JP5660676B2 - Method for producing recycled resin-containing polyolefin resin foam - Google Patents

Method for producing recycled resin-containing polyolefin resin foam Download PDF

Info

Publication number
JP5660676B2
JP5660676B2 JP2011052759A JP2011052759A JP5660676B2 JP 5660676 B2 JP5660676 B2 JP 5660676B2 JP 2011052759 A JP2011052759 A JP 2011052759A JP 2011052759 A JP2011052759 A JP 2011052759A JP 5660676 B2 JP5660676 B2 JP 5660676B2
Authority
JP
Japan
Prior art keywords
resin
foam
weight
polyolefin resin
recycled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011052759A
Other languages
Japanese (ja)
Other versions
JP2012188531A (en
Inventor
和真 木村
和真 木村
祥介 川守田
祥介 川守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Kasei Co Ltd filed Critical Sekisui Kasei Co Ltd
Priority to JP2011052759A priority Critical patent/JP5660676B2/en
Publication of JP2012188531A publication Critical patent/JP2012188531A/en
Application granted granted Critical
Publication of JP5660676B2 publication Critical patent/JP5660676B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/30Polymeric waste or recycled polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/16Ethene-propene or ethene-propene-diene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、再生樹脂を含有したポリオレフィン系樹脂発泡体の製造方法に関する。特に、押出発泡シートを製造する過程で発生する不良品又は製造した発泡シートから表皮を除去するスライス過程において発生する非製品部分などの廃棄物を有効に利用して、十分な押出発泡が行なうことができる再生樹脂含有ポリオレフィン系樹脂発泡体の製造方法に関する。   The present invention relates to a method for producing a polyolefin resin foam containing a recycled resin. In particular, sufficient extrusion foaming is performed by effectively using waste such as defective products generated in the process of manufacturing extruded foam sheets or non-product parts generated in the slicing process of removing the skin from the manufactured foam sheets. The present invention relates to a method for producing a recycled resin-containing polyolefin resin foam that can be used.

従来、再生樹脂組成物ではない未使用のバージン原料を発泡成形又は加工する際に発生する廃棄物を再生した再生樹脂組成物を、バージン原料100重量部に対して、5〜40重量部利用してシート化を行なうものが公開されている(特許文献1)。この特許文献1によれば、樹脂発泡体の製造工程で発生する廃棄物を有効に活用して、ピンホールが少ない再生樹脂含有ポリオレフィン系樹脂発泡体を製造することができるとされている。   Conventionally, 5-40 parts by weight of a recycled resin composition obtained by recycling waste generated when foaming or processing an unused virgin raw material that is not a recycled resin composition is used with respect to 100 parts by weight of the virgin raw material. The one that forms a sheet is disclosed (Patent Document 1). According to Patent Document 1, it is said that a recycled resin-containing polyolefin resin foam with few pinholes can be produced by effectively utilizing the waste generated in the resin foam production process.

しかし特許文献1は、再生樹脂組成物の利用が、ポリオレフィン系樹脂組成物のバージン原料100重量部に対して40重量部を超えると、良好な発泡体が得られなくなるという問題があった。発泡体の表皮をスライス加工で除去して中心部分のみを製品として使用する場合、発泡シートの30重量%以上の多量の廃棄物が発生するため、より多くの再生樹脂組成物を使用することが望まれている。   However, Patent Document 1 has a problem that when the use of the recycled resin composition exceeds 40 parts by weight with respect to 100 parts by weight of the virgin raw material of the polyolefin-based resin composition, a good foam cannot be obtained. When the skin of the foam is removed by slicing and only the central part is used as a product, a large amount of waste of 30% by weight or more of the foamed sheet is generated, so that a larger amount of recycled resin composition may be used. It is desired.

特開2006−225571号公報JP 2006-225571 A

本発明の目的は、ポリオレフィン系樹脂組成物100重量部に対して再生樹脂組成物を40重量部を超えて配合しても、十分な押出発泡が行なうことができる再生樹脂含有ポリオレフィン系樹脂発泡体の製造方法を提供するところにある。   An object of the present invention is to provide a recycled resin-containing polyolefin resin foam that can be sufficiently extruded and foamed even if the recycled resin composition exceeds 40 parts by weight with respect to 100 parts by weight of the polyolefin resin composition. The manufacturing method of is in place.

本発明は、ポリオレフィン系樹脂発泡用組成物に該発泡用組成物を発泡成形又は加工した際に発生する廃棄物を再生した再生樹脂組成物を加えて再生樹脂含有ポリオレフィン系樹脂発泡体を製造する方法において、前記再生樹脂組成物が重量平均分子量(Mw)300×10以上であり、且つ、溶融張力が2.0cN以上であることを特徴とする再生樹脂含有ポリオレフィン系樹脂発泡体の製造方法である。 The present invention produces a recycled resin-containing polyolefin resin foam by adding a recycled resin composition obtained by regenerating waste generated when the foaming composition is subjected to foam molding or processing to the polyolefin resin foam composition. A method for producing a recycled resin-containing polyolefin resin foam, wherein the recycled resin composition has a weight average molecular weight (Mw) of 300 × 10 3 or more and a melt tension of 2.0 cN or more. It is.

本発明は再生樹脂組成物のZ平均分子量(Mz)が1300×10以上であることが好ましい。また本発明は再生樹脂組成物の230℃でのMFRが2.0 g/10min以下であることが好ましい。またポリオレフィン系樹脂発泡用組成物100重量部に対して、該発泡用組成物を発泡成形又は加工した際に発生する廃棄物を再生した再生樹脂組成物を10〜250重量部加えることが好ましい。 In the present invention, the recycled resin composition preferably has a Z average molecular weight (Mz) of 1300 × 10 3 or more. In the present invention, the MFR at 230 ° C. of the recycled resin composition is preferably 2.0 g / 10 min or less. Moreover, it is preferable to add 10 to 250 parts by weight of a recycled resin composition obtained by regenerating waste generated when the foaming composition is foamed or processed with respect to 100 parts by weight of the polyolefin resin foaming composition.

本発明は、再生樹脂組成物ではない未使用のポリオレフィン系樹脂組成物に対してこの再生樹脂組成物を用いることで、再生樹脂含有ポリオレフィン系樹脂発泡組成物の発泡性を改善でき、公開されている方法ではできなかった比率の再生樹脂を用いても良好な発泡体を得ることが可能となる。
従って、本発明は、ポリオレフィン系樹脂組成物100重量部に対して再生樹脂組成物を40重量部を超えて配合しても、十分な押出発泡が行なうことができ、シート化が可能となり、しかも廃棄物である再生樹脂組成物を有効に利用することができる再生樹脂を含有したポリオレフィン系樹脂発泡体を提供することができる。
The present invention improves the foamability of a recycled resin-containing polyolefin resin foam composition by using this recycled resin composition with respect to an unused polyolefin resin composition that is not a recycled resin composition. A good foam can be obtained even if a recycled resin in a ratio that cannot be obtained by the conventional method is used.
Therefore, in the present invention, even when the regenerated resin composition exceeds 40 parts by weight with respect to 100 parts by weight of the polyolefin-based resin composition, sufficient extrusion foaming can be performed, and a sheet can be formed. It is possible to provide a polyolefin resin foam containing a recycled resin that can effectively use the recycled resin composition as waste.

本発明は、ポリオレフィン系樹脂発泡用組成物に該発泡用組成物を発泡成形又は加工した際に発生する廃棄物を再生した再生樹脂組成物を加えて再生樹脂含有ポリオレフィン系樹脂発泡体を製造する方法において、前記再生樹脂組成物が重量平均分子量(Mw)300×10以上であり、且つ、溶融張力が2.0cN以上であることを特徴とする再生樹脂含有ポリオレフィン系樹脂発泡体の製造方法である。 The present invention produces a recycled resin-containing polyolefin resin foam by adding a recycled resin composition obtained by regenerating waste generated when the foaming composition is subjected to foam molding or processing to the polyolefin resin foam composition. A method for producing a recycled resin-containing polyolefin resin foam, wherein the recycled resin composition has a weight average molecular weight (Mw) of 300 × 10 3 or more and a melt tension of 2.0 cN or more. It is.

(ポリオレフィン系樹脂発泡用組成物)
バージン原料(未使用原料)となるポリオレフィン系樹脂としては、メルトフローレート(MFR)が0.2〜5g/10min程度であれば、特に限定されない。具体的には、ホモポリプロピレン、プロピレンと他のオレフィンとの共重合体などが挙げられる。
プロピレンと他のオレフィンとの共重合体は、ランダム共重合体又はブロック共重合体の何れであってもよいが、耐熱性に優れていることから、ブロック共重合体が好ましい。
プロピレンと共重合する他のオレフィンとしては、例えば、エチレンの他に、1−ブテン、1−ペンテン、4−メチル−1−ペンテン、1−ヘキセン、1−オクテン、1−ノネン、1−デセンなどの炭素数が4〜10であるα−オレフィンが挙げられる。
これらの内、発泡性や耐熱性が優れるホモポリプロピレンや、ブロック共重合体ポリプロピレンが好ましく、さらに耐熱性に優れるホモポリプロピレンがより好ましい。
(Polyolefin resin foaming composition)
The polyolefin resin used as the virgin raw material (unused raw material) is not particularly limited as long as the melt flow rate (MFR) is about 0.2 to 5 g / 10 min. Specific examples include homopolypropylene and copolymers of propylene and other olefins.
The copolymer of propylene and another olefin may be either a random copolymer or a block copolymer, but a block copolymer is preferred because of excellent heat resistance.
Examples of other olefins copolymerized with propylene include, in addition to ethylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-nonene, 1-decene, etc. And α-olefins having 4 to 10 carbon atoms.
Of these, homopolypropylene having excellent foamability and heat resistance and block copolymer polypropylene are preferable, and homopolypropylene having excellent heat resistance is more preferable.

また、本発明に用いられるポリオレフィン系樹脂としては、発泡性に優れることから、高溶融張力ポリプロピレン系樹脂を使用することが好ましい。高溶融張力ポリプロピレン系樹脂としては、電子線架橋などにより分子構造中に自由末端長鎖分岐を有している高溶融張力ポリプロピレン(HMS−PP)や、高分子量成分を含むことで溶融張力を上げたもの等がある。この高溶融張力ポリプロピレンとしては、市販品を使用でき、市販品の具体例としては、日本ポリプロ社製の商品名「ニューストレンSH9000」や、Borealis社製の商品名「DaployWB135HMS」などが挙げられる。
ポリオレフィン系樹脂は、一種単独で用いてもよいし、二種以上を適宜組み合わせ混合して用いてもよい。
Moreover, as polyolefin resin used for this invention, since it is excellent in foamability, it is preferable to use a high melt tension polypropylene resin. High melt tension polypropylene resins include high melt tension polypropylene (HMS-PP) that has free-end long-chain branching in the molecular structure, such as electron beam crosslinking, and high molecular weight components to increase melt tension. There are things. Commercially available products can be used as the high melt tension polypropylene, and specific examples of commercially available products include “Newstrain SH9000” manufactured by Nippon Polypro Co., Ltd., and “DaployWB135HMS” manufactured by Borealis.
The polyolefin resin may be used alone or in a suitable combination of two or more.

ポリオレフィン系樹脂のMFRは低いと、押出機の負荷が大きくなって生産性が低下し、又は、発泡剤を含む溶融したポリオレフィン系樹脂組成物が金型内を円滑に流れることができなくなって、得られるポリオレフィン系樹脂発泡体の表面にムラが発生して外観が低下する一方、高いと、円環ダイ手前での樹脂圧力が低下し、円環ダイ気泡生成部における樹脂圧力も低下することから、気泡生成部手前で気泡が生成してしまい発泡体成形部で破泡が急激に生じることにより発泡性が低下し、得られる発泡体の外観が低下もしくは、発泡体が得られなくなるので、0.2〜5g/10minが好ましい、0.2〜4g/10minがより好ましく、0.3〜3.5g/10minが特に好ましい。
本明細書において、ポリオレフィン系樹脂のMFRは、JIS K7210:1999のB法に準拠して、試験温度230℃、試験荷重21.18Nにて測定されたものをいう。
ポリオレフィン系樹脂のMFRは、ポリオレフィン系樹脂を一種単独で用いた場合には、その樹脂のMFRを上記方法で測定されたものをいう。
また、ポリオレフィン系樹脂二種以上を混合して用いた場合には、それぞれ個々のポリオレフィン系樹脂のMFRを上記測定方法で測定し、それぞれのMFRの値から、下記の様にして、算出したものをいう。
即ち、ポリオレフィン系樹脂が、n種類のポリオレフィン系樹脂の混合物であるとした場合、ポリオレフィン系樹脂1のMFRをMFR、ポリオレフィン系樹脂2のMFRをMFR、・・・ポリオレフィン系樹脂nのMFRをMFRとすると共に、ポリオレフィン系樹脂1の含有量をC1、ポリオレフィン系樹脂2の含有量をC2、・・・ポリオレフィン系樹脂nの含有量をCnとする。なお、ポリオレフィン系樹脂nの含有量は、ポリオレフィン系樹脂nの重量をポリオレフィン系樹脂全体の重量で除したものとする。そして、バージン原料のポリオレフィン系樹脂のMFRは、下記式によって算出される。
メルトフローレート(g/10min)=(MFR1)C1×(MFR2)C2×・・・×(MFRn)Cn
If the MFR of the polyolefin resin is low, the load on the extruder increases and the productivity decreases, or the molten polyolefin resin composition containing the foaming agent cannot flow smoothly in the mold, On the other hand, unevenness occurs on the surface of the resulting polyolefin resin foam and the appearance is reduced. On the other hand, if it is high, the resin pressure in front of the annular die is lowered, and the resin pressure in the annular die bubble generating part is also lowered. In addition, bubbles are generated in front of the bubble generation part, and foam breakage is abruptly generated in the foam molding part, resulting in a decrease in foamability, and the appearance of the resulting foam is reduced or a foam cannot be obtained. .2 to 5 g / 10 min is preferable, 0.2 to 4 g / 10 min is more preferable, and 0.3 to 3.5 g / 10 min is particularly preferable.
In this specification, MFR of polyolefin resin means that measured at a test temperature of 230 ° C. and a test load of 21.18 N in accordance with JIS K7210: 1999, Method B.
The MFR of the polyolefin-based resin refers to a value obtained by measuring the MFR of the resin by the above method when one kind of the polyolefin-based resin is used alone.
In addition, when two or more types of polyolefin resin are used in combination, the MFR of each polyolefin resin is measured by the above measurement method, and calculated from the respective MFR values as follows: Say.
That is, when the polyolefin resin is a mixture of n types of polyolefin resins, MFR of polyolefin resin 1 is MFR 1 , MFR of polyolefin resin 2 is MFR 2 ,... MFR of polyolefin resin n Is MFR n , the content of the polyolefin resin 1 is C1, the content of the polyolefin resin 2 is C2,... The content of the polyolefin resin n is Cn. In addition, content of polyolefin resin n shall remove | divide the weight of polyolefin resin n by the weight of the whole polyolefin resin. And MFR of the polyolefin-type resin of a virgin raw material is computed by a following formula.
Melt flow rate (g / 10min) = (MFR 1 ) C1 x (MFR 2 ) C2 x ... x (MFR n ) Cn

本発明で用いるポリオレフィン系樹脂発泡用組成物には、気泡核剤が含まれる。気泡核剤はポリオレフィン系樹脂発泡用組成物が気泡を形成する際に気泡核の生成を促すものであり、気泡の微細化と均一性に効果を示す。気泡核剤としては、例えばタルク、マイカ、シリカ、珪藻土、アルミナ、酸化チタン、酸化亜鉛、酸化マグネシウム、水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウム、炭酸カリウム、炭酸カルシウム、炭酸マグネシウム、硫酸カリウム、硫酸バリウム、炭酸水素ナトリウム、ガラスビーズなどの無機化合物;ポリテトラフルオロエチレン、アゾジカルボンアミド、炭酸水素ナトリウムとクエン酸の混合物などの有機化合物、窒素などの不活性ガスなどが挙げられる。その中でも、無機化合物ではタルク、有機化合物ではポリテトラフルオロエチレンが気泡微細化に効果が高いため好ましい。また、ポリテトラフルオロエチレンは分散させた際にフィブリル状になることで樹脂の溶融張力が上がるようになるものが特に好ましい。   The polyolefin resin foaming composition used in the present invention contains a cell nucleating agent. The cell nucleating agent promotes the generation of cell nuclei when the polyolefin-based resin foaming composition forms cells, and has an effect on the refinement and uniformity of the cells. Examples of the cell nucleating agent include talc, mica, silica, diatomaceous earth, alumina, titanium oxide, zinc oxide, magnesium oxide, magnesium hydroxide, aluminum hydroxide, calcium hydroxide, potassium carbonate, calcium carbonate, magnesium carbonate, potassium sulfate, Inorganic compounds such as barium sulfate, sodium hydrogen carbonate and glass beads; organic compounds such as polytetrafluoroethylene, azodicarbonamide, a mixture of sodium hydrogen carbonate and citric acid, and inert gases such as nitrogen. Among them, talc is preferable for inorganic compounds, and polytetrafluoroethylene is preferable for organic compounds because it has a high effect on bubble miniaturization. Further, it is particularly preferable that the polytetrafluoroethylene becomes a fibril when dispersed to increase the melt tension of the resin.

気泡核剤の量は、少ないと得られるポリオレフィン系樹脂発泡体の気泡数を増加させることが困難となり、得られるポリオレフィン系樹脂発泡体の表面平滑性が低下することがある。一方、多いと二次凝集を起こしやすくなり押出発泡不良による発泡体の表面平滑性が低下することがあるので、配合樹脂組成物100重量部に対して0.01〜15重量部であることが好ましく、0.1〜12重量部であることがより好ましい。   When the amount of the cell nucleating agent is small, it is difficult to increase the number of cells of the obtained polyolefin resin foam, and the surface smoothness of the resulting polyolefin resin foam may be lowered. On the other hand, if the amount is too high, secondary aggregation tends to occur, and the surface smoothness of the foam due to poor extrusion foaming may decrease, so the amount may be 0.01 to 15 parts by weight with respect to 100 parts by weight of the compounded resin composition. Preferably, it is 0.1 to 12 parts by weight.

本発明で使用される気泡核剤は、そのものの形態で配合樹脂組成物と混合し熱可塑性樹脂組成物として、又は個別に押出機内へ供給しても良く、更にマスターバッチとして配合樹脂組成物と混合し熱可塑性樹脂組成物として、又は個別に押出機内へ供給しても良い。
マスターバッチの基材樹脂としては、配合樹脂組成物に対する相溶性に優れるものであれば、特に限定されず、例えば、ホモポリプロピレン、ブロックポリプロピレン、ランダムポリプロピレン、低密度ポリエチレン、高密度ポリエチレン等を好適に使用することができる。
The cell nucleating agent used in the present invention may be mixed with the compounded resin composition in its own form and supplied as a thermoplastic resin composition or separately into the extruder, and further as a masterbatch with the compounded resin composition They may be mixed and supplied as a thermoplastic resin composition or individually into the extruder.
The base resin of the masterbatch is not particularly limited as long as it has excellent compatibility with the compounded resin composition. For example, homopolypropylene, block polypropylene, random polypropylene, low density polyethylene, high density polyethylene and the like are preferable. Can be used.

本発明で用いるポリオレフィン系樹脂発泡用組成物には、ポリオレフィン系樹脂及び気泡核剤以外に、任意成分として、発泡成形に通常用いられる各種添加剤を配合することができる。該添加剤としては、例えば、耐候性安定剤、光安定剤、顔料、染料、難燃剤、結晶核剤、可塑剤、滑剤、界面活性剤、分散剤、紫外線吸収剤、酸化防止剤、充填剤、補強剤、帯電防止剤等が挙げられる。これらの内、界面活性剤は、すべり性及びアンチブロッキング性を付与するものである。また、分散剤は、無機充填剤の分散性を向上させるもので、例えば、高級脂肪酸、高級脂肪酸エステル、高級脂肪酸アミド等が挙げられる。
添加剤の添加量は、気泡の形成、得られる発泡体の物性等を損なわない範囲で適宜選択でき、通常の熱可塑性樹脂の成形に用いられる添加量を採用できる。
前記気泡核剤及び上記添加剤は、取扱いの容易性や粉体飛散による製造環境汚染の防止のため、又熱可塑性樹脂中への分散性を向上させるため、マスターバッチとして、使用することもできる。
マスターバッチは、通常、熱可塑性の基材樹脂に、添加剤等を高濃度で練り込み、ペレット状とすることにより、行うことができる。基材樹脂としては、配合樹脂組成物に対する相溶性に優れるものであれば、特に限定されず、例えば、ホモポリプロピレン、ブロックポリプロピレン、ランダムポリプロピレン、低密度ポリエチレン、高密度ポリエチレン等を好適に使用することができる。
In the polyolefin resin foaming composition used in the present invention, various additives usually used for foam molding can be blended as optional components in addition to the polyolefin resin and the cell nucleating agent. Examples of the additive include a weather resistance stabilizer, a light stabilizer, a pigment, a dye, a flame retardant, a crystal nucleating agent, a plasticizer, a lubricant, a surfactant, a dispersant, an ultraviolet absorber, an antioxidant, and a filler. , Reinforcing agents, antistatic agents and the like. Of these, the surfactant imparts slipperiness and anti-blocking property. Moreover, a dispersing agent improves the dispersibility of an inorganic filler, for example, higher fatty acid, higher fatty acid ester, higher fatty acid amide etc. are mentioned.
The addition amount of the additive can be appropriately selected within a range not impairing the formation of bubbles and the physical properties of the resulting foam, and the addition amount used for molding a normal thermoplastic resin can be adopted.
The cell nucleating agent and the additive can be used as a master batch for ease of handling and prevention of contamination of the production environment due to powder scattering, and for improving dispersibility in a thermoplastic resin. .
The masterbatch can be usually performed by kneading an additive or the like in a thermoplastic base resin at a high concentration to form a pellet. The base resin is not particularly limited as long as it has excellent compatibility with the compounded resin composition. For example, homopolypropylene, block polypropylene, random polypropylene, low density polyethylene, high density polyethylene, and the like are preferably used. Can do.

(再生樹脂組成物)
再生樹脂組成物とは前記ポリオレフィン系樹脂発泡用組成物を発泡成形又は加工した際に発生する廃棄物を再生したものをいう。
従って、特開2006−225571に記載されている例えば気泡が安定するまで製品として巻き取らない初期流動品、発泡体表面を平滑にするためにスライスされる表面部分(いわゆるスキン層)、さらに特定の形状に打ち抜き加工される場合の不要部分、などの廃棄物を再生したものを挙げることができる。
また廃棄物を再生する工程は通常、粉砕・溶融・ペレット化の各工程からなる。各工程を個別に実施しても良いが、これらの工程を連続して行うことができる装置を用いて一連の工程として連続して行うことが好ましい。
(Recycled resin composition)
The recycled resin composition refers to a recycled waste generated when the polyolefin resin foaming composition is foamed or processed.
Therefore, for example, an initial fluidized product described in JP-A-2006-225571 that does not wind up as a product until bubbles are stabilized, a surface portion (so-called skin layer) that is sliced to smooth the foam surface, and more specific Examples of the wastes such as unnecessary portions when punched into a shape can be given.
Also, the process of recycling waste usually comprises pulverization, melting, and pelletizing processes. Although each process may be performed individually, it is preferable to perform continuously as a series of processes using an apparatus capable of performing these processes continuously.

再生樹脂組成物の分子量は後述の様にして測定されたものをいうが、再生樹脂組成物の重量平均分子量(Mw)は、小さいと良好な発泡シートを得ることが難しいので300×10以上に限定される。また、大きくても良好な発泡シートが得られる押出条件の範囲が狭くなることがあるので、1500×10以下が好ましい。350×10〜1000×10の範囲であることがより好ましく、400×10〜800×10の範囲であることが特に好ましい。
同様の理由で、再生樹脂組成物のZ平均分子量(Mz)は、1300×10以上であることが好ましい。1300×10〜5500×10の範囲であることがより好ましく、1500×10〜5000×10の範囲であることがさらに好ましく、1700×10〜4500×10の範囲であることが特に好ましい。
The molecular weight of the recycled resin composition refers to that measured as described below, but if the weight average molecular weight (Mw) of the recycled resin composition is small, it is difficult to obtain a good foamed sheet, so 300 × 10 3 or more It is limited to. Moreover, since the range of the extrusion conditions from which a good foamed sheet can be obtained even if it is large may be narrow, 1500 × 10 3 or less is preferable. A range of 350 × 10 3 to 1000 × 10 3 is more preferable, and a range of 400 × 10 3 to 800 × 10 3 is particularly preferable.
For the same reason, the Z-average molecular weight (Mz) of the recycled resin composition is preferably 1300 × 10 3 or more. The range of 1300 × 10 3 to 5500 × 10 3 is more preferable, the range of 1500 × 10 3 to 5000 × 10 3 is more preferable, and the range of 1700 × 10 3 to 4500 × 10 3 is preferable. Is particularly preferred.

再生樹脂組成物の溶融張力は後述の様にして測定されたものをいうが、低いと発泡時の張力を維持できず、発泡倍率の高いシートを得ることが難しいので2cN以上に限定される。一方、高すぎても気泡生成の際に膨らみにくく、発泡倍率の高いシートを得ることが難しくなることがあるので、50cN以下であることが好ましい。2〜40cNの範囲であることがより好ましく、2〜30cNの範囲であることが特に好ましい。   The melt tension of the recycled resin composition is measured as described below, but if it is low, the tension during foaming cannot be maintained, and it is difficult to obtain a sheet having a high foaming ratio, so it is limited to 2 cN or more. On the other hand, if it is too high, it is difficult to swell when bubbles are generated, and it may be difficult to obtain a sheet having a high expansion ratio. A range of 2 to 40 cN is more preferable, and a range of 2 to 30 cN is particularly preferable.

再生樹脂組成物のMFRは後述の様にして測定されたものをいうが、大きいと押出時に金型先端の圧力を保持できず良好な発泡体が得られないことがあるので2g/10min以下であることが好ましい。一方、小さすぎても、金型先端の圧力が上がり過ぎることがあるので0.1g/10min以上であることが好ましい。0.1〜1.8g/10minの範囲であることがより好ましく、0.1〜1.6g/10minの範囲であることが特に好ましい。   The MFR of the recycled resin composition is measured as described below. If the MFR is large, the pressure at the tip of the mold cannot be maintained during extrusion, and a good foam may not be obtained. Preferably there is. On the other hand, even if it is too small, the pressure at the tip of the mold may increase too much, so 0.1 g / 10 min or more is preferable. A range of 0.1 to 1.8 g / 10 min is more preferable, and a range of 0.1 to 1.6 g / 10 min is particularly preferable.

(発泡剤)
発泡剤は、押出発泡成形に用いることができる公知の発泡剤を用いることができる。発泡倍率の調整が容易なことから、押出機内に圧入させて供給される物理的発泡剤が好ましい。本発明においては、特に二酸化炭素を用いることが好ましい。二酸化炭素は、超臨界状態、亜臨界状態、又は液化された二酸化炭素を用いることで、従来の発泡体以上に微細な気泡を形成させることが出来、得られる発泡体の表面平滑性や柔軟性を向上させることが出来る。押出機内に圧入される発泡剤の量は、ポリオレフィン系樹脂発泡体の発泡倍率に応じて適宜、調整されればよいが、少ないと、ポリオレフィン系樹脂発泡体の発泡倍率が低くなり、軽量性及び断熱性が低下することがある一方、多いと、金型内において発泡を生じ、破泡を生じたり、或いは、ポリオレフィン系樹脂発泡体中に大きな空隙が生じることがあるので、ポリオレフィン系樹脂発泡用組成物あるいは再生樹脂組成物含有ポリオレフィン系樹脂発泡用組成物100重量部に対して1〜10重量部程度であるのが好ましく、2〜8重量部程度であるのがより好ましく、3〜6重量部程度であるのが特に好ましい。
(Foaming agent)
As the foaming agent, a known foaming agent that can be used for extrusion foaming can be used. Since it is easy to adjust the expansion ratio, a physical foaming agent supplied by being press-fitted into the extruder is preferable. In the present invention, it is particularly preferable to use carbon dioxide. Carbon dioxide can form finer bubbles than conventional foams by using supercritical, subcritical, or liquefied carbon dioxide, and the surface smoothness and flexibility of the resulting foams Can be improved. The amount of the foaming agent that is press-fitted into the extruder may be adjusted as appropriate according to the expansion ratio of the polyolefin resin foam. However, if the amount is small, the expansion ratio of the polyolefin resin foam is reduced, and the weight and On the other hand, heat insulation may decrease, but if it is large, foaming may occur in the mold, resulting in bubble breakage or large voids in the polyolefin resin foam. It is preferably about 1 to 10 parts by weight, more preferably about 2 to 8 parts by weight, more preferably 3 to 6 parts by weight with respect to 100 parts by weight of the composition or recycled resin composition-containing polyolefin resin foaming composition. It is particularly preferable that the amount is about 1 part.

(再生樹脂含有ポリオレフィン系樹脂発泡用組成物)
本発明は、ポリオレフィン系樹脂発泡用組成物に該発泡用組成物を発泡成形又は加工した際に発生する廃棄物を再生した再生樹脂組成物を加えて再生樹脂含有ポリオレフィン系樹脂発泡体を製造する方法であるが、前記ポリオレフィン系樹脂発泡用組成物100重量部に対して、前記廃棄物を再生した再生樹脂組成物を10〜250重量部加えることができる。
前記廃棄物を再生した再生樹脂組成物が250重量部を越えると倍率、厚みの低下が起こり、従来品と同等の発泡体が得られない。200重量部以下であることが好ましい。
なお、前記廃棄物を再生した再生樹脂組成物は、廃棄物をより有効活用(マテリアルリサイクル)できると共に、コスト削減にもつながる点で、前記ポリオレフィン系樹脂発泡用組成物100重量部に対して、40重量部を越えて配合することが好ましく、50重量部を越えて配合することがより好ましい。
(Recycled resin-containing polyolefin-based resin foaming composition)
The present invention produces a recycled resin-containing polyolefin resin foam by adding a recycled resin composition obtained by regenerating waste generated when the foaming composition is subjected to foam molding or processing to the polyolefin resin foam composition. Although it is a method, 10-250 weight part of regenerated resin composition which reproduced | regenerated the said waste can be added with respect to 100 weight part of said polyolefin resin foaming compositions.
When the recycled resin composition obtained by recycling the waste exceeds 250 parts by weight, the magnification and thickness are reduced, and a foam equivalent to the conventional product cannot be obtained. The amount is preferably 200 parts by weight or less.
Incidentally, the recycled resin composition recycled from the waste, the waste can be more effectively utilized (material recycling), leading to cost reduction, 100 parts by weight of the polyolefin resin foam composition, It is preferable to mix | blend exceeding 40 weight part, and it is more preferable to mix | blend exceeding 50 weight part.

(押出機)
本発明の製造方法において、押出機としては、単軸押出機、二軸押出機、およびタンデム型押出機のいずれの押出機をも用いることができる。本発明では、これらの内、押出条件を調整しやすいことから、タンデム型押出機が好ましい。
(Extruder)
In the production method of the present invention, any of a single-screw extruder, a twin-screw extruder, and a tandem type extruder can be used as the extruder. In the present invention, among these, a tandem type extruder is preferable because it is easy to adjust the extrusion conditions.

本発明の製造方法において用いられる金型は、樹脂流路の絞りにより形成された気泡生成部と、生成した気泡の成長及び発泡体表面の平滑化を行う発泡体成形部とを有している円環ダイで構成される。本発明による再生樹脂含有ポリオレフィン系樹脂発泡体は、従来よりも微細な気泡を有しているため、従来の円環ダイを用いて発泡させた場合、発泡体表面には多数のコルゲートが発生し、得られる発泡体の表面平滑性が悪くなる。しかしながら、発泡体形成部の有する円環ダイは、発泡体成形部における適度なすべり抵抗によって、気泡生成部でのコルゲートの発生を抑制でき、表面平滑な発泡体を得ることができる。ここで言うコルゲートとは、円環ダイから出た発泡体が体積膨張による円周方向の線膨張分を吸収するために波打ちしてできる、多数の山谷状のヒダのことである。   The mold used in the manufacturing method of the present invention has a bubble generation part formed by constricting the resin flow path, and a foam molding part for growing the generated bubbles and smoothing the foam surface. Consists of an annular die. Since the recycled resin-containing polyolefin resin foam according to the present invention has finer bubbles than conventional ones, when foamed using a conventional annular die, a large number of corrugates are generated on the surface of the foam. The surface smoothness of the obtained foam is deteriorated. However, the annular die of the foam forming part can suppress the generation of corrugation in the bubble generating part and obtain a foam with a smooth surface by an appropriate slip resistance in the foam molded part. The corrugated herein refers to a number of ridges and valleys formed by undulation of the foam from the annular die to absorb the linear expansion in the circumferential direction due to volume expansion.

本発明の製造方法では、気泡生成部での樹脂の吐出速度Vは、50〜300kg/cm・hrかつ、円環ダイ手前での樹脂圧力が7MPa以上とすることが好ましい。
吐出速度Vは70〜250kg/cm・hr程度であることがより好ましく、100〜200kg/cm・hr程度であることがさらに好ましい。かつ円環ダイ手前での樹脂圧力は7MPa以上が好ましく、8MPa以上20MPa以下であることがより好ましい。上記条件による押出発泡で、ポリオレフィン系樹脂の発泡性を向上させることができることに加え、気泡を微細化することができるとともに気泡膜の強度がより高まる。これら条件により、得られた発泡体は二次加工する場合の加工性が向上し、スライス加工して得られるシート状の発泡体は、表面平滑性に優れたものが得られる。吐出速度Vが50kg/cm・hr程度より小さい場合、気泡の微細化や高発泡倍率の発泡体を得ることが困難となることがある。一方で300kg/cm・hr程度より大きい場合、金型気泡生成部で樹脂が発熱して気泡破れをきたし、発泡倍率が低下しやすくなることに加え、皺状のコルゲートが発生しやすくなり気泡径が不均一となって発泡体の表面平滑性が低下するため好ましくない。吐出速度Vは、円環ダイ気泡生成部の断面積、押出吐出量により適宜調節される。
In the production method of the present invention, it is preferable that the resin discharge speed V at the bubble generation unit is 50 to 300 kg / cm 2 · hr and the resin pressure before the annular die is 7 MPa or more.
Discharge speed V is more preferably about 70~250kg / cm 2 · hr, and more preferably about 100~200kg / cm 2 · hr. In addition, the resin pressure before the annular die is preferably 7 MPa or more, and more preferably 8 MPa or more and 20 MPa or less. In addition to improving the foamability of the polyolefin-based resin by extrusion foaming under the above conditions, the bubbles can be refined and the strength of the cell membrane can be further increased. Under these conditions, the obtained foam is improved in workability in the case of secondary processing, and a sheet-like foam obtained by slicing is excellent in surface smoothness. When the discharge speed V is less than about 50 kg / cm 2 · hr, it may be difficult to obtain finer bubbles or a foam with a high expansion ratio. On the other hand, when it is larger than about 300 kg / cm 2 · hr, the resin generates heat at the mold bubble generation part, causing bubble breakage, and the foaming ratio is likely to be lowered, and a corrugated corrugate is likely to be generated. This is not preferable because the diameter becomes uneven and the surface smoothness of the foam decreases. The discharge speed V is appropriately adjusted according to the cross-sectional area of the annular die bubble generating unit and the extrusion discharge amount.

気泡生成部の断面積の調整方法としては、金型の気泡生成部の長さ(フラット金型の場合)や口径(円環ダイの場合)を変える方法と、金型の気泡生成部の間隔(フラット金型又は円環ダイの場合)を変える方法との2通りの方法が挙げられる。   The method of adjusting the cross-sectional area of the bubble generating part includes changing the length of the bubble generating part of the mold (in the case of a flat mold) and the diameter (in the case of an annular die) and the interval between the bubble generating parts of the mold. There are two methods including a method of changing (in the case of a flat die or an annular die).

円環ダイ手前での樹脂圧力は、7MPaよりも低いと円環ダイ気泡生成部より手前で気泡生成が始まり、良好な発泡体が得られなくなるため好ましくない。また、20MPaより高くなると、押出機の負荷が高くなりすぎたり、発泡剤の注入圧力が高くなりすぎて圧入出来なくなる恐れがあるため、好ましくない。
円環ダイ手前での樹脂圧力は、溶融樹脂粘度と押出吐出量、円環ダイ気泡生成部断面積によって適宜調節される。更に溶融樹脂粘度は配合樹脂組成物の粘度と発泡剤の添加量、及び溶融樹脂温度によって適宜調節される。なお、本明細書での溶融樹脂温度とは、円環ダイ手前での樹脂圧力を測定する直管金型において、溶融樹脂に直接接触させる形で取り付けられた熱電対にて測定された温度を言う。
If the resin pressure in front of the annular die is lower than 7 MPa, bubble generation starts before the annular die bubble generation part and a good foam cannot be obtained, which is not preferable. On the other hand, if the pressure is higher than 20 MPa, the load on the extruder becomes too high, or the injection pressure of the foaming agent becomes too high, so that it is not possible to press-fit.
The resin pressure in front of the annular die is appropriately adjusted by the molten resin viscosity, the extrusion discharge amount, and the sectional area of the annular die bubble generating part. Furthermore, the molten resin viscosity is appropriately adjusted depending on the viscosity of the blended resin composition, the amount of foaming agent added, and the molten resin temperature. In this specification, the molten resin temperature refers to the temperature measured by a thermocouple attached in a direct contact with the molten resin in a straight pipe mold for measuring the resin pressure before the annular die. say.

(再生樹脂含有ポリオレフィン系樹脂発泡体)
本発明方法により得られた再生樹脂含有ポリオレフィン系樹脂発泡体の平均気泡径は、小さいと、破泡が多くなり、ポリオレフィン系樹脂発泡体の見かけ密度が大きくなることがある一方、大きいと、圧縮時の回復性や機械的強度などの物性が低下することがあるので、0.02〜0.2mm程度であるのが好ましく、0.04〜0.18mm程度であるのがより好ましく、0.06〜0.16mm程度であるのが特に好ましい。
(Recycled resin-containing polyolefin resin foam)
When the average cell diameter of the recycled resin-containing polyolefin resin foam obtained by the method of the present invention is small, foam breakage increases, and the apparent density of the polyolefin resin foam may increase. Since physical properties such as time recovery and mechanical strength may be lowered, it is preferably about 0.02 to 0.2 mm, more preferably about 0.04 to 0.18 mm, and It is especially preferable that it is about 06-0.16 mm.

(測定方法)
以下、測定方法を記載する。
平均気泡径
本明細書において、再生樹脂含有ポリオレフィン系樹脂発泡体の平均気泡径は、ASTM D2842−69の試験方法に準拠して、下記の様にして、測定されたものをいう。
具体的には、発泡シートをMD方向(押出方向)及びTD方向(押出方向に直交する方向)に沿って切断し、それぞれの切断面の中央部を走査型電子顕微鏡((株)日立製作所製S−3000N)で拡大して撮影した。
次に、撮影した画像をA4用紙上に印刷し、画像上に長さ60mmの直線を一本、描く。なお、MD方向に切断した切断面についてはMD方向に平行に、TD方向に切断した切断面についてはTD方向に平行に、VD方向(厚み方向)はMD方向及びTD方向に対して垂直(シートに対して垂直)に直線を描く。このとき、60mmの直線上に気泡が10〜20個程度となる様に、上記の電子顕微鏡での拡大倍率を調整した。
上記直線上に存在する気泡数から気泡の平均弦長(t)を下記式により算出し、この平均弦長を各方向(MD方向、TD方向及びVD方向)の平均気泡径とした。
平均弦長 t=60/(気泡数×写真の倍率)
なお、直線を描くにあたっては、できるだけ直線が気泡に点接触することなく貫通した状態となるようにする。又、一部の気泡が直線に点接触してしまう場合には、この気泡も気泡数に含め、更に、直線の両端部が気泡を貫通することなく、気泡内に位置した状態となる場合には、直線の両端部が位置している気泡も気泡数に含める。
前記式で算出された平均弦長tに基づいて次式により気泡径を算出する。
気泡径(mm)D=t/0.616
そして、得られたMD方向の気泡径(DMD)、TD方向の気泡径(DTD)とVD方向の気泡径(DVD)の相加平均値を再生樹脂含有ポリオレフィン系樹脂発泡体の平均気泡径とする。
平均気泡径(mm)=(DMD+DTD+DVD)/3
(Measuring method)
The measurement method is described below.
Average cell diameter In this specification, the average cell diameter of the recycled resin-containing polyolefin-based resin foam is measured as follows in accordance with the test method of ASTM D2842-69.
Specifically, the foamed sheet is cut along the MD direction (extrusion direction) and the TD direction (direction perpendicular to the extrusion direction), and the center of each cut surface is scanned by an electron microscope (manufactured by Hitachi, Ltd.). S-3000N) and enlarged.
Next, the photographed image is printed on A4 paper, and a straight line having a length of 60 mm is drawn on the image. The cut surface cut in the MD direction is parallel to the MD direction, the cut surface cut in the TD direction is parallel to the TD direction, and the VD direction (thickness direction) is perpendicular to the MD direction and the TD direction (sheet). Draw a straight line (perpendicular to). At this time, the magnification in the electron microscope was adjusted so that about 10 to 20 bubbles were formed on a straight line of 60 mm.
The average chord length (t) of the bubbles was calculated from the number of bubbles present on the straight line by the following formula, and the average chord length was defined as the average bubble diameter in each direction (MD direction, TD direction, and VD direction).
Average string length t = 60 / (number of bubbles × photo magnification)
When drawing a straight line, the straight line should be penetrated as much as possible without making point contact with the bubbles. Also, if some of the bubbles come into point contact with a straight line, this bubble is included in the number of bubbles, and if both ends of the straight line are located in the bubble without penetrating the bubbles Includes the bubbles in which both ends of the straight line are located in the number of bubbles.
Based on the average chord length t calculated by the above formula, the bubble diameter is calculated by the following formula.
Bubble diameter (mm) D = t / 0.616
Then, the arithmetic average value of the obtained bubble diameter in the MD direction (DMD), the bubble diameter in the TD direction (DTD), and the bubble diameter in the VD direction (DVD) is the average bubble diameter of the recycled resin-containing polyolefin resin foam. To do.
Average bubble diameter (mm) = (DMD + DTD + DVD) / 3

見掛け密度
本明細書において、再生樹脂含有ポリオレフィン系樹脂発泡体の見かけ密度はJIS K 7222−1999記載の方法に準拠した方法により測定される。具体的には、試料から10cm以上(半硬質及び軟質材料の場合は100cm以上)の試験片を試料の元のセル構造を変えない様に切断し、その質量を測定し、次式により算出する。
密度(kg/m)=試験片質量(g)/試験片体積(cm)×10
Apparent density In this specification, the apparent density of the recycled resin-containing polyolefin resin foam is measured by a method based on the method described in JIS K 7222-1999. Specifically, a test piece of 10 cm 3 or more (100 cm 3 or more in the case of semi-rigid and soft materials) is cut from the sample so as not to change the original cell structure of the sample, and its mass is measured. calculate.
Density (kg / m 3 ) = test piece mass (g) / test piece volume (cm 3 ) × 10 3

再生樹脂含有ポリオレフィン系樹脂発泡体の見かけ密度は、小さいと、再生樹脂含有ポリオレフィン系樹脂発泡体の機械的強度が低下することがある一方、大きいと、再生樹脂含有ポリオレフィン系樹脂発泡体のクッション性又は柔軟性が低下することがあるので、30〜100kg/m程度の範囲内であるのが好ましく、30〜90kg/m程度の範囲内であるのがより好ましく、35〜70kg/m程度の範囲内であるのが特に好ましい。 When the apparent density of the recycled resin-containing polyolefin resin foam is small, the mechanical strength of the recycled resin-containing polyolefin resin foam may be reduced. On the other hand, when the apparent density is large, the cushioning property of the recycled resin-containing polyolefin resin foam is reduced. or because the flexibility may be reduced, it is preferably in the range of about 30~100kg / m 3, more preferably in the range of about 30~90kg / m 3, 35~70kg / m 3 It is particularly preferred that it is within the range of the degree.

分子量(GPC分析)
本明細書において、再生樹脂組成物の分子量は下記の様にして、測定されたものをいう。具体的には、試料約10mgをサンプル瓶に秤量後、ODCB約4mLを加えて密閉し、高温GPC溶解装置用のアルミブロック中で160℃で2時間程度加熱溶解させ、溶解後に高温GPC濾過装置専用器具中に液を移し、30分程度加熱後にプラスチック製注射器にて濾過し、濾過液を高温GPC用試験管に再度移して試料溶液を作成した。試料溶液を、カラム温度145℃、流量1.0mL/minで測定し、重量平均分子量(Mw)及びZ平均分子量(Mz)を算出した。測定装置としては、TOSOH HLC-8121GPC/HTを用いることができ、カラムとして、UT-806M×3 (Shodex)を用いることができる。
Molecular weight (GPC analysis)
In the present specification, the molecular weight of the recycled resin composition refers to that measured as follows. Specifically, after weighing about 10 mg of sample in a sample bottle, add about 4 mL of ODCB, seal it, heat and dissolve in an aluminum block for high-temperature GPC dissolution equipment at 160 ° C for about 2 hours, and after dissolution, high-temperature GPC filtration equipment The solution was transferred into a dedicated instrument, heated for about 30 minutes and filtered with a plastic syringe, and the filtrate was transferred again to a high-temperature GPC test tube to prepare a sample solution. The sample solution was measured at a column temperature of 145 ° C. and a flow rate of 1.0 mL / min, and the weight average molecular weight (Mw) and the Z average molecular weight (Mz) were calculated. TOSOH HLC-8121GPC / HT can be used as the measuring device, and UT-806M × 3 (Shodex) can be used as the column.

溶融張力
本明細書において、再生樹脂組成物の分子量は下記の様にして、測定されたものをいう。具体的には、試験温度230℃に設定し、バレル径15mm、ダイ径2.095mm、ダイ長さ8mmのキャピラリー形状であり、押出速度0.0676mm/s、巻取速度初速4mm/sから12mm/s2で加速である。測定装置としては、チアスト社製のツインボアキャピラリーレオメーター Rheologic 5000Tを用いることができる。
Melt tension In the present specification, the molecular weight of the regenerated resin composition is measured as follows. Specifically, the test temperature is set to 230 ° C, the capillary diameter is 15 mm, the die diameter is 2.095 mm, the die length is 8 mm, the extrusion speed is 0.0676 mm / s, and the initial winding speed is 4 mm / s to 12 mm / s. 2 is acceleration. As a measuring apparatus, a twin bore capillary rheometer Rheologic 5000T manufactured by Chiast Corporation can be used.

MFR
本明細書において、再生樹脂組成物のMFRはJIS K 7210:1999 熱可塑性プラスチックのMFR及びMVRの試験方法に記載の方法に準拠した方法により測定される。具体的には、試験温度230℃、試験荷重21.18Nで行う。測定装置としては、東洋精機社製 セミオートメルトインデクサーを用いることができる。
MFR
In the present specification, the MFR of the recycled resin composition is measured by a method based on the method described in JIS K 7210: 1999 MFR and MVR test methods for thermoplastics. Specifically, the test is performed at a test temperature of 230 ° C. and a test load of 21.18N. As a measuring device, a semi-auto melt indexer manufactured by Toyo Seiki Co., Ltd. can be used.

以下、実施例及び比較例を挙げて、本発明をさらに詳細に説明する。但し、本発明はこれらによって限定されるものではない。尚、各例において、部及び%は、原則として、重量基準である。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited by these. In each example, parts and% are based on weight in principle.

(ポリオレフィン系樹脂発泡体の製造)
口径が65mmの第一押出機の先端に、口径が75mmの第二押出機を接続してなるタンデム型押出機を用意した。
このタンデム型押出機の第一押出機に、ポリオレフィン系樹脂(日本ポリプロ社製 ニューストレンSH9000 MFR:0.3g/10min)100重量部に、非架橋エチレン−プロピレン−ジエン共重合体エラストマーである熱可塑性エラストマー(三菱化学社製 サーモランZ101N MFR:14g/10min)を67重量部加えた配合樹脂組成物100重量部に、気泡核剤として平均粒子径12μmのタルクを70重量%含有したマスターバッチ(日本タルク社製 タルペット70P)10重量部を混合させたポリオレフィン系樹脂発泡用組成物を第一押出機に供給して溶融混練した。第一押出機の途中から発泡剤として超臨界状態の二酸化炭素を4.2重量部圧入して、溶融状態のポリオレフィン系樹脂発泡用組成物と二酸化炭素を均一に混合混練した上で、この発泡剤を含む溶融樹脂組成物を第二押出機に連続的に供給して溶融混練しつつ発泡に適した樹脂温度に冷却した。その後、第二押出機の先端に取り付けた金型の気泡生成部口径φ35mm、金型の気泡生成部間隔0.25mm(気泡生成部の断面積:0.275cm)、発泡体成形部の間隔3.4mm、発泡体成形部の出口口径φ70の円環ダイから吐出量30kg/hr(吐出速度V=109kg/cm・hr)、樹脂温度175℃、円環ダイ手前での樹脂圧力9.8MPaの条件で押出発泡させ、円環ダイの発泡体成形部において成形された円筒状の発泡体を冷却されているマンドレル上に添わせるとともに、その外面をエアリングからエアーを吹き付けて冷却成形し、マンドレル上の一点で、カッターにより円筒状の発泡体を切開して、シート状のポリオレフィン系樹脂発泡体を得た。
上記方法により得られたオレフィン系樹脂発泡体は、コルゲートの発生が無く、表面平滑性に優れるため、スライス加工等の二次加工性に優れる。また、二次加工を行なうのに充分な厚みを維持したシートが得られた。
(Manufacture of polyolefin resin foam)
A tandem extruder was prepared by connecting a second extruder having a diameter of 75 mm to the tip of a first extruder having a diameter of 65 mm.
In the first extruder of this tandem type extruder, 100 parts by weight of a polyolefin-based resin (Newstor SH9000 MFR: 0.3 g / 10 min manufactured by Nippon Polypro Co., Ltd.) is heated to a heat which is an uncrosslinked ethylene-propylene-diene copolymer elastomer. A masterbatch containing 70% by weight of talc having an average particle size of 12 μm as a cell nucleating agent in 100 parts by weight of a compounded resin composition obtained by adding 67 parts by weight of a plastic elastomer (Thermolan Z101N MFR: 14 g / 10 min manufactured by Mitsubishi Chemical Corporation) A polyolefin resin foaming composition mixed with 10 parts by weight of Talpet 70P manufactured by Talc was supplied to the first extruder and melt-kneaded. 4.2 parts by weight of carbon dioxide in a supercritical state as a blowing agent is injected from the middle of the first extruder, and the foamed polyolefin resin foaming composition and carbon dioxide are uniformly mixed and kneaded. The molten resin composition containing the agent was continuously supplied to the second extruder and melted and kneaded while cooling to a resin temperature suitable for foaming. Thereafter, the diameter of the bubble generation part of the mold attached to the tip of the second extruder is 35 mm, the distance between the bubble generation parts of the mold is 0.25 mm (cross-sectional area of the bubble generation part: 0.275 cm 2 ), and the distance between the foam molding parts Discharge rate of 30 mm / hr (discharge speed V = 109 kg / cm 2 · hr) from an annular die having an outlet diameter φ70 of 3.4 mm and a foam molded part, a resin temperature of 175 ° C., and a resin pressure in front of the annular die Extruded and foamed under the condition of 8 MPa, and the cylindrical foam molded in the foam molding part of the annular die is attached onto the cooled mandrel, and the outer surface is cooled by blowing air from the air ring. The cylindrical foam was cut with a cutter at one point on the mandrel to obtain a sheet-like polyolefin resin foam.
The olefin-based resin foam obtained by the above method has no corrugation and excellent surface smoothness, and therefore has excellent secondary processability such as slicing. Moreover, the sheet | seat which maintained sufficient thickness for performing a secondary process was obtained.

(再生樹脂組成物の製造)
得られたポリオレフィン系樹脂発泡体の両面をスプリッティングマシンによりスライス加工して表皮を除去しスライス加工された発泡シート加工製品を得た。一方、除去した表皮を回収した。回収した表皮を粉砕し、押出機にて溶融混練し、ストランド状に押出した後、水冷し、円筒形のペレット状に成形した再生樹脂組成物Aを得た。ペレタイザーの回転刃は自由に速度調整できるため、任意のサイズのペレットを得ることができる。再生樹脂組成物Aは、重量平均分子量(Mw)が446×10、Z平均分子量(Mz)が1865×10、溶融張力が2.3cN、230℃でのMFRが1.6 g/10minであった。
(Manufacture of recycled resin composition)
Both surfaces of the obtained polyolefin-based resin foam were sliced by a splitting machine to remove the skin, and a sliced foamed sheet processed product was obtained. On the other hand, the removed epidermis was collected. The recovered skin was pulverized, melted and kneaded with an extruder, extruded into a strand, cooled with water, and a regenerated resin composition A molded into a cylindrical pellet was obtained. Since the speed of the rotating blade of the pelletizer can be adjusted freely, pellets of any size can be obtained. Recycled resin composition A has a weight average molecular weight (Mw) of 446 × 10 3 , a Z average molecular weight (Mz) of 1865 × 10 3 , a melt tension of 2.3 cN, and an MFR at 230 ° C. of 1.6 g / 10 min. Met.

(再生樹脂組成物含有ポリオレフィン系樹脂発泡体の製造)
[実施例1](再生樹脂組成物30重量%)
ポリオレフィン系樹脂(日本ポリプロ社製 ニューストレンSH9000 MFR:0.3g/10min)100重量部に、非架橋エチレン−プロピレン−ジエン共重合体エラストマーである熱可塑性エラストマー(三菱化学社製 サーモランZ101N MFR:14g/10min)を67重量部加えた配合樹脂組成物100重量部に、気泡核剤として平均粒子径12μmのタルクを70重量%含有したマスターバッチ(日本タルク社製 タルペット70P)10重量部を混合させたポリオレフィン系樹脂発泡用組成物100重量部に、上記で製造した再生樹脂組成物Aを43重量部混合させた、再生樹脂含有ポリオレフィン系樹脂組成物を押出機に供給して溶融混練し、第一押出機の途中から発泡剤として超臨界状態の二酸化炭素を4.2重量部圧入して、溶融状態の再生樹脂含有ポリオレフィン系樹脂組成物と二酸化炭素を均一に混合混練した上で、この発泡剤を含む溶融再生樹脂含有ポリオレフィン系樹脂組成物を第二押出機に連続的に供給して溶融混練しつつ発泡に適した樹脂温度に冷却した。その後、第二押出機の先端に取り付けた金型の気泡生成部口径φ35mm、金型の気泡生成部間隔0.25mm(気泡生成部の断面積:0.275cm)、発泡体成形部の間隔3.4mm、発泡体成形部の出口口径φ70の円環ダイから吐出量30kg/hr(吐出速度V=109kg/cm・hr)、樹脂温度176℃、円環ダイ手前での樹脂圧力9.3MPaの条件で押出発泡させ、円環ダイの発泡体成形部において成形された円筒状の発泡体を冷却されているマンドレル上に添わせるとともに、その外面をエアリングからエアーを吹き付けて冷却成形し、マンドレル上の一点で、カッターにより円筒状の発泡体を切開して、シート状の再生樹脂含有ポリオレフィン系樹脂発泡体を得た。得られた発泡シートは、厚みが2.1mm、平均気泡径が0.14mm、見掛け密度が54.2kg/mであった。
(Manufacture of recycled resin composition-containing polyolefin resin foam)
[Example 1] (Recycled resin composition 30% by weight)
100 parts by weight of a polyolefin-based resin (New Poly SH SH9000 MFR: 0.3 g / 10 min manufactured by Nippon Polypro Co., Ltd.) and a thermoplastic elastomer which is a non-crosslinked ethylene-propylene-diene copolymer elastomer (thermolan Z101N MFR: 14 g manufactured by Mitsubishi Chemical Corporation) / 10 min) is added to 100 parts by weight of the compounded resin composition, and 10 parts by weight of a master batch (Talpet 70P, manufactured by Nippon Talc Co., Ltd.) containing 70% by weight of talc having an average particle size of 12 μm as a cell nucleating agent is mixed. The recycled resin-containing polyolefin resin composition prepared by mixing 43 parts by weight of the recycled resin composition A prepared above with 100 parts by weight of the polyolefin resin foaming composition was supplied to an extruder and melt-kneaded. 4.2 double supercritical carbon dioxide as a blowing agent from the middle of one extruder The molten regenerated resin-containing polyolefin resin composition and carbon dioxide are uniformly mixed and kneaded by injecting a certain amount, and the molten regenerated resin-containing polyolefin resin composition containing the blowing agent is continuously fed to the second extruder. The mixture was cooled to a resin temperature suitable for foaming while being melted and kneaded. Thereafter, the diameter of the bubble generation part of the mold attached to the tip of the second extruder is 35 mm, the distance between the bubble generation parts of the mold is 0.25 mm (cross-sectional area of the bubble generation part: 0.275 cm 2 ), and the distance between the foam molding parts Discharge rate 30 kg / hr (discharge speed V = 109 kg / cm 2 · hr), resin temperature 176 ° C., resin pressure in front of the ring die Extruded and foamed under the condition of 3 MPa, and the cylindrical foam formed in the foam molding part of the annular die is added onto the cooled mandrel, and the outer surface is cooled by blowing air from the air ring. At one point on the mandrel, a cylindrical foam was cut with a cutter to obtain a sheet-like recycled resin-containing polyolefin resin foam. The obtained foamed sheet had a thickness of 2.1 mm, an average cell diameter of 0.14 mm, and an apparent density of 54.2 kg / m 3 .

[実施例2](再生樹脂組成物50重量%)
上記ポリオレフィン系樹脂発泡用組成物100重量部に再生樹脂組成物Aを100重量部混合させた以外は実施例1と同様にして、超臨界状態の二酸化炭素を4.2重量部圧入して、樹脂温度175℃、円環ダイ手前での樹脂圧力10.2MPaの条件で押出発泡させ、シート状の再生樹脂含有ポリオレフィン系樹脂発泡体を得た。得られた発泡シートは、厚みが1.7mm、平均気泡径が0.12mm、見掛け密度が57.5kg/mであった。
[Example 2] (Recycled resin composition 50% by weight)
In the same manner as in Example 1 except that 100 parts by weight of the recycled resin composition A was mixed with 100 parts by weight of the polyolefin resin foaming composition, 4.2 parts by weight of carbon dioxide in a supercritical state was injected. Extrusion foaming was performed under the conditions of a resin temperature of 175 ° C. and a resin pressure of 10.2 MPa in front of the annular die to obtain a sheet-like recycled resin-containing polyolefin resin foam. The obtained foamed sheet had a thickness of 1.7 mm, an average cell diameter of 0.12 mm, and an apparent density of 57.5 kg / m 3 .

[比較例1](バージン原料不使用)
再生樹脂組成物Aのみ100%を押出機に供給して溶融混練した以外は実施例1と同様にして、超臨界状態の二酸化炭素を4.2重量部圧入して、樹脂温度172℃、円環ダイ手前での樹脂圧力12.6MPaの条件で押出発泡を行なった。
再生樹脂組成物のみ100%では、樹脂粘度が低く、円環ダイ手前での樹脂圧力と金型クリアランスの調整ができないため、良好な発泡体が得られなかった。
[Comparative Example 1] (Virgin raw material not used)
Except that 100% of the recycled resin composition A was supplied to the extruder and melt-kneaded, 4.2 parts by weight of carbon dioxide in a supercritical state was injected, and the resin temperature was 172 ° C. Extrusion foaming was performed under a resin pressure of 12.6 MPa in front of the ring die.
When the recycled resin composition alone was 100%, the resin viscosity was low, and the resin pressure and mold clearance before the annular die could not be adjusted, so that a good foam could not be obtained.

[比較例2]
実施例2で製造した再生樹脂含有ポリオレフィン系樹脂発泡体を製造する際に発生した廃棄物または加工後に発生した廃棄物を回収し、回収した廃棄物を粉砕し、押出機にて溶融混練し、ストランド状に押出した後、水冷し、円筒形のペレット状に成形した再生樹脂組成物Bを得た。ペレタイザーの回転刃は自由に速度調整できるため、任意のサイズのペレットを得ることができる。再生樹脂組成物Bは、重量平均分子量(Mw)が421×10、Z平均分子量(Mz)が1400×10、溶融張力が1.9cN、230℃でのMFRが1.8 g/10minであった。
次に実施例1と同様に、ポリオレフィン系樹脂(日本ポリプロ社製 ニューストレンSH9000 MFR:0.3g/10min)100重量部に、非架橋エチレン−プロピレン−ジエン共重合体エラストマーである熱可塑性エラストマー(三菱化学社製 サーモランZ101N MFR:14g/10min)を67重量部加えた配合樹脂組成物100重量部に、気泡核剤として平均粒子径12μmのタルクを70重量%含有したマスターバッチ(日本タルク社製 タルペット70P)10重量部を混合させた熱可塑性樹脂組成物100重量部に、再生樹脂組成物Bを43重量部を混合させた、再生樹脂組成物B含有熱可塑性樹脂組成物を押出機に供給して溶融混練し、超臨界状態の二酸化炭素を4.2重量部圧入して、樹脂温度175℃、円環ダイ手前での樹脂圧力11.5MPaの条件で押出発泡を行なった。再生樹脂組成物Bでは、円環ダイ手前での樹脂圧力と金型クリアランスの調整が困難であることに加え、張力が低下していることから発泡しにくく、良好な発泡体が得られなかった。
[Comparative Example 2]
The waste generated when producing the recycled resin-containing polyolefin resin foam produced in Example 2 or the waste generated after processing is recovered, the recovered waste is pulverized, melt-kneaded in an extruder, After extruding into a strand, it was cooled with water to obtain a recycled resin composition B formed into a cylindrical pellet. Since the speed of the rotating blade of the pelletizer can be adjusted freely, pellets of any size can be obtained. Recycled resin composition B has a weight average molecular weight (Mw) of 421 × 10 3 , a Z average molecular weight (Mz) of 1400 × 10 3 , a melt tension of 1.9 cN, and an MFR at 230 ° C. of 1.8 g / 10 min. Met.
Next, in the same manner as in Example 1, 100 parts by weight of a polyolefin-based resin (Newstrain SH9000 MFR: 0.3 g / 10 min manufactured by Nippon Polypro Co., Ltd.) was added to a thermoplastic elastomer (non-crosslinked ethylene-propylene-diene copolymer elastomer ( A masterbatch (manufactured by Nippon Talc Co., Ltd.) containing 100% by weight of a compounded resin composition to which 67 parts by weight of Thermo-Lan Z101N MFR: 14 g / 10 min) manufactured by Mitsubishi Chemical Corporation is added, and 70% by weight of talc having an average particle size of 12 μm as a cell nucleating agent Recycled resin composition B-containing thermoplastic resin composition in which recycled resin composition B is mixed with 100 parts by weight of thermoplastic resin composition mixed with 10 parts by weight of Talpet 70P) is supplied to an extruder. And then melt-kneaded, and 4.2 parts by weight of carbon dioxide in a supercritical state is injected, and the resin temperature is 175 ° C. Extrusion foaming was performed under the condition of a resin pressure of 11.5 MPa before the die. In the recycled resin composition B, in addition to the difficulty of adjusting the resin pressure and the mold clearance in front of the annular die, it was difficult to foam because the tension was reduced, and a good foam was not obtained. .

[比較例3]
再生樹脂組成物Bを100重量部混合させた以外は比較例2と同様にして、超臨界状態の二酸化炭素を4.2重量部圧入して、樹脂温度174℃、円環ダイ手前での樹脂圧力9.7MPaの条件で押出発泡を行なった。比較例2と同様に、樹脂圧力及びクリアランスの調整が難しく、再生樹脂組成物の量が増えることから、より張力の低下が著しいため発泡しにくく、良好な発泡体が得られなかった。
[Comparative Example 3]
Except that 100 parts by weight of recycled resin composition B was mixed, 4.2 parts by weight of supercritical carbon dioxide was injected in the same manner as in Comparative Example 2, the resin temperature was 174 ° C., and the resin was in front of the ring die. Extrusion foaming was performed under conditions of a pressure of 9.7 MPa. As in Comparative Example 2, it was difficult to adjust the resin pressure and clearance, and the amount of the regenerated resin composition was increased. Therefore, since the tension was further lowered, foaming was difficult and a good foam was not obtained.

本発明によれば廃棄物を有効活用することができ、廃棄物を使用しての押出を行なった場合においても従来発泡体と同等の厚み、倍率、物性の発泡体を得ることができ、柔軟性や追従性を求められる分野や、シール性、防塵性を求められる電子機器、家電分野、クッション性などを求められる住宅や自動車分野など好適に用いることができる。
According to the present invention, it is possible to effectively use waste, and even when extrusion is performed using waste, it is possible to obtain a foam having the same thickness, magnification, and physical properties as a conventional foam. For example, it can be suitably used in fields that require high performance and followability, electronic equipment that requires sealing and dustproof properties, home appliances, and housing and automobiles that require cushioning.

Claims (2)

メルトフローレート(MFR)が0.2〜5g/10minのバージン原料であるポリプロピレン系樹脂と非架橋エチレンープロピレンージエン共重合体のバージン原料であるエラストマーとを含有するポリオレフィン系樹脂発泡用組成物に該発泡用組成物を発泡成形又は加工した際に発生する廃棄物を再生した再生樹脂組成物を加えて再生樹脂含有ポリオレフィン系樹脂発泡体を製造する方法において、
前記再生樹脂組成物が
重量平均分子量(Mw)300×10 〜1500×10 3
Z平均分子量(Mz)が1300×10 〜5500×10 3
溶融張力が2.0cN以上、且つ、230℃でのMFRが2.0 g/10min以下であり、
ポリオレフィン系樹脂発泡用組成物100重量部に対して、再生樹脂組成物を10〜250重量部加えることを特徴とする再生樹脂含有ポリオレフィン系樹脂発泡体の製造方法。
Polyolefin resin foaming composition containing a polypropylene resin as a virgin raw material having a melt flow rate (MFR) of 0.2 to 5 g / 10 min and an elastomer as a virgin raw material of a non-crosslinked ethylene-propylene-diene copolymer In the method for producing a recycled resin-containing polyolefin resin foam by adding a recycled resin composition obtained by recycling waste generated when the foaming composition is subjected to foam molding or processing to
The regenerated resin composition has a weight average molecular weight (Mw) of 300 × 10 3 to 1500 × 10 3 ,
Z average molecular weight (Mz) is 1300 × 10 3 to 5500 × 10 3 ,
The melt tension is 2.0 cN or more and the MFR at 230 ° C. is 2.0 g / 10 min or less,
A method for producing a recycled resin-containing polyolefin resin foam, comprising adding 10 to 250 parts by weight of a recycled resin composition to 100 parts by weight of a polyolefin resin foam composition .
請求項1に記載の製造方法で得られた再生樹脂含有ポリオレフィン系樹脂発泡シート。A recycled resin-containing polyolefin-based resin foam sheet obtained by the production method according to claim 1.





JP2011052759A 2011-03-10 2011-03-10 Method for producing recycled resin-containing polyolefin resin foam Expired - Fee Related JP5660676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011052759A JP5660676B2 (en) 2011-03-10 2011-03-10 Method for producing recycled resin-containing polyolefin resin foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011052759A JP5660676B2 (en) 2011-03-10 2011-03-10 Method for producing recycled resin-containing polyolefin resin foam

Publications (2)

Publication Number Publication Date
JP2012188531A JP2012188531A (en) 2012-10-04
JP5660676B2 true JP5660676B2 (en) 2015-01-28

Family

ID=47082052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011052759A Expired - Fee Related JP5660676B2 (en) 2011-03-10 2011-03-10 Method for producing recycled resin-containing polyolefin resin foam

Country Status (1)

Country Link
JP (1) JP5660676B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3859334B2 (en) * 1997-11-25 2006-12-20 株式会社ジェイエスピー Method for producing polyethylene resin foam, polyethylene resin foam and molded product thereof
JP2006045356A (en) * 2004-08-04 2006-02-16 Japan Polypropylene Corp Polypropylene resin cylindrical foam
JP4688519B2 (en) * 2005-02-21 2011-05-25 日東電工株式会社 Method for producing polyolefin resin foam
JP2007186706A (en) * 2007-02-19 2007-07-26 Jsp Corp Manufacturing method of polyolefin resin foam and polyolefin resin foam
JP5162329B2 (en) * 2008-05-16 2013-03-13 日本ポリプロ株式会社 Polypropylene foam sheet, multilayer foam sheet, and thermoformed article using the same

Also Published As

Publication number Publication date
JP2012188531A (en) 2012-10-04

Similar Documents

Publication Publication Date Title
KR101632878B1 (en) Expanded polyolefin resin sheet, method for producing same, and use of same
JP2010270228A (en) Method for producing polypropylene-based resin foam and polypropylene-based resin foam
JP5123021B2 (en) Method for producing polypropylene resin foam and polypropylene resin foam
US20170037214A1 (en) Foamable masterbatch and polyolefin resin composition with excellent expandability and direct metallizing property
JP2011132420A (en) Method for producing polypropylene-based resin foam and polypropylene-based resin foam
JP6025827B2 (en) Method for producing resin foam and resin foam
JP5622242B2 (en) Foam adhesive sheet
JP2004250529A (en) Composition for polyolefin resin foam molding, foam molding of the same and method for producing foam molding
JP5410221B2 (en) Polypropylene resin foam
JP5032195B2 (en) Polypropylene resin foam and method for producing the same
TWI520996B (en) Polyolefin series resin foam and polyolefin series resin foamed dust-proof material using same
JP2015044888A (en) Polyolefin-based resin foamed sheet and application thereof
JP2016183292A (en) Polypropylene-based resin foamed sheet, method for producing polypropylene-based resin foamed sheet and adhesive sheet
JP2009149882A (en) Polymer blend for thermoplastic cellular material
TWI552875B (en) Foamed resin sheet and method of manufacturing foamed resin sheet
JP5940428B2 (en) Polyolefin resin foam
JP5660676B2 (en) Method for producing recycled resin-containing polyolefin resin foam
JP2013209545A (en) Resin composition for extrusion foaming, method for producing resin foam and resin foam
JP5674585B2 (en) Breathable waterproof filter
JP5992193B2 (en) Resin composition for extrusion foaming, method for producing resin foam, and resin foam
JP2013084556A (en) Polyolefin resin foam for electronic member insulation and insulation material coated wiring
JP4855138B2 (en) Polypropylene resin foam particles and method for producing the same
JP2016069461A (en) Polypropylene-based resin foam sheet and method for producing polypropylene-based resin foam sheet
JP2013082881A (en) Polyolefin resin foam and method for producing the same
JP2010196054A (en) Polyolefin resin expanded molded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141128

R150 Certificate of patent or registration of utility model

Ref document number: 5660676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees