. Bend-insensitive single-mode optical fiber
US8131125B2 (en) 2008-05-06 2012-03-06 Draka Comteq, B.V. Bend-insensitive single-mode optical fiber
US8145025B2 (en) 2008-05-06 2012-03-27 Draka Comteq, B.V. Single-mode optical fiber having reduced bending losses
US8428414B2 (en) 2008-05-06 2013-04-23 Draka Comteq, B.V. Single-mode optical fiber having reduced bending losses

Also Published As

Publication number Publication date
TW200630309A (en) 2006-09-01
JP4664703B2 (en) 2011-04-06
JP2006232599A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
WO2006090519A1 (en) Induction brillouin scatter suppresing optical fiber
US7742671B2 (en) Optical fiber
JP5425391B2 (en) Optical fiber
KR100913744B1 (en) Optical fiber, transmission system and multiple-wavelength transmission system
JP5466805B2 (en) Optical fiber with reduced stimulated Brillouin scattering
US7593612B2 (en) Optical fiber
KR101731744B1 (en) Single-mode fiber with large effective area
KR101731743B1 (en) Optical fiber with large effective area
KR20070093395A (en) Optical fiber
RU2216755C2 (en) Low-dispersion optical fiber and optical transmission system with use of low-dispersion optical fiber
Kang et al. Design of four-mode erbium doped fiber amplifier with low differential modal gain for modal division multiplexed transmissions
US7536074B2 (en) Optical fiber
JPH08194123A (en) Optical fiber transmission path
KR100635688B1 (en) Optical fiber with a low stimulated brillouin scattering and optical transmission line using the same, and optical transmission system
JP2004126148A (en) Optical fiber and optical transmission line using the same
CN114153021A (en) Low dispersion slope large effective area non-zero dispersion displacement optical fiber
JPH1096828A (en) Stimulated brillouin scattering suppressing optical fiber
JP4975266B2 (en) Optical fiber manufacturing method
JPH09311231A (en) Dispersion shift optical fiber
JP3768265B2 (en) Dispersion compensating optical fiber and manufacturing method thereof
KR20010034166A (en) Highly non-linear single mode waveguide
JP4219825B2 (en) Nonlinear dispersion-shifted optical fiber
KR100633918B1 (en) Optical fiber with reduced stimulated brillouin scattering and low bending loss, and optical transmission line using the same, and optical transmission system
WO2009050727A2 (en) Optical fiber having high sbs threshold
JP2006293258A (en) Optical fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05814558

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5814558

Country of ref document: EP