JP2006290818A - Method for producing high-purity aromatic secondary amine - Google Patents

Method for producing high-purity aromatic secondary amine Download PDF

Info

Publication number
JP2006290818A
JP2006290818A JP2005115298A JP2005115298A JP2006290818A JP 2006290818 A JP2006290818 A JP 2006290818A JP 2005115298 A JP2005115298 A JP 2005115298A JP 2005115298 A JP2005115298 A JP 2005115298A JP 2006290818 A JP2006290818 A JP 2006290818A
Authority
JP
Japan
Prior art keywords
secondary amine
group
reaction
aromatic secondary
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005115298A
Other languages
Japanese (ja)
Inventor
Tadahiro Yotsuya
忠寛 肆矢
Hiroshi Tabakotani
浩志 煙草谷
Yasuaki Hanazaki
保彰 花崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2005115298A priority Critical patent/JP2006290818A/en
Publication of JP2006290818A publication Critical patent/JP2006290818A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing high-purity aromatic secondary amine in an industrial scale in no need of a specific pressurized vessel in high yield and selectivity, as the side reaction of partial reduction of the aromatic ring is suppressed. <P>SOLUTION: In the method for producing a specific aromatic secondary amine by hydrogenolysis of a specific tertiary amine by using a transition metal catalyst, a hydrogen donor reagent is used as a reduction agent for the hydrogenolysis reaction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、三級アミンを加水素分解して芳香族二級アミンを製造する方法に関する。   The present invention relates to a method for producing an aromatic secondary amine by hydrogenolysis of a tertiary amine.

芳香族二級アミンは、有機エレクトロルミネッセンス、電子写真感光体として広く利用される三級アミンの前駆体として有用な化合物であり、また、芳香族二級アミンも樹脂の老化防止剤や医薬中間体などの用途において極めて有用な化合物である。   Aromatic secondary amines are useful compounds as precursors of tertiary amines widely used as organic electroluminescence and electrophotographic photoreceptors. Aromatic secondary amines are also used as resin aging inhibitors and pharmaceutical intermediates. It is a very useful compound for such applications.

従来、芳香族二級アミン化合物を合成する場合は、対応する芳香族一級アミンを原料として、縮合反応により得る方法が主であった。例えば、芳香族一級アミン二分子を縮合させる方法(例えば、特許文献1および2参照)。芳香族一級アミンと対応するフェノール類とを脱水縮合させる方法(例えば、特許文献3参照)。芳香族一級アミンと対応する芳香族ニトロ化合物または対応するシクロヘキサノン誘導体を反応させる方法(例えば、特許文献4参照)。芳香族一級アミンと対応する芳香族ハロゲン化合物を縮合させる方法(例えば、特許文献5および6参照)などがある。しかしながら、これらの製造方法は、高温、高圧条件のため工業的な適用が困難であったり、原料である芳香族一級アミンが有する発ガン性などの毒性により工業的入手および使用が困難である場合が多かった。   Conventionally, when synthesizing an aromatic secondary amine compound, a method mainly obtained by a condensation reaction using a corresponding aromatic primary amine as a raw material has been the main method. For example, a method of condensing two aromatic primary amine molecules (for example, see Patent Documents 1 and 2). A method in which an aromatic primary amine and a corresponding phenol are subjected to dehydration condensation (see, for example, Patent Document 3). A method of reacting an aromatic primary amine with a corresponding aromatic nitro compound or a corresponding cyclohexanone derivative (for example, see Patent Document 4). There is a method of condensing an aromatic primary amine and a corresponding aromatic halogen compound (for example, see Patent Documents 5 and 6). However, these production methods are difficult to apply industrially due to high temperature and high pressure conditions, or difficult to obtain and use industrially due to toxicity such as carcinogenicity of the aromatic primary amine as a raw material. There were many.

この解決手段として、ベンジルアミンと対応する芳香族ハロゲン化合物を反応させて一旦三級アミンとし、ベンジル基を加水素分解により脱保護して芳香族二級アミンを得る方法が提案されている(例えば、特許文献7参照)。   As a solution to this problem, a method has been proposed in which a benzylamine and a corresponding aromatic halogen compound are reacted to form a tertiary amine once, and the benzyl group is deprotected by hydrogenolysis to obtain an aromatic secondary amine (for example, And Patent Document 7).

一方、還元剤としてギ酸を用いた加水素分解反応(脱ベンジル反応)が開示されているが、記載されている実施例はアミノ酸やペプチド化合物のような脂肪族アミン類に限られており、芳香族二級アミンに対する効果は未知であった(例えば、非特許文献1参照)。また、還元剤としてギ酸以外にも水素供与試剤が利用可能とされているが、脱ベンジル反応への適用例はギ酸またはギ酸塩類のみであり、他の試剤の適用可否は不明であった(例えば、非特許文献2参照)。   On the other hand, hydrogenolysis reaction (debenzylation reaction) using formic acid as a reducing agent is disclosed, but the examples described are limited to aliphatic amines such as amino acids and peptide compounds, The effect on group secondary amines was unknown (for example, see Non-Patent Document 1). In addition to formic acid, hydrogen donor reagents can be used as reducing agents, but examples of application to debenzylation reactions are only formic acid or formates, and the applicability of other reagents was unclear (for example, Non-Patent Document 2).

特開2000−344720公報JP 2000-344720 A 特開平6−100504号公報JP-A-6-100504 特開2000−95736公報JP 2000-95736 A 特開2002−30047公報Japanese Patent Laid-Open No. 2002-30047 米国特許第5576460号公報US Pat. No. 5,576,460 特許第3161360号公報Japanese Patent No. 3161360 WO02/076922号公報WO02 / 076922 B. ElAmin, G. M. Anantharamaiah, G. P. Royer, and G. E. Means, J. Org. Chem., 44, 3442 (1979).B. ElAmin, G.M. M.M. Anantharamiah, G.A. P. Royer, and G.G. E. Means, J.M. Org. Chem. , 44, 3442 (1979). R. A. W. Johnstone, A. H. Wilby, I. D. Entwistle, Chem. Rev., 85, 129−170 (1985).R. A. W. Johnstone, A.M. H. Wilby, I.D. D. Entwistle, Chem. Rev. 85, 129-170 (1985).

本発明者らは、特許文献7に記載された方法の追試を行ったが、加水素分解する際に芳香環の一部(一般式(1)においてArまたはArの一部)が還元された不純物を副生する問題があることが判明した。これは、製品に高い純度が要求される有機エレクトロルミネッセンスや医薬中間体においては大きな問題である。 The present inventors made a follow-up of the method described in Patent Document 7, but a part of the aromatic ring (a part of Ar 1 or Ar 2 in the general formula (1)) was reduced during the hydrogenolysis. It has been found that there is a problem of by-produced impurities. This is a major problem in organic electroluminescence and pharmaceutical intermediates where high purity is required for the product.

また、溶媒として使用しているクロロホルムは、毒性および環境的な問題から工業的使用が困難であるため、本発明者らが、特許文献7に記載の方法において他の溶媒を検討したところ、反応速度が低下し、さらに芳香環の一部が還元された不純物が増加し、溶媒としてクロロホルムの使用が必須であることがわかった。さらには、特許文献7に記載の方法は水素ガスを用いて加圧条件下にて行うため、特殊な加圧設備を必要とする。   In addition, since chloroform used as a solvent is difficult to industrially use due to toxicity and environmental problems, the present inventors have examined other solvents in the method described in Patent Document 7, It was found that the use of chloroform as a solvent was indispensable as the speed decreased, and impurities in which a part of the aromatic ring was reduced increased. Furthermore, since the method described in Patent Document 7 is performed under a pressurized condition using hydrogen gas, a special pressurizing facility is required.

本発明の目的は、これら先行技術の問題を克服した芳香族二級アミンの製造方法を提供することにある。即ち、問題となっていた芳香環の一部が還元された不純物の生成を抑制し、高収率かつ高選択率で、かつ工業的に使用可能な溶媒を用いて、特殊な加圧設備を必要としない高純度芳香族二級アミンの製造方法を提供することにある。   An object of the present invention is to provide a method for producing an aromatic secondary amine which overcomes these problems of the prior art. In other words, the generation of impurities in which a part of the aromatic ring in question has been reduced is suppressed, and a special pressurization facility is used with a solvent that can be used industrially with high yield and high selectivity. An object of the present invention is to provide a method for producing a high purity aromatic secondary amine which is not required.

本発明者らは、上記の課題を解決するため鋭意検討を行った結果、加水素分解反応を行う際の還元剤として水素供与試剤を用いることにより、前記問題を解決し、高収率かつ高選択率で高純度芳香族二級アミンが得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have solved the above problem by using a hydrogen donating reagent as a reducing agent when performing a hydrogenolysis reaction, and achieved a high yield and a high yield. The inventors have found that a high-purity aromatic secondary amine can be obtained with a selectivity, and have completed the present invention.

即ち本発明は、下記一般式(1)   That is, the present invention provides the following general formula (1)

Figure 2006290818
(式中、Rは炭素数1〜30の置換もしくは無置換のアルキル基またはアリールアルキル基を表す。ArおよびArは各々独立して置換もしくは無置換のアリール基を表す。)
で表される三級アミンを遷移金属触媒を用いて加水素分解することにより、一般式(2)
Figure 2006290818
(In the formula, R represents a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms or an arylalkyl group. Ar 1 and Ar 2 each independently represent a substituted or unsubstituted aryl group.)
Hydrogenolysis of the tertiary amine represented by the general formula (2) using a transition metal catalyst

Figure 2006290818
(式中、ArおよびArは各々独立して置換もしくは無置換のアリール基を表す。)
で表される芳香族二級アミンを製造する方法において、加水素分解に用いる還元剤として水素供与試剤を用いることを特徴とする芳香族二級アミンの製造方法に関する。
Figure 2006290818
(In the formula, Ar 1 and Ar 2 each independently represent a substituted or unsubstituted aryl group.)
In the method for producing an aromatic secondary amine represented by the formula (2), the present invention relates to a method for producing an aromatic secondary amine, wherein a hydrogen donor reagent is used as a reducing agent used for hydrogenolysis.

次に、本発明についてさらに詳しく説明する。   Next, the present invention will be described in more detail.

本発明で使用される三級アミンは、上記一般式(1)で表される化合物である。上記一般式(1)において、Rは炭素数1〜30の置換もしくは無置換のアルキル基またはアリールアルキル基を表すが、このような置換基の例としては、ベンジル基、メチル基、4−ビフェニリルメチル基、ジフェニルメチル基、フルオレニル基、1−ナフチルメチル基、2−ナフチルメチル基、または置換基を有するベンジル基、例えば、4−メトキシベンジル基、2−メトキシベンジル基、4−ヒドロキシベンジル基、4−アセチルアミノベンジル基、4−アセトキシベンジル基、4−クロロベンジル基、4−ブロモベンジル基、4−メチルベンジル基、4−アミノベンジル基、3−アミノベンジル基、2−アミノベンジル基、4−ニトロベンジル基、4−アセチルベンジル基等を挙げることができる。これらの内、好ましくはベンジル基である。   The tertiary amine used in the present invention is a compound represented by the above general formula (1). In the general formula (1), R represents a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms or an arylalkyl group. Examples of such a substituent include a benzyl group, a methyl group, 4-biphenyl. Rylmethyl group, diphenylmethyl group, fluorenyl group, 1-naphthylmethyl group, 2-naphthylmethyl group, or substituted benzyl group, such as 4-methoxybenzyl group, 2-methoxybenzyl group, 4-hydroxybenzyl group 4-acetylaminobenzyl group, 4-acetoxybenzyl group, 4-chlorobenzyl group, 4-bromobenzyl group, 4-methylbenzyl group, 4-aminobenzyl group, 3-aminobenzyl group, 2-aminobenzyl group, 4-nitrobenzyl group, 4-acetylbenzyl group and the like can be mentioned. Of these, a benzyl group is preferred.

また、上記一般式(1)において、ArおよびArは各々独立して置換もしくは無置換のアリール基を表すが、このようなアリール基の例としては、フェニル基、4−ビフェニリル基、3−ビフェニリル基、2−ビフェニリル基、1−ナフチル基、2−ナフチル基、o−トリル基、m−トリル基、p−トリル基、アントリル基、フェナントリル基、テルフェニリル基等が挙げられる。 In the general formula (1), Ar 1 and Ar 2 each independently represent a substituted or unsubstituted aryl group. Examples of such an aryl group include a phenyl group, a 4-biphenylyl group, 3 -Biphenylyl group, 2-biphenylyl group, 1-naphthyl group, 2-naphthyl group, o-tolyl group, m-tolyl group, p-tolyl group, anthryl group, phenanthryl group, terphenylyl group and the like can be mentioned.

さらに、上記一般式(1)で表される化合物として具体例を示せば、N,N−ジフェニルベンジルアミン、N−1−ナフチル−N−フェニルベンジルアミン、N−フェニル−N−m−トリルベンジルアミン、ジ(p−トリル)ベンジルアミン、N,N−ジ(4−ビフェニリル)ベンジルアミン、N,N−ジ(4−p−テルフェニリル)ベンジルアミン等を挙げることができる。   Further, specific examples of the compound represented by the general formula (1) include N, N-diphenylbenzylamine, N-1-naphthyl-N-phenylbenzylamine, N-phenyl-Nm-tolylbenzyl. Examples include amine, di (p-tolyl) benzylamine, N, N-di (4-biphenylyl) benzylamine, N, N-di (4-p-terphenylyl) benzylamine and the like.

これらの三級アミンは、一般にベンジルアミンと対応する芳香族ハロゲン化物とを遷移金属触媒を用いて反応させることにより得ることができる。しかしながら、この方法により得られる三級アミンは、原料である芳香族ハロゲン化物に由来するハロゲン元素を少量含有することが多い。これらのハロゲン元素は、一般には無機化合物または有機化合物として含有されると考えられるが、その多くの場合は無機塩の形で含有されると考えられる。しかしながら、ハロゲン元素を多く含有する三級アミンを本反応に用いると、反応速度が著しく低下することが判明した。このため、原料として用いる三級アミンは、不純物としてのハロゲン元素の含有量が1重量%以下、好ましくは0.1重量%以下であるものを用いることが適当である。このようなハロゲン元素の含有量が少ない三級アミンは、得られた三級アミンを含水メタノールのような極性溶媒中に分散させることにより洗浄するか、もしくは得られた三級アミンを一旦有機溶媒に溶解させた上で、水洗・相分離し、有機層から晶析操作により目的物を得る方法が挙げられる。   These tertiary amines can generally be obtained by reacting benzylamine with the corresponding aromatic halide using a transition metal catalyst. However, the tertiary amine obtained by this method often contains a small amount of a halogen element derived from an aromatic halide as a raw material. These halogen elements are generally considered to be contained as inorganic compounds or organic compounds, but in many cases, they are considered to be contained in the form of inorganic salts. However, it has been found that when a tertiary amine containing a large amount of halogen element is used in this reaction, the reaction rate is remarkably reduced. For this reason, it is appropriate to use a tertiary amine used as a raw material having a content of a halogen element as an impurity of 1% by weight or less, preferably 0.1% by weight or less. The tertiary amine having a low halogen element content is washed by dispersing the obtained tertiary amine in a polar solvent such as water-containing methanol, or the obtained tertiary amine is temporarily washed with an organic solvent. And a method of obtaining the target product from the organic layer by crystallization operation after washing with water and phase separation.

また、本発明により得られる芳香族二級アミンは上記一般式(2)で表される化合物であり、例えば、ジフェニルアミン、m−トリルフェニルアミン、ジ(p−トリル)アミン、1−ナフチルフェニルアミン、ジ(4−ビフェニリル)アミン、ジ(4−p−テルフェニリル)アミン等を挙げることができる。   The aromatic secondary amine obtained by the present invention is a compound represented by the above general formula (2), for example, diphenylamine, m-tolylphenylamine, di (p-tolyl) amine, 1-naphthylphenylamine. , Di (4-biphenylyl) amine, di (4-p-terphenylyl) amine, and the like.

本発明においては、加水素分解に用いる還元剤として、水素供与試剤を用いる。水素供与試剤としては、ギ酸、ギ酸塩類、シクロヘキセン、1,4−シクロヘキサジエン、ヒドラジン、ホスフィン酸、ホスフィン酸塩類、亜リン酸、亜リン酸塩類、水素化ホウ素ナトリウム等が挙げられる。また、ギ酸塩類としては、ギ酸アンモニウム、ギ酸ナトリウム、ギ酸カリウム等が挙げられる。これらの内、好ましくはギ酸またはギ酸アンモニウムである。さらには、ギ酸を用いることが入手の容易さ、および生成物の単離の簡便さから好ましい。   In the present invention, a hydrogen donating reagent is used as a reducing agent used for hydrogenolysis. Examples of the hydrogen donating agent include formic acid, formates, cyclohexene, 1,4-cyclohexadiene, hydrazine, phosphinic acid, phosphinates, phosphorous acid, phosphites, sodium borohydride and the like. Examples of the formate salts include ammonium formate, sodium formate, and potassium formate. Of these, formic acid or ammonium formate is preferred. Furthermore, it is preferable to use formic acid because it is easily available and the product is easily isolated.

この還元剤の使用量は、特に限定するものではないが、原料の三級アミンに対して、1〜50倍モル量、好ましくは2〜10倍モル量の範囲である。使用量が1倍モル量より少ないと反応が完結しない。また、50倍モル量より多いと不純物が増加する可能性がある。   The amount of the reducing agent used is not particularly limited, but is in the range of 1 to 50 times mol, preferably 2 to 10 times mol, of the raw material tertiary amine. When the amount used is less than 1 molar amount, the reaction is not completed. On the other hand, if the amount is more than 50 times the molar amount, impurities may increase.

本発明において使用する遷移金属触媒は、一般的に水素添加反応で使用される触媒が使用可能である。例えば、金属種としてはPd、Pt、Ru、Rhなどが挙げられ、また、含水品および乾燥品のどちらでも使用可能である。具体的には、5%Pdカーボン粉末、10%Pdカーボン粉末、20%Pdカーボン粉末、20%水酸化パラジウム−カーボン粉末などが挙げられる。   As the transition metal catalyst used in the present invention, a catalyst generally used in a hydrogenation reaction can be used. For example, examples of the metal species include Pd, Pt, Ru, Rh, and the like, and both water-containing products and dry products can be used. Specific examples include 5% Pd carbon powder, 10% Pd carbon powder, 20% Pd carbon powder, and 20% palladium hydroxide-carbon powder.

本発明においては、さらに添加剤として水を加えることが好ましい。生成した芳香族二級アミンとギ酸類またはリン酸類とが脱水縮合反応して生成する不純物が、水の添加により抑制され、選択率を向上させるためである。添加する水の量は、特に限定するものではないが、原料の三級アミンに対して、1〜200倍モル量、好ましくは10〜30倍モル量の範囲である。使用量が1倍モル量より少ないと脱水縮合による不純物が増加し、200倍モル量より多いと生産効率が低下する。   In the present invention, it is preferable to add water as an additive. This is because impurities generated by a dehydration condensation reaction between the produced aromatic secondary amine and formic acid or phosphoric acid are suppressed by the addition of water and the selectivity is improved. The amount of water to be added is not particularly limited, but is in the range of 1 to 200 times mole amount, preferably 10 to 30 times mole amount with respect to the tertiary amine of the raw material. If the amount used is less than 1 mol, impurities due to dehydration condensation increase, and if it is more than 200 mol, production efficiency decreases.

本発明において、反応溶媒は用いても用いなくても良いが、多くの場合、原料となる三級アミン類が固体であるため、溶媒を用いた方が好ましい。また、用いる溶媒としては、原料である三級アミンの溶解度が比較的高いことから、芳香族炭化水素が好ましい。例えば、ベンゼン、トルエン、キシレン等が挙げられる。   In the present invention, the reaction solvent may or may not be used, but in many cases, the tertiary amine as a raw material is a solid, so it is preferable to use a solvent. As the solvent to be used, an aromatic hydrocarbon is preferable because the solubility of the tertiary amine as a raw material is relatively high. For example, benzene, toluene, xylene and the like can be mentioned.

本発明において、反応温度は0〜150℃の範囲、好ましくは50〜100℃の範囲である。反応温度が低いと反応速度が低下し、生産効率が落ちる。また、反応温度が高すぎると芳香環の一部が還元されたり、脱水縮合を起こした不純物が増加して好ましくない。   In this invention, reaction temperature is the range of 0-150 degreeC, Preferably it is the range of 50-100 degreeC. When the reaction temperature is low, the reaction rate decreases and the production efficiency decreases. On the other hand, when the reaction temperature is too high, a part of the aromatic ring is reduced or impurities that cause dehydration condensation increase, which is not preferable.

本発明において、反応時の圧力は特に限定されるものではない。加圧条件下または大気圧下、場合によっては減圧条件下で行っても良い。例えば、絶対圧0〜1.1MPaの範囲、好ましくは特殊な製造装置が不要であることから、大気圧下が用いられる。   In the present invention, the pressure during the reaction is not particularly limited. The reaction may be performed under pressure or atmospheric pressure, and in some cases under reduced pressure. For example, an absolute pressure range of 0 to 1.1 MPa, preferably a special manufacturing apparatus is not required, and therefore atmospheric pressure is used.

本発明の反応は、他の原料を仕込んだ後に、水素供与試剤をフィードすることが好ましい。これにより、反応熱および副生する二酸化炭素ガス等の量を制御することが可能となる。   In the reaction of the present invention, it is preferable to feed a hydrogen-donating reagent after charging other raw materials. This makes it possible to control the amount of reaction heat and by-product carbon dioxide gas.

本発明によれば、芳香環の一部が還元される副反応を抑制し、高収率かつ高選択率で、高純度の芳香族二級アミンを特殊な加圧容器を用いることなく、工業的スケールにて生産することができる。   According to the present invention, a side reaction in which a part of an aromatic ring is reduced is suppressed, and a high-purity aromatic secondary amine is produced in a high yield and high selectivity without using a special pressure vessel. Can be produced on a scale.

以下に、本発明を実施例を用いてさらに詳細に説明するが、これらの実施例は本発明の概要を示すもので、本発明はこれらの実施例に限定されるものではない。   The present invention will be described in more detail with reference to the following examples. However, these examples show the outline of the present invention, and the present invention is not limited to these examples.

[反応収率および転化率の測定]
測定に用いた装置を以下に示す。
[Measurement of reaction yield and conversion]
The apparatus used for the measurement is shown below.

装置:GC−17A(島津製作所製)
カラム:キャピラリーカラム NEUTRA BOND−5(GLサイエンス製)
(0.32mmI.D.×30m)
検出器:FID(水素炎イオン化検出器)
[臭素元素量の測定]
測定に用いた装置および条件を以下に示す。
Device: GC-17A (manufactured by Shimadzu Corporation)
Column: Capillary column NEUTRA BOND-5 (manufactured by GL Sciences)
(0.32mm ID x 30m)
Detector: FID (hydrogen flame ionization detector)
[Measurement of bromine element content]
The apparatus and conditions used for the measurement are shown below.

前処理:試料約5mgを正確に量り取り、密閉燃焼後、吸収液に吸収させ、IC供試液とした。     Pretreatment: About 5 mg of a sample was accurately weighed, sealed and burned, and then absorbed into an absorbing solution to obtain an IC test solution.

装置:イオンクロマトグラフ IC−2001(東ソー製)
カラム:TSKguardcolumn Super IC−AP(4.6mmI.D.×1cm) + TSKgel Super IC−AP(4.6mmI.D.×15cm)(東ソー製)
溶離液:2.7mmol/l−NaHCO + 1.8mmol/l−NaCO
流速:0.8ml/分
検出器:電気伝導度検出器(IC−2001内蔵) + 紫外可視検出器 UV−8020[測定波長は210nm](東ソー製)
実施例1
温度計およびコンデンサーの付いた200mlフラスコに、トルエン71.1g、N−1−ナフチル−N−フェニルベンジルアミン 12.4g、水14.4g、10%Pdカーボン粉末・含水品(エヌ・イーケムキャット製、PEタイプ)2.5g(ドライベース重量)を仕込んだ。内温を75℃まで昇温した後、滴下ロートよりギ酸9.2gをゆっくりと滴下した。滴下開始と同時に排ガスの発生を確認し、約2時間かけて全量を滴下した。滴下が終了した後、内温を徐々に上げていき、還流状態(約90℃)で10時間熟成を行った。ガスクロマトグラフィーにて反応液を分析し、反応収率および転化率を求めたところ、目的物であるN−フェニル−1−ナフチルアミンが97.3%、ギ酸との脱水縮合生成物が0.9%生成しており、原料および芳香環の一部が還元された不純物は未検出であった。
Apparatus: Ion chromatograph IC-2001 (manufactured by Tosoh Corporation)
Column: TSK guard column Super IC-AP (4.6 mm ID x 1 cm) + TSK gel Super IC-AP (4.6 mm ID x 15 cm) (manufactured by Tosoh Corporation)
Eluent: 2.7 mmol / l-NaHCO 3 + 1.8 mmol / l-Na 2 CO 3
Flow rate: 0.8 ml / min Detector: Electrical conductivity detector (IC-2001 built-in) + UV-visible detector UV-8020 [measurement wavelength is 210 nm] (manufactured by Tosoh Corporation)
Example 1
In a 200 ml flask equipped with a thermometer and a condenser, 71.1 g of toluene, 12.4 g of N-1-naphthyl-N-phenylbenzylamine, 14.4 g of water, 10% Pd carbon powder and water-containing product (manufactured by NE Chemcat) , PE type) 2.5 g (dry base weight). After raising the internal temperature to 75 ° C., 9.2 g of formic acid was slowly dropped from the dropping funnel. Simultaneously with the start of dropping, the generation of exhaust gas was confirmed, and the entire amount was dropped over about 2 hours. After completion of the dropwise addition, the internal temperature was gradually raised, and aging was performed for 10 hours in a reflux state (about 90 ° C.). The reaction solution was analyzed by gas chromatography, and the reaction yield and the conversion rate were determined. %, And the impurities in which the raw material and part of the aromatic ring were reduced were not detected.

その後、反応混合物をろ過し、Pd触媒を除去した。得られた有機層を濃縮し、トルエンおよびヘキサンから再結晶を行い、得られた結晶を乾燥させたところ、N−フェニル−1−ナフチルアミン 6.7g(収率76.0%、純度99.7%)が得られた。この時、芳香環の一部が還元された不純物およびギ酸との脱水縮合生成物は共に未検出であった。   Thereafter, the reaction mixture was filtered to remove the Pd catalyst. The obtained organic layer was concentrated, recrystallized from toluene and hexane, and the obtained crystal was dried. As a result, 6.7 g of N-phenyl-1-naphthylamine (yield 76.0%, purity 99.7) was obtained. %)was gotten. At this time, impurities in which a part of the aromatic ring was reduced and a dehydration condensation product with formic acid were not detected.

なお、原料であるN−1−ナフチル−N−フェニルベンジルアミンに含まれる臭素元素の量を密閉燃焼−イオンクロマト法で測定したところ、120ppmであった。   In addition, it was 120 ppm when the quantity of the bromine element contained in the raw material N-1-naphthyl-N-phenylbenzylamine was measured by the closed combustion-ion chromatography method.

実施例2
温度計およびコンデンサーの付いた200mlフラスコに、トルエン78.3g、N,N−ジ(4−ビフェニリル)ベンジルアミン 18.1g、水15.8g、10%Pdカーボン粉末・含水品(エヌ・イーケムキャット製、PEタイプ)3.6g(ドライベース重量)を仕込んだ。内温を75℃まで昇温した後、滴下ロートよりギ酸10.1gをゆっくりと滴下した。滴下開始と同時に排ガスの発生を確認し、約1時間かけて全量を滴下した。滴下が終了した後、内温を徐々に上げていき、還流状態(約90℃)で8時間熟成を行った。ガスクロマトグラフィーにて反応液を分析したところ、目的物であるジ(4−ビフェニリル)アミンが98.0%、ギ酸との脱水縮合生成物が0.6%生成しており、原料および芳香環の一部が還元された不純物は未検出であった。
Example 2
In a 200 ml flask equipped with a thermometer and a condenser, 78.3 g of toluene, 18.1 g of N, N-di (4-biphenylyl) benzylamine, 15.8 g of water, 10% Pd carbon powder and water-containing product (N Chemchem Cat) Manufactured, PE type) 3.6 g (dry base weight) was charged. After raising the internal temperature to 75 ° C., 10.1 g of formic acid was slowly dropped from the dropping funnel. Simultaneously with the start of dropping, the generation of exhaust gas was confirmed, and the entire amount was dropped over about 1 hour. After completion of the dropwise addition, the internal temperature was gradually increased, and aging was performed for 8 hours in a reflux state (about 90 ° C.). When the reaction solution was analyzed by gas chromatography, it was found that 98.0% di (4-biphenylyl) amine as the target product and 0.6% dehydration condensation product with formic acid were produced. Impurities that were partially reduced were not detected.

その後、反応混合物にテトラヒドロフランを加えて生成物を溶解し、ろ過によりPd触媒を除去した。得られた有機層を濃縮し、トルエンを加えて再結晶を行い、得られた結晶を乾燥させたところ、ジ(4−ビフェニリル)アミン 12.7g(収率80.0%、純度99.9%)が得られた。この時、芳香環の一部が還元された不純物およびギ酸との脱水縮合生成物は共に未検出であった。   Thereafter, tetrahydrofuran was added to the reaction mixture to dissolve the product, and the Pd catalyst was removed by filtration. The obtained organic layer was concentrated, toluene was added for recrystallization, and the obtained crystal was dried. As a result, 12.7 g (yield 80.0%, purity 99.9) of di (4-biphenylyl) amine was obtained. %)was gotten. At this time, impurities in which a part of the aromatic ring was reduced and a dehydration condensation product with formic acid were not detected.

なお、原料であるN,N−ジ(4−ビフェニリル)ベンジルアミンに含まれる臭素元素の量を密閉燃焼−イオンクロマト法で測定したところ、150ppmであった。   In addition, it was 150 ppm when the quantity of the bromine element contained in the raw material N, N-di (4-biphenylyl) benzylamine was measured by a closed combustion-ion chromatography method.

実施例3〜6
実施例1において、原料である三級アミンを表1に示すとおりに変更した以外は、実施例1と同様にして芳香族二級アミンを製造した。実施例1と同様にガスクロマトグラフィーにより反応液を分析し、反応収率および転化率を求めた。結果を表1に示す。
Examples 3-6
An aromatic secondary amine was produced in the same manner as in Example 1 except that the tertiary amine as a raw material was changed as shown in Table 1 in Example 1. The reaction solution was analyzed by gas chromatography in the same manner as in Example 1 to determine the reaction yield and the conversion rate. The results are shown in Table 1.

Figure 2006290818
実施例7
温度計およびコンデンサーの付いた100mlフラスコに、トルエン10ml、水1.0g、N−1−ナフチル−N−フェニルベンジルアミン 0.31g、20%水酸化パラジウム炭素粉末・含水品(デグッサ製、E101 NE/Wタイプ)124mg(ドライベース重量)およびギ酸アンモニウム0.63gを仕込んだ。その後、徐々に昇温し、還流状態で18時間反応させた。ガスクロマトグラフィーにて反応液を分析したところ、目的物であるN−フェニル−1−ナフチルアミンが98.4%、原料の三級アミンが1.6%、ギ酸との脱水縮合生成物および芳香環の一部が還元された不純物は未検出であった。
Figure 2006290818
Example 7
In a 100 ml flask equipped with a thermometer and a condenser, 10 ml of toluene, 1.0 g of water, 0.31 g of N-1-naphthyl-N-phenylbenzylamine, 20% palladium hydroxide carbon powder / water-containing product (Degussa, E101 NE / W type) 124 mg (dry base weight) and 0.63 g ammonium formate were charged. Then, it heated up gradually and was made to react for 18 hours by a recirculation | reflux state. The reaction solution was analyzed by gas chromatography. As a result, N-phenyl-1-naphthylamine as the target product was 98.4%, the tertiary amine as a raw material was 1.6%, dehydration condensation product with formic acid, and aromatic ring. Impurities that were partially reduced were not detected.

実施例8
温度計およびコンデンサーの付いた100mlフラスコに、トルエン40ml、N−1−ナフチル−N−フェニルベンジルアミン 1.55g、20%水酸化パラジウム炭素粉末・含水品(デグッサ製、E101 NE/Wタイプ)309mg(ドライベース重量)およびギ酸1.2gを仕込んだ。その後、徐々に昇温し、還流状態で20時間反応させた。ガスクロマトグラフィーにて反応液を分析したところ、目的物であるN−フェニル−1−ナフチルアミンが75.7%、原料の三級アミンの量が3.8%、ギ酸との脱水縮合生成物が17.9%生成していた。芳香環の一部が還元された不純物は未検出であった。
Example 8
In a 100 ml flask equipped with a thermometer and a condenser, 40 ml of toluene, 1.55 g of N-1-naphthyl-N-phenylbenzylamine, 309 mg of 20% palladium hydroxide carbon powder and water-containing product (Degussa, E101 NE / W type) (Dry base weight) and 1.2 g of formic acid were charged. Then, it heated up gradually and was made to react in a recirculation | reflux state for 20 hours. When the reaction solution was analyzed by gas chromatography, the target product, N-phenyl-1-naphthylamine, was 75.7%, the amount of raw material tertiary amine was 3.8%, and a dehydration condensation product with formic acid was obtained. 17.9% was produced. An impurity in which a part of the aromatic ring was reduced was not detected.

実施例9
温度計およびコンデンサーの付いた100mlフラスコに、トルエン35.6g、N−1−ナフチル−N−フェニルベンジルアミン 3.1g、10%パラジウム炭素粉末・乾燥品(ナカライテスク製)0.62gを仕込んだ。内温を75℃まで昇温した後、滴下ロートよりギ酸2.3gをゆっくりと滴下した。滴下開始と同時に排ガスの発生を確認し、約30分かけて全量を滴下した。滴下が終了した後、内温を徐々に上げていき、還流状態(約90℃)で4時間反応させた。ガスクロマトグラフィーにて反応液を分析したところ、目的物であるN−フェニル−1−ナフチルアミンが98.7%、原料の三級アミンおよびギ酸との脱水縮合生成物は未検出であり、芳香環の一部が還元された不純物は0.6%であった。
Example 9
A 100 ml flask equipped with a thermometer and a condenser was charged with 35.6 g of toluene, 3.1 g of N-1-naphthyl-N-phenylbenzylamine, 0.62 g of 10% palladium carbon powder and dried product (manufactured by Nacalai Tesque). . After the internal temperature was raised to 75 ° C., 2.3 g of formic acid was slowly dropped from the dropping funnel. Simultaneously with the start of dropping, the generation of exhaust gas was confirmed, and the entire amount was dropped over about 30 minutes. After completion of the dropwise addition, the internal temperature was gradually raised, and the reaction was carried out for 4 hours in a reflux state (about 90 ° C.). Analysis of the reaction solution by gas chromatography revealed that 98.7% of the target product, N-phenyl-1-naphthylamine, a dehydration condensation product with the raw material tertiary amine and formic acid was not detected, and the aromatic ring The impurity in which a part of the impurity was reduced was 0.6%.

なお、原料であるN−1−ナフチル−N−フェニルベンジルアミンに含まれる臭素元素の量を密閉燃焼−イオンクロマト法で測定したところ、2.2重量%であった。   In addition, it was 2.2 weight% when the quantity of the bromine element contained in N-1-naphthyl-N-phenyl benzylamine which is a raw material was measured with the closed combustion-ion chromatography method.

実施例10
温度計およびコンデンサーの付いた100mlフラスコに、トルエン17.8g、N,N−ジ(4−ビフェニリル)ベンジルアミン 4.1g、シクロヘキセン4.1g、10%Pdカーボン粉末・含水品(エヌ・イーケムキャット製、PEタイプ)0.82g(ドライベース重量)を仕込んだ。徐々に昇温し、還流状態(約90℃)で8時間反応を行った。ガスクロマトグラフィーにて反応液を分析したところ、目的物であるジ(4−ビフェニリル)アミンが99.5%生成しており、原料および芳香環の一部が還元された不純物は未検出であった。
Example 10
Into a 100 ml flask equipped with a thermometer and a condenser, 17.8 g of toluene, 4.1 g of N, N-di (4-biphenylyl) benzylamine, 4.1 g of cyclohexene, 10% Pd carbon powder / water-containing product (N Chemchem Cat) Manufactured, PE type) 0.82 g (dry base weight) was charged. The temperature was gradually raised, and the reaction was carried out in a reflux state (about 90 ° C.) for 8 hours. Analysis of the reaction solution by gas chromatography revealed that 99.5% of the target product di (4-biphenylyl) amine was produced, and impurities in which the raw material and part of the aromatic ring were reduced were not detected. It was.

なお、原料であるN,N−ジ(4−ビフェニリル)ベンジルアミンに含まれる臭素元素の量を密閉燃焼−イオンクロマト法で測定したところ、500ppmであった。   In addition, it was 500 ppm when the quantity of the bromine element contained in the raw material N, N-di (4-biphenylyl) benzylamine was measured by a closed combustion-ion chromatography method.

実施例11
温度計およびコンデンサーの付いた100mlフラスコに、トルエン17.8g、N−1−ナフチル−N−フェニルベンジルアミン 3.1g、50%ホスフィン酸水溶液6.6g、10%Pdカーボン粉末・含水品(エヌ・イーケムキャット製、PEタイプ)0.62g(ドライベース重量)を仕込んだ。徐々に昇温し、還流状態(約90℃)で14時間反応を行った。ガスクロマトグラフィーにて反応液を分析したところ、目的物であるN−フェニル−1−ナフチルアミンが99.4%生成しており、原料の第三級アミンおよび芳香環の一部が還元された不純物は未検出であった。
Example 11
To a 100 ml flask equipped with a thermometer and a condenser, 17.8 g of toluene, 3.1 g of N-1-naphthyl-N-phenylbenzylamine, 6.6 g of 50% aqueous phosphinic acid solution, 10% Pd carbon powder and water-containing product (N -0.62 g (dry base weight) made by Echemcat, PE type) was charged. The temperature was gradually raised, and the reaction was carried out in a reflux state (about 90 ° C.) for 14 hours. Analysis of the reaction solution by gas chromatography revealed that 99.4% of the target N-phenyl-1-naphthylamine was produced, and the tertiary amine and a part of the aromatic ring as raw materials were reduced. Was not detected.

実施例12
実施例2において、臭素源として臭化ナトリウムを0.78g(原料に対して1.0重量%)添加した以外は、実施例2と同様にして反応を行った。還流状態で18時間反応させた後に、ガスクロマトグラフィーにて反応液を分析したところ、目的物であるジ(4−ビフェニリル)アミンの生成は12.8%であり、それ以外のほとんどが原料のまま残存しており、転化率は13%に留まった。このように、臭化ナトリウムの添加により反応の進行が大幅に遅くなった。
Example 12
In Example 2, the reaction was carried out in the same manner as in Example 2 except that 0.78 g of sodium bromide was added as a bromine source (1.0% by weight with respect to the raw material). After reacting at reflux for 18 hours, the reaction mixture was analyzed by gas chromatography. As a result, production of di (4-biphenylyl) amine, which was the target product, was 12.8%, and most of the rest was the raw material. The conversion rate remained at 13%. Thus, the progress of the reaction was significantly slowed by the addition of sodium bromide.

実施例13〜16
実施例12において添加する臭化ナトリウムの量を原料に対して0.002重量%、0.05重量%、0.1重量%、0.5重量%と変えた以外は、実施例12と同様にして反応を行った。反応の転化率の確認は、実施例12と同様にガスクロマトグラフィーにて行った。18時間反応を行った後の転化率を図1に合わせて示す。なお、実施例12についても図1の中に示した。図1から明らかなように、臭化ナトリウムの添加により反応速度が著しく低下することがわかる。
Examples 13-16
The same as Example 12 except that the amount of sodium bromide added in Example 12 was changed to 0.002%, 0.05%, 0.1%, and 0.5% by weight with respect to the raw material. The reaction was carried out. The conversion of the reaction was confirmed by gas chromatography as in Example 12. The conversion after the reaction for 18 hours is shown in FIG. Example 12 is also shown in FIG. As apparent from FIG. 1, it can be seen that the addition of sodium bromide significantly reduces the reaction rate.

比較例1
温度計およびコンデンサーの付いた100mlフラスコに、クロロホルム91.0g、エタノール9.6g、N−1−ナフチル−N−フェニルベンジルアミン 0.62g、20%水酸化パラジウム炭素粉末・含水品(デグッサ製、E101 NE/Wタイプ)62mg(ドライベース重量)を仕込んだ。系内を水素ガスで置換した後、水素を充填した風船を装着した状態で室温にて24時間撹拌し、反応させた。ガスクロマトグラフィーにて反応液を分析したところ、目的物であるN−フェニル−1−ナフチルアミンが98.1%生成し、原料は消失していたが、芳香環の一部が還元された不純物も合計で1.2%生成していた。
Comparative Example 1
In a 100 ml flask equipped with a thermometer and a condenser, 91.0 g of chloroform, 9.6 g of ethanol, 0.62 g of N-1-naphthyl-N-phenylbenzylamine, 20% palladium hydroxide carbon powder / water-containing product (manufactured by Degussa, E101 NE / W type) 62 mg (dry base weight) was charged. After replacing the system with hydrogen gas, the reaction was carried out by stirring for 24 hours at room temperature with a balloon filled with hydrogen. Analysis of the reaction solution by gas chromatography revealed that 98.1% of the target N-phenyl-1-naphthylamine was produced and the raw material had disappeared, but impurities in which a part of the aromatic ring was reduced were also present. A total of 1.2% was produced.

比較例2
温度計およびコンデンサーの付いた100mlフラスコに、塩化メチレン80.8g、エタノール9.6g、N−1−ナフチル−N−フェニルベンジルアミン 0.62g、20%水酸化パラジウム炭素粉末・含水品(デグッサ製、E101 NE/Wタイプ)62mg(ドライベース重量)を仕込んだ。系内を水素ガスで置換した後、水素を充填した風船を装着した状態で室温にて4時間撹拌し、反応させた。ガスクロマトグラフィーにて反応液を分析したところ、目的物であるN−フェニル−1−ナフチルアミンの生成量は65.2%であり、原料の残存量が31.5%であり、芳香環の一部が還元された不純物も合計で2.3%生成していた。
Comparative Example 2
In a 100 ml flask equipped with a thermometer and condenser, 80.8 g of methylene chloride, 9.6 g of ethanol, 0.62 g of N-1-naphthyl-N-phenylbenzylamine, 20% palladium hydroxide carbon powder and water-containing product (manufactured by Degussa) , E101 NE / W type) 62 mg (dry base weight) was charged. After replacing the system with hydrogen gas, the reaction was carried out by stirring at room temperature for 4 hours with a balloon filled with hydrogen. When the reaction solution was analyzed by gas chromatography, the amount of N-phenyl-1-naphthylamine, which was the target product, was 65.2%, the remaining amount of the raw material was 31.5%, Impurities whose parts were reduced were also generated in a total of 2.3%.

NaBr添加量と反応転化率の関係を示した図である。It is the figure which showed the relationship between NaBr addition amount and reaction conversion rate.

Claims (6)

一般式(1)
Figure 2006290818
(式中、Rは炭素数1〜30の置換もしくは無置換のアルキル基またはアリールアルキル基を表す。ArおよびArは各々独立して置換もしくは無置換のアリール基を表す。)
で表される三級アミンを遷移金属触媒を用いて加水素分解することにより、一般式(2)
Figure 2006290818
(式中、ArおよびArは各々独立して置換もしくは無置換のアリール基を表す。)
で表される芳香族二級アミンを製造する方法において、加水素分解に用いる還元剤として水素供与試剤を用いることを特徴とする芳香族二級アミンの製造方法。
General formula (1)
Figure 2006290818
(In the formula, R represents a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms or an arylalkyl group. Ar 1 and Ar 2 each independently represents a substituted or unsubstituted aryl group.)
Hydrogenolysis of the tertiary amine represented by the general formula (2) using a transition metal catalyst
Figure 2006290818
(In the formula, Ar 1 and Ar 2 each independently represent a substituted or unsubstituted aryl group.)
A method for producing an aromatic secondary amine represented by the formula: wherein a hydrogen donor reagent is used as a reducing agent used for hydrogenolysis.
一般式(1)において、Rがベンジル基であることを特徴とする請求項1に記載の芳香族二級アミンの製造方法。 The method for producing an aromatic secondary amine according to claim 1, wherein in the general formula (1), R is a benzyl group. 用いる水素供与試剤がギ酸またはギ酸塩類であることを特徴とする請求項1〜2に記載の芳香族二級アミンの製造方法。 The method for producing an aromatic secondary amine according to claim 1 or 2, wherein the hydrogen donor reagent used is formic acid or formate. さらに添加剤として水を加えることを特徴とする請求項1〜3に記載の芳香族二級アミンの製造方法。 Furthermore, water is added as an additive, The manufacturing method of the aromatic secondary amine of Claims 1-3 characterized by the above-mentioned. 反応溶媒として芳香族炭化水素を用いることを特徴とする請求項1〜4に記載の芳香族二級アミンの製造方法。 The method for producing an aromatic secondary amine according to claim 1, wherein an aromatic hydrocarbon is used as a reaction solvent. 加水素分解反応を大気圧下で行うことを特徴とする請求項1〜5に記載の芳香族二級アミンの製造方法。
The method for producing an aromatic secondary amine according to claim 1, wherein the hydrogenolysis reaction is performed under atmospheric pressure.
JP2005115298A 2005-04-13 2005-04-13 Method for producing high-purity aromatic secondary amine Pending JP2006290818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005115298A JP2006290818A (en) 2005-04-13 2005-04-13 Method for producing high-purity aromatic secondary amine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005115298A JP2006290818A (en) 2005-04-13 2005-04-13 Method for producing high-purity aromatic secondary amine

Publications (1)

Publication Number Publication Date
JP2006290818A true JP2006290818A (en) 2006-10-26

Family

ID=37411776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005115298A Pending JP2006290818A (en) 2005-04-13 2005-04-13 Method for producing high-purity aromatic secondary amine

Country Status (1)

Country Link
JP (1) JP2006290818A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646850A (en) * 1979-09-27 1981-04-28 Ajinomoto Co Inc Method for reductive elimination of protecting group
WO2002076922A1 (en) * 2001-03-16 2002-10-03 Idemitsu Kosan Co., Ltd. Method for producing aromatic amino compound

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646850A (en) * 1979-09-27 1981-04-28 Ajinomoto Co Inc Method for reductive elimination of protecting group
WO2002076922A1 (en) * 2001-03-16 2002-10-03 Idemitsu Kosan Co., Ltd. Method for producing aromatic amino compound

Similar Documents

Publication Publication Date Title
JP3269620B2 (en) Process for producing 4-nitrodiphenylamine and 4-nitrosodiphenylamine from carbanilide
JP5259534B2 (en) Method for producing 4-aminodiphenylamine
CN1046701C (en) Process for preparing substituted aromatic amines
RU2280640C2 (en) Method for preparing 4-aminodiphenylamines
Younis et al. Hydroamination of diphenylbutadiyne with secondary N-methyl-anilines using the dipotassium tetrakis (2, 6-diisopropylanilino) calciate precatalyst
FR2561238A1 (en) PROCESS FOR PRODUCING DIPHENYLAMINES OR N, N&#39;-DIPHENYL-PHENYLENEDIAMINES
JP2012506847A (en) Process for preparing cinacalcet
JP2013533208A (en) Method for preparing ritodrine hydrochloride
Raju et al. A new reagent for selective reduction of nitro group
JP2006290818A (en) Method for producing high-purity aromatic secondary amine
EP2720995B1 (en) Process for making tertiary aminoalcohol compounds
KR101615157B1 (en) Production method for 2-alkenylamine compound
JP2006290819A (en) Method for producing aromatic secondary amine
TW379210B (en) Method of preparing 4-aminodiphenylamine
JPS59196843A (en) Production of cyclohexylamine compound
JP6506330B2 (en) Process for producing arylamines
CA2454455A1 (en) Process for the production of aminodiphenylamines
EP1508564B1 (en) Method for producing 2-benzylaniline
JPWO2019073987A1 (en) Method for producing 2,5-bis (aminomethyl) tetrahydrofuran
JP2016108332A (en) Method for producing amino compound
HU188807B (en) Process for the production of hydrazinocarboxylic acid derivatives
JP4389548B2 (en) An inclusion compound of an arylamine derivative having a fluorene skeleton and an aromatic hydrocarbon, and a method for separating and purifying the arylamine derivative.
RU2274635C1 (en) Method for preparing terbinafine or its hydrochloride
RU2337092C1 (en) Method of obtaining 4-hydroxylamino-2,6-dinitrotoluene and 3,5 dinitro-1 - hydroxylaminobenzol
Adimurthy et al. A fast and highly efficient method for the synthesis of tertiary amines in aqueous medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080312

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110302

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Effective date: 20110427

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20110524

Free format text: JAPANESE INTERMEDIATE CODE: A02