JP2006291295A - High-strength bolt superior in delayed fracture resistance and manufacturing method therefor - Google Patents
High-strength bolt superior in delayed fracture resistance and manufacturing method therefor Download PDFInfo
- Publication number
- JP2006291295A JP2006291295A JP2005113813A JP2005113813A JP2006291295A JP 2006291295 A JP2006291295 A JP 2006291295A JP 2005113813 A JP2005113813 A JP 2005113813A JP 2005113813 A JP2005113813 A JP 2005113813A JP 2006291295 A JP2006291295 A JP 2006291295A
- Authority
- JP
- Japan
- Prior art keywords
- bolt
- strength
- delayed fracture
- fracture resistance
- laser beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Laser Beam Processing (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
本発明は、土木・建築、自動車や各種産業機械等に広く使用されている、耐遅れ破壊特性に優れた高強度ボルトおよびその製造方法に関し、特に、強度が1400MPa以上である耐遅れ破壊特性に優れた高強度ボルトおよびその製造方法に関するものである。 The present invention relates to a high-strength bolt excellent in delayed fracture resistance and a manufacturing method thereof widely used in civil engineering / architecture, automobiles, various industrial machines, and the like, and more particularly to delayed fracture resistance having a strength of 1400 MPa or more. The present invention relates to an excellent high-strength bolt and a manufacturing method thereof.
自動車や各種産業機械の軽量化、高性能化あるいは土木・建築構造物の建設費削減のために、高強度ボルトのニーズが高まっている。高強度ボルトは、例えば、JIS G 4105で規定されているSCM435やSCM440などの低合金鋼を使い、所定の形状に冷間成形後、焼入れ・焼戻し処理によって製造されている。しかし、引張強さが1200MPaを超えると遅れ破壊が発生しやすくなるという問題があった。
高強度鋼の耐遅れ破壊特性を向上させる技術として、例えば、特許文献1〜4には、合金元素や熱処理時に析出する炭化物に着目した耐遅れ破壊特性向上技術に関する発明が開示されている。また、特許文献5、6には、パーライト鋼を伸線加工により強化したボルトに関する発明が開示されている。耐遅れ破壊特性に優れた高強度ボルトの製造方法として、特許文献7には、ショットピーニングを用いた発明が開示されている。
There is a growing need for high-strength bolts to reduce the weight and performance of automobiles and various industrial machines, or to reduce construction costs for civil engineering and building structures. The high-strength bolt is manufactured by using a low alloy steel such as SCM435 or SCM440 defined in JIS G 4105, cold forming into a predetermined shape, and then quenching and tempering. However, when the tensile strength exceeds 1200 MPa, there is a problem that delayed fracture is likely to occur.
As techniques for improving delayed fracture resistance of high strength steel, for example,
しかし、上記特許文献1〜6に記載された各発明によって、高強度ボルトの耐遅れ破壊特性は、ある程度向上するものの、抜本的な解決には至っていないという問題があった。 また、特許文献7に記載の発明による耐遅れ破壊特性の向上には限界があった。
そこで、本発明は、上記のような従来技術の問題点を有利に解決することのできる、耐遅れ破壊特性に優れた高強度ボルトおよびその製造方法を提供することを目的とするものである。
However, each invention described in
Accordingly, an object of the present invention is to provide a high-strength bolt excellent in delayed fracture resistance and a method for manufacturing the same, which can advantageously solve the problems of the prior art as described above.
本発明者らは、上記の課題に関し鋭意検討した結果、表面の粗さを抑えて表面近傍に圧縮残留応力付与することが極めて有効であることを見出した。この理由は、表層凹部の応力集中とそれに伴う該部の水素集積によるき裂発生を抑制することができるためである。
また、最適な鋼材成分を組み合わせることにより、耐遅れ破壊特性に優れ、かつ引張強さが1400MPa以上であるボルトを実現できることを見出した。さらに、表面の粗さを抑えて圧縮残留応力を付与する方法としてレーザー照射処理に着目し、レーザー照射により表面近傍に圧縮残留応力を付加する方法が極めて有効であることを見出した。さらに、圧縮残留応力、表面粗度と鋼材組成を最適に選択すれば、耐遅れ破壊特性の優れた高強度ボルトを実現できるという結論に達した。
As a result of intensive studies on the above problems, the present inventors have found that it is extremely effective to apply a compressive residual stress near the surface while suppressing the roughness of the surface. This is because it is possible to suppress the occurrence of cracks due to the stress concentration in the surface recess and the accompanying hydrogen accumulation in the recess.
Further, it has been found that a bolt having excellent delayed fracture resistance and a tensile strength of 1400 MPa or more can be realized by combining optimum steel components. Furthermore, as a method of applying compressive residual stress while suppressing surface roughness, the inventors focused on laser irradiation treatment and found that a method of applying compressive residual stress near the surface by laser irradiation is extremely effective. Furthermore, it was concluded that a high-strength bolt with excellent delayed fracture resistance could be realized by optimally selecting the compressive residual stress, surface roughness and steel composition.
本発明は、以上の知見に基づいて初めてなされたものであって、その要旨とするところは、次の通りである。
(1) 質量%で、C:0.15〜0.6%、Si:0.05〜2%、Mn:0.1〜2%、Al:0.002〜0.1%を含有し、さらに、Cr:0.05〜2%、Mo:0.05〜3%、V:0.05〜1%、Ti:0.01〜0.1%、Nb:0.01〜0.1%の1種または2種以上を含有し、残部がFeおよび不可避不純物からなり、引張強さが1400MPa以上で、圧縮残留応力が引張強さの20〜95%であり、表面の十点平均粗さが10μm以下であることを特徴とする、耐遅れ破壊特性に優れた高強度ボルト。
(2) さらに、質量%で、Ni:0.05〜1%、Cu:0.05〜1%、B:0.0003〜0.01%の1種または2種以上を含有することを特徴とする、上記(1)に記載の耐遅れ破壊特性に優れた高強度ボルト。
The present invention has been made for the first time based on the above knowledge, and the gist thereof is as follows.
(1) In mass%, C: 0.15-0.6%, Si: 0.05-2%, Mn: 0.1-2%, Al: 0.002-0.1%, Furthermore, Cr: 0.05-2%, Mo: 0.05-3%, V: 0.05-1%, Ti: 0.01-0.1%, Nb: 0.01-0.1% And the balance is Fe and inevitable impurities, the tensile strength is 1400 MPa or more, the compressive residual stress is 20 to 95% of the tensile strength, and the ten-point average roughness of the surface Is a high-strength bolt excellent in delayed fracture resistance.
(2) Further, it is characterized by containing one or more of Ni: 0.05-1%, Cu: 0.05-1%, B: 0.0003-0.01% by mass%. A high-strength bolt excellent in delayed fracture resistance as described in (1) above.
(3) 上記(1)または(2)に記載の鋼成分を有し、所定の成形加工が施され、所定の熱処理により引張強さを1400MPa以上に調整されたボルトを液体中に浸漬し、または該ボルト表面に液体の膜を形成し、該ボルト表面にパルスレーザービームを集光、照射して、該ボルト表面に引張強さの20〜95%の圧縮残留応力を発生させることを特徴とする、耐遅れ破壊特性に優れた高強度ボルトの製造方法。
(4) 前記パルスレーザービームのボルト表面におけるピークパワー密度が1〜100TW/m2であることを特徴とする、上記(3)に記載の耐遅れ破壊特性に優れた高強度ボルトの製造方法。
(5) 前記パルスレーザービームがボルト軸に対して螺旋状に重畳照射され、かつ、該ボルト表面の同一点におけるパルスレーザービームの照射回数の平均値が2回〜100回であることを特徴とする、上記(3)または(4)に記載の耐遅れ破壊特性に優れた高強度ボルトの製造方法。
(3) The steel component described in the above (1) or (2) is included, a predetermined forming process is performed, and a bolt whose tensile strength is adjusted to 1400 MPa or more by a predetermined heat treatment is immersed in a liquid, Alternatively, a liquid film is formed on the bolt surface, and a pulsed laser beam is condensed and irradiated on the bolt surface to generate a compressive residual stress of 20 to 95% of the tensile strength on the bolt surface. A manufacturing method of high strength bolts with excellent delayed fracture resistance.
(4) The method for producing a high-strength bolt excellent in delayed fracture resistance according to (3) above, wherein a peak power density on the bolt surface of the pulse laser beam is 1 to 100 TW / m 2 .
(5) The pulse laser beam is superimposed and irradiated spirally with respect to the bolt axis, and the average number of times of irradiation of the pulse laser beam at the same point on the surface of the bolt is 2 to 100 times. The manufacturing method of the high intensity | strength bolt excellent in the delayed fracture resistance as described in said (3) or (4).
本発明によれば、高強度ボルトに表面を荒らすことなく圧縮残留応力を付与することにより、耐遅れ破壊特性に優れた高強度ボルトおよびその方法を提供することができ、産業上有用な著しい効果を奏する。 According to the present invention, by applying compressive residual stress to a high-strength bolt without roughening the surface, it is possible to provide a high-strength bolt excellent in delayed fracture resistance and a method therefor, and an industrially useful remarkable effect. Play.
以下に本発明を実施するための最良の形態について説明する。
まず、本発明の対象とする鋼の成分の限定理由について述べる。
The best mode for carrying out the present invention will be described below.
First, the reasons for limiting the components of the steel that is the subject of the present invention will be described.
Cは、ボルトの強度を確保する上で必須の元素であるが、0.15%未満では所要の強度が得られず、一方、0.6%を越えると延性が低下するため、0.15〜0.6%の範囲に制限した。 C is an essential element for securing the strength of the bolt, but if it is less than 0.15%, the required strength cannot be obtained. On the other hand, if it exceeds 0.6%, the ductility decreases. Limited to -0.6% range.
Siは、リラクゼーション特性を向上させるとともに固溶体硬化作用によって強度を高める作用がある。0.05%未満では前記作用が発揮できず、一方、2%を超えても添加量に見合う効果が期待できないため、0.05〜2%の範囲に制限した。 Si has the effect of improving relaxation properties and increasing strength by solid solution hardening. If the content is less than 0.05%, the above-described effect cannot be exhibited. On the other hand, if the content exceeds 2%, an effect commensurate with the amount of addition cannot be expected.
Mnは、焼入れ処理時にマルテンサイト組織を得るための焼入性を高めるために有効な元素であるが、0.1%未満では上記の効果が得られず、一方、2%を越えて添加しても添加量に見合う効果が得られないため、0.1〜2%の範囲に制限した。 Mn is an element effective for enhancing the hardenability for obtaining a martensite structure during the quenching process. However, if it is less than 0.1%, the above effect cannot be obtained, while it is added in excess of 2%. However, since an effect commensurate with the amount added cannot be obtained, the content is limited to a range of 0.1 to 2%.
Alは、製鋼時の脱酸および熱処理時においてAlNを形成することによりオーステナイト粒の粗大化を防止する効果がある。また、Bを添加する場合、Nを固定し焼入性および耐水素脆化特性の向上に有効な固溶Bを確保する効果も有している。0.002%未満では上記の効果が発揮されず、0.1%を越えても効果が飽和するため0.002〜0.1%の範囲に限定した。 Al has the effect of preventing austenite grains from coarsening by forming AlN during deoxidation and heat treatment during steelmaking. Moreover, when adding B, it has the effect of fixing N and ensuring the solid solution B effective in improving hardenability and hydrogen embrittlement resistance. If the content is less than 0.002%, the above effect is not exhibited. If the content exceeds 0.1%, the effect is saturated, so the content is limited to the range of 0.002 to 0.1%.
Crは、焼入れ性を向上させる効果がある。さらに、焼戻し軟化抵抗により高温焼戻しを実現し、耐食性もあることから耐遅れ破壊特性に対して有効な元素である。0.05%未満では上記の効果が発揮されず、2%を超えても効果が飽和するため0.05〜2%の範囲に限定した。 Cr has the effect of improving hardenability. Furthermore, high temperature tempering is realized by temper softening resistance, and since it has corrosion resistance, it is an effective element for delayed fracture resistance. If it is less than 0.05%, the above effect is not exhibited, and if it exceeds 2%, the effect is saturated, so the content is limited to the range of 0.05 to 2%.
Mo、V、Ti、Nbは、いずれも焼戻し処理時に微細な合金炭化物として析出し、ボルトの高強度化に対して極めて有効な元素である。また、合金炭化物は水素をトラップさせる効果もあるため、耐遅れ破壊特性を向上させる作用も有している。さらに、V、Ti、Nbは、結晶粒細粒化の効果があり、この点からも耐遅れ破壊特性に有効と言える。
Moが0.05%未満、Vが0.05%未満、Tiが0.01%未満、Nbが0.01%未満では上記の効果が十分に発揮できず、一方、それぞれMoが3%、Vが1%、Tiが0.1%、Nbが0.1%を超えて添加しても上記効果が飽和するため、Moは0.05〜3%、Vは0.05〜1%、Tiは0.01〜0.1%、Nbは0.01〜0.1%の範囲に限定した。また、Mo、V、Ti、Nbの1種または2種以上を含有させることが必要である。この理由は、1400MPaを超える高強度ボルトにおいては、圧縮残留応力のみならず耐遅れ破壊特性に優れた鋼材成分も必要となるからである。
Mo, V, Ti, and Nb all precipitate as fine alloy carbides during tempering, and are extremely effective elements for increasing the strength of bolts. Further, since the alloy carbide has an effect of trapping hydrogen, it also has an action of improving delayed fracture resistance. Furthermore, V, Ti, and Nb have the effect of grain refinement, and it can be said that this is also effective for delayed fracture resistance.
When Mo is less than 0.05%, V is less than 0.05%, Ti is less than 0.01%, and Nb is less than 0.01%, the above effects cannot be sufficiently exerted, while Mo is 3%, Even if V is added in an amount of 1%, Ti is 0.1%, and Nb exceeds 0.1%, the above effect is saturated, so that Mo is 0.05 to 3%, V is 0.05 to 1%, Ti was limited to the range of 0.01 to 0.1%, and Nb was limited to the range of 0.01 to 0.1%. Further, it is necessary to contain one or more of Mo, V, Ti, and Nb. This is because, in a high-strength bolt exceeding 1400 MPa, a steel material component having excellent delayed fracture resistance as well as compressive residual stress is required.
以上が本発明の対象とする鋼の基本成分であるが、本発明においては、更にこの鋼材に、Ni:0.05〜1%、Cu:0.05〜1%、B:0.0003〜0.01%、の1種または2種以上を含有させることができる。 The above are the basic components of the steel that is the subject of the present invention. In the present invention, Ni: 0.05-1%, Cu: 0.05-1%, B: 0.0003- One or more of 0.01% can be contained.
Niは、高強度化に伴って劣化する靭性を向上させるとともに熱処理時の焼入性を向上させて引張強さを増加させるために添加されるが、0.05%未満ではその効果が少なく、一方1%を越えても添加量にみあう効果が発揮できないため、0.05〜1%の範囲に制限した。 Ni is added to improve the toughness that deteriorates with increasing strength and to improve the hardenability during heat treatment to increase the tensile strength, but less than 0.05% has little effect, On the other hand, even if it exceeds 1%, the effect of matching the added amount cannot be exhibited, so the content was limited to 0.05 to 1%.
Cuは、焼入れ処理時の焼入性を向上させる効果を有しているが、0.05%未満ではその効果が不十分であり、1%を超えて添加しても効果が飽和するために、0.05〜1%の範囲に限定した。 Cu has the effect of improving the hardenability during the quenching process, but the effect is insufficient if it is less than 0.05%, and the effect is saturated even if added over 1%. , Limited to the range of 0.05 to 1%.
Bは、耐遅れ破壊特性を向上させる効果があり、更にオーステナイト粒界に偏析することにより焼入性を著しく高める効果も有しているが、Bが0.0003%未満では前記の効果が発揮されず、0.01%を超えても効果が飽和するため0.0003〜0.01%に制限した。 B has an effect of improving the delayed fracture resistance, and also has an effect of remarkably improving hardenability by segregating at the austenite grain boundary. However, when B is less than 0.0003%, the above effect is exhibited. Not exceeding 0.01%, the effect is saturated, so the content is limited to 0.0003 to 0.01%.
P、Sについては特に制限しないものの、高強度ボルトの耐遅れ破壊特性を向上させる観点から、それぞれ0.015%以下が好ましい範囲である。また、Nは、Al、V、Nb、Tiの炭窒化物を生成することによりオーステナイト粒の細粒化効果があるが、0.015%を越えると延性が低下するため、0.002〜0.015%が好ましい範囲である。 P and S are not particularly limited, but from the viewpoint of improving the delayed fracture resistance of high-strength bolts, 0.015% or less is a preferable range. Further, N has an effect of refining austenite grains by producing carbonitrides of Al, V, Nb, and Ti. However, if it exceeds 0.015%, the ductility decreases, so 0.002 to 0 .015% is a preferable range.
次に、ボルトの圧縮残留応力の限定理由について説明する。下記に説明するレーザー照射による圧縮残留応力がボルト強度の20%未満では、耐遅れ破壊特性の向上効果が少ないために、圧縮残留応力の下限をボルト強度の20%に制限した。一方、ボルト強度の95%を超えるような圧縮残留応力を付与しても上記の効果が飽和するため、上限をボルト強度の95%に限定した。耐遅れ破壊特性の向上とレーザー照射のコストの観点で、好ましいボルトの圧縮残留応力の範囲は、ボルト引張強さの30〜90%である。 Next, the reason for limiting the compressive residual stress of the bolt will be described. When the compressive residual stress by laser irradiation described below is less than 20% of the bolt strength, the effect of improving the delayed fracture resistance is small, so the lower limit of the compressive residual stress is limited to 20% of the bolt strength. On the other hand, even if compressive residual stress exceeding 95% of the bolt strength is applied, the above effect is saturated, so the upper limit is limited to 95% of the bolt strength. From the viewpoint of improving delayed fracture resistance and the cost of laser irradiation, a preferable range of compressive residual stress of the bolt is 30 to 90% of the bolt tensile strength.
次に、表面粗さの限定理由について説明する。十点平均粗さが10μm以下であると表層凹部が起点となるような遅れ破壊を生じないことから、十点平均粗さの上限を10μmに限定した。 Next, the reason for limiting the surface roughness will be described. If the 10-point average roughness is 10 μm or less, the delayed fracture that causes the surface recesses to be the starting point does not occur, so the upper limit of the 10-point average roughness is limited to 10 μm.
本発明の高強度ボルトは、焼入れ・焼戻し処理によって所定の強度を得るものであり、焼戻しマルテンサイトが主体の組織である。その他の組織として、フェライト、ベイナイト、パーライトの1種または2種以上を面積率で10%以下を含有しても良い。フェライト、ベイナイト、パーライトの面積率は、ボルト中心部において2mm2以上の視野を光学顕微鏡(500倍)で観察することによって、測定できる。 The high-strength bolt of the present invention obtains a predetermined strength by quenching and tempering treatment, and is mainly composed of tempered martensite. As other structures, one or more of ferrite, bainite, and pearlite may be contained in an area ratio of 10% or less. The area ratio of ferrite, bainite, and pearlite can be measured by observing a visual field of 2 mm 2 or more at the center of the bolt with an optical microscope (500 times).
次に、本発明の高強度ボルトの耐遅れ破壊特性向上方法について述べる。
図1は、本発明で用いたレーザー処理装置の概要構成である。ボルト1を液体2に浸漬し、レーザービーム発振装置3から発せられるレーザービーム6をレンズ4を用いて集光し、ボルト表面に照射する。レーザーは高いピークパワー密度を得るためにパルスレーザーを用いる。液体2に浸漬するのは、レーザービーム照射部から発生するプラズマの膨張を抑え、プラズマの圧力を高めるためである。この高圧プラズマの反力によりボルト表面に塑性変形を与え、圧縮残留応力を付与することができる。
Next, a method for improving the delayed fracture resistance of the high strength bolt of the present invention will be described.
FIG. 1 is a schematic configuration of a laser processing apparatus used in the present invention. The
液体2は、水、食塩水などの水溶液、アルコールなどの有機溶剤、あるいはこれらの混合物であり、レーザーの波長に対し透明な液体が好ましい条件である。ここで、必ずしもボルトを液体中に浸漬させる必要はなく、ボルト表面に液体の膜を形成し、その上からレーザー照射を行ってもよい。例えば、液体をレーザー照射部に噴きかければ、上記の状態を実現できる。 The liquid 2 is an aqueous solution such as water or saline, an organic solvent such as alcohol, or a mixture thereof, and a liquid transparent to the wavelength of the laser is a preferable condition. Here, it is not always necessary to immerse the bolt in the liquid, and a liquid film may be formed on the surface of the bolt, and laser irradiation may be performed thereon. For example, the above-described state can be realized by spraying liquid onto the laser irradiation unit.
レーザービームのボルト表面におけるピークパワー密度が1TW/m2未満では、高い圧縮残留応力をボルトに付与することができず、一方、100TW/m2を超えるピークパワー密度でレーザー処理を行っても圧縮残留応力の付与効果が飽和するため、1〜100TW/m2の範囲で行うことが望ましい。 When the peak power density on the bolt surface of the laser beam is less than 1 TW / m 2 , high compressive residual stress cannot be imparted to the bolt, while compression is performed even when laser treatment is performed at a peak power density exceeding 100 TW / m 2. Since the effect of imparting residual stress is saturated, it is desirable to carry out in the range of 1 to 100 TW / m 2 .
また、遅れ破壊に対しては、ボルトの軸方向の圧縮応力を選択的に高めることが効果的である。このためには、パルスレーザーの照射スポットをボルトに対して螺旋状に重畳照射させることが望ましい。ここで螺旋状の重畳照射とは、図2に示すように、パルスレーザーの照射スポットをボルト表面の周方向に走査し、そのようにして得られる走査領域を軸方向にずらしながら連続的に形成する方法で、かつ、隣り合うビームスポットはお互いに重なり合うように照射する方法である。ボルトの軸方向の圧縮応力を高めるためには、ボルト表面の同一点におけるパルスレーザービームの照射回数の平均値を2回〜100回とすることが望ましい。
さらに、レーザー処理は必ずしもボルトの表面全体に対して施す必要はなく、応力集中が生じるため遅れ破壊で特に問題となる、ボルトの首の付け根や、ネジ部の谷間付近のみに施してもよい。
For delayed fracture, it is effective to selectively increase the axial compressive stress of the bolt. For this purpose, it is desirable to irradiate the irradiation spot of the pulse laser in a spiral manner with respect to the bolt. Here, as shown in FIG. 2, the spiral superimposed irradiation is formed continuously by scanning the irradiation spot of the pulse laser in the circumferential direction of the bolt surface and shifting the scanning region thus obtained in the axial direction. In this method, adjacent beam spots are irradiated so as to overlap each other. In order to increase the compressive stress in the axial direction of the bolt, it is desirable that the average value of the number of irradiation times of the pulse laser beam at the same point on the bolt surface is 2 to 100 times.
Further, the laser treatment does not necessarily have to be applied to the entire surface of the bolt, and may be applied only to the base of the neck of the bolt or the vicinity of the valley of the screw portion, which is particularly problematic in delayed fracture because stress concentration occurs.
以下、実施例により本発明の効果をさらに具体的に説明する。
表1に示す化学成分の鋼材を用いて、M10の六角ボルトを成形した。その後、焼入れ温度を950℃、焼戻し温度を400℃〜650℃にて熱処理を行った。ミクロ組織は、いずれも焼戻しマルテンサイトが面積率で95〜100%であり、残部はフェライト、ベイナイト、パーライトの1種または2種以上であった。
Hereinafter, the effects of the present invention will be described more specifically with reference to examples.
Using steel materials having chemical components shown in Table 1, hexagonal bolts of M10 were formed. Thereafter, heat treatment was performed at a quenching temperature of 950 ° C. and a tempering temperature of 400 ° C. to 650 ° C. As for the microstructure, tempered martensite was 95-100% in area ratio in all cases, and the balance was one or more of ferrite, bainite and pearlite.
焼入れ・焼戻し処理後に、図1に示す装置を用いてレーザー照射を行った。液体としては水を用い、レーザービームは水中透過性の良いNd:YAGレーザーの第二高調波(波長532nm)を用いた。パルスレーザービームの時間幅は10nsであった。レーザービームは焦点距離100mmの凸レンズで集光した。試験片上でのスポットの形は円形であり、その照射痕のスポット直径は0.3mmであった。処理においては、ボルト1を連続的に回転させながら移動させることで、レーザービームの照射スポットを螺旋状に重畳させた。レーザー処理はボルトの全面に対して行ない、ボルト表面の同一点におけるパルスレーザービームの照射回数の平均値は3.5回とした。
ボルトのレーザー照射条件および十点平均粗さを表2に示す。
After quenching / tempering treatment, laser irradiation was performed using the apparatus shown in FIG. Water was used as the liquid, and the second harmonic (wavelength: 532 nm) of an Nd: YAG laser having good water permeability was used as the laser beam. The time width of the pulse laser beam was 10 ns. The laser beam was condensed with a convex lens having a focal length of 100 mm. The spot shape on the test piece was circular, and the spot diameter of the irradiation mark was 0.3 mm. In the processing, the laser beam irradiation spot was spirally superimposed by moving the
Table 2 shows the laser irradiation conditions and ten-point average roughness of the bolt.
また、ボルトの引張強さ、残留応力を表2に併せて示す。なお、残留応力はX線法で測定したものである。遅れ破壊試験は、同一の条件で製造したボルトをそれぞれ30本の大気暴露試験を行い、遅れ破壊の破断比率(%)で評価した。なお、大気暴露試験におけるボルトの締め付け荷重はボルト破断荷重の90%であり、大気暴露期間は2年間で評価した。大気暴露試験の破断比率(%)も表2に示した。 Table 2 also shows the tensile strength and residual stress of the bolt. The residual stress is measured by the X-ray method. In the delayed fracture test, 30 bolts manufactured under the same conditions were each subjected to an atmospheric exposure test and evaluated by the fracture rate (%) of delayed fracture. The bolt tightening load in the air exposure test was 90% of the bolt breaking load, and the air exposure period was evaluated for 2 years. Table 2 also shows the fracture ratio (%) in the air exposure test.
表2の試験No.1〜16が本発明例で、試験No.17〜23が比較例である。同表に見られるように本発明例は、いずれもボルトの引張強さが1400MPa以上であるとともにボルトに高い圧縮残留応力が導入されており、十点平均粗さも10μm以下となっている。この結果、遅れ破壊の破断比率が全て0%であり、耐遅れ破壊特性に優れた高強度ボルトが実現されている。 Test No. in Table 2 1 to 16 are examples of the present invention. 17-23 are comparative examples. As can be seen from the table, in all of the examples of the present invention, the tensile strength of the bolt is 1400 MPa or more, high compressive residual stress is introduced into the bolt, and the ten-point average roughness is 10 μm or less. As a result, all fracture rates of delayed fracture are 0%, and a high-strength bolt excellent in delayed fracture resistance is realized.
これに対して、比較例であるNo.17と18は、鋼の化学成分が不適切な例である。即ち、No.17はCが低すぎるために熱処理後の強度が低く、目標とする強度が得られなかった例である。また、比較例であるNo.18は、Cr、Mo、V、Ti、Nbの1種または2種以上を含有していないため、大気暴露試験で遅れ破壊が発生した例である。
比較例であるNo.19、21はいずれも従来の焼入れ、焼戻し処理だけでボルトを製造した例である。ボルトの表層に圧縮残留応力が付与されていないため、大気暴露試験で遅れ破壊が発生したものである。
比較例であるNo.20は、レーザー照射の条件が不適切な例である。即ち、No.20はレーザー照射のピークパワー密度が低いために、ボルトの表層に十分な圧縮残留応力が得られなかった例である。この結果、暴露試験で遅れ破壊の破断比率が高く、遅れ破壊を防止できなかった例である。
比較例であるNo.22,23は、いずれも従来のショットピーニング処理でボルトの残留応力を圧縮残留応力に変化させた例である。ショットピーニング処理では表面が粗いため、大気暴露試験では遅れ破壊が発生した例である。
No. which is a comparative example. Nos. 19 and 21 are examples in which bolts are manufactured only by conventional quenching and tempering processes. Since no compressive residual stress was applied to the surface layer of the bolt, delayed fracture occurred in the atmospheric exposure test.
No. which is a comparative example. No. 20 is an example in which the laser irradiation conditions are inappropriate. That is, no. No. 20 is an example in which sufficient compressive residual stress was not obtained on the surface layer of the bolt because the peak power density of laser irradiation was low. As a result, the fracture rate of delayed fracture was high in the exposure test, and this was an example in which delayed fracture could not be prevented.
No. which is a comparative example. 22 and 23 are examples in which the residual stress of the bolt is changed to a compressive residual stress by a conventional shot peening process. This is an example of delayed fracture in the atmospheric exposure test because the surface is rough in shot peening.
1 ボルト
2 液体
3 レーザービーム発振装置
4 集光レンズ
5 ミラー
6 レーザービーム
7 レーザービーム照射スポット
1 bolt 2 liquid 3 laser beam oscillator 4 condenser lens 5 mirror 6
Claims (5)
C :0.15〜0.6%、
Si:0.05〜2%、
Mn:0.1〜2%、
Al:0.002〜0.1%
を含有し、さらに、
Cr:0.05〜2%、
Mo:0.05〜3%、
V :0.05〜1%、
Ti:0.01〜0.1%、
Nb:0.01〜0.1%
の1種または2種以上を含有し、残部がFeおよび不可避不純物からなり、引張強さが1400MPa以上で、圧縮残留応力が引張強さの20〜95%であり、表面の十点平均粗さが10μm以下であることを特徴とする、耐遅れ破壊特性に優れた高強度ボルト。 % By mass
C: 0.15-0.6%,
Si: 0.05-2%
Mn: 0.1 to 2%,
Al: 0.002 to 0.1%
In addition,
Cr: 0.05-2%
Mo: 0.05-3%,
V: 0.05 to 1%
Ti: 0.01 to 0.1%,
Nb: 0.01 to 0.1%
And the balance is Fe and inevitable impurities, the tensile strength is 1400 MPa or more, the compressive residual stress is 20 to 95% of the tensile strength, and the ten-point average roughness of the surface Is a high-strength bolt excellent in delayed fracture resistance.
Ni:0.05〜1%、
Cu:0.05〜1%、
B :0.0003〜0.01%
の1種または2種以上を含有することを特徴とする、請求項1に記載の耐遅れ破壊特性に優れた高強度ボルト。 Furthermore, in mass%,
Ni: 0.05 to 1%,
Cu: 0.05 to 1%,
B: 0.0003 to 0.01%
The high-strength bolt excellent in delayed fracture resistance according to claim 1, comprising one or more of the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005113813A JP4441434B2 (en) | 2005-04-11 | 2005-04-11 | Manufacturing method of high-strength bolts with excellent delayed fracture resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005113813A JP4441434B2 (en) | 2005-04-11 | 2005-04-11 | Manufacturing method of high-strength bolts with excellent delayed fracture resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006291295A true JP2006291295A (en) | 2006-10-26 |
JP4441434B2 JP4441434B2 (en) | 2010-03-31 |
Family
ID=37412176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005113813A Expired - Fee Related JP4441434B2 (en) | 2005-04-11 | 2005-04-11 | Manufacturing method of high-strength bolts with excellent delayed fracture resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4441434B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008238260A (en) * | 2007-03-29 | 2008-10-09 | Toshiba Corp | Laser surface modification apparatus and method thereof |
JP2009012061A (en) * | 2007-07-06 | 2009-01-22 | Enshu Ltd | Laser-beam working machine |
WO2011048971A1 (en) * | 2009-10-22 | 2011-04-28 | 日産自動車株式会社 | Steel for high-strength bolts and process for production of high-strength bolts |
JP2013139631A (en) * | 2011-12-09 | 2013-07-18 | National Institute For Materials Science | High tensile bolt and method of manufacturing the same |
WO2015045951A1 (en) * | 2013-09-25 | 2015-04-02 | 株式会社神戸製鋼所 | Steel for high-strength bolts which has excellent delayed fracture resistance and bolt moldability, and bolt |
WO2016021586A1 (en) * | 2014-08-08 | 2016-02-11 | 本田技研工業株式会社 | Laser welding device and laser welding method |
JP2016050605A (en) * | 2014-08-29 | 2016-04-11 | 日産自動車株式会社 | High-strength bolt |
JP2017101284A (en) * | 2015-12-01 | 2017-06-08 | 株式会社神戸製鋼所 | High strength bolt superior in delayed fracture resistance and fatigue characteristics, and manufacturing method thereof |
US9695488B2 (en) | 2012-01-11 | 2017-07-04 | Kobe Steel, Ltd. | Steel for bolt use, bolt, and method for manufacturing bolt |
EP3187610A4 (en) * | 2014-08-29 | 2018-01-17 | Nissan Motor Co., Ltd | Steel for high-strength bolt, and high-strength bolt |
KR20180082543A (en) * | 2015-12-04 | 2018-07-18 | 신닛테츠스미킨 카부시키카이샤 | High strength bolt |
KR20180082581A (en) * | 2015-12-04 | 2018-07-18 | 신닛테츠스미킨 카부시키카이샤 | Cold rolled forged products |
CN114107822A (en) * | 2021-11-30 | 2022-03-01 | 马鞍山钢铁股份有限公司 | 15.9-grade high-strength bolt steel and production method and heat treatment method thereof |
WO2024150709A1 (en) * | 2023-01-13 | 2024-07-18 | 日産自動車株式会社 | High strength bolt |
RU2828714C2 (en) * | 2021-05-28 | 2024-10-16 | Баошань Айрон Энд Стил Ко., Лтд. | Steel for bolts and method of its production |
-
2005
- 2005-04-11 JP JP2005113813A patent/JP4441434B2/en not_active Expired - Fee Related
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008238260A (en) * | 2007-03-29 | 2008-10-09 | Toshiba Corp | Laser surface modification apparatus and method thereof |
JP2009012061A (en) * | 2007-07-06 | 2009-01-22 | Enshu Ltd | Laser-beam working machine |
WO2011048971A1 (en) * | 2009-10-22 | 2011-04-28 | 日産自動車株式会社 | Steel for high-strength bolts and process for production of high-strength bolts |
JP2013139631A (en) * | 2011-12-09 | 2013-07-18 | National Institute For Materials Science | High tensile bolt and method of manufacturing the same |
US9695488B2 (en) | 2012-01-11 | 2017-07-04 | Kobe Steel, Ltd. | Steel for bolt use, bolt, and method for manufacturing bolt |
WO2015045951A1 (en) * | 2013-09-25 | 2015-04-02 | 株式会社神戸製鋼所 | Steel for high-strength bolts which has excellent delayed fracture resistance and bolt moldability, and bolt |
JP2015063739A (en) * | 2013-09-25 | 2015-04-09 | 株式会社神戸製鋼所 | Steel for high strength bolt excellent in delayed fracture resistance and bold moldability and bolt |
US10060015B2 (en) | 2013-09-25 | 2018-08-28 | Kobe Steel, Ltd. | Steel for high-strength bolts which has excellent delayed fracture resistance and bolt formability, and bolt |
KR101817451B1 (en) | 2013-09-25 | 2018-01-10 | 가부시키가이샤 고베 세이코쇼 | Steel for high-strength bolts which has excellent delayed fracture resistance and bolt moldability, and bolt |
EP3050987A4 (en) * | 2013-09-25 | 2017-05-31 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Steel for high-strength bolts which has excellent delayed fracture resistance and bolt moldability, and bolt |
WO2016021586A1 (en) * | 2014-08-08 | 2016-02-11 | 本田技研工業株式会社 | Laser welding device and laser welding method |
JPWO2016021586A1 (en) * | 2014-08-08 | 2017-04-27 | 本田技研工業株式会社 | Laser welding apparatus and laser welding method |
JP2016050605A (en) * | 2014-08-29 | 2016-04-11 | 日産自動車株式会社 | High-strength bolt |
EP3187610A4 (en) * | 2014-08-29 | 2018-01-17 | Nissan Motor Co., Ltd | Steel for high-strength bolt, and high-strength bolt |
JP2017101284A (en) * | 2015-12-01 | 2017-06-08 | 株式会社神戸製鋼所 | High strength bolt superior in delayed fracture resistance and fatigue characteristics, and manufacturing method thereof |
WO2017094675A1 (en) * | 2015-12-01 | 2017-06-08 | 株式会社神戸製鋼所 | High-strength bolt having exceptional delayed fracture resistance and fatigue properties, and method for manufacturing same |
KR20180082543A (en) * | 2015-12-04 | 2018-07-18 | 신닛테츠스미킨 카부시키카이샤 | High strength bolt |
KR20180082581A (en) * | 2015-12-04 | 2018-07-18 | 신닛테츠스미킨 카부시키카이샤 | Cold rolled forged products |
US10487372B2 (en) | 2015-12-04 | 2019-11-26 | Nippon Steel Corporation | High-strength bolt |
KR102079312B1 (en) * | 2015-12-04 | 2020-02-19 | 닛폰세이테츠 가부시키가이샤 | High strength bolts |
KR102090196B1 (en) | 2015-12-04 | 2020-03-17 | 닛폰세이테츠 가부시키가이샤 | Rolled bar for cold forging |
RU2828714C2 (en) * | 2021-05-28 | 2024-10-16 | Баошань Айрон Энд Стил Ко., Лтд. | Steel for bolts and method of its production |
CN114107822A (en) * | 2021-11-30 | 2022-03-01 | 马鞍山钢铁股份有限公司 | 15.9-grade high-strength bolt steel and production method and heat treatment method thereof |
WO2024150709A1 (en) * | 2023-01-13 | 2024-07-18 | 日産自動車株式会社 | High strength bolt |
Also Published As
Publication number | Publication date |
---|---|
JP4441434B2 (en) | 2010-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4441434B2 (en) | Manufacturing method of high-strength bolts with excellent delayed fracture resistance | |
JP4268079B2 (en) | Ultra-high strength steel sheet having excellent elongation and hydrogen embrittlement resistance, method for producing the same, and method for producing ultra-high strength press-formed parts using the ultra-high strength steel sheet | |
JP6452454B2 (en) | Rolled material for high strength spring and wire for high strength spring | |
CN1847438A (en) | Steel wire for cold-formed spring excellent in corrosion resistance and method for producing the same | |
CN100343407C (en) | Strength-ductility balanced plate steel with excellent weldability and manufacturing methods thereof | |
JP2010059472A (en) | Thick steel plate with low yield ratio and high toughness | |
JP2004360005A (en) | High strength pc steel wire having excellent delayed fracture property, and its production method | |
JP2008045195A (en) | High tensile strength thick steel plate and its production method | |
JP6398452B2 (en) | Steel for tank | |
JP4299758B2 (en) | High strength bolt with excellent delayed fracture resistance and method for improving delayed fracture resistance | |
JP4555749B2 (en) | Method for improving delayed fracture resistance of high strength bolts | |
JP4676871B2 (en) | Steel sheet with excellent fatigue crack growth control | |
JP4653039B2 (en) | High tensile steel plate and method for manufacturing the same | |
JP5405325B2 (en) | Differential gear and manufacturing method thereof | |
KR101791324B1 (en) | High-strength steel material having excellent fatigue properties, and method for producing same | |
JP2007254765A (en) | High strength structural steel excellent in hydrogen embrittlement resistance, toughness and ductility and method for producing the same | |
JP2005120397A (en) | High strength forged parts with excellent drawability | |
JP4740274B2 (en) | Common rail manufacturing method and partially reinforced common rail | |
JP2008121092A (en) | Steel material with excellent fatigue crack propagation resistance, and its manufacturing method | |
JP2004292876A (en) | High-strength forged parts superior in drawing characteristic, and manufacturing method therefor | |
JP2006104550A (en) | High strength pc steel bar having excellent delayed fracture resistance and method for improving its delayed fracture resistance | |
EP1104816A1 (en) | High-tension steel material with excellent suitability for welding with high-energy-density heat source and welded structure thereof | |
WO2017122827A1 (en) | Wire for high-strength spring, and method for producing same | |
JP4464735B2 (en) | High strength PC steel bar with excellent hydrogen embrittlement resistance and method for producing the same | |
JP2009221910A (en) | Method for manufacturing common rail and partially reinforced common rail |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070903 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090917 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090929 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091222 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100108 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130115 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130115 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130115 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140115 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |