JP2006291813A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2006291813A
JP2006291813A JP2005112796A JP2005112796A JP2006291813A JP 2006291813 A JP2006291813 A JP 2006291813A JP 2005112796 A JP2005112796 A JP 2005112796A JP 2005112796 A JP2005112796 A JP 2005112796A JP 2006291813 A JP2006291813 A JP 2006291813A
Authority
JP
Japan
Prior art keywords
exhaust gas
exhaust
length
carrier
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005112796A
Other languages
Japanese (ja)
Inventor
Kojiro Okada
公二郎 岡田
Kinichi Iwachido
均一 岩知道
Kazuhito Kawashima
川島  一仁
Hitoshi Toda
仁司 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2005112796A priority Critical patent/JP2006291813A/en
Publication of JP2006291813A publication Critical patent/JP2006291813A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device capable of increasing an exhaust emission control efficiency by utilizing the reverse flow of exhaust gases flowing in an exhaust pipe. <P>SOLUTION: This exhaust emission control device comprises a catalyst converter 13 having a casing 18 disposed on the exhaust pipe 12 extending from the body of an engine 1, a carrier 21 installed in the casing 18, and catalyst components carried on the catalyst. Based on a variation in the volume of exhaust gases due to the release of heat from the exhaust pipe 12, the length Lf of the carrier is set smaller than the length Lrf of the reversely flowing exhaust gas rf passed through the carrier 21. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内燃機関の排気路に配備され、内燃機関が排出する排気ガス中の燃焼生成物質を酸化あるいは還元して浄化するための触媒を備えた排気ガス浄化装置に関するものである。   The present invention relates to an exhaust gas purifying apparatus that is provided in an exhaust passage of an internal combustion engine and includes a catalyst for purifying a combustion product in exhaust gas discharged from the internal combustion engine by oxidation or reduction.

環境保全のため車両に搭載される内燃機関の排気ガス浄化規制がより強化されてきており、これに伴ない、内燃機関の排気路に装着される触媒の浄化効率をより高めることが要求されてきている。従来、内燃機関の排気路上に配備される代表的な触媒システムとしては、シングル触媒システム(単一担体)とタンデム触媒システム(2担体)がある。タンデム触媒システムの場合、前段触媒と後段触媒との間に隙間部が確保され、ここに達した排ガスがミキシングされてから後段触媒に流動するという特性を備えるため、触媒反応が偏らずに生じることとなる。このため、一般にタンデム触媒はシングル触媒よりも優れており、これは隙間部で発生するガスのミキシングが性能向上の主要因と考えられている。   In order to protect the environment, exhaust gas purification regulations for internal combustion engines mounted on vehicles have been strengthened, and as a result, it has been required to further increase the purification efficiency of catalysts installed in the exhaust passages of internal combustion engines. ing. Conventionally, as a typical catalyst system provided on an exhaust passage of an internal combustion engine, there are a single catalyst system (single carrier) and a tandem catalyst system (two carriers). In the case of a tandem catalyst system, a gap is secured between the upstream catalyst and the downstream catalyst, and the exhaust gas that reaches here is mixed and then flows to the downstream catalyst. It becomes. For this reason, the tandem catalyst is generally superior to the single catalyst, and it is considered that the mixing of the gas generated in the gap is the main factor for improving the performance.

なお、特開平9−195757号公報(特許文献1)には触媒コンバータが開示される。この触媒コンバータはそのケーシング内に排気ガス流動方向に沿って互いに隙間部を介して3段に触媒担体を配設し、各担体の流路抵抗が出口側ほど増すように設定し、これにより隙間部で排ガスを攪拌して排ガスを全域に分散し、浄化効率を向上させている。   JP-A-9-195757 (Patent Document 1) discloses a catalytic converter. In this catalytic converter, catalyst carriers are arranged in three stages in the casing along the exhaust gas flow direction via gaps, and the flow resistance of each carrier is set so as to increase toward the outlet side. The exhaust gas is agitated in the section to disperse the exhaust gas throughout the region, thereby improving the purification efficiency.

特開平9−195757号公報JP-A-9-195757

本発明者は、さらに排ガス浄化機能向上のため、検討を進めた。以下にその検討の過程および結果を述べる。
ここでは、図9(a),(b)に示すように、シングル触媒システム(単一担体)100の担体101上のA,Bの二箇所とタンデム触媒システム(2担体)200の担体201,202上のC,Dの二箇所との各温度を測定した。ここでは、実車運転中の触媒内の温度分布を計測した。この際、運転状態として、10.15モード中の20km/hと、定常走行20km/hのタンデムとシングルブリック触媒システムの温度分布を採取し、図9(c),(d)を得た。
The present inventor further studied to improve the exhaust gas purification function. The examination process and results are described below.
Here, as shown in FIGS. 9A and 9B, two locations A and B on a carrier 101 of a single catalyst system (single carrier) 100 and a carrier 201 of a tandem catalyst system (two carriers) 200, Each temperature at two locations C and D on 202 was measured. Here, the temperature distribution in the catalyst during actual vehicle operation was measured. At this time, the temperature distribution of the tandem and the single brick catalyst system of 20 km / h in the 10.15 mode and the steady running of 20 km / h was sampled as the operating state, and FIGS. 9C and 9D were obtained.

更に、図10に示すように、10・15モード中の20km/hにおいて、タンデム触媒システムの前段と後段担体201,202上のC,Dの二箇所の各平均温度(336,373℃)は共に、シングルブリック触媒システムの担体101上の同じ位置A,Bの二箇所の平均温度(310,366℃)に比べて高かった。ここで、特筆すべき点は、タンデム触媒システム200ではシングルブリック触媒システム100に比べて、前段担体201の温度上昇ufが後段担体202の温度上昇urよりも大きかったことである。なお、連続する定常走行20km/hにおいて、タンデム触媒システム200の前段と後段担体201、202の平均温度はともにシングルブリック触媒システムの同じ位置に比べて高かった。   Furthermore, as shown in FIG. 10, at 20 km / h in the 10 · 15 mode, the average temperatures (336, 373 ° C.) at the two positions C and D on the front stage and the rear stage supports 201 and 202 of the tandem catalyst system are as follows. Both were higher than the average temperature (310, 366 ° C.) at two locations at the same positions A and B on the carrier 101 of the single brick catalyst system. Here, it should be noted that in the tandem catalyst system 200, the temperature rise uf of the front carrier 201 is larger than the temperature rise ur of the rear carrier 202 compared to the single brick catalyst system 100. In continuous running at 20 km / h, the average temperatures of the front and rear carriers 201 and 202 of the tandem catalyst system 200 were both higher than the same position of the single brick catalyst system.

このデータ特性について推考すると、シングルブリック触媒システム100に比べ、タンデム触媒システム200ではフロント及びリア各々の触媒担体201、202の容量が小さいため、過渡運転域においては、タンデムの各触媒の方が温度の上昇が早くなる可能性がある。しかしながら、上述のデータ特性においては、熱容量の影響がない定常運転においても、リアだけでなくフロントについても、タンデムの方が触媒温度が高くなっていることが特徴的であり、このことは次に述べる排気逆流の影響が大きいことを示していると推測される。なお、冷態時においてもタンデム触媒システムの方が触媒温度が高くなることが同様に確認されている。   In consideration of this data characteristic, since the capacity of the front and rear catalyst carriers 201 and 202 is smaller in the tandem catalyst system 200 than in the single brick catalyst system 100, the temperature of each tandem catalyst is higher in the transient operation region. May increase faster. However, the above-mentioned data characteristics are characterized in that the catalyst temperature is higher in tandem not only in the rear but also in the front, even in steady operation without the influence of heat capacity. It is presumed that this indicates that the influence of exhaust backflow described is large. It has also been confirmed that the catalyst temperature is higher in the tandem catalyst system even in the cold state.

ここで、排気逆流についてさらに検討を進めた。排気逆流とは通常の順方向(シリンダヘッドからテールパイプ方向)の排気流れとは逆にテールパイプからシリンダヘッド方向へ流れる排気として定義できる。なお、ここでは圧力脈動等の圧力波ではなく排気ガス流体そのものの物質的な移動を逆流としている。
排気逆流れの要因としては以下の3点が考えられる。
1) 筒内圧と排圧との差による排気の筒内への逆流
2) バルブオーバラップによる吸気側への吹き返し
3) 排気管内のガス冷却による体積減少
そこで、本発明者は、図11に示すような放電タフト法を適用した逆流計測装置300を用い、タンデム隙間部の逆流の発生特性を計測した。ここでは、タンデム触媒システムのケーシング301内にスパークプラグ302を装着し、このスパークプラグにはコイル303、パルス発生器304、電源305からなるスパーク発生装置305を接続している。ケーシング301はその中央壁部の一部が耐熱ガラス(クオーツ・ガラス)306で形成され、同耐熱ガラス306を通してスパークプラグ302のスパーク画像(図12参照)をハイスピードカメラであるビデオカメラ307で撮影し、その画像をデータ蓄積部308に録画し、モニタ309で再生するような録画装置310を備える。
Here, further investigation was made on the exhaust backflow. The exhaust reverse flow can be defined as exhaust flowing from the tail pipe to the cylinder head in the opposite direction of the normal forward (cylinder head to tail pipe) exhaust flow. Here, not the pressure wave such as pressure pulsation but the material movement of the exhaust gas fluid itself is a reverse flow.
The following three points can be considered as factors of the exhaust backflow.
1) Backflow of exhaust into cylinder due to difference between in-cylinder pressure and exhaust pressure 2) Blow back to intake side due to valve overlap 3) Volume reduction due to gas cooling in exhaust pipe Therefore, the present inventor shows FIG. Using the backflow measuring device 300 to which such a discharge tuft method was applied, the backflow generation characteristics of the tandem gap were measured. Here, a spark plug 302 is mounted in a casing 301 of a tandem catalyst system, and a spark generator 305 including a coil 303, a pulse generator 304, and a power source 305 is connected to the spark plug. A part of the central wall portion of the casing 301 is formed of heat resistant glass (quartz glass) 306, and a spark image (see FIG. 12) of the spark plug 302 is photographed by the video camera 307 which is a high speed camera through the heat resistant glass 306. And a recording device 310 that records the image in the data storage unit 308 and reproduces the image on the monitor 309.

このような逆流計測装置300を用いて、図13(a)に示す条件で、スパーク画像(図12参照)に示すような放電時アークの順方向(排ガスの順流れを示す)f1と逆流方向(排ガスの逆流を示す)f2と流動停止時f0を測定し、図13(b)に示すような逆流比率を取得した。ここで明らかなように、エンジン750rpmでの運転時にはA,B,Cのエンジンモータリング駆動時における逆流率が30%以下であるのに対し、Dのエンジン駆動時(ファイアリング)における逆流比率が45%程度と高レベルとなっている。これはエンジン駆動時の排気ガスの逆流は、排気管(図9(a)の符号400)での排ガスの放熱による排ガス容積変動が大きく影響していることが明らかであります。   Using such a backflow measuring device 300, under the conditions shown in FIG. 13A, the forward direction of the arc during discharge (showing the forward flow of exhaust gas) f1 and the backflow direction as shown in the spark image (see FIG. 12). F2 (indicating the backflow of exhaust gas) and f0 when the flow was stopped were measured, and a backflow ratio as shown in FIG. 13B was obtained. As is apparent here, the reverse flow rate when the engine motoring drive of A, B, C is 30% or less when operating at 750 rpm, whereas the reverse flow ratio when the engine is driven (fireing) is D. It is a high level of about 45%. It is clear that the exhaust gas backflow when the engine is driven is greatly affected by the exhaust gas volume fluctuation due to the heat radiation of the exhaust gas in the exhaust pipe (reference numeral 400 in FIG. 9A).

上述のように、従来装置や特許文献1等の触媒装置では、単に、前段触媒と後段触媒を有するタンデム触媒システムを採用することにより、触媒装置のケーシング内での前段触媒と後段触媒との間の隙間部での排ガスの攪拌特性を用い排ガスの攪拌機能を強化して排気浄化効率を改善している。
本発明は、上述のように、排気管を流動する排ガスの排気逆流を利用して排気浄化効率を向上させることが可能である点に着目して成されたものであり、排気浄化効率をより向上させることのできる排気ガス浄化装置を提供するものである。
As described above, in the conventional apparatus and the catalyst apparatus of Patent Document 1 or the like, the tandem catalyst system having the front stage catalyst and the rear stage catalyst is simply adopted, so that the space between the front stage catalyst and the rear stage catalyst in the casing of the catalyst apparatus is reduced. Exhaust gas purification efficiency is improved by strengthening the exhaust gas agitating function using the exhaust gas agitation characteristics in the gaps.
The present invention has been made paying attention to the point that it is possible to improve the exhaust gas purification efficiency by utilizing the exhaust gas reverse flow of the exhaust gas flowing through the exhaust pipe as described above. An exhaust gas purification device that can be improved is provided.

上述の目的を達成するために、請求項1の排気ガス浄化装置は、内燃機関の本体より延出する排気管上に配備されたケーシングと同ケーシングに内装された担体と同担体に担持された触媒成分とを有した触媒コンバータを備えた排気ガス浄化装置において、上記担体の長さを上記ケーシング内に生じる逆流の長さと同等又は小さく設定したことを特徴とする。   In order to achieve the above object, an exhaust gas purifying apparatus according to claim 1 is supported on a casing disposed on an exhaust pipe extending from a main body of an internal combustion engine, a carrier housed in the casing, and the carrier. In the exhaust gas purifying apparatus including a catalytic converter having a catalytic component, the length of the carrier is set to be equal to or smaller than the length of the backflow generated in the casing.

請求項2の排気ガス浄化装置は、内燃機関の本体より延出する排気管上に配備されたケーシングと、同ケーシング内に排気路方向に沿って互いに空間を介して直列状に順次配備された複数の担体と、上記各担体に担持された触媒成分とを有した触媒コンバータを備えた排気ガス浄化装置において、上記複数の担体の少なくとも上流側の担体の長さを上記ケーシング内に生じる逆流の長さと同等又は小さく設定したことを特徴とする。   The exhaust gas purifying device according to claim 2 is sequentially arranged in series in the casing along the exhaust passage direction along the exhaust passage direction through the space between the casing and the casing disposed on the exhaust pipe extending from the main body of the internal combustion engine. In an exhaust gas purification apparatus including a catalytic converter having a plurality of carriers and a catalyst component supported on each of the carriers, the length of the carrier at least upstream of the plurality of carriers is reduced in the reverse flow generated in the casing. It is characterized by being set equal to or smaller than the length.

請求項3の排気ガス浄化装置は、請求項1又は2記載の排気ガス浄化装置において、上記逆流の長さは、少なくとも上記排気管から放熱することによる排気ガスの容積変動に基づいたことを特徴とする排気ガス浄化装置。   The exhaust gas purifying apparatus according to claim 3 is the exhaust gas purifying apparatus according to claim 1 or 2, wherein the length of the backflow is based on a volume variation of the exhaust gas due to heat radiation from at least the exhaust pipe. Exhaust gas purification device.

請求項4の排気ガス浄化装置は、請求項1乃至3のいずれか一つに記載の内燃機関の排気ガス浄化装置において、上記逆流は少なくとも冷態アイドル時に生じるよう排気管長さ、或いは排気ガス入口側の担体の長さが設定されることを特徴とする。   The exhaust gas purifying apparatus according to claim 4 is the exhaust gas purifying apparatus for an internal combustion engine according to any one of claims 1 to 3, wherein the reverse flow is generated at least during cold idling, or an exhaust gas inlet. The length of the carrier on the side is set.

請求項5の排気ガス浄化装置は、請求項1乃至4のいずれか一つに記載の内燃機関の排気ガス浄化装置において、上記逆流の長さに応じて長さが設定される上記担体の容量を上記ケーシング内から上記内燃機関側に流出する排気ガス量と同等又は小さく設定したことを特徴とする。   The exhaust gas purifying apparatus according to claim 5 is the exhaust gas purifying apparatus for an internal combustion engine according to any one of claims 1 to 4, wherein the carrier capacity is set according to the length of the backflow. Is set to be equal to or smaller than the amount of exhaust gas flowing out from the casing to the internal combustion engine side.

請求項1の発明によれば、担体を通過した排気ガスが一旦担体外で攪拌された上で、再度担体全体をカバーするだけ逆流するので、担体の触媒成分と排気ガスの浄化反応を促進でき、これに伴う担体の温度上昇を図れ、浄化効率を向上できる。   According to the first aspect of the present invention, the exhaust gas that has passed through the carrier is once stirred outside the carrier and then flows back as long as it covers the entire carrier. Therefore, the purification reaction between the catalyst component of the carrier and the exhaust gas can be promoted. As a result, the temperature of the carrier can be increased and the purification efficiency can be improved.

請求項2の発明によれば、ケーシングの少なくとも上流側の担体を通過した排気ガスが一旦空間で攪拌された上で、再度排気ガス入口側担体の全体をカバーするだけ逆流するので、同担体の触媒成分と排気ガスの浄化反応を促進でき、これに伴う上流側触媒及び後段側の触媒の触媒温度上昇を図れ、これによる浄化効率を促進できる。   According to the second aspect of the present invention, the exhaust gas that has passed through the carrier on at least the upstream side of the casing is once stirred in the space and then backflowed again to cover the entire exhaust gas inlet side carrier. The purification reaction of the catalyst component and the exhaust gas can be promoted, the catalyst temperature of the upstream side catalyst and the downstream side catalyst can be increased accordingly, and the purification efficiency by this can be promoted.

請求項3の発明によれば、排気ガスの逆流の長さを少なくとも排気管から放熱することによる排気ガスの容積変動を考慮しているため、担体の長さを適切に設定できる。   According to the third aspect of the present invention, the length of the backflow of the exhaust gas is considered at least due to the volume fluctuation of the exhaust gas due to heat dissipation from the exhaust pipe, and therefore the length of the carrier can be set appropriately.

請求項4の発明によれば、冷態アイドル時の触媒の温度上昇による暖気促進を図れ、浄化効率がより促進される。   According to the fourth aspect of the present invention, warm-up can be promoted by the temperature rise of the catalyst during cold idling, and the purification efficiency is further promoted.

請求項5の発明によれば、逆流する排気ガスが効率よく担体全体をカバーするので、担体の触媒成分と排気ガスの浄化反応を促進でき、これに伴う担体の温度上昇を図れ、浄化効率を向上できる。   According to the fifth aspect of the present invention, the exhaust gas that flows backward efficiently covers the entire carrier, so that the purification reaction of the catalyst component of the carrier and the exhaust gas can be promoted, the temperature of the carrier can be increased accordingly, and the purification efficiency can be improved. It can be improved.

図1にはこの発明の一実施形態としての排気ガス浄化装置と、同装置を装備する内燃機関を示した。内燃機関は筒内噴射型4サイクル多気筒ガソリンエンジン(以後、単にエンジン1と記す)で、このエンジン1の本体内には上下摺動するピストン2を有したシリンダ3が気筒数(図には1つのみ示す)配備される。このエンジン1は駆動時において、シリンダ3内の燃焼室4がエアークリーナAC、スロットル弁SVを介して吸気路5からの吸気を吸入し、エンジン制御装置(ECU)10により所定の燃料噴射時期に電磁式の燃料噴射弁6を駆動して燃料噴射を行い、更に、点火プラグ7を適時に駆動して点火処理を行う。これによりエンジン1は混合気の燃焼による出力発生作動を行い、排ガスを排気路8に排出することで4サイクル運転モードでの駆動を行う。   FIG. 1 shows an exhaust gas purifying apparatus as an embodiment of the present invention and an internal combustion engine equipped with the apparatus. The internal combustion engine is an in-cylinder injection type four-cycle multi-cylinder gasoline engine (hereinafter simply referred to as the engine 1), and a cylinder 3 having a piston 2 that slides up and down in the body of the engine 1 has a number of cylinders (in the figure, (Only one is shown) deployed. When the engine 1 is driven, the combustion chamber 4 in the cylinder 3 sucks intake air from the intake passage 5 through the air cleaner AC and the throttle valve SV, and the engine control unit (ECU) 10 sets the fuel injection timing at a predetermined fuel injection timing. The electromagnetic fuel injection valve 6 is driven to perform fuel injection, and the spark plug 7 is driven in a timely manner to perform an ignition process. As a result, the engine 1 performs an output generating operation by the combustion of the air-fuel mixture, and the exhaust gas is discharged to the exhaust passage 8 to drive in the 4-cycle operation mode.

ここでエンジン本体からは各気筒毎に略水平方向に排気ポート9が形成され、各排気ポート(図1には1つのみ示す)には排気路8を形成する排気マニホールド11と、排気路8を形成する排気管12と、排気管12の端部に配備される排気ガス浄化装置の要部をなす触媒コンバータ13と、下流側排気管14と、図示しないマフラーがこの順に連結され、排気を排気路8に沿って外部に排出可能に形成される。
触媒コンバータ13の上流側の排気管12には空燃比A/Fを検出する空燃比センサ16が設けられている。
Here, from the engine body, an exhaust port 9 is formed in a substantially horizontal direction for each cylinder, and an exhaust manifold 11 that forms an exhaust passage 8 is formed in each exhaust port (only one is shown in FIG. 1), and an exhaust passage 8. , A catalytic converter 13 that forms the main part of the exhaust gas purification device disposed at the end of the exhaust pipe 12, a downstream exhaust pipe 14, and a muffler (not shown) are connected in this order to It is formed along the exhaust path 8 so as to be discharged to the outside.
An air-fuel ratio sensor 16 that detects an air-fuel ratio A / F is provided in the exhaust pipe 12 upstream of the catalytic converter 13.

図1、2に示すように、触媒コンバータ13は車両の床17の下に配備されたタンデム触媒システムを成しており、排気管12及び下流側排気管12に連続するよう内径を拡大させた形状の筒状のケーシング18と、ケーシング18内にずれなく配備されるハニカム構造を成す前段担体21及び後段担体22と、前段担体21及び後段担体22管の隙間部20と、前後担体21,22にそれぞれ形成され軸方向に貫通する多数の貫通孔23と、貫通孔23の耐火性無機酸化物からなる内壁24と、同内壁24に担持された貴金属の触媒成分(不図示)とを有する。   As shown in FIGS. 1 and 2, the catalytic converter 13 forms a tandem catalyst system disposed under the vehicle floor 17, and the inner diameter is expanded so as to be continuous with the exhaust pipe 12 and the downstream exhaust pipe 12. A cylindrical casing 18 having a shape, a front carrier 21 and a rear carrier 22 having a honeycomb structure arranged without deviation in the casing 18, a gap portion 20 between the front carrier 21 and the rear carrier 22, and front and rear carriers 21 and 22. And a plurality of through-holes 23 that pass through in the axial direction, an inner wall 24 made of a refractory inorganic oxide in the through-hole 23, and a noble metal catalyst component (not shown) supported on the inner wall 24.

エンジン1の本体より車両の床17の下の触媒コンバータ13に排気を導く排気マニホールド11と排気管12からなる排気管長さ(以後、ここでの排気官長さと記す)Leは比較的長く、その放熱面積も比較的大きい。このためエンジン本体より排出された高温の排ガスは瞬時に冷却され、触媒コンバータ13に達する時には容積が比較的減縮するように形成される。ここでの排気管長さLeは、特に、後述するように、排ガス逆流を生成できるような長さに設定される。   The length of the exhaust pipe (hereinafter referred to as the exhaust officer length) Le consisting of an exhaust manifold 11 and an exhaust pipe 12 that guides exhaust from the main body of the engine 1 to the catalytic converter 13 below the floor 17 of the vehicle is relatively long. The heat dissipation area is also relatively large. For this reason, the high-temperature exhaust gas discharged from the engine main body is instantaneously cooled, and when reaching the catalytic converter 13, the volume is relatively reduced. The exhaust pipe length Le here is set to a length that can generate an exhaust gas backflow, as will be described later.

前段担体21及び後段担体22は主成分がコージェライトで、これにより各貫通孔23の内面近傍の担持層を含むハニカム構造体全体が形成される。前段担体21及び後段担体22の各担持層には、三元触媒が担持される。即ち、アルミナを基材とし添加物としてセリア、ジルコニアなどの酸素ストレージ材が担持されるとともに、NOx還元処理、HCおよびCO酸化処理性能の高い貴金属の触媒成分35としてPt(プラチナ),Pd(パラジウム),Rh(ロジウム)のうち少なくとも1種類が担持される。上流側及び下流側の三元触媒は理論空燃比近傍の雰囲気で排気ガス中のCO、HCを酸化し、NOxを還元して浄化する三元機能を有する。この際、前段の触媒については、冷態時のHC低減を重視し、貴金属を高担持にすることが好ましい。それに対して、後段の触媒については、温態時のNOx低減を重視するために、貴金属は前段より少なくし低い担持量で構わないが、触媒容量は必要十分なだけ大きくし少なくとも前段より大きいことが好ましい。   The main carrier 21 and the rear carrier 22 are cordierite as a main component, whereby the entire honeycomb structure including the supporting layer in the vicinity of the inner surface of each through hole 23 is formed. A three-way catalyst is supported on each supporting layer of the front carrier 21 and the rear carrier 22. That is, an oxygen storage material such as ceria and zirconia is supported as an additive using alumina as a base material, and Pt (platinum) and Pd (palladium) are used as catalyst components 35 of noble metals having high NOx reduction treatment, HC and CO oxidation treatment performance. ), Rh (rhodium) is supported. The upstream and downstream three-way catalysts have a three-way function of oxidizing CO and HC in the exhaust gas and reducing and purifying NOx in an atmosphere near the stoichiometric air-fuel ratio. At this time, with respect to the catalyst in the previous stage, it is preferable to place a high amount of noble metal on the basis of the importance of reducing HC in the cold state. On the other hand, for the latter stage catalyst, in order to attach importance to the reduction of NOx in the warm state, the precious metal may be less than the former stage and may have a lower loading amount, but the catalyst capacity should be increased as much as necessary and at least larger than the preceding stage. Is preferred.

ここで、前後担体21,22はその容積を規定する排気路8方向の長さLf、Lrが排気浄化能力を考慮して設定され、特に、前段担体21は後述するように、排気路8で生じる排ガス逆流の逆流長Lrf(図3(b)参照)を考慮して設定される。   Here, the lengths Lf and Lr in the direction of the exhaust path 8 that define the volume of the front and rear carriers 21 and 22 are set in consideration of the exhaust gas purification capability. In particular, the front carrier 21 has an exhaust path 8 as described later. It is set in consideration of the backflow length Lrf (see FIG. 3B) of the generated exhaust gas backflow.

なお、図3(a)に示すように、排気ガスが排気管12を流動するとき、順方向nf流れにおいて、ケーシング18がその入り口部分で管径が拡大することで径方向の速度分布に相違が生じ、図3(b)、(c)に示すように、逆流れrfの場合は,排気管径変化の影響を受けることがないため、触媒内の流速分布が均一であると考えられる。また、排気流れが順流れnfから逆流れrfに反転する際には、瞬間的にガスが一旦止まるが、その際には上流―下流方向の慣性がないために、タンデム隙間部においては担体の径方向の圧力差等によって径方向の流れが生じ、また、径方向のガス濃度差等によってガス拡散が進行し、以後の流動においてガス濃度及び温度の均一化が図られる。この場合、隙間部20のガスの熱および未反応物質が、前段触媒21内に均一に移動し、触媒反応の促進がもたらされる。このため、前段触媒の活性が高まり、その反応熱は後段触媒22入口の排ガス温度を上昇させ、後段触媒の浄化性能をも向上させる。すなわち、図3(a)に図示される状態のように順方向流れnfのみであれば、触媒の外周部分は流入するガス量が少なく触媒の温度は低いため、浄化効率は低い。すなわち、触媒外周部の貴金属は有効に利用されず無駄となっており、触媒全体としての実質的な利用効率は低い。   As shown in FIG. 3 (a), when exhaust gas flows through the exhaust pipe 12, in the forward direction nf flow, the casing 18 is enlarged in the diameter of the pipe at the entrance portion, so that the radial velocity distribution is different. As shown in FIGS. 3B and 3C, in the case of the reverse flow rf, the flow velocity distribution in the catalyst is considered to be uniform because it is not affected by the exhaust pipe diameter change. In addition, when the exhaust flow reverses from the forward flow nf to the reverse flow rf, the gas temporarily stops, but at that time, there is no inertia in the upstream-downstream direction. A radial flow is generated by a radial pressure difference or the like, and gas diffusion proceeds by a radial gas concentration difference or the like, and the gas concentration and temperature are made uniform in the subsequent flow. In this case, the heat of the gas in the gap 20 and the unreacted substance move uniformly into the pre-catalyst 21 to promote the catalytic reaction. For this reason, the activity of the front catalyst increases, and the reaction heat increases the exhaust gas temperature at the inlet of the rear catalyst 22 and improves the purification performance of the rear catalyst. That is, if only the forward flow nf is in the state shown in FIG. 3A, the purification efficiency is low because the amount of gas flowing into the outer peripheral portion of the catalyst is small and the temperature of the catalyst is low. That is, the precious metal on the outer periphery of the catalyst is not effectively used and is wasted, and the substantial utilization efficiency of the catalyst as a whole is low.

一方で、図3(b)(c)に図示されるように逆方向流れrfの場合は、触媒外周部分のガス量は多くなると同時に、順方向流れ時に触媒中央部分を通過した高温のガスが逆方向流れ時に外周部も通過するため、触媒外周の温度は上昇する。それによって、触媒外周部の浄化効率は高くなる。すなわち、排気ガスの逆流れにより、触媒外周部の貴金属も有効に利用されることとなり、触媒全体としての実質的な利用効率は高くなる。また、順方向流れ時に触媒の外周部を通過した排気ガスは、外周部の触媒温度が低いため十分に浄化されず、未浄化物質が多量に含まれた状態で、タンデムの隙間まで吹き抜けることとなる。しかしながら、排気ガスが反転する際の隙間部でのガス拡散、混合により、逆流時は、その未反応物質が既に順方向流れの反応熱によって高温となっている触媒中央部分を通過することになる。これによって当該未反応物質は良好に浄化されるとともに、この未反応物質の反応熱によりさらに触媒中央部の温度も上昇する。   On the other hand, as shown in FIGS. 3B and 3C, in the case of the backward flow rf, the amount of gas at the outer periphery of the catalyst increases, and at the same time, the high-temperature gas that has passed through the center of the catalyst during forward flow flows. Since the outer peripheral portion also passes when flowing in the reverse direction, the temperature of the outer periphery of the catalyst rises. Thereby, the purification efficiency of the catalyst outer peripheral portion is increased. That is, due to the reverse flow of the exhaust gas, the precious metal on the outer periphery of the catalyst is also effectively used, and the substantial utilization efficiency of the entire catalyst is increased. In addition, the exhaust gas that has passed through the outer periphery of the catalyst during forward flow is not sufficiently purified because the catalyst temperature at the outer periphery is low, and blows up to the tandem gap in a state where a large amount of unpurified material is contained. Become. However, due to gas diffusion and mixing in the gap when the exhaust gas is reversed, the unreacted substance passes through the center of the catalyst, which is already at a high temperature due to the reaction heat of the forward flow, during reverse flow. . As a result, the unreacted substance is well purified, and the temperature at the center of the catalyst is further increased by the reaction heat of the unreacted substance.

次に、エンジン1の排ガス逆流の逆流長Lrfの測定について説明する。排気逆流は、上述のように本発明者の検討によれば、温態,冷態,過渡,定常等の運転状態によらず触媒浄化性能向上に有効であるが、最も総排ガス値への寄与が大きく触媒浄化性能向上が要望される運転状態として、始動直後の冷態アイドル時があげられる。そこで、冷態始動とは雰囲気温度が25℃程度からの始動を指す。   Next, measurement of the backflow length Lrf of the exhaust gas backflow of the engine 1 will be described. As described above, the exhaust backflow is effective in improving the catalyst purification performance regardless of the operating state such as warm, cold, transient, steady, etc., as described above, but it contributes most to the total exhaust gas value. As an operation state in which a large catalyst purification performance is desired, there is a cold idling immediately after starting. Thus, cold start refers to start from an ambient temperature of about 25 ° C.

ここでは図4に示すような排ガス逆流長測定装置40を用いる。この排ガス逆流長測定装置40は上述の図11で説明した放電タフト法を適用した逆流計測装置300と同様の部材を多く含み、ここでは重複説明を簡略化し、同一部材に同一符合を付した。排ガス逆流長測定装置40はエンジン1の排気管12及び実装されると同様の構成を採る計測用の触媒コンバータ(以後、計測コンバータ41と記す)に装着される。計測コンバータ41はケーシング42の中央胴部の一部が耐熱ガラス(クオーツ・ガラス)43で形成され、ケーシング42の中央胴部内の前段担体21及び後段担体22間の隙間部39に配設され耐熱ガラス43を通して目視可能なスパークプラグ44と、前段担体21の直前位置に装着される熱線流速計45とを備える。   Here, an exhaust gas backflow length measuring device 40 as shown in FIG. 4 is used. The exhaust gas backflow length measuring device 40 includes many members similar to the backflow measuring device 300 to which the discharge tuft method described with reference to FIG. 11 is applied. Here, the duplicate description is simplified, and the same members are denoted by the same reference numerals. The exhaust gas backflow length measuring device 40 is mounted on the exhaust pipe 12 of the engine 1 and a measurement catalytic converter (hereinafter referred to as a measurement converter 41) having the same configuration as that of the engine 1. In the measurement converter 41, a part of the central body of the casing 42 is formed of heat-resistant glass (quartz glass) 43, and is disposed in the gap 39 between the front carrier 21 and the rear carrier 22 in the central body of the casing 42. A spark plug 44 that is visible through the glass 43 and a hot-wire anemometer 45 that is mounted immediately before the front carrier 21 are provided.

スパークプラグ44にはコイル303、パルス発生器304、電源305からなるスパーク発生装置305が接続される。
耐熱ガラス(クオーツ・ガラス)43を通してスパーク画像を撮影するビデオカメラ46が配備され、ビデオカメラ46の画像はデータ蓄積部47に録画され、データ蓄積部47は録画操作装置50に接続され、録画操作装置50内の再生部49によって録画画像等がモニタ48で再生できるよう構成される。
A spark generator 305 including a coil 303, a pulse generator 304, and a power source 305 is connected to the spark plug 44.
A video camera 46 that captures a spark image through a heat-resistant glass (quartz glass) 43 is provided, and the image of the video camera 46 is recorded in a data storage unit 47, and the data storage unit 47 is connected to a recording operation device 50 for recording operation. A recorded image or the like can be reproduced on the monitor 48 by a reproducing unit 49 in the apparatus 50.

前段担体21直前に配備された熱線流速計45は、図5(a)、(b)に示すように排気路8中央に配備され、ケーシング42に固定された枠材51と、同枠材51の両側端間に支持された電熱線52と、電熱線52に定電流を供給する定電流回路53と、排ガスの通過による電熱線の冷却に伴う電気抵抗変化を測定する抵抗測定器である風速測定器54とを備える。また、流速がゼロでも電気抵抗がゼロとはならないある値となり、その値は排ガス通過による冷却を伴わない場合の電熱線の雰囲気温度に依存する。そこで雰囲気温度を測定するための温度センサを備える(図示せず)。枠材51の中央部は排ガスが順流nfで電熱線52が冷却されず、逆流rfで冷却されるように、C字形断面形状(図5(b)参照)が形成されている。なお、熱線流速計45の電気抵抗値は録画操作装置50に出力され、録画操作装置50の表示制御部55が電気抵抗値とスパーク画像とをモニタ上で比較表示する。これによって、前段担体21の前後の流動特性を測定できる。   As shown in FIGS. 5A and 5B, the hot-wire anemometer 45 provided immediately before the front carrier 21 is provided at the center of the exhaust passage 8 and fixed to the casing 42. A heating wire 52 supported between both ends of the heating wire, a constant current circuit 53 for supplying a constant current to the heating wire 52, and a wind speed which is a resistance measuring device for measuring a change in electrical resistance accompanying cooling of the heating wire due to passage of exhaust gas. And a measuring instrument 54. In addition, even if the flow rate is zero, the electric resistance does not become zero, and the value depends on the atmosphere temperature of the heating wire when there is no cooling due to exhaust gas passage. Therefore, a temperature sensor for measuring the ambient temperature is provided (not shown). A C-shaped cross section (see FIG. 5B) is formed at the center of the frame 51 so that the exhaust gas is cooled by the forward flow nf and the heating wire 52 is not cooled, but is cooled by the reverse flow rf. The electric resistance value of the hot-wire anemometer 45 is output to the recording operation device 50, and the display control unit 55 of the recording operation device 50 compares and displays the electric resistance value and the spark image on the monitor. Thereby, the flow characteristics before and after the front carrier 21 can be measured.

録画操作装置50にはエンジン1の制御装置であるECU10が信号回線で接続され、相互に信号の授受ができるよう構成される。ECU10はエンジン運転情報を取り込み、噴射ノズル6の燃料噴射制御や点火プラグ7の点火制御やスロットルSVの開度制御を実施し、エンジン1を冷態時暖機モードや定常運転モードや過渡運転モードで駆動するよう制御できる。   The recording operation device 50 is connected to an ECU 10 that is a control device of the engine 1 via a signal line so that signals can be exchanged with each other. The ECU 10 captures engine operation information, performs fuel injection control of the injection nozzle 6, ignition control of the spark plug 7, and opening control of the throttle SV, and the engine 1 is in the warm-up mode in the cold state, the steady operation mode, and the transient operation mode. It can be controlled to drive.

このような排ガス逆流長測定装置40は、エンジン1の駆動と共にスパーク発生装置305がスパークプラグ44を所定パルス幅で駆動し、スパークの流れ方向を計測して、例えば図12(a),(b),(c)に示す波形より排ガスが順方向f1か逆方向f2かを経時的に測定した。
一方、図6に示すように、熱線流速計45のデータが順方向の流れnf時には順方向の流れによる電熱線52の冷却が依存せず、抵抗値Rも小さい。これに対し、逆流rfが生じると電熱線52の冷却の程度が高まる。この際、予め抵抗値と流速の関係を実験的に求めておく。
このような排ガス逆流長測定装置によって、例えば、計測コンバータ41内に取り付けられる第1前段担体21の流路方向の長さがLc1あるいはLc2である場合、第1前段担体21のデータが図6のように得られたとする。
ここで、第1前段担体21の流路方向の長さがLf(=Lc1:図3(c)参照)の場合を図6のデータで説明する。第1前段担体21のデータでは、スパーク画像をもとに、前段担体21と後段担体22の間の隙間部20における流れが逆流f2する領域が間歇的に順次計測された。この逆流領域と同期して計測された熱線流速計45の抵抗値Rのデータは順方向nfの流れの領域で電熱線52の冷却がなく、低抵抗値R0を示し、逆流域に入っている間は抵抗値がRaに上昇している。
In such an exhaust gas backflow length measuring device 40, the spark generator 305 drives the spark plug 44 with a predetermined pulse width while driving the engine 1, and measures the flow direction of the spark, for example, FIG. ) And (c), it was measured over time whether the exhaust gas was in the forward direction f1 or the reverse direction f2.
On the other hand, as shown in FIG. 6, when the data of the hot wire anemometer 45 is in the forward flow nf, the cooling of the heating wire 52 by the forward flow does not depend, and the resistance value R is also small. On the other hand, when the backflow rf occurs, the degree of cooling of the heating wire 52 increases. At this time, the relationship between the resistance value and the flow velocity is experimentally obtained in advance.
For example, when the length of the first front carrier 21 attached in the measurement converter 41 in the flow path direction is Lc1 or Lc2, the data of the first front carrier 21 is shown in FIG. And so on.
Here, the case where the length of the first front carrier 21 in the flow path direction is Lf (= Lc1: see FIG. 3C) will be described with reference to the data of FIG. In the data of the first front carrier 21, based on the spark image, the region where the flow in the gap portion 20 between the front carrier 21 and the rear carrier 22 reversely flows f <b> 2 was sequentially measured. The data of the resistance value R of the hot-wire anemometer 45 measured in synchronization with the reverse flow region indicates that the heating wire 52 is not cooled in the flow region in the forward direction nf, shows a low resistance value R0, and enters the reverse flow region. In the meantime, the resistance value increases to Ra.

ここで排気行程にある気筒から排気管12内に流入した高温ガスは瞬時に放熱により容積を減縮して先端部の流れが前段触媒通過後に隙間部20に達し、その際に順方向の速度成分がゼロf0(図12(b)参照)に達する。しかも、その直後より排気管12内の排ガスの冷却減縮が更に進んで逆流rfが発生する。この逆流rfは次の排気行程の気筒からの高温排ガスの流出による順方向の流れnfによって打ち消され、再度、順流れに戻ることでこの回の逆流rfが終了する。   Here, the high-temperature gas flowing into the exhaust pipe 12 from the cylinder in the exhaust stroke instantaneously reduces its volume due to heat dissipation, and the flow at the tip reaches the gap 20 after passing through the pre-stage catalyst. At that time, the forward velocity component Reaches zero f0 (see FIG. 12B). In addition, immediately after that, the cooling and reduction of the exhaust gas in the exhaust pipe 12 further proceeds, and a backflow rf is generated. The reverse flow rf is canceled out by the forward flow nf due to the outflow of the high-temperature exhaust gas from the cylinder in the next exhaust stroke, and the reverse flow rf is completed by returning to the forward flow again.

ここでは、簡単化のため、逆流中の流速は一定であり、その間の抵抗値も一定であったとする。この逆流中の抵抗値Raから、逆流の流速が上述のようにあらかじめ求めた抵抗値と流速の関係についての実験的結果に基づき算出される。抵抗値Raのときの流速を逆流流速Xa(mm/ms)であったとする。また、図6に示すように、熱線流速計45のデータを元に、逆流が継続していた逆流時間ta(ms)を求めることができる。以上で求められた逆流流速Xa(mm/ms)および逆流時間ta(ms)から、逆流長さLrf(mm)を求めることができる。ここでは、逆流中の流速をXa一定としていることから、下記の式により逆流長さLrfを算出することができる。   Here, for simplification, it is assumed that the flow velocity during the backflow is constant and the resistance value during that time is also constant. From the resistance value Ra during the reverse flow, the flow velocity of the reverse flow is calculated based on the experimental result on the relationship between the resistance value and the flow velocity obtained in advance as described above. It is assumed that the flow velocity at the resistance value Ra is the reverse flow velocity Xa (mm / ms). In addition, as shown in FIG. 6, the backflow time ta (ms) during which the backflow has continued can be obtained based on the data of the hot-wire anemometer 45. The backflow length Lrf (mm) can be obtained from the backflow velocity Xa (mm / ms) and the backflow time ta (ms) obtained above. Here, since the flow velocity during the backflow is constant at Xa, the backflow length Lrf can be calculated by the following equation.

Lrf=Xa×ta
この逆流長さLrfと、担体長さを比較することにより、逆流が担体内をどこまで逆流しているかを判断可能となる。
ここでは逆流長Lrfより第1前段担体21の流路方向の長流路方向の長さLfが、図3(c)に示すように長すぎ、容積が大きすぎることとなり、第1前段担体21の全域をカバーした逆流の排ガスを受けることができず、第1前段担体21の温度上昇は比較的小さく、浄化効率を十分向上させることができない。
Lrf = Xa × ta
By comparing the backflow length Lrf and the carrier length, it is possible to determine how far the backflow is flowing back through the carrier.
Here, the length Lf in the long flow direction in the flow direction of the first first stage carrier 21 from the backflow length Lrf is too long as shown in FIG. Backflow exhaust gas that covers the entire area cannot be received, the temperature rise of the first pre-stage carrier 21 is relatively small, and the purification efficiency cannot be sufficiently improved.

次に、第1前段担体21の流路方向の長さがLf(=Lc2:図3(b)参照)の場合は、図3(b)に示すように、逆流長Lrfと第1前段担体21の流路方向の長さLfがほぼ一致することとなり、第1前段担体21の全域を排ガスがカバーする逆流を流すことができる。   Next, when the length of the first front carrier 21 in the flow path direction is Lf (= Lc2: see FIG. 3B), as shown in FIG. 3B, the backflow length Lrf and the first front carrier 21 The lengths Lf in the flow path direction of 21 substantially coincide with each other, and a reverse flow in which the exhaust gas covers the entire area of the first front carrier 21 can flow.

このため、第1前段担体21の温度上昇を十分促進することができ、浄化効率を十分向上させることができ、これに伴い、前段の反応熱によって後段に流入する排気の温度が上昇し後段担体22の温度上昇を図ることもでき、前後段の三元触媒の浄化効率を向上させることができる。なお、第1前段担体21の流路方向の長さLfが過度に短くされると、触媒の容量不足を招くこととなり、第1前段担体21の第1触媒による排気ガス浄化が十分に成されず、下流側に垂れ流しが生じる。そこで、このように逆流が得られる場合の第1前段担体21の流路方向の長さLfが過度に短い場合には、排気管12の長さLeや、管径の変更あるいは排気管の二重管化、排気管に保温材設置等を行なって放熱量の修正を行い、第1前段担体21の流路方向の長さLfを適量確保することが可能である。尚、排気管12の長さLe等を変更することによって放熱量を修正し、逆流長Lrfをコントロールすることについて、若干補足説明する。   For this reason, the temperature rise of the first front carrier 21 can be sufficiently promoted, and the purification efficiency can be sufficiently improved. Accordingly, the temperature of the exhaust gas flowing into the rear stage rises due to the reaction heat of the front stage, and the rear carrier The temperature can be increased by 22 and the purification efficiency of the three-way catalyst at the front and rear stages can be improved. If the length Lf of the first front carrier 21 in the flow path direction is excessively shortened, the capacity of the catalyst is insufficient, and exhaust gas purification by the first catalyst of the first front carrier 21 is not sufficiently performed. , Dripping occurs downstream. Therefore, when the length Lf in the flow path direction of the first front carrier 21 when the backflow is obtained in this way is excessively short, the length Le of the exhaust pipe 12 or the diameter of the exhaust pipe 12 can be changed or the two exhaust pipes can be changed. It is possible to correct the amount of heat radiation by making a double pipe, installing a heat insulating material in the exhaust pipe, etc., and securing an appropriate length Lf in the flow path direction of the first front carrier 21. A supplementary explanation will be given for correcting the heat release amount by changing the length Le of the exhaust pipe 12 and controlling the reverse flow length Lrf.

排気逆流は、排気管内で排ガスが冷却されることによるガス体積縮小により発生することから、排気管長さすなわちエンジンからの触媒搭載位置の影響を受ける。そこで、触媒搭載位置を固定とした上で逆流長に基づき第1前段担体の流路方向の長さLfを決定する代わりに、触媒搭載位置すなわち排気管長さLeを変更することにより逆流長Lrfを変化させ、逆流が第1前段担体の全域をカバーするように設定してもよい。より具体的には、図14(a)(b)(c)に示すように、排気管長さを変更することにより、逆流長さは変化する。図14(b)のケースにおいては、逆流量が少なすぎるため、逆流が触媒全体に届いていない。一方で、図14(c)のケースにおいては、逆流の利用に対しては問題ないが、触媒位置が遠すぎることによる他のデメリット、例えば触媒温度の低下という問題が発生する可能性がある。そこで、図14(a)のケースにおいては、逆流長Lrfと第1前段担体21の流路方向の長さLfがほぼ一致することとなり、逆流を有効に利用可能となる。尚、この図14において、触媒の流路方向長さは(a)(b)(c)で同じとしている。   Since the exhaust backflow is generated by reducing the gas volume due to the exhaust gas being cooled in the exhaust pipe, it is affected by the length of the exhaust pipe, that is, the catalyst mounting position from the engine. Therefore, instead of determining the length Lf of the first front carrier in the flow path direction based on the backflow length after fixing the catalyst mounting position, the backflow length Lrf is changed by changing the catalyst mounting position, that is, the exhaust pipe length Le. It may be changed so that the backflow covers the entire area of the first front carrier. More specifically, as shown in FIGS. 14A, 14B, and 14C, the backflow length is changed by changing the exhaust pipe length. In the case of FIG. 14B, the back flow does not reach the entire catalyst because the back flow is too small. On the other hand, in the case of FIG. 14C, there is no problem with the use of the backflow, but there is a possibility that other disadvantages due to the catalyst position being too far, such as a problem of a decrease in the catalyst temperature, may occur. Therefore, in the case of FIG. 14A, the backflow length Lrf and the length Lf of the first front carrier 21 in the flow path direction substantially coincide with each other, and the backflow can be used effectively. In FIG. 14, the length of the catalyst in the flow path direction is the same in (a), (b), and (c).

また、前段担体21の流路方向の長さLfを逆流長Lrfにほぼ一致させるだけでなく、前段担体21の容量を逆流時にケーシング18から排気管12に流れ出す排気ガス容量と同等または小さく設定することが好ましい。この場合、逆流が確実に触媒全体に届くことになり、特に前段担体21の容量と排気管12に流れ出す排気ガス容量とをほぼ一致させた場合、排気逆流をすべて触媒に接触させることができ排気ガス逆流による浄化反応の促進担体の温度上昇を最大限に引き出すことができる。   Further, not only the length Lf of the upstream carrier 21 in the flow path direction substantially coincides with the reverse flow length Lrf, but also the capacity of the upstream carrier 21 is set to be equal to or smaller than the exhaust gas capacity flowing from the casing 18 to the exhaust pipe 12 during the backward flow. It is preferable. In this case, the reverse flow surely reaches the entire catalyst. In particular, when the capacity of the upstream carrier 21 and the exhaust gas capacity flowing out to the exhaust pipe 12 are substantially matched, all the exhaust reverse flow can be brought into contact with the catalyst. Promotion of purification reaction due to gas backflow The temperature rise of the support can be maximized.

以上、計測コンバータ41を用いての実測に基づき、図1のエンジン1の触媒コンバータ13では、その内部の前段担体21の流路方向の長さは逆流長Lrfとほぼ一致する、図3(b)で説明した長さLf(=Lc2)が採用された。
このような触媒コンバータ13を有する排ガス浄化装置を備えた図1のエンジン1では、その冷態始動時において、各気筒の排気行程で流出する高温排ガスが排気管12を流下する初期には高容量の排ガスとして下流側の排ガスを押圧し、瞬時に排気管12による冷却で容積を低減させ、下流側の排ガスの流速を低下させる。特に、触媒コンバータ13内の前段担体21を通過し、隙間部20に達した排ガスがその時点で流速をゼロに保持した後で、ガス濃度、温度が均一化され、排気管12上流側に引き戻される。
As described above, based on the actual measurement using the measurement converter 41, in the catalytic converter 13 of the engine 1 of FIG. 1, the length in the flow path direction of the front carrier 21 inside thereof substantially coincides with the backflow length Lrf. The length Lf (= Lc2) described in (1) was adopted.
In the engine 1 of FIG. 1 equipped with such an exhaust gas purification device having the catalytic converter 13, at the initial stage when the high temperature exhaust gas flowing out in the exhaust stroke of each cylinder flows down the exhaust pipe 12 at the cold start. The exhaust gas on the downstream side is pressed as the exhaust gas, and the volume is instantaneously reduced by cooling with the exhaust pipe 12, and the flow rate of the exhaust gas on the downstream side is reduced. In particular, after the exhaust gas that has passed through the upstream carrier 21 in the catalytic converter 13 and has reached the gap portion 20 maintains the flow velocity at zero at that time, the gas concentration and temperature are equalized and drawn back upstream of the exhaust pipe 12. It is.

この場合、前段担体21の流路方向の長さLfがエンジン1の冷態始動時における逆流長Lrfの長さに等しいことより、一旦、隙間部20で流速ゼロの状態で径方向に分散し攪拌された排ガスが前段担体21を同一速度で逆流する。この際、図3(b)に示すように、逆流排ガスが前段担体21の全域を完全にカバーしてケーシング18の入口側に流出するまで逆流する。次いで、次に排気行程に達している気筒からの高温排ガスの押圧力が加わり、順方向の流れnfに戻り、これによって逆流を含む排気脈動を繰り返すことと成る。   In this case, since the length Lf of the upstream carrier 21 in the flow path direction is equal to the length of the reverse flow length Lrf at the time of cold start of the engine 1, the gap 20 is once dispersed in the radial direction in a state of zero flow velocity. The stirred exhaust gas flows backward through the upstream carrier 21 at the same speed. At this time, as shown in FIG. 3B, the backflow exhaust gas flows back until it completely covers the entire area of the front carrier 21 and flows out to the inlet side of the casing 18. Next, the pressing force of the high-temperature exhaust gas from the cylinder that has reached the next exhaust stroke is applied to return to the forward flow nf, thereby repeating the exhaust pulsation including the reverse flow.

この結果、前段担体21の前段触媒において触媒反応が触媒コンバータ13内でその径方向の偏りなく行われ、これにより、エンジン1の冷態始動時における前段触媒の早期昇温化による暖機を図り、触媒の活性化を促進し、浄化効率を向上させることができる。しかも、前段担体21の早期昇温化に伴い、その反応熱によって後段触媒22に流入する排気温度が上昇し、後段触媒22である三元触媒の早期昇温化を図れ、これにより、触媒コンバータ13の全体としての浄化効率を向上させることができる。更に、前段担体21の早期昇温化に伴い前段触媒としての貴金属の量を低減してもNOx還元処理、HC酸化処理性能を低下させることがなく、この点で触媒貴金属の低コスト化を図れる。   As a result, the catalytic reaction of the front stage catalyst of the front stage carrier 21 is performed in the catalytic converter 13 without deviation in the radial direction, thereby warming up the engine by raising the temperature of the front stage catalyst at the time of cold start of the engine 1. The activation of the catalyst can be promoted and the purification efficiency can be improved. In addition, as the temperature of the upstream carrier 21 is increased quickly, the temperature of the exhaust gas flowing into the downstream catalyst 22 increases due to the reaction heat, and the temperature of the three-way catalyst that is the downstream catalyst 22 can be increased quickly. The purification efficiency of 13 as a whole can be improved. Further, even if the amount of the precious metal as the pre-stage catalyst is reduced due to the rapid increase in temperature of the pre-stage carrier 21, the NOx reduction treatment and HC oxidation performance are not deteriorated, and the cost of the precious metal of the catalyst can be reduced in this respect. .

なお、ここでは、排ガス逆流長測定装置40として、熱線流速計45に加え、放電タフト法を適用した逆流計測装置300と同様の装置を併用したが、熱線流速計45のみを使用することとしてもよい。また、熱線流速計45により逆流流速を求める際には、排ガス温度あるいは排圧等により密度補正等を行うことによって、測定精度を高めるようにしてもよい。   Here, as the exhaust gas backflow length measuring device 40, in addition to the hot-wire anemometer 45, a device similar to the backflow measuring device 300 to which the discharge tuft method is applied is used in combination, but only the hot-wire anemometer 45 may be used. Good. Further, when the backflow velocity is obtained by the hot wire anemometer 45, the measurement accuracy may be increased by performing density correction or the like by the exhaust gas temperature or the exhaust pressure.

また、逆流流速を求める方法としては、ここで用いた熱線流速計45に限定されない。熱線流速計としては、ここで用いた電熱線の電気抵抗変化から直接流速を求めるものの他に、電熱線が冷却されても電熱線の温度が一定になるように電熱線に電流を流し、その電流値を元に流速を求めるものとしてもよい。ここでは、熱線流速計を用いて逆流を計測する際に、C字形断面形状の枠材51を使用したが、流れ方向検知装置を設けるようにしてもよい。さらには、流速計としては、熱線流速計に限定する必要はなく、流速を測れるものであれば、どのようなものを用いてもよい。例えばカルマン渦式のものを用いても良いし、レーザドップラー流速計のような計測装置を用いてもよい。   Further, the method for obtaining the reverse flow velocity is not limited to the hot-wire anemometer 45 used here. As a hot-wire anemometer, in addition to obtaining the flow velocity directly from the electric resistance change of the heating wire used here, a current is passed through the heating wire so that the temperature of the heating wire becomes constant even when the heating wire is cooled, The flow velocity may be obtained based on the current value. Here, the frame material 51 having a C-shaped cross section is used when measuring the reverse flow using a hot-wire anemometer, but a flow direction detection device may be provided. Furthermore, the current meter need not be limited to a hot-wire current meter, and any device that can measure the flow rate may be used. For example, a Karman vortex type may be used, or a measuring device such as a laser Doppler velocimeter may be used.

また、ここでは、排気ガスの逆流長を排ガス逆流長測定装置により実測したが、計算により逆流長を求めて触媒の流路方向長さを決めてもよい。具体的には、排気逆流は、排気管内で排ガスが冷却されることによるガス体積縮小により発生することから、以下のような方法が考えられる。
・排気管容積と排気管表面積(排気管からの放熱量)に基づき逆流長を推定。
・排気管容積と排ガスの排気管内での温度低下量(例えば、シリンダヘッド出口〜触媒入口の低下量)に基づき逆流長を推定。
排ガスの排気管内での温度低下量については、例えば、シリンダヘッドからの距離と排気温度の関係を求めることができるので、これに基づいて排気逆流長を求めればよい。
Here, the backflow length of the exhaust gas is actually measured by the exhaust gas backflow length measuring device, but the backflow length of the catalyst may be determined by calculating the backflow length. Specifically, since the exhaust backflow is generated by reducing the gas volume by cooling the exhaust gas in the exhaust pipe, the following method can be considered.
・ Estimated back flow length based on exhaust pipe volume and exhaust pipe surface area (heat release from the exhaust pipe).
-Estimate the backflow length based on the exhaust pipe volume and the amount of temperature drop in the exhaust pipe (for example, the amount of reduction from the cylinder head outlet to the catalyst inlet).
As for the temperature drop amount of the exhaust gas in the exhaust pipe, for example, the relationship between the distance from the cylinder head and the exhaust temperature can be obtained, and the exhaust backflow length may be obtained based on this.

上述のところにおいて、図1の排ガス浄化装置が用いた触媒コンバータ13は前後担体21,22を隙間部20を介して配備したタンデム触媒システムを採用したものであったが、場合により本発明を前段と後段が近接せず距離が離れた触媒システムにおける前段触媒コンバータ70として構成してもよい。この場合、図7に示すように、排気管12の下流端側に単一担体からなる前段触媒コンバータ70を設けると共に、その下流排気管14上に後段触媒71を設けることとなる。   In the above description, the catalytic converter 13 used in the exhaust gas purifying apparatus of FIG. 1 employs a tandem catalyst system in which the front and rear carriers 21 and 22 are arranged via the gap portion 20, but the present invention may be used in some cases. Alternatively, it may be configured as the front-stage catalytic converter 70 in the catalyst system in which the rear stage is not close and the distance is long. In this case, as shown in FIG. 7, a front-stage catalytic converter 70 made of a single carrier is provided on the downstream end side of the exhaust pipe 12, and a rear-stage catalyst 71 is provided on the downstream exhaust pipe 14.

この場合、前段触媒コンバータ70は図1の触媒コンバータ13の前段担体21と同様の単一担体が用いられ、同様の手法で形状や、前段触媒であるトラップ材が採用される。同じく、後段触媒コンバータ71には図1の触媒コンバータ13の後段担体22と同様の単一担体が用いられ、同様の手法で形状や後段触媒である三元触媒が採用される。この場合も前段触媒が、エンジン1の冷態始動時における早期昇温化による暖機促進を図れ、活性化を促進し、浄化効率を向上させることができ、これにより、後段触媒の早期昇温化による暖機促進を図れ、活性化を促進し、排気浄化装置全体としての浄化効率を向上させることができる。   In this case, the pre-stage catalytic converter 70 uses a single carrier similar to the pre-stage carrier 21 of the catalytic converter 13 of FIG. 1, and adopts the shape and trap material that is the pre-stage catalyst in the same manner. Similarly, a single support similar to the post-stage carrier 22 of the catalytic converter 13 of FIG. 1 is used for the post-catalyst converter 71, and a three-way catalyst that is a shape and a post-stage catalyst is employed in the same manner. Also in this case, the pre-stage catalyst can promote warm-up by early temperature increase at the time of cold start of the engine 1, promote activation, and improve the purification efficiency. The warming-up can be promoted by the conversion, the activation can be promoted, and the purification efficiency of the exhaust emission control device as a whole can be improved.

上述のところにおいて、図1の排ガス浄化装置が用いた触媒コンバータ13はケーシング18内に前後2つの担体21,22を配備したタンデム触媒システムを採用したものであったが、図8に示すように、ケーシング75内に排気路前後方向に3つの担体72,73,74を互いに隙間部76を介して順次配設した前後3段の触媒コンバータ76として構成してもよい。   In the above description, the catalytic converter 13 used in the exhaust gas purification apparatus of FIG. 1 employs a tandem catalyst system in which two carriers 21 and 22 are arranged in the front and rear in the casing 18, but as shown in FIG. Alternatively, a three-stage catalytic converter 76 in the front-rear direction in which three carriers 72, 73, 74 are sequentially disposed in the casing 75 in the front-rear direction of the exhaust passage via a gap 76 may be used.

この場合、図8に示すように、前段担体72が図1の前段担体21と同様の形状で、同様の手法で形状や素材が決定され、前段触媒として小容量の三元触媒が採用され、中段触媒として中容量の三元触媒が採用され、後段触媒として大容量の三元触媒が採用される。
この場合も、エンジン1の冷態始動時において、前段担体72全域で排ガスの完全逆流が間歇的に生じ、前段担体72に担持された小容量の三元触媒の早期の活性化による昇温が図られ、これに伴い、中段担体73の早期活性化が図られ、後段の三元触媒の早期活性化も図られる。この場合、特に、冷態始動時に前段の三元触媒の早期活性化を図り、排ガス浄化装置全体としての浄化効率をより向上させることができる。なお、触媒の数としては3段に限定されず、さらに多くの段数の場合においても同様である。
In this case, as shown in FIG. 8, the front carrier 72 has the same shape as the front carrier 21 of FIG. 1, the shape and material are determined by the same method, and a small capacity three-way catalyst is adopted as the front catalyst, A medium capacity three-way catalyst is employed as the middle catalyst, and a large capacity three-way catalyst is employed as the rear catalyst.
Also in this case, when the engine 1 is cold-started, exhaust gas completely reversely flows across the entire front carrier 72, and the temperature rise due to early activation of the small-capacity three-way catalyst supported on the front carrier 72 is increased. Accordingly, early activation of the intermediate carrier 73 is achieved, and early activation of the latter three-way catalyst is also achieved. In this case, in particular, the early activation of the three-way catalyst in the previous stage can be achieved at the time of cold start, and the purification efficiency of the exhaust gas purification apparatus as a whole can be further improved. Note that the number of catalysts is not limited to three, and the same applies to a larger number of stages.

本発明を適用する内燃機関としては、排気管に触媒を備えたものであれば、実施例のような筒内噴射型4サイクル多気筒ガソリンエンジンに限定されない。例えば、吸気管燃料噴射型やキャブレター方式のガソリンエンジンでもよいし、ディーゼルエンジンでもよい。また、4サイクルではなく、2サイクルエンジンでもよい。すなわち、排気管に触媒を備え、完結的にエンジンから排気管内に排気ガスが排出されるものであれば、内燃機関の形式にはとらわれない。   The internal combustion engine to which the present invention is applied is not limited to the in-cylinder injection type 4-cycle multi-cylinder gasoline engine as in the embodiment as long as the exhaust pipe is provided with a catalyst. For example, an intake pipe fuel injection type or carburetor type gasoline engine or a diesel engine may be used. Moreover, not a 4-cycle but a 2-cycle engine may be sufficient. That is, as long as the exhaust pipe is provided with a catalyst and exhaust gas is completely discharged from the engine into the exhaust pipe, the internal combustion engine is not limited.

担体としては、コージェライト等のセラミック製の他に、ステンレス等の金属を材料とするメタル担体でもよい。
触媒種類としては、三元触媒に限定されない。NOxトラップ触媒、 HCトラップ触媒、選択還元型NOx触媒(イリジウム触媒、ゼオライト触媒、ユリアSCR等)、酸化触媒、貴金属以外の浄化物質を担持した触媒等、排気ガスを浄化する触媒であれば、どのようなものでもよい。
As the carrier, in addition to a ceramic such as cordierite, a metal carrier made of a metal such as stainless steel may be used.
The catalyst type is not limited to a three-way catalyst. NOx trap catalyst, HC trap catalyst, selective reduction type NOx catalyst (iridium catalyst, zeolite catalyst, urea SCR, etc.), oxidation catalyst, catalyst carrying purification substances other than noble metals, etc. Something like that.

本発明の一実施形態としての排気ガス浄化装置と同装置を有するエンジンの全体概略構成図である。1 is an overall schematic configuration diagram of an engine having the same exhaust gas purifying apparatus as an embodiment of the present invention. 図1の排気ガス浄化装置で用いる触媒コンバータの拡大概略断面図である。It is an expansion schematic sectional drawing of the catalytic converter used with the exhaust gas purification apparatus of FIG. 図1の排気ガス浄化装置で用いる触媒コンバータ内の前段担体における排ガス流動特性図で、(a)は順流れ状態を、(b)は完全逆流状態を、(c)は部分逆流状態を示す。FIG. 2 is an exhaust gas flow characteristic diagram of a front carrier in a catalytic converter used in the exhaust gas purification apparatus of FIG. 1, (a) shows a forward flow state, (b) shows a complete backflow state, and (c) shows a partial backflow state. 図1中の前段担体の形状設定に用いる排ガス逆流長測定装置の全体構成図である。It is a whole block diagram of the exhaust gas backflow length measuring apparatus used for the shape setting of the front | former stage support | carrier in FIG. 図4の排ガス逆流長測定装置で用いる熱線流速計を示し、(a)は平断面図を、(b)は側断面図を示す。The hot-wire anemometer used with the exhaust gas backflow length measuring apparatus of FIG. 4 is shown, (a) shows a plane sectional view, and (b) shows a side sectional view. 図4の排ガス逆流長測定装置での排ガス流動速度と抵抗値の波形図を示し、逆流を生じる場合のデータを示す。The waveform diagram of the exhaust gas flow velocity and the resistance value in the exhaust gas back flow length measuring device of FIG. 4 is shown, and the data in the case of generating back flow is shown. 本発明の他の実施形態としての排気ガス浄化装置の概略図である。It is the schematic of the exhaust-gas purification apparatus as other embodiment of this invention. 本発明の他の実施形態としての排気ガス浄化装置の概略図である。同可変動弁装置に駆動される吸気弁の概略作動特性説明図である。It is the schematic of the exhaust-gas purification apparatus as other embodiment of this invention. It is a schematic operation characteristic explanatory view of an intake valve driven by the variable valve operating apparatus. 従来の排気ガス浄化装置の概略図で、(a)はシングル触媒システムの概略図、(b)はタンデム触媒システムの概略図、(c)はA,B位置の温度分布図、(d)はC,D位置の温度分布図である。FIG. 1 is a schematic diagram of a conventional exhaust gas purification device, where (a) is a schematic diagram of a single catalyst system, (b) is a schematic diagram of a tandem catalyst system, (c) is a temperature distribution diagram at positions A and B, and (d) is a schematic diagram of (d). It is a temperature distribution figure of C and D position. 従来の排気ガス浄化装置の担体におけるA,B,C,D位置での温度比較線図である。It is a temperature comparison diagram in the A, B, C, D position in the support | carrier of the conventional exhaust gas purification apparatus. 逆流計測装置の全体構成図である。It is a whole block diagram of a backflow measuring device. 逆流計測装置での逆流状態目視図で、(a)は逆流を、(b)は無風を、(c)は順流を示す。It is a backflow state visual observation figure by a backflow measuring apparatus, (a) shows a backflow, (b) shows no wind, (c) shows a forward flow. 図11の逆流計測装置での逆流計測事例を説明する図で、(a)は計測条件値の説明図、(b)は逆流比率の比較図である。FIG. 12 is a diagram for explaining a backflow measurement example in the backflow measurement device of FIG. 11, (a) is an explanatory diagram of measurement condition values, and (b) is a comparison diagram of the backflow ratio. 排気管の長さに対する逆流の長さと担体の長さの関係を示す。The relationship between the length of the backflow and the length of the carrier with respect to the length of the exhaust pipe is shown.

符号の説明Explanation of symbols

1 エンジン
12 排気管
13 触媒コンバータ
18 ケーシング
21 前段担体
22 後段担体
rf 逆流
Lf 担体の長さ
1 Engine 12 Exhaust pipe 13 Catalytic converter 18 Casing 21 Front stage carrier 22 Rear stage carrier rf Backflow Lf Length of carrier

Claims (5)

内燃機関の本体より延出する排気管上に配備されたケーシングと同ケーシングに内装された担体と同担体に担持された触媒成分とを有した触媒コンバータを備えた排気ガス浄化装置において、
上記担体の長さを上記ケーシング内に生じる逆流の長さと同等又は小さく設定したことを特徴とする排気ガス浄化装置。
In an exhaust gas purifying apparatus comprising a catalytic converter having a casing disposed on an exhaust pipe extending from a main body of an internal combustion engine, a carrier housed in the casing, and a catalyst component carried on the carrier,
An exhaust gas purification apparatus characterized in that the length of the carrier is set to be equal to or smaller than the length of the backflow generated in the casing.
内燃機関の本体より延出する排気管上に配備されたケーシングと、同ケーシング内に排気路方向に沿って互いに空間を介して直列状に順次配備された複数の担体と、上記各担体に担持された触媒成分とを有した触媒コンバータを備えた排気ガス浄化装置において、
上記複数の担体の少なくとも上流側の担体の長さを上記ケーシング内に生じる逆流の長さと同等又は小さく設定したことを特徴とする排気ガス浄化装置。
A casing disposed on an exhaust pipe extending from the main body of the internal combustion engine, a plurality of carriers sequentially disposed in series in the casing along a direction of the exhaust path along the exhaust passage direction, and supported by each of the above carriers In an exhaust gas purifying apparatus comprising a catalytic converter having a catalyst component that has been
An exhaust gas purification apparatus characterized in that the length of at least the upstream side of the plurality of carriers is set to be equal to or smaller than the length of the backflow generated in the casing.
請求項1又は2記載の排気ガス浄化装置において、
上記逆流の長さは、少なくとも上記排気管から放熱することによる排気ガスの容積変動に基づいたことを特徴とする排気ガス浄化装置。
The exhaust gas purification device according to claim 1 or 2,
The length of the reverse flow is based on a change in the volume of exhaust gas due to heat radiation from at least the exhaust pipe.
請求項1乃至3記載のいずれか一つに記載の内燃機関の排気ガス浄化装置において、
上記逆流は少なくとも冷態アイドル時に生じるよう排気管長さ、或いは排気ガス入口側の担体の長さが設定されることを特徴とする排気ガス浄化装置。
The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 3,
The exhaust gas purifying apparatus is characterized in that the length of the exhaust pipe or the length of the carrier on the exhaust gas inlet side is set so that the reverse flow occurs at least during cold idling.
請求項1乃至4のいずれか一つに記載の内燃機関の排気ガス浄化装置において
上記逆流の長さに応じて長さが設定される上記担体の容量を上記ケーシング内から上記内燃機関側に流出する排気ガス量と同等又は小さく設定したことを特徴とする排気ガス浄化装置。
The exhaust gas purifying device for an internal combustion engine according to any one of claims 1 to 4, wherein a capacity of the carrier whose length is set according to the length of the backflow flows out from the casing to the internal combustion engine side. An exhaust gas purifying device characterized in that it is set to be equal to or smaller than the amount of exhaust gas to be produced.
JP2005112796A 2005-04-08 2005-04-08 Exhaust emission control device Withdrawn JP2006291813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005112796A JP2006291813A (en) 2005-04-08 2005-04-08 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005112796A JP2006291813A (en) 2005-04-08 2005-04-08 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2006291813A true JP2006291813A (en) 2006-10-26

Family

ID=37412639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005112796A Withdrawn JP2006291813A (en) 2005-04-08 2005-04-08 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JP2006291813A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009025262A1 (en) * 2007-08-21 2009-02-26 Toyota Jidosha Kabushiki Kaisha Exhaust system for internal combustion engine
JP2009185777A (en) * 2008-02-08 2009-08-20 Toyota Motor Corp Catalyst warm-up control device
WO2011033681A1 (en) * 2009-09-18 2011-03-24 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009025262A1 (en) * 2007-08-21 2009-02-26 Toyota Jidosha Kabushiki Kaisha Exhaust system for internal combustion engine
JP2009047091A (en) * 2007-08-21 2009-03-05 Toyota Motor Corp Exhaust system of internal combustion engine
JP2009185777A (en) * 2008-02-08 2009-08-20 Toyota Motor Corp Catalyst warm-up control device
WO2011033681A1 (en) * 2009-09-18 2011-03-24 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
JP5218663B2 (en) * 2009-09-18 2013-06-26 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US8544259B2 (en) 2009-09-18 2013-10-01 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine

Similar Documents

Publication Publication Date Title
JP4530081B2 (en) Catalyst deterioration diagnosis apparatus and catalyst deterioration diagnosis method for internal combustion engine
JP4585787B2 (en) Particulate filter regeneration speed estimation system
US8353151B2 (en) Exhaust gas control apparatus for internal combustion engine
JP5324924B2 (en) Exhaust mechanism with a soot filter with catalytic action
US20050198942A1 (en) Exhaust gas aftertreatment systems
JP6953892B2 (en) Exhaust gas purification device and vehicles equipped with it
JP2010019239A (en) Exhaust emission control device
JP5152413B2 (en) Internal combustion engine
JP2005140111A (en) Pressure monitor for diesel particulate filter
JP2007162489A (en) Control device for internal combustion engine with supercharger
US9260996B2 (en) Exhaust system and method for controlling an exhaust system
JP2006291813A (en) Exhaust emission control device
JP5120503B2 (en) Internal combustion engine
JP2008519194A (en) Apparatus for controlling the operating state of a catalytic converter in an exhaust passage attached to an internal combustion engine and an engine equipped with the apparatus
JP2017115690A (en) Exhaust emission control device
JP2010285917A (en) Particulate matter detection device and state determination device for exhaust emission control device
US10830115B2 (en) Exhaust gas treatment system and method
US10883432B2 (en) Exhaust gas purification system for vehicle and method of controlling the same
JP4211444B2 (en) Exhaust gas purification catalyst low temperature operation function diagnostic device
JPH03121240A (en) Exhaust emission purifying catalyst failure diagnosing method
JP2006214312A (en) Exhaust emission control device of internal combustion engine
US10378406B2 (en) Exhaust emission control system and purification control device
EP2587012A1 (en) Internal combustion engine
JP2017190725A (en) Exhaust emission control device for internal combustion engine
JP5088298B2 (en) Exhaust gas purification method and exhaust gas purification system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080701