JP2006291254A - Sodium-free flux and method for treating molten aluminum alloy using the same - Google Patents
Sodium-free flux and method for treating molten aluminum alloy using the same Download PDFInfo
- Publication number
- JP2006291254A JP2006291254A JP2005110576A JP2005110576A JP2006291254A JP 2006291254 A JP2006291254 A JP 2006291254A JP 2005110576 A JP2005110576 A JP 2005110576A JP 2005110576 A JP2005110576 A JP 2005110576A JP 2006291254 A JP2006291254 A JP 2006291254A
- Authority
- JP
- Japan
- Prior art keywords
- flux
- molten metal
- aluminum alloy
- degassing
- molten aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/05—Refining by treating with gases, e.g. gas flushing also refining by means of a material generating gas in situ
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B21/00—Obtaining aluminium
- C22B21/06—Obtaining aluminium refining
- C22B21/062—Obtaining aluminium refining using salt or fluxing agents
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B21/00—Obtaining aluminium
- C22B21/06—Obtaining aluminium refining
- C22B21/064—Obtaining aluminium refining using inert or reactive gases
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/10—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents
- C22B9/103—Methods of introduction of solid or liquid refining or fluxing agents
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
Abstract
Description
本発明は、アルミニウム溶湯の処理方法に関し、詳しくはフラックスインジェクション回転脱ガス装置を用いたアルミニウム溶湯の処理方法に関する。 The present invention relates to a method for treating molten aluminum, and more particularly to a method for treating molten aluminum using a flux injection rotary degassing apparatus.
鋳物用合金の共晶Si改良剤としてNaが古くから用いられており、Na添加用フラックスとして、NaF、NaClを主成分とするNa系フラックスが広く用いられている。しかし、Naは、合金組成や鋳造方案にもよるが一般的にはアルミニウム鋳物中のガスポロシティの分散を促進する効果を有するものの、Naを数PPM以上含有する溶湯は空気中の水分との反応により、水素ガス濃度が高くなりやすく、溶湯表面における酸化を促進してドロスの発生を促進する。また、主たる合金成分としてMgを含有する5000系アルミニウム合金においては、微量のNaにより、粒界脆性を引き起こして、伸びなどその特性を著しく劣化することも知られている。 Na has been used for a long time as a eutectic Si improver for casting alloys, and Na-based fluxes mainly composed of NaF and NaCl have been widely used as Na-adding fluxes. However, although Na has an effect of promoting the dispersion of gas porosity in an aluminum casting although it depends on the alloy composition and the casting method, molten metal containing Na of several PPM or more reacts with moisture in the air. As a result, the hydrogen gas concentration tends to increase, and the oxidation on the surface of the molten metal is promoted to promote the generation of dross. Further, it is also known that a 5000 series aluminum alloy containing Mg as a main alloy component causes a grain boundary brittleness due to a small amount of Na and significantly deteriorates its properties such as elongation.
このように、Naの混入を嫌う鋳造方式ラインにおいては、アルミニウム合金溶湯の脱滓処理用のフラックスとして、非ナトリウム系フラックスが広く用いられてきた。この非ナトリウム系フラックス中には、脱滓効果を有するMgCl2、CaCl2やKClなどNa塩を含まない塩化物系フラックスを主成分として、これにアルミニウム溶湯との反応性を高めるKAlF3、AlF3、K2SO4等が混合されている。 Thus, in the casting system line that dislikes the mixing of Na, a non-sodium-based flux has been widely used as a flux for the deaeration treatment of molten aluminum alloy. In this non-sodium-based flux, a chloride-based flux not containing Na salt such as MgCl 2 , CaCl 2 or KCl having a denitrifying effect is a main component, and KAlF 3 , AlF which enhances the reactivity with molten aluminum. 3 , K 2 SO 4 and the like are mixed.
しかし、前記塩化物系フラックスの中で、MgCl2、CaCl2については、吸湿性があるため保存に気をつけなければならない。仮に吸湿したフラックスをアルミニウム溶湯中に直接接触させると、水蒸気爆発の危険があるため、でき得るならばMgCl2、CaCl2の使用は避けた方が良い。更に、MgCl2、CaCl2をアルミニウム合金溶湯と反応させると悪臭を放ち作業性に支障を来たすという理由から、バッチ炉のような閉鎖系の炉内に使用する場合を除き、一般的には広く用いられていない。 However, among the chloride fluxes, MgCl 2 and CaCl 2 are hygroscopic and must be carefully stored. If the flux that has absorbed moisture is brought into direct contact with the molten aluminum, there is a danger of a steam explosion. Therefore, it is better to avoid the use of MgCl 2 and CaCl 2 if possible. In addition, when MgCl 2 and CaCl 2 are reacted with molten aluminum alloy, a bad odor is produced and the workability is hindered. Therefore, it is generally widely used except in a closed furnace such as a batch furnace. Not used.
従って、Naの混入を嫌う鋳造方式ラインにおいては、溶湯の脱滓処理用のフラックスとして、脱滓効果を有するKClを主成分として、溶湯との反応性を高めるKAlF3、AlF3、K2SO4等を混合した非ナトリウム系フラックス、例えば、KK765(日本軽金属社製(商品名)。質量%で、60%KCl、15% KAlF3、15% AlF3、10% K2SO4)が開発され広く用いられてきた。 Accordingly, in a casting system line that does not want to contain Na, KAlF 3 , AlF 3 , K 2 SO, which has KCl having a defoaming effect as a main component and increases the reactivity with the melt as a flux for the defoaming treatment of the molten metal. Non-sodium flux mixed with 4 etc., for example, KK765 (manufactured by Nippon Light Metal Co., Ltd. (trade name). 60% KCl, 15% KAlF 3 , 15% AlF 3 , 10% K 2 SO 4 in mass%) was developed. Has been widely used.
ところで、アルミニウム合金溶湯の脱ガス、脱滓を促進する処理装置として、回転脱ガス装置が古くから知られている。これは、回転ローター軸中心部に不活性ガスを供給できるノズルを有する回転脱ガス装置であり、アルミニウム合金溶湯中に回転ローターを浸漬した状態で、前記ノズルからアルゴンや窒素などの不活性ガスを、溶湯中に噴出しながら供給し、回転ローターを200〜650rpmの回転数で回転させて、溶湯中の介在物などを微細気泡とともに湯面まで浮上させて、脱ガスと並行して脱滓を行うものである(特許文献1)。 Incidentally, a rotary degassing apparatus has been known for a long time as a processing apparatus for promoting degassing and degassing of molten aluminum alloy. This is a rotary degassing device having a nozzle that can supply an inert gas to the central portion of the rotary rotor shaft, and with the rotary rotor immersed in molten aluminum alloy, inert gas such as argon or nitrogen is supplied from the nozzle. , Supplying while jetting into the molten metal, rotating the rotating rotor at a rotational speed of 200 to 650 rpm, the inclusions etc. in the molten metal rise to the molten metal surface with fine bubbles, and degassing in parallel with degassing (Patent Document 1).
一方、近年、この回転脱ガス装置において、回転ローター軸中心部に不活性ガスとフラックスを供給できる1又は複数のノズルを有する装置が開発されている(特許文献2)。このフラックスインジェクション回転脱ガス装置を使用することにより、溶湯中に散布されたフラックスから発生する塩素などの有害ガスの発生をできるだけ抑制しながら、前記脱滓効果を更に高めることが可能となってきている。 On the other hand, in recent years, in this rotary degassing apparatus, an apparatus having one or a plurality of nozzles capable of supplying an inert gas and a flux to the central portion of the rotary rotor shaft has been developed (Patent Document 2). By using this flux injection rotary degassing device, it is possible to further enhance the degassing effect while suppressing the generation of harmful gases such as chlorine generated from the flux dispersed in the molten metal as much as possible. Yes.
ところが、本発明者が試験を行なったところ、前記非ナトリウム系フラックスをフラックスインジェクション回転脱ガス装置に使用して溶湯処理を行うと、該フラックスの主成分であるKClが回転ローター近傍のノズルから排出される際に、溶融塩化することなく、未反応フラックスとしてノズル近傍に付着して堆積するという問題が発生することが判明した。 However, when the inventor conducted a test, when the non-sodium-based flux was used in a flux injection rotary degassing apparatus and the molten metal treatment was performed, KCl, which is the main component of the flux, was discharged from a nozzle near the rotary rotor. It has been found that there is a problem of depositing in the vicinity of the nozzle as an unreacted flux without melting and chlorination.
本発明は、上記従来技術の問題を解消し、フラックスインジェクション回転脱ガス装置により非ナトリウム系フラックスを用いてアルミニウム合金溶湯を処理する際に、未反応フラックスの付着・堆積を防止して高い脱滓効果を確保した非ナトリウム系フラックスおよびそれを用いたアルミニウム合金溶湯の処理方法を提供することを目的とする。 The present invention solves the above-mentioned problems of the prior art, and prevents the unreacted flux from adhering and accumulating when processing a molten aluminum alloy using a non-sodium flux by a flux injection rotary degassing apparatus. It aims at providing the processing method of the non-sodium-type flux which ensured the effect, and the aluminum alloy molten metal using the same.
上記の目的を達成するために、本発明によれば、フラックスインジェクション回転脱ガス装置によりアルミニウム合金溶湯を処理する際に用いる非ナトリウム系フラックスであって、質量%で、
AlF3:80〜95%、KCl:2.5〜10%、K2SO4:2.5〜10%を必須の構成成分とし、残部は合計で5%以下のその他の塩化物、フッ化物、硝酸塩から成ることを特徴とする非ナトリウム系フラックスが提供される。
In order to achieve the above object, according to the present invention, a non-sodium-based flux used when treating molten aluminum alloy by a flux injection rotary degassing apparatus, wherein the flux is mass%,
AlF 3 : 80 to 95%, KCl: 2.5 to 10%, K 2 SO 4 : 2.5 to 10% are essential constituents, and the balance is other chlorides and fluorides of 5% or less in total. A non-sodium-based flux is provided which is characterized by comprising nitrate.
また、回転ローター軸中心部に不活性ガスとフラックスを供給できる1又は複数のノズルを有するフラックスインジェクション回転脱ガス装置により、上記本発明の非ナトリウム系フラックスを用いてアルミニウム合金溶湯を処理する方法であって、
前記アルミニウム合金溶湯中に前記回転ローターを浸漬した状態に維持し、
前記ノズルから不活性ガスおよび前記フラックスを溶湯中に噴出させて供給し、前記回転ローターを200〜450rpmの回転数で回転させて、溶湯中の介在物などを微細気泡およびフラックスとともに湯面まで浮上させることにより脱ガスおよび脱滓を行うことを特徴とするアルミニウム合金溶湯処理方法が提供される。
In addition, by a flux injection rotary degassing apparatus having one or more nozzles capable of supplying an inert gas and a flux to the central portion of the rotating rotor shaft, the molten aluminum alloy is processed using the non-sodium flux of the present invention. There,
Maintaining the rotating rotor immersed in the molten aluminum alloy,
The inert gas and the flux are jetted and supplied from the nozzle into the molten metal, and the rotary rotor is rotated at a rotational speed of 200 to 450 rpm, so that the inclusions in the molten metal float to the molten metal surface together with fine bubbles and the flux. Thus, there is provided a molten aluminum alloy treatment method characterized by degassing and degassing.
更に、回転ローター軸中心部に不活性ガスとフラックスを供給できる1又は複数のノズルを有するフラックスインジェクション回転脱ガス装置により、上記本発明の非ナトリウム系フラックスを用いてアルミニウム合金溶湯を処理する方法であって、
前記アルミニウム合金溶湯中に前記回転ローターを浸漬した状態に維持し、
前記ノズルから不活性ガスおよび前記フラックスを溶湯中に噴出させて供給し、前記回転ローターを200〜450rpmの回転数で回転させて、溶湯中の介在物を微細気泡およびフラックスとともに湯面まで浮上させることにより脱ガスおよび脱滓を行う第1の工程と、
更に、前記ノズルから不活性ガスのみを溶湯中に噴出させて供給し、前記回転ローターを200〜450rpmの回転数で回転させて、溶湯中の介在物を微細気泡および残留フラックスとともに湯面まで浮上させることにより脱ガスおよび脱滓を行う第2の工程を、
順次行って、脱ガスおよび脱滓を行うことを特徴とするアルミニウム合金溶湯処理方法が提供される。
Furthermore, by the flux injection rotary degassing apparatus having one or more nozzles capable of supplying inert gas and flux to the central portion of the rotating rotor shaft, the molten aluminum alloy is processed using the non-sodium-based flux of the present invention. There,
Maintaining the rotating rotor immersed in the molten aluminum alloy,
The inert gas and the flux are jetted and supplied from the nozzle into the molten metal, and the rotating rotor is rotated at a rotational speed of 200 to 450 rpm, so that the inclusions in the molten metal float to the molten metal surface together with fine bubbles and the flux. A first step of degassing and degassing,
Further, only the inert gas is jetted and supplied from the nozzle into the molten metal, and the rotary rotor is rotated at a rotational speed of 200 to 450 rpm, so that the inclusions in the molten metal float to the molten metal surface along with fine bubbles and residual flux. The second step of degassing and degassing by
There is provided a molten aluminum alloy treatment method characterized by sequentially performing degassing and degassing.
本発明の非ナトリウム系フラックスは、フラックスインジェクション回転脱ガス装置のノズルから、質量%で、AlF3:80〜95%、KCl:2.5〜10%、K2SO4:2.5〜10%、残部合計5%以下のその他の塩化物、フッ化物、硝酸塩から組成を有するので、K2SO4と溶湯の反応熱によりKClが溶融塩化することが可能となり、更にAlF3と溶湯との反応によりフラックスの溶湯中への分散が円滑に行われ、脱滓効果が著しく向上する。 The non-sodium-based flux of the present invention is, by mass%, AlF 3 : 80 to 95%, KCl: 2.5 to 10%, K 2 SO 4 : 2.5 to 10 from the nozzle of the flux injection rotary degasser. %, And the balance is 5% or less of other chlorides, fluorides, and nitrates, so that KCl can be melted and chlorinated by the reaction heat of K 2 SO 4 and the molten metal, and between AlF 3 and the molten metal. The reaction smoothly disperses the flux in the molten metal, and the defatting effect is remarkably improved.
この非ナトリウム系フラックス(フッ化物系フラックス)の開発によって、フラックスインジェクション回転脱ガス装置によるアルミニウム溶湯中へのフラックスの均一分散と効率の高い脱滓処理を行うことが可能となった。それと同時にフラックス使用量を極力抑えても、高い脱滓効果を保持することのできる、低公害アルミニウム溶湯の処理方法を確立することができた。 The development of this non-sodium-based flux (fluoride-based flux) has made it possible to uniformly disperse the flux into the molten aluminum and perform high-efficiency degassing treatment using a flux injection rotary degasser. At the same time, even if the amount of flux used was suppressed as much as possible, a treatment method for a low-pollution aluminum melt that could maintain a high defatting effect could be established.
本発明者は、上記従来の問題を検討した結果、非ナトリウム系フラックスは成分上、典型的にはKK765ではKClを60%含有しているが、KClは融点が比較的高く、溶湯と接触しても即時に溶融塩化しないことに加え、溶湯との反応性の良いAlF3を15%しか含有していないため、フラックスの溶湯中への分散が円滑に行われず、未反応フラックスがノズル近傍に堆積し、脱滓効果が著しく阻害すると推定した。 As a result of studying the above-mentioned conventional problems, the present inventor has a non-sodium-based flux, which typically contains 60% KCl in KK765, but KCl has a relatively high melting point and is in contact with the molten metal. However, since it does not melt and chlorinate immediately, it contains only 15% of AlF 3 which has good reactivity with the molten metal, so that the flux is not smoothly dispersed in the molten metal, and the unreacted flux is near the nozzle. It was estimated that the deposits and the defatting effect were significantly hindered.
この観点から種々実験を繰り返した結果、未反応フラックスのノズル近傍への堆積を防止するためには、(1)塩化物フラックスが溶融塩化すること、(2)フラックスと溶湯との反応性を高めることが必要であることを見出した。 As a result of repeating various experiments from this viewpoint, in order to prevent accumulation of unreacted flux near the nozzle, (1) the chloride flux is melted and (2) the reactivity between the flux and the molten metal is increased. I found that it was necessary.
そして、これらを実現するために、(1)塩化物フラックスを溶融塩化するためには、アルミニウム溶湯との反応熱の高いK2SO4を適量含有すること、(2)溶融塩化したフラックスを溶湯中に分散させるため、アルミニウム溶湯との反応性の高いAlF3を主成分とすること、が必要であるとの結論に達した。 In order to realize these, (1) to melt chloride chloride flux, to suitable amount of high K 2 SO 4 the reaction heat of the molten aluminum, the molten metal (2) molten chloride flux It was concluded that it was necessary to use AlF 3 having a high reactivity with molten aluminum as a main component in order to disperse it in the inside.
〔フラックス組成の限定理由〕
<AlF3:80〜95質量%>
本発明のフラックス中の主成分であるAlF3は、アルミニウム溶湯と反応して、溶湯中へのフラックスの分散を促進させる効果を有する。AlF3の混合比が、80%未満の場合、フラックスが回転ローターのノズル近傍に付着して堆積することとなり、フラックスのアルミニウム合金溶湯中への分散が円滑に行われず、前記脱滓効果が阻害される。AlF3の組成比が、95%を超える場合、フラックスとアルミニウム溶湯との反応により、溶湯中へのフラックスの分散を促進させ、フラックスが回転ローターのノズル近傍に付着することはないが、フラックスそのものの脱滓能力が著しく劣る。したがって、好ましいAlF3の混合比は、80〜95%の範囲である。
[Reason for limiting flux composition]
<AlF 3 : 80 to 95% by mass>
AlF 3 which is a main component in the flux of the present invention has an effect of promoting the dispersion of the flux into the molten metal by reacting with the molten aluminum. When the mixing ratio of AlF 3 is less than 80%, the flux adheres to and accumulates in the vicinity of the nozzle of the rotary rotor, and the flux is not smoothly dispersed in the molten aluminum alloy, thus inhibiting the defatting effect. Is done. When the composition ratio of AlF 3 exceeds 95%, the reaction between the flux and the molten aluminum promotes the dispersion of the flux into the molten metal, and the flux does not adhere to the vicinity of the nozzle of the rotating rotor, but the flux itself The removal ability of is extremely inferior. Therefore, a preferable mixing ratio of AlF 3 is in the range of 80 to 95%.
<KCl:2.5〜10質量%>
本発明のフラックス中の必須成分であるKClは、アルミニウム溶湯中に微細に分散されることにより、微細な溶融塩として徐々に浮上して、介在物などとともに湯面上に浮上して、脱滓効果を著しく高める。KClの組成比が、2.5%未満の場合、フラックスの脱滓効果は著しく劣る。KClの組成比が、10%を超える場合、これに伴ってAlF3の組成比が低下してしまうため、未反応フラックスが回転ローターのノズル近傍に付着して堆積することとなり、フラックスのアルミニウム合金溶湯中への分散が円滑に行われず、前記脱滓効果が阻害される。したがって、好ましいKClの混合比は、2.5〜10%の範囲である。
<KCl: 2.5 to 10% by mass>
KCl, which is an essential component in the flux of the present invention, is finely dispersed in the molten aluminum, so that it gradually floats as a fine molten salt, floats on the molten metal surface with inclusions, etc. Increase the effect significantly. When the composition ratio of KCl is less than 2.5%, the flux defatting effect is remarkably inferior. When the composition ratio of KCl exceeds 10%, the composition ratio of AlF 3 decreases accordingly, so that the unreacted flux adheres to and accumulates in the vicinity of the nozzle of the rotary rotor, and the aluminum alloy of the flux Dispersion in the molten metal is not performed smoothly, and the defatting effect is hindered. Therefore, the preferable mixing ratio of KCl is in the range of 2.5 to 10%.
<K2SO4:2.5〜10質量%>
本発明のフラックス中の必須成分であるK2SO4は、アルミニウム溶湯とフラックスとの反応促進剤として作用する。K2SO4とアルミニウム溶湯が反応すると、K2SO4+Al→AlSO4+Kのような反応が進行し、多量の反応熱が発生する。この反応熱により、KClが容易に溶融塩化して、前記脱滓効果を高めることができる。K2SO4の組成比が、2.5%未満の場合、KClの溶融塩化が不十分となり、フラックスが回転ローターのノズル近傍に付着堆積するため、前記脱滓効果が阻害される。K2SO4の組成比が、10%を超える場合、フラックスとアルミニウム溶湯との発熱反応が起こり、KClの溶融塩化が促進され、フラックスが回転ローターのノズル近傍に付着堆積することはないが、浮上分離したドロスが発熱反応により激しく燃焼して煙が発生して作業環境が悪化する。したがって、好ましいK2SO4の混合比は、2.5%〜10%の範囲である。
<K 2 SO 4: 2.5~10 wt%>
K 2 SO 4, which is an essential component in the flux of the present invention, acts as a reaction accelerator between the molten aluminum and the flux. When K 2 SO 4 and molten aluminum react, a reaction such as K 2 SO 4 + Al → AlSO 4 + K proceeds, and a large amount of reaction heat is generated. With this reaction heat, KCl can be easily melted and salified to enhance the degassing effect. When the composition ratio of K 2 SO 4 is less than 2.5%, the KCl melt chlorination becomes insufficient, and the flux adheres and accumulates in the vicinity of the nozzle of the rotary rotor, so that the defatting effect is hindered. When the composition ratio of K 2 SO 4 exceeds 10%, an exothermic reaction between the flux and the molten aluminum occurs, the KCl melt chlorination is promoted, and the flux is not deposited and deposited near the nozzle of the rotating rotor. The dross that floats and separates burns violently due to an exothermic reaction, and smoke is generated, which deteriorates the working environment. Therefore, the preferable mixing ratio of K 2 SO 4 is in the range of 2.5% to 10%.
〔他の塩化物、フッ化物、硝酸塩:合計5質量%以下>
本発明のフラックスは、以上の明記した成分以外に、合計で5質量%以下の範囲内であれば、KCl以外の塩化物、AlF3以外のフッ化物、あるいは硝酸塩を含有することができる。これら塩化物、フッ化物、硝酸塩は代表的には下記のものである。
[Other chlorides, fluorides, nitrates: 5% by mass or less>
The flux of the present invention can contain a chloride other than KCl, a fluoride other than AlF 3 , or a nitrate, as long as the total content is within a range of 5% by mass or less, in addition to the components specified above. These chlorides, fluorides and nitrates are typically as follows.
KCl以外の塩化物:NaCl、CaCl2、MgCl2
AlF3以外のフッ化物:NaF、KF、MgF2、CaF2
硝酸塩:KNO3、NaNO3
これらの合計量が5質量%を超えると、NaClに関しては溶湯中へのNaの混入、CaCl2、MgCl2は吸湿性を伴ない、NaF等のフッ化物および硝酸塩はフラックス堆積を増加させるという問題が生じる。
Chlorides other than KCl: NaCl, CaCl 2 , MgCl 2
Fluorides other than AlF 3 : NaF, KF, MgF 2 , CaF 2
Nitrate: KNO 3 , NaNO 3
When the total amount of these exceeds 5% by mass, Na is mixed into the molten metal, CaCl 2 and MgCl 2 are hygroscopic, and fluorides and nitrates such as NaF increase flux deposition. Occurs.
そのため、他の塩化物、フッ化物、硝酸塩は合計で5質量%以下とする。 Therefore, the total of other chlorides, fluorides and nitrates is 5% by mass or less.
〔フラックスの付着堆積の評価試験〕
本発明の範囲内および範囲外の組成のフラックスを用いて、フラックスインジェクション回転脱ガス装置によりアルミニウム合金溶湯の処理を行い、ロータ下部へのフラックスの付着堆積を評価した。
[Evaluation test of flux deposition]
Using the flux having a composition within and outside the range of the present invention, the molten aluminum alloy was processed by a flux injection rotary degassing apparatus, and the adhesion and deposition of the flux on the lower part of the rotor were evaluated.
用いたフラックスの組成を表1に示す。フラックスA、Bは本発明範囲内の組成を有する発明例であり、フラックスC〜Iは本発明範囲外の組成を有する比較例である。 Table 1 shows the composition of the flux used. Flux A and B are invention examples having compositions within the scope of the present invention, and fluxes C to I are comparative examples having compositions outside the scope of the present invention.
230kgのAC4C合金溶湯を保持炉内で740℃保持した状態で、フラックスインジェクション回転脱ガス装置により回転数300rpmの1方向回転で溶湯処理を行った。第1段階として、供給量40g/minで所定の組成のフラックスと流量30L/minでN2ガスをノズルから同時に供給して、フラックスを溶湯中に均一に分散させるフラックス処理を5分間行った。第2段階として、引き続きローターを回転させたまま、フラックスの供給のみを遮断して、流量30L/minでN2ガスのみをノズルから供給して脱ガス処理を10分間行った。 In a state where 230 kg of AC4C alloy molten metal was held at 740 ° C. in a holding furnace, the molten metal treatment was performed by one-way rotation at a rotation speed of 300 rpm by a flux injection rotary degassing apparatus. As a first step, a flux process was performed for 5 minutes by supplying a flux having a predetermined composition at a supply rate of 40 g / min and N 2 gas from a nozzle at a flow rate of 30 L / min, and uniformly dispersing the flux in the melt. As the second stage, while continuing to rotate the rotor, only the flux supply was interrupted, and only the N 2 gas was supplied from the nozzle at a flow rate of 30 L / min, and the degassing process was performed for 10 minutes.
前記溶湯処理の後、ローターを溶湯から引き上げて、ノズル周辺のローター下部に付着したフラックスの堆積長さを測定した。表2に、各フラックスについて堆積判定結果をまとめて示す。 After the molten metal treatment, the rotor was pulled up from the molten metal, and the deposition length of the flux adhered to the lower part of the rotor around the nozzle was measured. Table 2 summarizes the deposition determination results for each flux.
〔フラックスの脱滓効果の評価試験〕
同じく表1に示した組成のフラックスを用いて、脱滓効果を評価するために、フラックスインジェクション回転脱ガス装置は用いずに坩堝実験を行い、フラックス処理の前後における溶湯の清浄度を測定した。
[Evaluation test of flux removal effect]
Similarly, in order to evaluate the degassing effect using the flux having the composition shown in Table 1, a crucible experiment was conducted without using the flux injection rotary degassing apparatus, and the cleanliness of the molten metal before and after the flux treatment was measured.
#30坩堝に7kgのAC4C合金溶湯を740℃に保持した状態で、表1に示したフラックスのいずれか1種を14g(0.2wt%)アルミニウム箔に包んでホスホライザーで溶湯中に押し込んで添加した。 In a state where 7 kg of AC4C alloy molten metal is held at 740 ° C. in a # 30 crucible, one of the fluxes shown in Table 1 is wrapped in 14 g (0.2 wt%) aluminum foil and pushed into the molten metal with a phosphorizer. Added.
介在物評価として、フラックス処理前後においてKモールドのサンプリング(n=3)を行なった。鋳込まれた薄板状(5mm厚×40mm幅)の試料をハンマーで叩いて6個の破断片とした。全6個について合計12面の破面を目視観察して介在物、酸化物などの異物の個数を数え、K値=異物の個数/6を算出した。フラックス処理前のK値をK0、フラックス処理後のK値をK1として、低減率=(K0−K1)/K0を算出し、この低減率に基づき、フラックスの脱滓効果を評価した。表3に、各フラックスについて脱滓効果の評価結果をまとめて示す。 As an inclusion evaluation, K mold sampling (n = 3) was performed before and after the flux treatment. The cast thin plate (5 mm thickness × 40 mm width) sample was struck with a hammer to obtain six broken pieces. A total of 12 fracture surfaces were visually observed for all six, and the number of inclusions, oxides and other foreign matters were counted, and K value = the number of foreign matters / 6 was calculated. The reduction rate = (K0−K1) / K0 was calculated by setting the K value before the flux treatment as K0 and the K value after the flux treatment as K1, and the flux degaussing effect was evaluated based on this reduction rate. Table 3 summarizes the evaluation results of the defatting effect for each flux.
以上の堆積評価と評価試験の結果に基づく総合的な評価を表4にまとめて示す。 Table 4 summarizes the comprehensive evaluation based on the results of the above deposition evaluation and evaluation test.
総合評価の詳細は下記のとおりであった。
本発明例のフラックスAおよびBは、本発明の規定範囲内の組成であり、AlF3を80〜95%含有するため、このAlF3が溶湯中へのフラックスの分散を促進させ、ローターへのフラックス付着が殆ど起こらない。しかも、KClとK2SO4を適量含有するため、K2SO4とアルミニウム溶湯との発熱反応によりKClが溶融塩化するため、脱滓効果も良好である。
The details of the overall evaluation were as follows.
The fluxes A and B of the present invention are compositions within the specified range of the present invention, and contain 80 to 95% of AlF 3 , so this AlF 3 promotes the dispersion of the flux into the molten metal, Flux adhesion hardly occurs. Moreover, since KCl and K 2 SO 4 are contained in appropriate amounts, KCl melts and chlorinates due to an exothermic reaction between K 2 SO 4 and the molten aluminum, so that the degassing effect is good.
フラックスC(比較例)は、100%KAlF4の組成であり、アルミニウムとの反応性はAlF3に比べ極めて低いために、溶湯中へのフラックス分散が起こらず、ローターへ多量のフラックスが付着堆積する。しかも、KAlF4の脱滓効果は良好ではない。 Flux C (comparative example) has a composition of 100% KAlF 4 , and its reactivity with aluminum is extremely lower than that of AlF 3. Therefore, flux dispersion does not occur in the molten metal, and a large amount of flux is deposited on the rotor. To do. Moreover, the defatting effect of KAlF 4 is not good.
フラックスD(比較例)は、KAlF4、KCl、K2SO4の各成分を含有しており良好な脱滓効果を有するが、AlF3を含まないため、溶湯中へのフラックス分散が起こらず、ローターへ多量のフラックスが付着堆積する。 Flux D (comparative example) contains KAlF 4 , KCl, and K 2 SO 4 and has a good defatting effect, but does not contain AlF 3 , so flux dispersion in the molten metal does not occur. A large amount of flux is deposited on the rotor.
フラックスE(比較例)は、100%AlF3の成分であり、アルミニウムとの反応性が高く、溶湯中へのフラックス分散が円滑に行われるが、その他の成分がなく、脱滓効果を殆ど有しない。 Flux E (comparative example) is a component of 100% AlF 3 , has high reactivity with aluminum, and smoothly disperses the flux in the molten metal, but has no other components and has almost no defatting effect. do not do.
フラックスF、G(比較例)は、KAlF4、AlF3、KCl、K2SO4の各成分を含有しており、良好な脱滓効果を有するが、AlF3の含有率が低く、溶湯中へのフラックス分散が起こらず、ローターへ多量のフラックスが付着堆積する。 Flux F and G (comparative examples) contain KAlF 4 , AlF 3 , KCl, and K 2 SO 4 , and have a good defatting effect, but the content of AlF 3 is low and the melt is in a molten metal. The flux is not dispersed on the rotor, and a large amount of flux is deposited on the rotor.
フラックスH(比較例)は、KCl、MgCl2の各成分を有しているが、K2SO4を含有しないためアルミニウム溶湯との発熱反応が起こらず脱滓効果を有していない。しかもAlF3を含まないため、溶湯中へのフラックス分散が起こらず、ローターへフラックスが付着堆積する。 The flux H (comparative example) has KCl and MgCl 2 components, but does not contain K 2 SO 4 , and therefore does not cause an exothermic reaction with the molten aluminum and has no defatting effect. In addition, since it does not contain AlF 3 , flux dispersion does not occur in the molten metal, and the flux adheres and accumulates on the rotor.
フラックスI(比較例)は、KCl、K2SO4の各成分を有しており良好な脱滓効果を有するが、AlF3の含有量がやや低く、溶湯中へのフラックス分散が十分に起こらず、ローターへフラックスが付着堆積する。 Flux I (Comparative Example) has each component of KCl and K 2 SO 4 and has a good defatting effect, but the content of AlF 3 is slightly low, and the flux is sufficiently dispersed in the molten metal. Instead, the flux is deposited on the rotor.
概括すると、用いたフラックスの内、AlF3の含有率が本発明の規定範囲より低く、ローター下部に付着堆積してしまう傾向を示すフラックスは、本来脱滓効果を有していても、フラックスインジェクション用としては脱滓効果を発揮できない。AlF3を本発明の範囲内の量で含有し、かつ、KClおよびK2SO4を本発明の範囲内の量で含有していて脱滓効果を有するフラックスがフラックスインジェクション回転脱ガス装置用フラックスとして適している。 In general, among the fluxes used, the flux that shows a tendency to adhere to and deposit on the lower part of the rotor is lower than the specified range of AlF 3 in the present invention. As an application, it can not exert the degaussing effect. A flux that contains AlF 3 in an amount within the scope of the present invention and contains KCl and K 2 SO 4 in amounts within the scope of the present invention and has a degassing effect is a flux for a flux injection rotary degasser Suitable as
本発明によれば、フラックスインジェクション回転脱ガス装置により非ナトリウム系フラックスを用いてアルミニウム合金溶湯を処理する際に、未反応フラックスの付着・堆積の発生を防止して高い脱滓効果を確保した非ナトリウム系フラックスおよびそれを用いたアルミニウム合金溶湯の処理方法が提供される。 According to the present invention, when a molten aluminum alloy is processed using a non-sodium flux by a flux injection rotary degassing apparatus, the non-reacted flux is prevented from adhering and accumulating to ensure a high degassing effect. A sodium-based flux and a method for treating a molten aluminum alloy using the same are provided.
Claims (3)
AlF3:80〜95%、KCl:2.5〜10%、K2SO4:2.5〜10%を必須の構成成分とし、残部は合計で5%以下のその他の塩化物、フッ化物、硝酸塩から成ることを特徴とする非ナトリウム系フラックス。 Non-sodium-based flux used when treating molten aluminum alloy with a flux injection rotary degasser,
AlF 3 : 80 to 95%, KCl: 2.5 to 10%, K 2 SO 4 : 2.5 to 10% are essential components, and the balance is 5% or less of other chlorides and fluorides in total. A non-sodium flux characterized by comprising nitrate.
前記アルミニウム合金溶湯中に前記回転ローターを浸漬した状態に維持し、
前記ノズルから不活性ガスおよび前記フラックスを溶湯中に噴出させて供給し、前記回転ローターを200〜450rpmの回転数で回転させて、溶湯中の介在物などを微細気泡およびフラックスとともに湯面まで浮上させることにより脱ガスおよび脱滓を行うことを特徴とするアルミニウム合金溶湯処理方法。 A method of treating molten aluminum alloy using a flux according to claim 1 by a flux injection rotary degassing apparatus having one or more nozzles capable of supplying an inert gas and a flux to the central part of a rotary rotor shaft,
Maintaining the rotating rotor immersed in the molten aluminum alloy,
The inert gas and the flux are jetted and supplied from the nozzle into the molten metal, and the rotary rotor is rotated at a rotational speed of 200 to 450 rpm, so that the inclusions in the molten metal float to the molten metal surface together with fine bubbles and the flux. A molten aluminum alloy treatment method characterized by degassing and degassing.
前記アルミニウム合金溶湯中に前記回転ローターを浸漬した状態に維持し、
前記ノズルから不活性ガスおよび前記フラックスを溶湯中に噴出させて供給し、前記回転ローターを200〜450rpmの回転数で回転させて、溶湯中の介在物を微細気泡およびフラックスとともに湯面まで浮上させることにより脱ガスおよび脱滓を行う第1の工程と、
更に、前記ノズルから不活性ガスのみを溶湯中に噴出させて供給し、前記回転ローターを200〜450rpmの回転数で回転させて、溶湯中の介在物を微細気泡および残留フラックスとともに湯面まで浮上させることにより脱ガスおよび脱滓を行う第2の工程を、
順次行って、脱ガスおよび脱滓を行うことを特徴とするアルミニウム合金溶湯処理方法。 A method of treating molten aluminum alloy using a flux according to claim 1 by a flux injection rotary degassing apparatus having one or more nozzles capable of supplying an inert gas and a flux to the central part of a rotary rotor shaft,
Maintaining the rotating rotor immersed in the molten aluminum alloy,
The inert gas and the flux are jetted and supplied from the nozzle into the molten metal, and the rotating rotor is rotated at a rotational speed of 200 to 450 rpm, so that the inclusions in the molten metal float to the molten metal surface together with fine bubbles and the flux. A first step of degassing and degassing,
Furthermore, only the inert gas is jetted and supplied from the nozzle into the molten metal, and the rotary rotor is rotated at a rotational speed of 200 to 450 rpm, so that the inclusions in the molten metal float to the molten metal surface along with fine bubbles and residual flux The second step of degassing and degassing by
A molten aluminum alloy treatment method characterized by sequentially performing degassing and degassing.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005110576A JP4274142B2 (en) | 2005-04-07 | 2005-04-07 | Non-sodium-based flux and method for treating molten aluminum alloy using the same |
PCT/JP2006/307681 WO2006109810A1 (en) | 2005-04-07 | 2006-04-05 | Sodium-free flux and process for treatment of molten aluminum alloy with the same |
CNB2006800042578A CN100564557C (en) | 2005-04-07 | 2006-04-05 | Non-sodium is flux and utilizes it to handle the method for molten aluminium alloy |
KR1020077018182A KR100940376B1 (en) | 2005-04-07 | 2006-04-05 | Sodium-free flux and process for treatment of molten aluminum alloy with the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005110576A JP4274142B2 (en) | 2005-04-07 | 2005-04-07 | Non-sodium-based flux and method for treating molten aluminum alloy using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006291254A true JP2006291254A (en) | 2006-10-26 |
JP4274142B2 JP4274142B2 (en) | 2009-06-03 |
Family
ID=37087081
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005110576A Active JP4274142B2 (en) | 2005-04-07 | 2005-04-07 | Non-sodium-based flux and method for treating molten aluminum alloy using the same |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP4274142B2 (en) |
KR (1) | KR100940376B1 (en) |
CN (1) | CN100564557C (en) |
WO (1) | WO2006109810A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011132628A1 (en) * | 2010-04-23 | 2011-10-27 | 東洋アルミニウム株式会社 | Method for melting aluminum powder and melting apparatus |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2675273C (en) | 2007-02-23 | 2016-03-29 | Alcoa Inc. | Installation and method for in-line molten metal processing using salt reactant in a deep box degasser |
KR101287558B1 (en) * | 2011-03-07 | 2013-07-19 | (주)디에스리퀴드 | A flux for removing magnesium impurity from molten aluminium or aluminium alloy and the removing method of magnesium impurity from molten aluminium or aluminium alloy using the same |
KR101287559B1 (en) * | 2011-03-08 | 2013-07-19 | (주)디에스리퀴드 | A sodium-free flux for removing magnesium impurity from molten aluminium or aluminium alloy and the removing method of magnesium impurity from molten aluminium or aluminium alloy using the same |
CN102181658B (en) | 2011-03-23 | 2012-12-19 | 广西大学 | Device and method for removing impurities in aluminum melt |
KR101287560B1 (en) * | 2011-07-21 | 2013-07-19 | (주)디에스리퀴드 | A flux for removing calcium impurity from molten aluminium or aluminium alloy and the removing method of calcium impurity from molten aluminium or aluminium alloy using the same |
CN104762492A (en) * | 2015-04-14 | 2015-07-08 | 河南中孚实业股份有限公司 | Method for removing trace elements out of molten primary aluminium |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5947337A (en) * | 1982-08-24 | 1984-03-17 | Kobe Steel Ltd | Flux for refining al or al alloy |
JPS61243136A (en) * | 1985-04-18 | 1986-10-29 | Kobe Steel Ltd | Flux for refining aluminum and aluminum alloy |
JPH07113131B2 (en) * | 1986-06-18 | 1995-12-06 | 株式会社神戸製鋼所 | Method and apparatus for degassing molten Al or Al alloy |
JPS63183136A (en) * | 1987-01-26 | 1988-07-28 | Aikoo Rosuborou Kk | Turning body for flux dispersion in molten metal treatment equipment |
JPH05209237A (en) * | 1992-01-29 | 1993-08-20 | Kobe Steel Ltd | Flux for removing slag from molten aluminum and aluminum alloy |
CN1040775C (en) * | 1995-03-28 | 1998-11-18 | 张鑫珩 | Modified compounded molten solvent for refined Al-Al alloy |
JP2002309320A (en) * | 2001-04-11 | 2002-10-23 | Kobe Steel Ltd | Flux for treating molten aluminum alloy |
JP4222128B2 (en) * | 2003-07-02 | 2009-02-12 | 日本軽金属株式会社 | Flux for removing molten aluminum |
-
2005
- 2005-04-07 JP JP2005110576A patent/JP4274142B2/en active Active
-
2006
- 2006-04-05 KR KR1020077018182A patent/KR100940376B1/en not_active IP Right Cessation
- 2006-04-05 WO PCT/JP2006/307681 patent/WO2006109810A1/en active Application Filing
- 2006-04-05 CN CNB2006800042578A patent/CN100564557C/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011132628A1 (en) * | 2010-04-23 | 2011-10-27 | 東洋アルミニウム株式会社 | Method for melting aluminum powder and melting apparatus |
JP2011231349A (en) * | 2010-04-23 | 2011-11-17 | Toyo Aluminium Kk | Method and apparatus for dissolving aluminum powder |
CN102859011A (en) * | 2010-04-23 | 2013-01-02 | 东洋铝株式会社 | Method for melting aluminum powder and melting apparatus |
US8845781B2 (en) | 2010-04-23 | 2014-09-30 | Toyo Aluminium Kabushiki Kaisha | Method and apparatus for melting aluminum powder |
Also Published As
Publication number | Publication date |
---|---|
JP4274142B2 (en) | 2009-06-03 |
KR100940376B1 (en) | 2010-02-02 |
CN100564557C (en) | 2009-12-02 |
WO2006109810A1 (en) | 2006-10-19 |
KR20070094837A (en) | 2007-09-21 |
CN101115852A (en) | 2008-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4274142B2 (en) | Non-sodium-based flux and method for treating molten aluminum alloy using the same | |
CN1026709C (en) | Slag remover for refining Al or Al alloy | |
KR920008954B1 (en) | Blanketing atmosphere for molten aluminum-lithium alloys or pure lithium | |
CN104328299A (en) | Flux for aluminum and aluminum alloy melt refining and preparation method of flux | |
US5405427A (en) | Salt flux for addition to molten metal adapted for removing constituents therefrom and methods of using | |
JP2000239757A (en) | Method and flux for refining molten aluminum alloy | |
CN1128802A (en) | Fluxing agent for melting nonferrous alloy, prepn. method, and application method thereof | |
RU2375462C2 (en) | Wire for out-of-furnace treatment of metallurgical melts | |
Utigard et al. | The roles of molten salts in the treatment of aluminum | |
EP0233872A1 (en) | Method for the treatment of metals and alloys for the refining thereof. | |
US20120017726A1 (en) | Use of a tertiary salt flux of nacl, kci and mgcl2 for the purification of aluminium or aluminium alloys, and method thereof | |
JP7284727B2 (en) | Flux for aluminum refining | |
CN111945021A (en) | Solvent and method for purifying A356 aluminum alloy | |
JP4222128B2 (en) | Flux for removing molten aluminum | |
JP3740131B2 (en) | Refining method for molten aluminum alloy and refining flux for molten aluminum alloy | |
JPH0849025A (en) | Aluminum-manganese master alloy additive for producing aluminum-containing magnesium-base alloy | |
JP2007291517A (en) | Magnesium alloy casting having excellent corrosion resistance | |
Gallo et al. | Aluminum fluxes and fluxing practice | |
JP5673776B1 (en) | Ash draw flux | |
JP5066018B2 (en) | Casting method | |
RU2772055C1 (en) | Method for refining hard zinc from aluminium impurities | |
JP4749816B2 (en) | Manufacturing method of high purity aluminum slab | |
JP2005272950A (en) | Method for plating steel material | |
RU2255997C1 (en) | Method for producing aluminum-lithium alloys | |
JP2024121140A (en) | Flux, its manufacturing method and molten metal treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070712 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20081219 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20090127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090210 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090223 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4274142 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120313 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120313 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130313 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130313 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140313 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |