JP2006289679A - Thermoplastic resin foam - Google Patents

Thermoplastic resin foam Download PDF

Info

Publication number
JP2006289679A
JP2006289679A JP2005110755A JP2005110755A JP2006289679A JP 2006289679 A JP2006289679 A JP 2006289679A JP 2005110755 A JP2005110755 A JP 2005110755A JP 2005110755 A JP2005110755 A JP 2005110755A JP 2006289679 A JP2006289679 A JP 2006289679A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
foam
resin foam
foaming
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005110755A
Other languages
Japanese (ja)
Inventor
Nobuhiko Inui
延彦 乾
Kazuho Uchida
かずほ 内田
Tomoo Shimamoto
倫男 島本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2005110755A priority Critical patent/JP2006289679A/en
Publication of JP2006289679A publication Critical patent/JP2006289679A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoplastic resin foam, which has an open-cell structure, capable of being produced at a low cost by a method substantially comprising a single process. <P>SOLUTION: The thermoplastic resin foam with an open cell ratio of 20% or above comprises a thermoplastic resin with a gel ratio of 1-35 wt.%. A fibrous material with an aspect ratio of 5-500 of 5-100 pts.wt. is added to 100 pts.wt. of the thermoplastic resin and a chemical foaming agent is added to the thermoplastic resin. The obtained composition is heated to the decomposition temperature of the chemical foaming agent or above to obtain the thermoplastic resin foam. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、熱可塑性樹脂発泡体に関し、詳しくは繊維状物を含有する熱可塑性樹脂を加熱発泡させて得られる連続気泡構造体を有する熱可塑性樹脂発泡体に関する。   The present invention relates to a thermoplastic resin foam, and more particularly to a thermoplastic resin foam having an open-cell structure obtained by heating and foaming a thermoplastic resin containing a fibrous material.

熱可塑性樹脂発泡体は、熱硬化性樹脂発泡体に比べ2次加工性やリサイクルの面で優れていることから広く緩衝材や断熱材等に用いられており、またこの熱可塑性樹脂発泡体を連続気泡化することで吸音性を有する防音材とすることも可能である。
しかしながら化学発泡剤等を用いて熱可塑性樹脂を加熱発泡する場合、その熱可塑性のために連続気泡の構造体は得られ難いという問題を有していた。これまでに、熱可塑性樹脂発泡体を連続気泡化するためには、例えば、発泡成形後の機械的変形による気泡セルを破壊する方法(例えば、特許文献1参照。)、マイクロ波照射により気泡セルを破壊する方法(例えば、特許文献2参照。)、2段階での発泡させる方法(例えば、特許文献3参照。)等に記載されているように複数の工程が必要であったため、設備投資等のコストの増大が課題であった。
特開平11−315161号公報 特開平10−235670号公報 特許2872505号公報
Thermoplastic resin foams are widely used for cushioning materials and heat insulating materials because they are superior in terms of secondary processability and recycling compared to thermosetting resin foams. It is also possible to obtain a soundproofing material having sound absorbing properties by forming continuous bubbles.
However, when a thermoplastic resin is heated and foamed using a chemical foaming agent or the like, there is a problem that it is difficult to obtain an open-cell structure due to the thermoplasticity. In the past, in order to make a thermoplastic resin foam into an open cell, for example, a method of destroying a bubble cell by mechanical deformation after foam molding (see, for example, Patent Document 1), a bubble cell by microwave irradiation. As described in the method of destroying the material (for example, see Patent Document 2), the method of foaming in two stages (for example, see Patent Document 3), etc. The increase in cost was a problem.
Japanese Patent Laid-Open No. 11-315161 JP-A-10-235670 Japanese Patent No. 2872505

本発明の目的は、上記問題点に鑑み、実質上化学発泡による単工程からなる方法により、低コストで生産することのできる連続気泡構造を有する熱可塑性樹脂発泡体を提供することにある。   In view of the above problems, an object of the present invention is to provide a thermoplastic resin foam having an open-cell structure that can be produced at low cost by a method substantially consisting of a single step by chemical foaming.

本発明者らは、上記課題を解決すべく鋭意検討した結果、熱可塑性樹脂に特定の繊維状物を特定量加えて、特定のゲル分率を有するように化学発泡させることにより、実質上単工程からなる加熱発泡により低コストで、特定の連続気泡構造を有する熱可塑性樹脂発泡体が生産できることを見出し本発明に至った。   As a result of intensive studies to solve the above-mentioned problems, the inventors have added a specific amount of a specific fibrous material to a thermoplastic resin and chemically foamed it so as to have a specific gel fraction. The present inventors have found that a thermoplastic resin foam having a specific open-cell structure can be produced at low cost by heating and foaming comprising the steps.

すなわち、本発明の第1の発明によれば、ゲル分率1〜35wt%の熱可塑性樹脂からなる連泡率20%以上の熱可塑性樹脂発泡体であって、熱可塑性樹脂100重量部に対して、アスペクト比5〜500の繊維状物を5〜100重量部添加して発泡させたことを特徴とする熱可塑性樹脂発泡体が提供される。   That is, according to 1st invention of this invention, it is a thermoplastic resin foam of the open cell ratio 20% or more which consists of a thermoplastic resin with a gel fraction of 1-35 wt%, Comprising: With respect to 100 weight part of thermoplastic resins Thus, a thermoplastic resin foam obtained by adding 5 to 100 parts by weight of a fibrous material having an aspect ratio of 5 to 500 is foamed.

また、本発明の第2の発明によれば、第1の発明において、熱可塑性樹脂発泡体が、熱可塑性樹脂に化学発泡剤を添加し、その化学発泡剤の分解温度以上に加熱することで賦形された発泡体であることを特徴とする熱可塑性樹脂発泡体が提供される。   Further, according to the second invention of the present invention, in the first invention, the thermoplastic resin foam is obtained by adding a chemical foaming agent to the thermoplastic resin and heating it to a temperature equal to or higher than a decomposition temperature of the chemical foaming agent. A thermoplastic resin foam characterized by being a shaped foam is provided.

また、本発明の第3の発明によれば、第1又は2の発明において、繊維状物が、無機化合物であることを特徴とする熱可塑性樹脂発泡体が提供される。   According to the third invention of the present invention, there is provided a thermoplastic resin foam characterized in that, in the first or second invention, the fibrous material is an inorganic compound.

また、本発明の第4の発明によれば、第1〜3のいずれかの発明において、熱可塑性樹脂が、ポリプロピレン、ポリエチレン、エチレンプロピレン共重合体、またはエチレン酢酸ビニル共重合体等の結晶性熱可塑性樹脂であることを特徴とする熱可塑性樹脂発泡体が提供される。   According to the fourth aspect of the present invention, in any one of the first to third aspects, the thermoplastic resin is crystalline such as polypropylene, polyethylene, ethylene propylene copolymer, or ethylene vinyl acetate copolymer. There is provided a thermoplastic resin foam characterized by being a thermoplastic resin.

また、本発明の第5の発明によれば、第1〜4のいずれかの発明において、熱可塑性樹脂発泡体が、実質上単工程からなる発泡工程の完了時に連泡率が20%以上であることを特徴とする熱可塑性樹脂発泡体が提供される。   Moreover, according to the fifth invention of the present invention, in any one of the first to fourth inventions, the foamed thermoplastic resin has an open cell rate of 20% or more upon completion of the foaming process consisting essentially of a single process. A thermoplastic resin foam is provided.

本発明の熱可塑性樹脂発泡体は、熱可塑性樹脂にアスペクト比5〜500の繊維状物を配合し、化学発泡剤の分解温度以上で加熱発泡させて得られる架橋熱可塑性樹脂発泡体であるので、発泡時に気泡のセルを破裂・開口させたのち繊維の増粘・補強効果によってセルの穴を保持し連泡構造を形成するように発泡して発泡体が得られ、実質上単工程からなる方法による熱可塑性樹脂発泡体である。   Since the thermoplastic resin foam of the present invention is a cross-linked thermoplastic resin foam obtained by blending a fibrous material having an aspect ratio of 5 to 500 with a thermoplastic resin and heating and foaming at a temperature equal to or higher than the decomposition temperature of the chemical foaming agent. After foaming, the cell of the cell is ruptured and opened at the time of foaming, and the foam is obtained by foaming so as to hold the cell hole by the fiber thickening / reinforcing effect and form an open cell structure. It is a thermoplastic resin foam by a method.

本発明は、熱可塑性樹脂に繊維状物を配合し、発泡、架橋して得られる連泡構造を有する発泡体である。以下に、熱可塑性樹脂、繊維状物、発泡体の製造方法等について、詳細に説明する。   The present invention is a foam having an open cell structure obtained by blending a fibrous material with a thermoplastic resin, foaming and crosslinking. Below, the manufacturing method of a thermoplastic resin, a fibrous material, a foam, etc. are demonstrated in detail.

1.熱可塑性樹脂
本発明で用いる熱可塑性樹脂とは、一般に用いられている熱可塑性樹脂であれば特に限定されず、例えば、ポリプロピレン、ポリエチレン、エチレン・プロピレン共重合体、エチレン・プロピレン・ジエン三元共重合体、エチレン・酢酸ビニル共重合体等のポリオレフィン類や、ポリ塩化ビニルやポリ酢酸ビニル等のビニル共重合体、ポリアミド、ポリカーボネート、ポリスチレン、ポリエステル、ポリヒドロキシエーテル等の樹脂、またこれらを用いたランダム共重合体やブロック共重合体などが挙げられる。本発明ではこれら熱可塑性樹脂を単体で用いても複数を混合して用いてもよいが、このうち加熱発泡により連続気泡構造を形成した後、冷却固化によって構造を保持するためには結晶化速度の速い結晶性の樹脂を含むことが好ましい。
これらの中では、特にポリプロピレン、ポリエチレン、エチレン・プロピレン共重合体、エチレン・酢酸ビニル共重合体の結晶性樹脂が好ましい。
1. Thermoplastic Resin The thermoplastic resin used in the present invention is not particularly limited as long as it is a commonly used thermoplastic resin. For example, polypropylene, polyethylene, ethylene / propylene copolymer, ethylene / propylene / diene ternary copolymer. Polymers, polyolefins such as ethylene / vinyl acetate copolymer, vinyl copolymers such as polyvinyl chloride and polyvinyl acetate, resins such as polyamide, polycarbonate, polystyrene, polyester, polyhydroxy ether, and the like A random copolymer, a block copolymer, etc. are mentioned. In the present invention, these thermoplastic resins may be used alone or in combination, but after forming an open-cell structure by heating foaming, a crystallization rate is required to maintain the structure by cooling and solidification. It is preferable to contain a crystalline resin having a high speed.
Among these, crystalline resins such as polypropylene, polyethylene, ethylene / propylene copolymer, and ethylene / vinyl acetate copolymer are particularly preferable.

また、上記熱可塑性樹脂には、必要に応じ、ユリア系、メラミン系、レゾルシノール系、フェノール系、エポキシ系、ポリウレタン系、ポリエステル系、アルキッド系等の熱硬化性樹脂を添加してもよい。   Moreover, you may add thermosetting resins, such as a urea type, a melamine type, a resorcinol type, a phenol type, an epoxy type, a polyurethane type, a polyester type, an alkyd type, to the said thermoplastic resin as needed.

上記熱可塑性樹脂は、発泡性を付与するために、架橋構造の導入等によりゲル分率を1〜35wt%にする必要があり、好ましくは1〜30wt%であり、より好ましくは1〜25wt%である。ゲル分率が35wt%を超えると粘度が高まりすぎるため発泡に適さなくなる。一方、ゲル分率が1wt%未満では、発泡に必要な粘度が得られない。   In order to impart foamability, the thermoplastic resin needs to have a gel fraction of 1 to 35 wt% by introduction of a crosslinked structure or the like, preferably 1 to 30 wt%, more preferably 1 to 25 wt%. It is. If the gel fraction exceeds 35 wt%, the viscosity will be too high and it will not be suitable for foaming. On the other hand, when the gel fraction is less than 1 wt%, the viscosity necessary for foaming cannot be obtained.

熱可塑性樹脂に架橋構造を導入する方法は、一般に用いられているものであれば特に限定されず、有機過酸化物等のラジカルによる架橋、電離性放射線やUVによる架橋、ジビニルモノマー存在下においてエチレングリコールやメチレンビスアクリルアミドなどを用いた熱重合、過酸化物やアゾビス系化合物を光増感剤として用いた光重合等の化学架橋が挙げられる。本発明においては、過酸化物や架橋用モノマーを用いる化学架橋方法は、発泡と同時に行なうことができ好ましい。   The method for introducing a crosslinked structure into the thermoplastic resin is not particularly limited as long as it is generally used. Crosslinking with radicals such as organic peroxides, crosslinking with ionizing radiation or UV, and ethylene in the presence of divinyl monomer. Examples thereof include chemical crosslinking such as thermal polymerization using glycol or methylenebisacrylamide, and photopolymerization using a peroxide or an azobis compound as a photosensitizer. In the present invention, the chemical crosslinking method using a peroxide or a crosslinking monomer is preferable because it can be performed simultaneously with foaming.

過酸化物や架橋用モノマーを用いる化学架橋方法としては、熱可塑性樹脂に過酸化物や架橋用モノマーを加え、過酸化物等の分解温度より低い温度で溶融混練後、加熱して架橋する方法が挙げられる。この方法において用いられる過酸化物は、特に限定されず、例えば、ジブチルパーオキサイド、ジクミルパーオキサイド、ターシャルブチルクミルパーオキサイド、ジイソプロピルパーオキサイド等が挙げられ、分解温度が適正温度範囲であるので、ジクミルパーオキサイド、ターシャルブチルクミルパーオキサイドが好ましく、ジクミルパーオキサイドが特に好ましい。また、架橋用モノマーとしては、ジオキシム化合物、アクリル系多官能モノマー、(メタ)アクリル系多官能モノマー、キノン化合物等が挙げられる。
過酸化物や架橋用モノマーの配合量は、熱可塑性樹脂100重量部に対して、0.1〜10重量部が好ましく、0.2〜5重量部が特に好ましい。過酸化物や架橋用モノマーの添加量が、多すぎると、樹脂分解反応や架橋反応が激しくが進行し、発泡体が得られないやすくなり、得られる発泡体が着色し、また、少なすぎると、熱可塑性樹脂の架橋が不十分となることがあるので好ましくない。
A chemical crosslinking method using a peroxide or a crosslinking monomer is a method in which a peroxide or a crosslinking monomer is added to a thermoplastic resin, melt-kneaded at a temperature lower than the decomposition temperature of the peroxide, and then heated and crosslinked. Is mentioned. The peroxide used in this method is not particularly limited, and examples thereof include dibutyl peroxide, dicumyl peroxide, tertiary butyl cumyl peroxide, diisopropyl peroxide, and the like, since the decomposition temperature is in an appropriate temperature range. Dicumyl peroxide and tertiary butyl cumyl peroxide are preferable, and dicumyl peroxide is particularly preferable. Examples of the crosslinking monomer include dioxime compounds, acrylic polyfunctional monomers, (meth) acrylic polyfunctional monomers, and quinone compounds.
The blending amount of the peroxide and the crosslinking monomer is preferably 0.1 to 10 parts by weight, particularly preferably 0.2 to 5 parts by weight with respect to 100 parts by weight of the thermoplastic resin. If the amount of peroxide or crosslinking monomer added is too large, the resin decomposition reaction or crosslinking reaction proceeds violently, making it difficult to obtain a foam, and the resulting foam is colored. Further, it is not preferable because crosslinking of the thermoplastic resin may be insufficient.

ここで、熱可塑性樹脂発泡体のゲル分率は、下記のようにして求める。
まず熱可塑性樹脂発泡体Ag秤量し、540℃のるつぼで6時間燃焼させた残渣重量Bgを測定する。また熱可塑性樹脂発泡体Cgを溶剤が浸透しやすいようにプレス等で潰しシート状にし、これを熱可塑性樹脂が溶解可能な溶剤中(例;オレフィン樹脂の場合120℃キシレン)に24時間浸漬して不溶物を200メッシュの金網で濾過し、金網上の残渣を真空乾燥して乾燥残渣Dgを測定することで、下記式により算出する値である。
ゲル分率(重量%)=(1−B/A)×(D/C)×100
Here, the gel fraction of the thermoplastic resin foam is determined as follows.
First, a thermoplastic resin foam Ag is weighed, and a residue weight Bg burned in a crucible at 540 ° C. for 6 hours is measured. Also, the thermoplastic resin foam Cg is crushed with a press or the like so that the solvent can easily penetrate into a sheet, and this is immersed in a solvent in which the thermoplastic resin can be dissolved (eg, 120 ° C. xylene in the case of an olefin resin) for 24 hours. The insoluble matter is filtered through a 200-mesh wire mesh, the residue on the wire mesh is vacuum-dried, and the dry residue Dg is measured.
Gel fraction (% by weight) = (1−B / A) × (D / C) × 100

2.繊維状物
本発明で用いる繊維状物は、熱可塑性樹脂に配合できるものであれば特に制限はないが、そのアスペクト比が5〜500、好ましくは10〜400である必要がある。アスペクト比が低すぎると繊維による増粘・補強効果が得られ難く、高すぎると発泡性を損なう。
ここで、アスペクト比とは、繊維状物の径に対する長さの比を表す。
2. Fibrous material Although the fibrous material used by this invention will not be restrict | limited especially if it can mix | blend with a thermoplastic resin, the aspect-ratio needs to be 5-500, Preferably it is 10-400. If the aspect ratio is too low, it is difficult to obtain a thickening / reinforcing effect by the fiber, and if it is too high, the foamability is impaired.
Here, the aspect ratio represents the ratio of the length to the diameter of the fibrous material.

本発明で用いることのできる繊維状物としては、無機化合物繊維や有機化合物繊維があり、無機化合物の繊維としては、例えば、ガラス繊維、ロックウール等の非晶質繊維、ウォラストナイトやチタン酸カリウム繊維等の単結晶繊維、カーボン繊維、アルミナ繊維等の多結晶繊維等が挙げられる。また、有機化合物の繊維としては、例えば、アラミド繊維、ポリエステル繊維、(超高分子量)ポリエチレン繊維等のオレフィン繊維、セルロース繊維等の天然繊維、ポリビニルアルコール繊維、ゴム有機繊維等が挙げられる。さらに、必要に応じて、これら繊維状物に表面処理等の改質を行っても良い。   Examples of fibrous materials that can be used in the present invention include inorganic compound fibers and organic compound fibers. Examples of inorganic compound fibers include glass fibers, amorphous fibers such as rock wool, wollastonite, and titanic acid. Examples thereof include single crystal fibers such as potassium fibers, and polycrystalline fibers such as carbon fibers and alumina fibers. Examples of the organic compound fibers include aramid fibers, polyester fibers, olefin fibers such as (ultra high molecular weight) polyethylene fibers, natural fibers such as cellulose fibers, polyvinyl alcohol fibers, rubber organic fibers, and the like. Furthermore, you may modify | reform such as surface treatment to these fibrous materials as needed.

本発明において用いる繊維状物の配合量は、熱可塑性樹脂100重量部に対して、5〜100重量部であり、好ましくは10〜80重量部であり、より好ましくは15〜70重量部である。繊維状物の配合量が少なすぎると繊維による増粘・補強効果が得られ難く、多すぎると発泡性を損なう。   The amount of the fibrous material used in the present invention is 5 to 100 parts by weight, preferably 10 to 80 parts by weight, more preferably 15 to 70 parts by weight with respect to 100 parts by weight of the thermoplastic resin. . If the blending amount of the fibrous material is too small, it is difficult to obtain a thickening / reinforcing effect by the fiber, and if it is too large, the foaming property is impaired.

3.発泡体の製造方法
本発明の熱可塑性樹脂発泡体は、上記熱可塑性樹脂に繊維状物を配合した熱可塑性樹脂組成物を発泡して得られ、熱可塑性樹脂の発泡方法は、一般に用いられているものであれば特に限定されないが、熱分解型の化学発泡剤を用いる方法が生産上好ましい。
熱分解型化学発泡剤の代表例としては、アゾジカルボンアミド、ベンゼンスルホニルヒドラジド、ジニトロソペンタメチレンテトラミン、トルエンスルホニルヒドラジド、4,4−オキシビス(ベンゼンスルホニルヒドラジド)等が挙げられる。これらは単独で用いてもまたは2種類以上組み合わせて用いてもよい。
化学発泡剤の量は、熱可塑性樹脂100重量部に対し、1〜25重量部が好ましい。化学発泡剤の量が多過ぎると、破泡しやすく、逆にすくな過ぎると発泡しなくなる。
3. Production method of foam The thermoplastic resin foam of the present invention is obtained by foaming a thermoplastic resin composition in which a fibrous material is blended with the thermoplastic resin, and the foaming method of the thermoplastic resin is generally used. Although it will not specifically limit if it is, The method using a thermal decomposition type chemical foaming agent is preferable on production.
Representative examples of the thermal decomposition type chemical blowing agent include azodicarbonamide, benzenesulfonyl hydrazide, dinitrosopentamethylenetetramine, toluenesulfonyl hydrazide, 4,4-oxybis (benzenesulfonyl hydrazide) and the like. These may be used alone or in combination of two or more.
The amount of the chemical foaming agent is preferably 1 to 25 parts by weight with respect to 100 parts by weight of the thermoplastic resin. If the amount of the chemical foaming agent is too large, it is easy to break the bubbles, and conversely, if the amount is too much, it will not foam.

また、本発明の熱可塑性樹脂発泡体には、熱可塑性樹脂発泡体の物性を損なわない範囲で、炭酸カルシウム、タルク、クレー、酸化マグネシウム等の気泡形成剤;2,6−ジ−t−ブチル−p−クレゾールなどのフェノール系、リン系、アミン系、ジラウリルチオプロピオネートなどのイオウ系等の酸化防止剤;メチルベンゾトリアゾール金属害防止剤;ヘキサブロモビフェニルエーテル、デカブロモジフェニルエーテル等のハロゲン化難燃剤;水酸化アルミニウム、水酸化マグネシウムとうの非ハロゲン化難燃剤;ポリリン酸アンモニウム、トリメチルフォスフェート等のリン系難燃剤の他、充填剤、帯電防止剤、安定剤、顔料等が添加されてもよい。   In addition, the thermoplastic resin foam of the present invention includes a bubble forming agent such as calcium carbonate, talc, clay, magnesium oxide; 2,6-di-t-butyl as long as the physical properties of the thermoplastic resin foam are not impaired. -Phenols such as p-cresol, phosphorus-based, amine-based, sulfur-based antioxidants such as dilauryl thiopropionate; methylbenzotriazole metal-damaging agents; halogens such as hexabromobiphenyl ether and decabromodiphenyl ether Non-halogenated flame retardants such as aluminum hydroxide and magnesium hydroxide; in addition to phosphorus flame retardants such as ammonium polyphosphate and trimethyl phosphate, fillers, antistatic agents, stabilizers, pigments, etc. are added May be.

上記熱可塑性樹脂組成物は、熱可塑性樹脂に、繊維状物、化学発泡剤、必要に応じて、過酸化物等を配合して、押出機等で、熱分解型発泡剤の分解温度より低い温度で溶融混練して、熱可塑性樹脂発泡原反を形成する。得られた発泡原反を、最終製品に応じて賦形する。賦形方法としては、押出成形の他、プレス成形、ブロー成型、カレンダリング成型、射出成形など、プラスチックの成型加工で一般的に行われている方法が適用可能である。これらの中でも、スクリュー押出機より吐出する発泡性樹脂組成物を、直接賦形する方法が、生産性の点から好ましい。この場合は、一定寸法幅の連続発泡性原反を得ることができる。   The thermoplastic resin composition is lower than the decomposition temperature of the pyrolytic foaming agent in an extruder or the like by blending the thermoplastic resin with a fibrous material, a chemical foaming agent, and if necessary, a peroxide. It is melt-kneaded at a temperature to form a thermoplastic resin foam raw material. The obtained foam raw material is shaped according to the final product. As the shaping method, in addition to extrusion molding, methods generally used in plastic molding, such as press molding, blow molding, calendering molding, and injection molding, can be applied. Among these, the method of directly shaping the foamable resin composition discharged from the screw extruder is preferable from the viewpoint of productivity. In this case, it is possible to obtain a continuous foam raw material having a constant width.

発泡原反の発泡は、通常、熱分解型有機発泡剤の分解温度以上、熱可塑性樹脂の分解温度以下で行われる。特に、連続式発泡装置としては、加熱炉の出口側で発泡体を引き取りながら発泡させる引き取り式発泡機の他、連続ベルト式発泡機、縦型または横型発泡炉、熱風恒温槽や、あるいは熱浴中で発泡を行うオイルバス、メタルバス、ソルトバスなどが用いられる。   Foaming of the original foam is usually performed at a temperature not lower than the decomposition temperature of the pyrolytic organic foaming agent and not higher than the decomposition temperature of the thermoplastic resin. In particular, as a continuous foaming apparatus, in addition to a take-up type foaming machine that foams while taking up a foam on the outlet side of a heating furnace, a continuous belt type foaming machine, a vertical or horizontal foaming furnace, a hot air thermostatic bath, or a hot bath Oil baths, metal baths, salt baths, etc. that foam are used.

本発明によって得られる熱可塑性樹脂発泡体の倍率は、特に限定されないが、2〜40倍であり、より好ましくは5〜30倍である。発泡倍率が小さすぎると軽量性を損ない、大きすぎると剛性等を損なう。
ここで、発泡体の発泡倍率は、JIS K722に準拠して測定する見かけ密度の逆数として表す値である。
Although the magnification of the thermoplastic resin foam obtained by the present invention is not particularly limited, it is 2 to 40 times, more preferably 5 to 30 times. If the expansion ratio is too small, the lightness is impaired, and if it is too large, the rigidity and the like are impaired.
Here, the expansion ratio of the foam is a value expressed as the reciprocal of the apparent density measured in accordance with JIS K722.

本発明における発泡は、実質上単工程からなる発泡であり、発泡工程において発泡原反を加熱し冷却・固化して発泡体が得られるまでの連続的な工程であり、本発明ではこの冷却・固化の後、熱可塑性樹脂発泡体が連続気泡化していることを特徴としている。
本発明の熱可塑性樹脂発泡体は、連続気泡化しており、その連泡率は、20%以上であり、好ましくは20〜100%である。
連泡率が20%以上であることにより、発泡体が、吸音性、通気性、柔軟性の効果を有し、防音材、フィルター、緩衝材等の用途に有効に用いることができる。
ここで、発泡体の連泡率は、ASTM D2856に準拠して測定する値である。
Foaming in the present invention is substantially a single process, and is a continuous process until the foam is obtained by heating and cooling / solidifying the foam material in the foaming process. After the solidification, the thermoplastic resin foam is characterized by being open-celled.
The thermoplastic resin foam of the present invention is open-celled, and the open cell ratio is 20% or more, preferably 20 to 100%.
When the open cell ratio is 20% or more, the foam has effects of sound absorption, air permeability, and flexibility, and can be effectively used for applications such as soundproofing materials, filters, and cushioning materials.
Here, the open cell ratio of the foam is a value measured according to ASTM D2856.

本発明を以下の実施例により具体的に記すが、本発明はこれらに限定されるものではない。なお、以下に本発明における熱可塑性樹脂発泡体の分析、測定方法を示す。   The present invention will be specifically described by the following examples, but the present invention is not limited thereto. In addition, the analysis and the measuring method of the thermoplastic resin foam in this invention are shown below.

(1)ゲル分率:熱可塑性樹脂発泡体Ag秤量し、540℃のるつぼで6時間燃焼させた残渣重量Bgを測定する。また熱可塑性樹脂発泡体Cgを溶剤が浸透しやすいようにプレス等で潰しシート状にし、これをキシレン中に24時間浸漬して不溶物を200メッシュの金網で濾過し、金網上の残渣を真空乾燥して乾燥残渣Dgを測定し、下記式により算出した。
ゲル分率(重量%)=(1−B/A)×(D/C)×100
(2)連泡率:ASTM D2856(エアーピクノメーター法)に準拠し測定した。
(3)発泡倍率:JIS K7222に準拠して測定した見かけ密度の逆数から求めた。
(1) Gel fraction: Thermoplastic resin foam Ag is weighed, and the residual weight Bg burned in a crucible at 540 ° C. for 6 hours is measured. Also, the thermoplastic resin foam Cg is crushed with a press or the like so that the solvent can easily penetrate into a sheet, which is immersed in xylene for 24 hours, insoluble matter is filtered through a 200 mesh wire mesh, and the residue on the wire mesh is vacuumed. It dried and measured the dry residue Dg, and computed by the following formula.
Gel fraction (% by weight) = (1−B / A) × (D / C) × 100
(2) Open cell ratio: Measured according to ASTM D2856 (air pycnometer method).
(3) Foaming ratio: It was determined from the reciprocal of the apparent density measured according to JIS K7222.

(実施例1)
(1)発泡原反の賦形
熱可塑性樹脂として日本ポリプロ社製ポリプロピレン樹脂(PP)「ノバテックPP EG8」、(MFR=0.8g/10min、密度=0.9g/cm)を用い、樹脂架橋用のモノマーとしてジオキシム化合物(大内新興化学社製「バルノックGM−P」)を用いて、それぞれ50重量部、0.45重量部をプラスチック工学研究所社製同方向回転2軸スクリュー押出機BT40に投入し設定温度240℃で溶融混合した。この熱可塑性樹脂混合物を上記BT40の先端から日本製鋼社製同方向回転2軸スクリュー押出機TEX44にタンデム型で連結して投入し、さらに、熱可塑性樹脂のブロック・ポリプロピレン樹脂(BPP)(日本ポリプロ社製「ノバテックPP BC3B」、MFR=9g/10min、密度=0.9g/cm)30重量部、直鎖状低密度ポリエチレン(LLDPE)(日本ポリプロ社製「ノバテックLL UJ370」、MFR=16g/10min、密度=0.92g/cm)20重量部、繊維状物としてガラス繊維(旭ファイバーグラス社製「ミルドファイバー MF20JH1−20」、繊維径=10μm、平均繊維長=200μm、アスペクト比20)20重量部、発泡剤として永和化成社製アゾジカルボンアミド(ADCA)「ビニホール AC#K3」7.5重量部をフィーダーより投入して、設定温度180℃で押し出すことで厚さ約0.4mmの熱可塑性樹脂発泡原反シートを得た。
Example 1
(1) Molding of foam raw material As a thermoplastic resin, a polypropylene resin (PP) “Novatech PP EG8” (MFR = 0.8 g / 10 min, density = 0.9 g / cm 3 ) manufactured by Nippon Polypro Co., Ltd. is used. Using a dioxime compound (“Barnock GM-P” manufactured by Ouchi Shinsei Kagaku Co., Ltd.) as a monomer for crosslinking, 50 parts by weight and 0.45 parts by weight of the same direction rotating twin screw extruder manufactured by Plastic Engineering Laboratory Co., Ltd. The mixture was put into BT40 and melted and mixed at a set temperature of 240 ° C. This thermoplastic resin mixture is fed in a tandem connection from the tip of the BT40 to a Nippon Steel Corporation co-rotating twin screw extruder TEX44, and further, a thermoplastic block polypropylene / polypropylene resin (BPP) (Nippon Polypropylene). “NOVATEC PP BC3B”, MFR = 9 g / 10 min, density = 0.9 g / cm 3 ), 30 parts by weight, linear low density polyethylene (LLDPE) (Novatech LL UJ370, manufactured by Nippon Polypro, MFR = 16 g) / 10 min, density = 0.92 g / cm 3 ), 20 parts by weight, glass fiber as a fibrous material (“Mildo Fiber MF20JH1-20” manufactured by Asahi Fiber Glass Co., Ltd., fiber diameter = 10 μm, average fiber length = 200 μm, aspect ratio 20 ) 20 parts by weight, azodicarbonamide (ADC) manufactured by Eiwa Chemical Co., Ltd. as a foaming agent ) To "VINYFOR AC # K3" 7.5 parts by weight was charged from the feeder to obtain a thermoplastic resin foam raw sheet having a thickness of about 0.4mm by extruding at a set temperature 180 ° C..

(2)発泡操作
予熱ゾーン、発泡ゾーン、冷却ゾーンの3ゾーンからなる全長6mの横型発泡機(共和エンジニアリング社製)を用い、予熱ゾーンを190℃、発泡ゾーンを230℃、冷却ロールの表面温度を90℃にそれぞれ設定した。そして原反シートを発泡する際、予熱ゾーンにおいて発泡性樹脂組成物シートの表面、裏面の両面に、PET製フィルム(帝人デュポンフィルム社製、「テトロン」SG 25μm)を両面に挟んで融着させながら発泡ゾーンへ供給し、発泡・冷却により発泡機出口から外観良好な発泡体シートを得た。得られた発泡体の結果を表1に示す。また、発泡体の気泡セルの顕微鏡写真を図1に示す。
(2) Foaming operation Using a horizontal foaming machine (manufactured by Kyowa Engineering Co., Ltd.) with a total length of 6 m consisting of three zones: preheating zone, foaming zone, and cooling zone, the preheating zone is 190 ° C, the foaming zone is 230 ° C, and the surface temperature of the cooling roll Was set to 90 ° C., respectively. When foaming the raw sheet, a PET film (Teijin DuPont Films, “Tetron” SG 25 μm) is fused on both sides of the front and back surfaces of the foamable resin composition sheet in the preheating zone. While being supplied to the foaming zone, a foam sheet having a good appearance was obtained from the outlet of the foaming machine by foaming and cooling. The results of the obtained foam are shown in Table 1. Moreover, the microscope picture of the bubble cell of a foam is shown in FIG.

(実施例2)
(1)発泡原反の賦形
熱可塑性樹脂発泡体として住友化学社製エチレン・酢酸ビニル共重合体「エバテート H−1011」(MFR=0.6g/10min、密度=0.94g/cm)を100重量部、樹脂架橋剤として有機過酸化物(日本油脂社製「パークミルD−40」を1.5重量部、繊維状物としてキンセイマテック社製ウォラストナイト「長繊維珪灰石 SH−800」(アスペクト比10)を25重量部、発泡剤として永和化成社製アゾジカルボンアミド(ADCA)「ビニホール AC#K3」を8重量部、異方向回転2軸スクリュー押出機〔池貝鉄工社製、PCM−30〕に供給し、温度180℃で溶融混練して押出すことで厚さ約0.7mmの熱可塑性樹脂発泡原反シートを得た。
(2)発泡操作
実施例1と同様の発泡操作を行い外観良好な発泡体シートを得た。得られた発泡体の結果を表1に示す。
(Example 2)
(1) Shaping of foamed raw material As a thermoplastic resin foam, an ethylene / vinyl acetate copolymer “Evertate H-1011” (MFR = 0.6 g / 10 min, density = 0.94 g / cm 3 ) manufactured by Sumitomo Chemical Co., Ltd. 100 parts by weight, organic peroxide as a resin cross-linking agent (Nippon Yushi Co., Ltd. “Park Mill D-40” 1.5 parts by weight, and fibrous material Wollastonite “long fiber wollastonite SH-800 "(Aspect ratio 10) 25 parts by weight, Ewaso Chemical Co., Ltd. azodicarbonamide (ADCA)" Vinole AC # K3 "as a foaming agent, 8 parts by weight, counter-rotating twin screw extruder (Ikegai Iron Works, PCM -30], melt-kneaded at a temperature of 180 ° C., and extruded to obtain a thermoplastic resin foam raw sheet having a thickness of about 0.7 mm.
(2) Foaming operation The foaming operation similar to Example 1 was performed, and the foam sheet with a favorable external appearance was obtained. The results of the obtained foam are shown in Table 1.

(比較例1)
実施例1において、(1)発泡原反の賦形について所定の繊維状物を添加しないこと以外は全く同様にして原反シートの賦形、発泡を行うことで外観良好な発泡体を得た。得られた発泡体の結果を表1に示す。また、発泡体の気泡セルの顕微鏡写真を図2に示す。
(Comparative Example 1)
In Example 1, (1) Foaming material having a good appearance was obtained by shaping and foaming the raw sheet in the same manner except that the predetermined fibrous material was not added. . The results of the obtained foam are shown in Table 1. Moreover, the microscope picture of the bubble cell of a foam is shown in FIG.

(比較例2)
実施例1において、(1)発泡原反の賦形についてオキシム化合物の添加量を1.0重量部とし、設定温度を220℃としたこと以外は全く同様にして原反シートの賦形、発泡を行ったが、発泡体は得られなかった。得られた結果を表1に示す。
(Comparative Example 2)
In Example 1, (1) About the forming of the original foam sheet, the original sheet was shaped and foamed in the same manner except that the addition amount of the oxime compound was 1.0 part by weight and the set temperature was 220 ° C. The foam was not obtained. The obtained results are shown in Table 1.

(比較例3)
実施例1において、(1)発泡原反の賦形について繊維状物として旭ファイバーグラス社製ガラス繊維「チョップドストランド CS 13 JA FT689」(アスペクト比1300)を用いたこと以外は全く同様にして原反シートの賦形、発泡を行ったが発泡体は得られなかった。得られた結果を表1に示す。
(Comparative Example 3)
In Example 1, (1) About the forming of the raw foam, the raw material was exactly the same except that the glass fiber “chopped strand CS 13 JA FT689” (aspect ratio 1300) manufactured by Asahi Fiber Glass Co., Ltd. was used as the fibrous material. Although the anti-sheet was shaped and foamed, no foam was obtained. The obtained results are shown in Table 1.

Figure 2006289679
Figure 2006289679

表1より明らかなように、アスペクト比が5〜500の範囲にある繊維状物を熱可塑性樹脂に配合してゲル分率が1〜35重量%の範囲になるように架橋発泡させると、高連泡率の発泡体が得られる(実施例1、2)。一方、繊維状物を用いないと、連泡構造を有する発泡体は得られず(比較例1)、ゲル分率が高過ぎる架橋構造を有する熱可塑性樹脂では、発泡せず(比較例2)、アスペクト比が高すぎる繊維状物を用いると発泡しない(比較例3)。また、顕微鏡写真の図から、実施例1の発泡体は連泡構造を有しており、比較例1の発泡体は連泡構造を有していないことがわかる。   As is apparent from Table 1, when a fibrous material having an aspect ratio in the range of 5 to 500 is blended with a thermoplastic resin and crosslinked and foamed so that the gel fraction is in the range of 1 to 35% by weight, A foam having an open cell ratio is obtained (Examples 1 and 2). On the other hand, if a fibrous material is not used, a foam having an open cell structure cannot be obtained (Comparative Example 1), and a thermoplastic resin having a crosslinked structure having a gel fraction that is too high does not foam (Comparative Example 2). When a fibrous material having an excessively high aspect ratio is used, foaming does not occur (Comparative Example 3). Moreover, it can be seen from the micrograph that the foam of Example 1 has an open cell structure and the foam of Comparative Example 1 does not have an open cell structure.

本発明の熱可塑性発泡体は、実質上単工程からなる工程で得られる連続気泡化発泡体であるので、低コストで生産でき、連泡率が20%以上であることにより、吸音性、通気性、柔軟性に優れ、防音材、フィルター、緩衝材の用途に有効に用いることができる。   Since the thermoplastic foam of the present invention is an open-celled foam obtained by a process consisting essentially of a single process, it can be produced at a low cost, and the open cell rate is 20% or more. It has excellent properties and flexibility, and can be used effectively for applications such as soundproofing materials, filters, and cushioning materials.

実施例1の発泡体の気泡セルの顕微鏡写である。2 is a micrograph of a foam cell of the foam of Example 1. FIG. 比較例1の発泡体の気泡セルの顕微鏡写である。2 is a micrograph of a foam cell of a foam of Comparative Example 1.

Claims (5)

ゲル分率1〜35wt%の熱可塑性樹脂からなる連泡率20%以上の熱可塑性樹脂発泡体であって、熱可塑性樹脂100重量部に対して、アスペクト比5〜500の繊維状物を5〜100重量部添加して発泡させたことを特徴とする熱可塑性樹脂発泡体。   A thermoplastic resin foam made of a thermoplastic resin having a gel fraction of 1 to 35 wt% and having an open cell ratio of 20% or more, and 5% of a fibrous material having an aspect ratio of 5 to 500 with respect to 100 parts by weight of the thermoplastic resin. A thermoplastic resin foam obtained by adding ~ 100 parts by weight and foaming. 熱可塑性樹脂発泡体が、熱可塑性樹脂に化学発泡剤を添加し、その化学発泡剤の分解温度以上に加熱することで賦形された発泡体であることを特徴とする請求項1記載の熱可塑性樹脂発泡体。   2. The heat according to claim 1, wherein the thermoplastic resin foam is a foam shaped by adding a chemical foaming agent to the thermoplastic resin and heating to a temperature equal to or higher than a decomposition temperature of the chemical foaming agent. Plastic resin foam. 繊維状物が、無機化合物であることを特徴とする請求項1又は2に記載の熱可塑性樹脂発泡体。   The thermoplastic resin foam according to claim 1 or 2, wherein the fibrous material is an inorganic compound. 熱可塑性樹脂が、ポリプロピレン、ポリエチレン、エチレンプロピレン共重合体、またはエチレン酢酸ビニル共重合体等の結晶性熱可塑性樹脂であることを特徴とする請求項1〜3のいずれか1項に記載の熱可塑性樹脂発泡体。   The thermoplastic resin according to any one of claims 1 to 3, wherein the thermoplastic resin is a crystalline thermoplastic resin such as polypropylene, polyethylene, ethylene propylene copolymer, or ethylene vinyl acetate copolymer. Plastic resin foam. 熱可塑性樹脂発泡体が、実質上単工程からなる発泡工程の完了時に連泡率が20%以上であることを特徴とする請求項1〜4のいずれか1項に記載の熱可塑性樹脂発泡体。   The thermoplastic resin foam according to any one of claims 1 to 4, wherein the thermoplastic resin foam has an open cell ratio of 20% or more upon completion of a foaming step consisting essentially of a single step. .
JP2005110755A 2005-04-07 2005-04-07 Thermoplastic resin foam Pending JP2006289679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005110755A JP2006289679A (en) 2005-04-07 2005-04-07 Thermoplastic resin foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005110755A JP2006289679A (en) 2005-04-07 2005-04-07 Thermoplastic resin foam

Publications (1)

Publication Number Publication Date
JP2006289679A true JP2006289679A (en) 2006-10-26

Family

ID=37410799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005110755A Pending JP2006289679A (en) 2005-04-07 2005-04-07 Thermoplastic resin foam

Country Status (1)

Country Link
JP (1) JP2006289679A (en)

Similar Documents

Publication Publication Date Title
US20070149630A1 (en) Composition for polyolefin resin foam and foam thereof, and method for producing foam
KR20170017611A (en) Foamable master batch and Polyolefin resin compositions with excellent expandability and direct metallizing property
EP2383309B1 (en) Cellular polyester made of post-consumer flakes and the use of products made thereof
JPH06287342A (en) Polyolefin resin foam
AU2001264643B2 (en) Extruded vinyl aromatic foam with 134A and alcohol as blowing agent
JPH0358376B2 (en)
CA2399239C (en) Extruded foam product with reduced surface defects
EP0646622B1 (en) Plastic foam material composed of thermoplastic resin and silane-modified thermoplastic resin and method for making same
KR101083277B1 (en) Metalatearate containig the foam compositions and foam products
JP2008194251A (en) Desk mat
JP2006289679A (en) Thermoplastic resin foam
JPH0347849A (en) Partially crosslinked thermoplastic elastomer foam and production thereof
JP3792371B2 (en) Method for producing polyolefin resin foam
JP2020515673A (en) Foam material containing polyphenylene sulfide polymer (PPS)
JPH08245820A (en) Polyolefin resin foam and production thereof
JP3257897B2 (en) Expandable polyolefin resin composition and crosslinked polyolefin resin foam
JP4881634B2 (en) Method for producing polypropylene resin foam
JP4295378B2 (en) Method for producing flame retardant composite foam
JP2010174192A (en) Polyolefin resin foam-molded product
JP4832738B2 (en) Method for producing polyolefin resin foam sheet
JP2004285345A (en) Method for producing thermoplastic resin foam-molded product, foaming agent mixture for thermoplastic resin, and foaming agent master batch for the thermoplastic resin
KR101533980B1 (en) Method for preparing non-crosslinked polypropylene foam sheet
EP2898006B1 (en) Cell size enlarging agent for styrenic foam
JP5660676B2 (en) Method for producing recycled resin-containing polyolefin resin foam
JP4074386B2 (en) Method for producing polyolefin resin foam