JP2006288016A - Operation support system of distributed power supply, carbon dioxide emission unit consumption calculation system, and distributed power supply controller - Google Patents

Operation support system of distributed power supply, carbon dioxide emission unit consumption calculation system, and distributed power supply controller Download PDF

Info

Publication number
JP2006288016A
JP2006288016A JP2005101975A JP2005101975A JP2006288016A JP 2006288016 A JP2006288016 A JP 2006288016A JP 2005101975 A JP2005101975 A JP 2005101975A JP 2005101975 A JP2005101975 A JP 2005101975A JP 2006288016 A JP2006288016 A JP 2006288016A
Authority
JP
Japan
Prior art keywords
power
carbon dioxide
dioxide emission
distributed
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005101975A
Other languages
Japanese (ja)
Inventor
Koji Tanaka
晃司 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2005101975A priority Critical patent/JP2006288016A/en
Publication of JP2006288016A publication Critical patent/JP2006288016A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a support system of distributed power supply for reducing emission of carbon dioxide. <P>SOLUTION: The operation support system 100 of distributed power supply comprises a carbon dioxide emission unit consumption calculation system 60, and a distributed power supply controller 72. The carbon dioxide emission unit consumption calculation system 60 calculates the emission unit consumption of power being supplied from a commercial power system 10 based on the generator output from power-plants 11-13 and transmits the emission unit consumption to the distributed power supply controller 72. The distributed power supply controller controls a distributed power supply 71 such that total emission of carbon dioxide is reduced in the entirety including the commercial power system 10 and the distributed power supply 71 when power is generated. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、分散型電源の運転支援システム、二酸化炭素排出原単位算出システム、および分散型電源制御装置に関する。   The present invention relates to an operation support system for a distributed power supply, a carbon dioxide emission intensity calculation system, and a distributed power supply control device.

自家用発電において、石油やガス等の化石燃料を燃焼することで発電を行い、需要家構内の電気負荷に供給する分散型電源装置がよく用いられている。これらの分散型電源装置は、商用電力系統から完全に独立して運用されるものはほとんどなく、商用電力系統からも受電して、負荷に電力供給を行う構成が一般的である。このような分散型電源装置の例は、特許文献1に示される。
こうした分散型電源の運用方法としては、経済性を最優先とするものが一般的である。つまり、夜間には商用電力系統から供給される電力が比較的安価であるので、分散型電源を停止させて全消費電力を商用電力系統から受電し、また逆に、昼間には商用電力系統から供給される電力が比較的高価であるので、分散型電源を稼動させて商用電力系統から受電する電力を削減するといった運用方法である。
In private power generation, a distributed power supply that generates power by burning fossil fuels such as oil and gas and supplies it to an electric load in a customer premises is often used. These distributed power supply apparatuses are rarely operated completely independently of the commercial power system, and generally have a configuration that receives power from the commercial power system and supplies power to the load. An example of such a distributed power supply apparatus is shown in Patent Document 1.
As a method for operating such a distributed power source, one that gives top priority to economic efficiency is generally used. In other words, since the power supplied from the commercial power system is relatively inexpensive at night, the distributed power supply is stopped and all power consumption is received from the commercial power system. Since the supplied power is relatively expensive, the operation method is to operate the distributed power source to reduce the power received from the commercial power system.

特開2004−15882号公報JP 2004-15882 A

しかしながら、従来の分散型電源の運転においては、経済性のみ追求し、二酸化炭素排出量を抑制するという環境性に配慮した運用はなされていないという問題があった。   However, in the operation of the conventional distributed power source, there has been a problem that the operation is not performed in consideration of the environmental property in which only economic efficiency is pursued and carbon dioxide emission is suppressed.

この発明は、このような問題点を解決するためになされたものであり、二酸化炭素排出量を抑制する分散型電源の運転支援システム、二酸化炭素排出原単位算出システム、および分散型電源制御装置を提供する。   The present invention has been made to solve such problems, and includes a distributed power supply operation support system, a carbon dioxide emission intensity calculation system, and a distributed power supply control device that suppress carbon dioxide emissions. provide.

上述の問題点を解決するため、この発明に係る分散型電源の運転支援システムは、化石燃料を燃焼させて発電するとともに、外部の需要家負荷に給電する、外部の分散型電源の運転を、一つまたは複数の発電所を含むとともに、需要家負荷に給電する、外部の商用電力系統の状況に応じて制御する、分散型電源の運転支援システムであって、発電所の発電機出力に基づいて、商用電力系統から給電する電力の二酸化炭素排出原単位を算出する、二酸化炭素排出原単位算出システムと、分散型電源の発電機出力に基づいて、分散型電源から給電する電力の二酸化炭素排出原単位を算出するとともに、商用電力系統から給電する電力の二酸化炭素排出原単位と、分散型電源から給電する電力の二酸化炭素排出原単位とに基づいて、需要家負荷が消費する電力に対応する二酸化炭素の総排出量を算出し、総排出量がより少なくなるように、分散型電源の発電機出力を制御する、分散型電源制御装置とを備える。   In order to solve the above-mentioned problems, an operation support system for a distributed power source according to the present invention generates power by burning fossil fuel, and supplies power to an external customer load. A distributed power supply operation support system that includes one or more power plants and supplies power to the customer load according to the status of the external commercial power system, based on the generator output of the power plant Based on the carbon dioxide emission intensity calculation system that calculates the carbon dioxide emission intensity of power supplied from the commercial power system and the generator output of the distributed power supply, carbon dioxide emission of power supplied from the distributed power supply In addition to calculating the basic unit, the consumer load is reduced based on the carbon dioxide emission basic unit of power supplied from the commercial power grid and the carbon dioxide emission basic unit of power supplied from the distributed power source. It calculates a total emission amount of carbon dioxide corresponding to the power to be, so that the total discharge amount becomes less, to control the generator output of the distributed power supply, and a distributed power controller.

また、この発明に係る二酸化炭素排出原単位算出システムは、商用電力系統から給電する電力の二酸化炭素排出原単位を算出する、二酸化炭素排出原単位算出システムであって、商用電力系統に含まれる発電所の、発電機出力に関する情報を受信し、発電機出力に基づいて、発電所から給電する電力の二酸化炭素排出原単位を算出し、発電機出力と発電所から給電する電力の二酸化炭素排出原単位とに基づいて、商用電力系統から給電する電力の二酸化炭素排出原単位を算出し、商用電力系統から給電する電力の二酸化炭素排出原単位に関する情報を、外部の分散型電源制御装置に送信する。   A carbon dioxide emission basic unit calculation system according to the present invention is a carbon dioxide emission basic unit calculation system for calculating a carbon dioxide emission basic unit of electric power fed from a commercial electric power system, the power generation included in the commercial electric power system. Receives information about the generator output of the plant, calculates the CO2 emission intensity of the power supplied from the power plant based on the generator output, and generates the carbon dioxide emission source of the power supplied from the generator output and the power plant. Based on the unit, the unit calculates the carbon dioxide emission intensity of power supplied from the commercial power system, and transmits information on the carbon dioxide emission intensity of power supplied from the commercial power system to the external distributed power control device .

また、この発明に係る分散型電源制御装置は、外部の分散型電源を制御する分散型電源制御装置であって、分散型電源は、化石燃料を燃焼させて発電するとともに、外部の需要家負荷に給電し、需要家負荷は、商用電力系統からも給電される分散型電源制御装置において、商用電力系統から給電する電力の二酸化炭素排出原単位に関する情報を受信し、分散型電源の発電機出力に基づいて、分散型電源から給電する電力の二酸化炭素排出原単位を算出するとともに、商用電力系統から給電する電力の二酸化炭素排出原単位と、分散型電源から給電する電力の二酸化炭素排出原単位とに基づいて、需要家負荷が消費する電力に対応する二酸化炭素の総排出量を算出し、総排出量がより少なくなるように、分散型電源の発電機出力を制御する。   The distributed power supply control apparatus according to the present invention is a distributed power supply control apparatus that controls an external distributed power supply. The distributed power supply generates power by burning fossil fuels, and external customer loads. The customer load receives information on the carbon dioxide emission intensity of the power supplied from the commercial power system in the distributed power control device that is also supplied from the commercial power system, and the generator output of the distributed power source Based on the above, the CO2 emission intensity of power supplied from the distributed power source is calculated, the CO2 emission intensity of power supplied from the commercial power system, and the CO2 emission intensity of power supplied from the distributed power source. Based on the above, the total discharge amount of carbon dioxide corresponding to the power consumed by the consumer load is calculated, and the generator output of the distributed power source is controlled so that the total discharge amount becomes smaller.

この発明に係る分散型電源の運転支援システム、二酸化炭素排出原単位算出システム、および分散型電源制御装置は、商用電力系統および分散型電源を含む全体にわたって、二酸化炭素排出量がより少なくなるように分散型電源の制御を行うので、二酸化炭素排出量を削減することができる。   The distributed power source driving support system, the carbon dioxide emission intensity calculation system, and the distributed power source control device according to the present invention are configured so that the carbon dioxide emission amount is reduced throughout the entire power supply system and the distributed power source. Since the distributed power source is controlled, carbon dioxide emissions can be reduced.

実施の形態1.
図1は、この発明の実施の形態1に係る分散型電源の最適環境性運転支援システムである、運転支援システム100を含む構成を示す。
需要家に電力を供給するため、商用電力系統10が構成されている。商用電力系統10は、発電所として、原子力発電所11、火力発電所12、水力発電所13のうち一つまたは複数の組み合わせを含む。この他の発電方式、すなわち風力発電や太陽光発電等による発電所を含んでもよい。
Embodiment 1 FIG.
FIG. 1 shows a configuration including a driving support system 100, which is an optimal environmental driving support system for a distributed power source according to Embodiment 1 of the present invention.
A commercial power system 10 is configured to supply power to consumers. The commercial power system 10 includes one or a combination of a nuclear power plant 11, a thermal power plant 12, and a hydropower plant 13 as power plants. Other power generation methods, that is, a power plant using wind power generation or solar power generation may be included.

火力発電所12においては、発電のためにガスや石油等の化石燃料を燃焼させるので二酸化炭素が排出される。この火力発電所12の発電機により発電される電力量当たりの二酸化炭素の排出量を二酸化炭素排出原単位α12(単位はkg/kWh)とする。 In the thermal power plant 12, carbon dioxide is discharged because fossil fuels such as gas and oil are burned for power generation. The amount of carbon dioxide emission per unit of electric power generated by the generator of the thermal power plant 12 is defined as a carbon dioxide emission basic unit α 12 (unit: kg / kWh).

この二酸化炭素排出原単位α12は、発電機出力P12が定格に近づくと、発電効率が高まることから減少し、たとえば図3の(a)(b)に示すような曲線に従う特性を示す。曲線(a)は汽力発電の場合における特性であり、曲線(b)はコンバインドサイクル発電の場合における特性である。この曲線は、火力発電所12の発電機ごとに異なり、また、発電所付近の気温T12などによっても異なる。
なお、原子力発電所11および水力発電所13については、発電時には、通常、二酸化炭素を排出しないので、二酸化炭素排出原単位は発電機出力にかかわらず0とみなす。ただし、火力発電所12以外に発電時に二酸化炭素を発生するものがあれば、火力発電所12と同様に二酸化炭素排出原単位の計算に組み入れてもよい。
なお、商用電力系統10において、原子力発電所11や流込式の水力発電所13は、通常、定格運転をしており、電力需要の低下する夜間は火力発電所12を停止する又は出力を低下させることから、商用電力系統の全発電出力に占める原子力発電所11や流込式の水力発電所13の出力の割合が相対的に大きくなる。原子力発電所11や流込式の水力発電所13は二酸化炭素を排出しないので、商用電力系統10全体から給電する電力の二酸化炭素排出原単位は、夜間に低くなり、昼間に高くなる。
The carbon dioxide emission intensity alpha 12, when the generator output P 12 approaches the rated decreases from the power generation efficiency is enhanced, shows a characteristic example according to the curve shown in (a) (b) of FIG. Curve (a) is a characteristic in the case of steam power generation, and curve (b) is a characteristic in the case of combined cycle power generation. This curve is different for each generator of thermal power plants 12, also, varies depending on the temperature T 12 in the vicinity of the power plant.
Regarding the nuclear power plant 11 and the hydroelectric power plant 13, since carbon dioxide is not normally discharged during power generation, the carbon dioxide emission intensity is regarded as 0 regardless of the generator output. However, if there is something other than the thermal power plant 12 that generates carbon dioxide at the time of power generation, it may be included in the calculation of the carbon dioxide emission intensity as in the thermal power plant 12.
Note that, in the commercial power system 10, the nuclear power plant 11 and the flow-in hydropower plant 13 are normally in rated operation, and the thermal power plant 12 is stopped or the output is reduced at night when power demand decreases. Therefore, the ratio of the output of the nuclear power plant 11 and the flow-in hydropower plant 13 in the total power output of the commercial power system becomes relatively large. Since the nuclear power plant 11 and the inflow-type hydropower plant 13 do not emit carbon dioxide, the carbon dioxide emission intensity of power supplied from the entire commercial power system 10 decreases at night and increases during the day.

また、商用電力系統10は、一つまたは複数の変電所18を含む。発電所11〜13において発電された電力は、変電所18を含む送配電線網を介して需要家まで輸送される。
商用電力系統10には需要家負荷80が接続されている。この需要家負荷80は、需要家の負荷変動に応じ、商用電力系統10から供給される電力を消費する。
The commercial power system 10 includes one or a plurality of substations 18. The electric power generated at the power plants 11 to 13 is transported to consumers through a transmission / distribution power network including the substation 18.
A consumer load 80 is connected to the commercial power system 10. This consumer load 80 consumes the electric power supplied from the commercial power system 10 according to the load fluctuation of the consumer.

この需要家負荷80には、商用電力系統10とは独立して発電を行える分散型電源装置70が接続されている。需要家負荷80には、商用電力系統10及び分散型電源装置70から、一部分を分担して又は全量を一方より給電することが考えられる。
この分散型電源装置70は、発電を行う分散型電源71と、分散型電源71の制御を行う分散型電源制御装置72とを備える。分散型電源装置70は、たとえば、電力のみの提供を目的とするもの(モノジェネレーションシステム)等である。
この需要家負荷80と、分散型電源装置70とは、需要家90の構内に設置される。
A distributed power supply 70 that can generate power independently of the commercial power system 10 is connected to the customer load 80. It is conceivable that the consumer load 80 is partly shared from the commercial power system 10 and the distributed power supply 70 or the entire amount is supplied from one side.
The distributed power supply device 70 includes a distributed power supply 71 that generates power and a distributed power supply control device 72 that controls the distributed power supply 71. The distributed power supply device 70 is, for example, a device (monogeneration system) for the purpose of providing only electric power.
The customer load 80 and the distributed power supply 70 are installed on the customer 90 premises.

分散型電源71は、化石燃料の燃焼を利用して発電を行うものであり、このため発電に伴って二酸化炭素を排出する。上述の火力発電所12における電力の二酸化炭素排出原単位α12と同様に、分散型電源71での電力の二酸化炭素排出原単位α71を定義する。 The distributed power source 71 generates power using the combustion of fossil fuel, and therefore discharges carbon dioxide along with power generation. Like the power carbon dioxide emissions intensity alpha 12 of the thermal power plant 12 described above, it defines a carbon dioxide emission intensity alpha 71 of power in the distributed power supply 71.

一方、商用電力系統10に含まれる発電所11〜13は、電力保安通信網51に接続され、この電力保安通信網51に向けて、それぞれの発電所11〜13は保有する発電機の出力状態に関する情報である稼動データを送信する。この稼動データは、その発電所の発電機であることを識別する発電機ID、その発電所の各発電機出力P12の値、および、発電所付近の気温T12を含む。
電力保安通信網51にはさらに、二酸化炭素排出原単位に関する計算を行う二酸化炭素排出原単位算出システム60が接続されている。この二酸化炭素排出原単位算出システム60は、演算装置と、記憶装置と、入出力装置とを備えるコンピュータである。この二酸化炭素排出原単位算出システム60は、プログラムを実行することによって、電力保安通信網51から発電所11〜13の稼動データを受信する機能と、受信した稼動データに基づいて商用電力系統10における電力の二酸化炭素排出原単位を求め、二酸化炭素排出原単位データを作成する機能と、二酸化炭素排出原単位データを外部の公衆通信網に送信する機能とを有する。
On the other hand, the power plants 11 to 13 included in the commercial power system 10 are connected to the power security communication network 51, and each power plant 11 to 13 has an output state of the power generator that it owns toward the power security communication network 51. The operation data which is the information about is transmitted. This operation data includes a generator ID that identifies the generator of the power plant, a value of each generator output P 12 of the power plant, and a temperature T 12 near the power plant.
The power security communication network 51 is further connected to a carbon dioxide emission basic unit calculation system 60 that performs calculations relating to the carbon dioxide emission basic unit. The carbon dioxide emission intensity calculation system 60 is a computer that includes an arithmetic device, a storage device, and an input / output device. The carbon dioxide emission intensity calculation system 60 executes a program to receive the operation data of the power plants 11 to 13 from the power security communication network 51 and the commercial power system 10 based on the received operation data. It has a function of obtaining the carbon dioxide emission intensity of electric power and creating carbon dioxide emission intensity data, and a function of transmitting the carbon dioxide emission intensity data to an external public communication network.

二酸化炭素排出原単位算出システム60は、二酸化炭素排出原単位の算出において使用する情報として、火力発電所12の全発電機について、図3に示す二酸化炭素排出原単位の特性に関する情報を記憶している。この情報は、たとえば、火力発電所12の発電機毎に、さまざまなP12やT12の値と、それぞれに対応するα12の値とを含むテーブルである。また、火力発電所12の発電機毎に、α12が、P12やT12の関数として表された式であってもよい。 The carbon dioxide emission basic unit calculation system 60 stores information on the characteristics of the carbon dioxide emission basic unit shown in FIG. 3 for all the generators of the thermal power plant 12 as information used in calculating the carbon dioxide emission basic unit. Yes. This information is, for example, a table including various values of P 12 and T 12 and α 12 corresponding to each of the generators of the thermal power plant 12. Further, the generator each thermal power plant 12, alpha 12 may be a formula expressed as a function of P 12 and T 12.

二酸化炭素排出原単位算出システム60は、さらに公衆通信網52に接続されており、二酸化炭素排出原単位データの送信はこの公衆通信網52に向けて行われる。
上述の分散型電源装置70は、この公衆通信網52にも接続されており、分散型電源制御装置72は、公衆通信網52を経由して送信される二酸化炭素排出原単位データを受信する。また、分散型電源制御装置72は、需要家負荷が消費する電力である需要電力P80を計測するよう構成されており、需要電力P80および受信した二酸化炭素排出原単位データに応じて分散型電源71の制御を行う。
上述の二酸化炭素排出原単位算出システム60および分散型電源制御装置72が、運転支援システム100を構成する。
The carbon dioxide emission intensity calculation system 60 is further connected to the public communication network 52, and transmission of the carbon dioxide emission intensity data is performed toward the public communication network 52.
The above-described distributed power supply device 70 is also connected to the public communication network 52, and the distributed power supply control device 72 receives the carbon dioxide emission intensity data transmitted via the public communication network 52. Moreover, distributed power controller 72, customer load is configured so as to measure the power demand P 80 is a power consumed, distributed according to the power demand P 80 and received carbon dioxide emission intensity data The power supply 71 is controlled.
The above-described carbon dioxide emission intensity calculation system 60 and the distributed power supply control device 72 constitute the driving support system 100.

分散型電源制御装置72は、二酸化炭素排出原単位の算出において使用する情報として、図4に示す電力の二酸化炭素排出原単位の特性に関する情報を記憶している。この情報は、たとえば、分散型電源71におけるさまざまな発電機出力P71や発電機付近の気温T71の値と、それぞれに対応するα71の値とを含むテーブルである。また、α71がP71やT71関数として表された式であってもよい。 The distributed power supply control device 72 stores information on the characteristics of the carbon dioxide emission intensity of power shown in FIG. 4 as information used in the calculation of the carbon dioxide emission intensity. This information is, for example, a table containing the value of the temperature T 71 in the vicinity of various generator output P 71 and the generator in a distributed power supply 71, the value of alpha 71 corresponding to each. Also, α 71 may be an expression expressed as a P 71 or T 71 function.

以上の構成に含まれる運転支援システム100について、その動作を以下に説明する。
図2は、運転支援システム100の処理の流れを説明するフローチャートであり、図3および図4は、処理において使用される、電力の二酸化炭素排出原単位に関する情報を表すグラフである(特性テーブルであってもよい)。
まず、図2のフローチャートにおいて、発電所11〜13は、それぞれの発電機出力を含む稼動データを、二酸化炭素排出原単位算出システム60に向けて送信する(ステップS1)。この送信は、一定時間たとえば5分間おきに行われるが、それより短い間隔でも長い感覚でもよい。二酸化炭素排出原単位算出システム60は、この稼動データを受信する(ステップS2)。
The operation of the driving support system 100 included in the above configuration will be described below.
FIG. 2 is a flowchart for explaining the processing flow of the driving support system 100, and FIGS. 3 and 4 are graphs showing information on the carbon dioxide emission intensity of electric power used in the processing (in the characteristic table). May be).
First, in the flowchart of FIG. 2, the power plants 11 to 13 transmit operation data including respective generator outputs to the carbon dioxide emission intensity calculation system 60 (step S <b> 1). This transmission is performed for a certain period of time, for example, every 5 minutes, but may be shorter or longer. The carbon dioxide emission intensity calculation system 60 receives this operation data (step S2).

次に、二酸化炭素排出原単位算出システム60は、火力発電所12の各発電機について、受信した稼動データに含まれる発電機出力P12および気温T12基づき、二酸化炭素排出原単位α12の算出を行う(ステップS3)。この算出は、図3に示す特性曲線または特性テーブルに従って行われる。
火力発電所12の各発電機について電力の二酸化炭素排出原単位α12が算出された後、二酸化炭素排出原単位算出システム60は、需要家負荷80に対する商用電力系統10全体の電力の二酸化炭素排出原単位α10の算出を行う(ステップS4)。この算出は次式を用いて行われる。
Next, the carbon dioxide emission intensity calculation system 60 calculates the carbon dioxide emission intensity α 12 for each generator of the thermal power plant 12 based on the generator output P 12 and the temperature T 12 included in the received operation data. Is performed (step S3). This calculation is performed according to the characteristic curve or characteristic table shown in FIG.
After power carbon dioxide emissions intensity alpha 12 of calculated for each generator thermal power plant 12, carbon dioxide emission intensity calculation system 60, carbon dioxide emissions of the commercial power system 10 overall power to customer load 80 to calculate the intensity alpha 10 (step S4). This calculation is performed using the following equation.

Figure 2006288016
Figure 2006288016

ただし、αおよびPは各発電所11〜13における各発電機の電力の二酸化炭素排出原単位および出力であり、nは商用電力系統10に含まれる発電所11〜13の総数であり、ηは商用電力系統10の送配電損失率(たとえば0.05)である。なお、上述のように、原子力発電所11および水力発電所13については、電力の二酸化炭素排出原単位αは0とする。
商用電力系統10全体から給電する電力の二酸化炭素排出原単位α10が算出されると、二酸化炭素排出原単位算出システム60は、このα10を含む二酸化炭素排出原単位データを作成し、これを分散型電源制御装置に向けて送信する(ステップS5)。
However, alpha i and P i are each generator power carbon dioxide emissions per unit and the output of the respective power plant 11 to 13, n is the total number of plants 11 to 13 included in the commercial power system 10, η is a transmission and distribution loss rate (for example, 0.05) of the commercial power system 10. As described above, for the nuclear power plant 11 and the hydroelectric power plant 13, the carbon dioxide emission intensity α i of electric power is 0.
When the carbon dioxide emission basic unit α 10 of the electric power fed from the entire commercial power system 10 is calculated, the carbon dioxide emission basic unit calculation system 60 creates carbon dioxide emission basic unit data including this α 10 , Transmission is performed toward the distributed power supply control device (step S5).

分散型電源制御装置72は、二酸化炭素排出原単位データを受信し、そこに含まれる二酸化炭素排出原単位α10の値を得て(ステップS6)、二酸化炭素の総排出量をより少なくするような、分散型電源71の発電機出力P71の値を算出する(ステップS7)。具体的にはこれは、需要家負荷80が消費する需要電力P80に対応する二酸化炭素排出量を算出することによって行われる。すなわち、需要家負荷80が需要電力P80を消費するときに、商用電力系統10および分散型電源71からそれぞれ受電する電力P10およびP71(ただしP10+P71=P80)を発電するために排出される二酸化炭素の排出量α1010およびα7171の和、すなわちα1010+α7171の値を最小にすることによって行われる。 Distributed power controller 72 receives the carbon dioxide emission intensity data, with the value of the carbon dioxide emissions per unit alpha 10 contained therein (step S6), and to further reduce the total emissions of carbon dioxide The value of the generator output P 71 of the distributed power source 71 is calculated (step S7). Specifically, this is performed by calculating a carbon dioxide emission amount corresponding to the demand power P 80 consumed by the customer load 80. That is, when the customer load 80 consumes the demand power P 80 , the power P 10 and P 71 (where P 10 + P 71 = P 80 ) received from the commercial power system 10 and the distributed power source 71 are generated. The sum of the carbon dioxide emissions α 10 P 10 and α 71 P 71 , that is, α 10 P 10 + α 71 P 71 is minimized.

ここで、α10は、上述のように受信される値であり、ステップS7内においては定数とみなす。また、P10=P80−P71であるが、P80は上述のように計測される値であり、ステップS7内においては定数とみなす。さらに、α71は図4に示すようにP71の関数である。したがって、P71の値を一つ選べば、それに対応して上述の式α1010+α7171の値が決まる。このようにして、分散型電源制御装置72は、さまざまなP71の値(たとえば1kW単位で、0から分散型電源71の最大発電力まで)に対する二酸化炭素の総排出量α1010+α7171を算出し、その中から最適値として総排出量をより少なくするP71を決定する。 Here, alpha 10 is the value that is received as described above, is regarded as a constant in the step S7. Further, P 10 = P 80 −P 71 , but P 80 is a value measured as described above, and is regarded as a constant in step S7. Further, α 71 is a function of P 71 as shown in FIG. Therefore, if one value of P 71 is selected, the value of the above-mentioned formula α 10 P 10 + α 71 P 71 is determined correspondingly. In this way, the distributed power supply control device 72 has a total carbon dioxide emission α 10 P 10 + α 71 with respect to various values of P 71 (for example, in units of 1 kW, from 0 to the maximum generated power of the distributed power supply 71). calculating a P 71, to determine the P 71 to further reduce the total emissions as the optimum value from among them.

なお、ここでP10およびP71は、それぞれ0または正の値をとるが、需要電力P80が商用電力系統の運用者と契約する契約電力より大きい場合には、商用電力系統10から受電する電力P10をこの契約電力以下に抑えるために、P71は正となる。
また、上記の算出方法によると、定性的に、運転支援システム100は、分散型電源71の電力の二酸化炭素排出原単位α71が、商用電力系統10の電力の二酸化炭素排出原単位α10よりも大きいときは、系統電力からの供給を主体とし、逆の場合には分散型電源からの供給を主体とするような制御を支援することになる。
Here, P 10 and P 71 each take 0 or a positive value. However, when the demand power P 80 is larger than the contract power contracted with the operator of the commercial power grid, the power is received from the commercial power grid 10. to reduce power P 10 below the contracted power, P 71 is positive.
Further, according to the above calculation method, qualitatively, in the driving support system 100, the carbon dioxide emission basic unit α 71 of the electric power of the distributed power source 71 is more than the carbon dioxide emission basic unit α 10 of the electric power of the commercial power system 10. Is larger, the control is mainly based on the supply from the grid power, and in the opposite case, the control is mainly based on the supply from the distributed power source.

さらに正確な制御を求める場合には、商用電力系統10の電力の二酸化炭素排出原単位α10を算出するときに火力発電所12の所内消費電力(ポンプの駆動電力など)を考慮してもよく、分散型電源71の電力の二酸化炭素排出原単位α71を算出するときに、分散型電源を駆動する際の補機の消費電力を考慮してもよい。 If further obtain an accurate control may be considered a house power consumption of thermal power plant 12 (such as a driving power of the pump) when calculating the power carbon dioxide emissions intensity alpha 10 of the commercial power system 10 , when calculating carbon dioxide emissions intensity alpha 71 of power distributed power supply 71, the power consumption of the auxiliary machine when driving the distributed power may be considered.

発電機出力P71の最適値が決定されると、分散型電源制御装置72は、その値に一致するように分散型電源71の発電機出力P71を制御する(ステップS8)。また、この制御は、発電機出力P71を最適値に完全に一致させるものでなくともよく、最適値により近い値に変更する、すなわち総排出量をより少なくする制御であればよい。
また、最適値を決定する際は、二酸化炭素の総排出量だけでなく、経済性を考慮してもよい。すなわち、電力コストの比較を行った結果、二酸化炭素の総排出量が必ずしも最低とならなくても、結果として二酸化炭素の総排出量をより少なくするものであればよい。
なお、分散型電源制御装置72は、需要電力P80が変動した場合には、変動後の値に対する最適値の算出を新たに行う。すなわち、ステップS7およびステップS8が実行される。
When the optimum value of the generator output P 71 is determined, the distributed power control device 72 controls the generator output P 71 of the distributed power supply 71 to match the value (step S8). Further, this control does not have to completely match the generator output P 71 with the optimum value, and may be any control that changes the value closer to the optimum value, that is, reduces the total discharge amount.
Moreover, when determining an optimal value, you may consider not only the total discharge | emission amount of a carbon dioxide but economical efficiency. That is, as a result of the comparison of power costs, the total amount of carbon dioxide emission is not necessarily the lowest, as long as the total amount of carbon dioxide emission is reduced as a result.
Incidentally, distributed power controller 72, when the power demand P 80 is changed, the newly calculates the optimum value for the value after change. That is, step S7 and step S8 are executed.

このように、実施の形態1に係る分散型電源の運転支援システム100によると、商用電力系統10および分散型電源71を含む全体にわたって、二酸化炭素排出量をより少なくするように、分散型電源71の制御を行うので、二酸化炭素排出量を削減することができる。これによって、いわゆる環境性を確保できる系統電力と一体となった分散型電源の運用が可能になり、地球温暖化を防止する等の効果を得ることができる。   As described above, according to the operation support system 100 for the distributed power supply according to the first embodiment, the distributed power supply 71 is further reduced so as to reduce the carbon dioxide emission throughout the entire commercial power system 10 and the distributed power supply 71. Since this control is performed, carbon dioxide emissions can be reduced. As a result, it becomes possible to operate a distributed power source integrated with system power that can ensure so-called environmental performance, and effects such as prevention of global warming can be obtained.

上述の実施の形態1において、分散型電源装置70は単数であるが、これは複数であってもよい。さらに、一つの需要家負荷80に複数の分散型電源装置70が接続されてもよいし、複数の需要家負荷80に一つの分散型電源装置70が接続されてもよい。その場合、公衆通信網52に、複数の分散型電源制御装置72が接続され、それぞれの分散型電源71では、その電力の二酸化炭素排出原単位の特性曲線または特性テーブルを用いることになる。   In the first embodiment described above, the number of distributed power supply devices 70 is one, but a plurality may be used. Furthermore, a plurality of distributed power supply devices 70 may be connected to one customer load 80, or one distributed power supply device 70 may be connected to a plurality of customer loads 80. In this case, a plurality of distributed power supply control devices 72 are connected to the public communication network 52, and each distributed power supply 71 uses a characteristic curve or a characteristic table of the carbon dioxide emission intensity of the power.

また、分散型電源制御装置72は、ステップS8における制御を自動で行わず、操作員の指示に従ってもよい。たとえば、分散型電源制御装置72は、キーボードおよびディスプレイ等の入出力装置を備えるコンピュータを含み、商用電力系統10の電力の二酸化炭素排出原単位と、二酸化炭素排出量をより少なくする分散型電源71の発電機出力P71の値とを出力し、これに応じて操作員により入力される指示に従うものであってもよい。
このようにすることで、操作員または需要家は、経済性に基づく運用指標の他に、環境性に基づく運用指標を得ることができ、状況によって経済性と環境性のどちらを重視するかを変えられるので、柔軟な運用ができる。
Further, the distributed power control device 72 may follow the instructions of the operator without automatically performing the control in step S8. For example, the distributed power supply control device 72 includes a computer including input / output devices such as a keyboard and a display, and the distributed power supply 71 that reduces the carbon dioxide emission basic unit of the electric power of the commercial power system 10 and the carbon dioxide emission amount. The value of the generator output P 71 may be output, and an instruction input by an operator in accordance with the value may be output.
In this way, the operator or customer can obtain an operational index based on environmentality in addition to an operational index based on economic efficiency. Because it can be changed, flexible operation is possible.

この発明の実施の形態1に係る分散型電源の運転支援システム100を含む構成を示す図である。It is a figure which shows the structure containing the driving assistance system 100 of the distributed power supply which concerns on Embodiment 1 of this invention. 運転支援システム100を含む構成における、処理の流れを示すフローチャートである。4 is a flowchart showing a flow of processing in a configuration including a driving support system 100. 火力発電所12における、発電機出力P12と発電機から供給する電力の二酸化炭素排出原単位α12との関係を示すグラフである。In a thermal power plant 12 is a graph showing the relationship between the carbon dioxide emission intensity alpha 12 of the power supplied from the generator output P 12 and generator. 分散型電源71における、発電機出力P71と発電機から供給する電力の二酸化炭素排出原単位α71との関係を示すグラフである。In distributed power supply 71 is a graph showing the relationship between the carbon dioxide emission intensity alpha 71 of the power supplied from the generator output P 71 and the generator.

符号の説明Explanation of symbols

10 商用電力系統、11 発電所(原子力発電所)、12 発電所(火力発電所)、13 発電所(水力発電所)、60 二酸化炭素排出原単位算出システム、70 分散型電源装置、71 分散型電源、72 分散型電源制御装置、80 需要家負荷、100 分散型電源の運転支援システム。   10 commercial power system, 11 power plant (nuclear power plant), 12 power plant (thermal power plant), 13 power plant (hydropower plant), 60 carbon dioxide emission intensity calculation system, 70 distributed power supply, 71 distributed Power supply, 72 Distributed power controller, 80 Customer load, 100 Distributed power operation support system.

Claims (3)

化石燃料を燃焼させて発電するとともに、外部の需要家負荷に給電する、外部の分散型電源の運転を、
一つまたは複数の発電所を含むとともに、前記需要家負荷に給電する、外部の商用電力系統の状況に応じて
制御する、分散型電源の運転支援システムであって、
前記発電所の発電機出力に基づいて、前記商用電力系統から給電する電力の二酸化炭素排出原単位を算出する、二酸化炭素排出原単位算出システムと、
前記分散型電源の発電機出力に基づいて、前記分散型電源から給電する電力の二酸化炭素排出原単位を算出するとともに、前記商用電力系統から給電する電力の二酸化炭素排出原単位と、前記分散型電源から給電する電力の二酸化炭素排出原単位とに基づいて、前記需要家負荷が消費する電力に対応する二酸化炭素の総排出量を算出し、前記総排出量がより少なくなるように、前記分散型電源の前記発電機出力を制御する、分散型電源制御装置と
を備える、分散型電源の運転支援システム。
Operation of an external distributed power source that generates power by burning fossil fuels and supplies power to external customer loads,
A distributed power supply operation support system including one or a plurality of power plants and supplying power to the customer load according to a situation of an external commercial power system,
A carbon dioxide emission basic unit calculation system for calculating a carbon dioxide emission basic unit of electric power fed from the commercial power system based on a generator output of the power plant;
Based on the generator output of the distributed power source, calculate the carbon dioxide emission basic unit of the electric power fed from the distributed power source, the carbon dioxide emission basic unit of the electric power fed from the commercial power system, and the distributed type The total amount of carbon dioxide corresponding to the power consumed by the consumer load is calculated based on the carbon dioxide emission intensity of the power fed from the power source, and the dispersion is performed so that the total amount of emissions is smaller. An operation support system for a distributed power source, comprising: a distributed power source control device that controls the generator output of the power source.
商用電力系統から給電する電力の二酸化炭素排出原単位を算出する、二酸化炭素排出原単位算出システムであって、
前記商用電力系統に含まれる発電所の、発電機出力に関する情報を受信し、
前記発電機出力に基づいて、前記発電所から給電する電力の二酸化炭素排出原単位を算出し、
前記発電機出力と前記発電所から給電する電力の前記二酸化炭素排出原単位とに基づいて、前記商用電力系統から給電する電力の二酸化炭素排出原単位を算出し、
前記商用電力系統から給電する電力の二酸化炭素排出原単位に関する情報を、外部の分散型電源制御装置に送信する
二酸化炭素排出原単位算出システム。
A carbon dioxide emission intensity calculation system for calculating a carbon dioxide emission intensity of electric power fed from a commercial power system,
Receiving information relating to the generator output of a power plant included in the commercial power system;
Based on the generator output, calculate the carbon dioxide emission intensity of power supplied from the power plant,
Based on the output of the generator and the carbon dioxide emission intensity of power supplied from the power plant, calculating the carbon dioxide emission intensity of power supplied from the commercial power system,
A carbon dioxide emission intensity calculation system for transmitting information related to a carbon dioxide emission intensity of power supplied from the commercial power system to an external distributed power supply control device.
外部の分散型電源を制御する分散型電源制御装置であって、
前記分散型電源は、化石燃料を燃焼させて発電するとともに、外部の需要家負荷に給電し、
前記需要家負荷は、商用電力系統からも給電される前記分散型電源制御装置において、
前記商用電力系統から給電する電力の二酸化炭素排出原単位に関する情報を受信し、
前記分散型電源の発電機出力に基づいて、前記分散型電源から給電する電力の二酸化炭素排出原単位を算出するとともに、前記商用電力系統から給電する電力の二酸化炭素排出原単位と、前記分散型電源から給電する電力の二酸化炭素排出原単位とに基づいて、前記需要家負荷が消費する電力に対応する二酸化炭素の総排出量を算出し、前記総排出量がより少なくなるように、前記分散型電源の前記発電機出力を制御する
分散型電源制御装置。
A distributed power supply control device for controlling an external distributed power supply,
The distributed power source generates power by burning fossil fuel, and supplies power to an external customer load.
In the distributed power supply control device, the consumer load is also fed from a commercial power system,
Receiving information on carbon dioxide emission intensity of power fed from the commercial power grid,
Based on the generator output of the distributed power source, calculate the carbon dioxide emission basic unit of the electric power fed from the distributed power source, the carbon dioxide emission basic unit of the electric power fed from the commercial power system, and the distributed type The total amount of carbon dioxide corresponding to the power consumed by the consumer load is calculated based on the carbon dioxide emission intensity of the power fed from the power source, and the dispersion is performed so that the total amount of emissions is smaller. A distributed power supply control device for controlling the generator output of a power supply.
JP2005101975A 2005-03-31 2005-03-31 Operation support system of distributed power supply, carbon dioxide emission unit consumption calculation system, and distributed power supply controller Pending JP2006288016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005101975A JP2006288016A (en) 2005-03-31 2005-03-31 Operation support system of distributed power supply, carbon dioxide emission unit consumption calculation system, and distributed power supply controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005101975A JP2006288016A (en) 2005-03-31 2005-03-31 Operation support system of distributed power supply, carbon dioxide emission unit consumption calculation system, and distributed power supply controller

Publications (1)

Publication Number Publication Date
JP2006288016A true JP2006288016A (en) 2006-10-19

Family

ID=37409351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005101975A Pending JP2006288016A (en) 2005-03-31 2005-03-31 Operation support system of distributed power supply, carbon dioxide emission unit consumption calculation system, and distributed power supply controller

Country Status (1)

Country Link
JP (1) JP2006288016A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011250640A (en) * 2010-05-28 2011-12-08 Toshiba Corp Co2 reduction control apparatus
JP2013090485A (en) * 2011-10-19 2013-05-13 Hitachi Ltd Co2 emission amount monitoring apparatus, co2 emission amount monitoring method, co2 emission amount monitoring program, and co2 emission amount monitoring system
WO2013069717A1 (en) 2011-11-10 2013-05-16 株式会社 東芝 Operation planning system and method for creating operation plan
WO2013076957A1 (en) * 2011-11-22 2013-05-30 パナソニック株式会社 Power management device, power management program, and power distribution system
JP2014033613A (en) * 2011-03-07 2014-02-20 Mitsubishi Electric Corp Community energy management system and method for the same
CN110048413A (en) * 2019-04-24 2019-07-23 国网山东省电力公司济南供电公司 A kind of the carbon emission reduction calculation method and system of area generation of electricity by new energy

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011250640A (en) * 2010-05-28 2011-12-08 Toshiba Corp Co2 reduction control apparatus
JP2014033613A (en) * 2011-03-07 2014-02-20 Mitsubishi Electric Corp Community energy management system and method for the same
JP2013090485A (en) * 2011-10-19 2013-05-13 Hitachi Ltd Co2 emission amount monitoring apparatus, co2 emission amount monitoring method, co2 emission amount monitoring program, and co2 emission amount monitoring system
WO2013069717A1 (en) 2011-11-10 2013-05-16 株式会社 東芝 Operation planning system and method for creating operation plan
WO2013076957A1 (en) * 2011-11-22 2013-05-30 パナソニック株式会社 Power management device, power management program, and power distribution system
JP2013110881A (en) * 2011-11-22 2013-06-06 Panasonic Corp Power management device, power management program, and power distribution system
US10406927B2 (en) 2011-11-22 2019-09-10 Panasonic Intellectual Property Management Co., Ltd. Electricity management device, electricity management method, and electricity distribution system inside a house with electricity generating device, utility grid connection, and electric vehicle containing a rechargeable battery in a vehicle-to-grid connection with counter device
US10913371B2 (en) 2011-11-22 2021-02-09 Panasonic Intellectual Property Management Co., Ltd. Electricity management device, electricity management method, and electricity distribution system inside a house with electricity generating device, utility grid connection, and electric vehicle containing a rechargeable battery in a vehicle-to-grid connection with counter device
CN110048413A (en) * 2019-04-24 2019-07-23 国网山东省电力公司济南供电公司 A kind of the carbon emission reduction calculation method and system of area generation of electricity by new energy
CN110048413B (en) * 2019-04-24 2021-11-02 国网山东省电力公司济南供电公司 Carbon emission reduction calculation method and system for regional new energy power generation

Similar Documents

Publication Publication Date Title
JP5639540B2 (en) Storage battery supply and demand plan creation device and storage battery supply and demand plan creation method
JP5467642B2 (en) DC microgrid network
JP2006288016A (en) Operation support system of distributed power supply, carbon dioxide emission unit consumption calculation system, and distributed power supply controller
JP5934041B2 (en) Power system, apparatus and method
JP2007104775A (en) Energy demanding/supplying method in combined power supply, and energy demanding/supplying apparatus
JP6166512B2 (en) Control device, power system, and control method
WO2012101911A1 (en) Power control device and power system
JP6754880B2 (en) Power supply system
JP6830598B2 (en) Power supply system and control method of power supply system
JP2014086367A (en) Operation control method and operation control system for fuel cell in apartment house
JP5940263B2 (en) Power control apparatus and power control method
US20170279281A1 (en) Power generation assembly, management system and method
Nguyen et al. A Bi-level optimization for the planning of microgrid with the integration of hydrogen energy storage
JP4545069B2 (en) Cogeneration system and control device
KR101707013B1 (en) Reactive power control apparatus and method of combined generation system
JP2007318940A (en) Mutual power supplement controller and control method between distributed cogeneration plants for enterprise
WO2014125721A1 (en) Optimum controller for energy, control method, control program and storage medium for recording control program
JP2012228090A (en) District electric power supply system
JP2006174654A (en) Control method for distributed type energy supply and demand, and setting system
JP6166894B2 (en) Optimal control apparatus and method for complex energy system
WO2017029821A1 (en) Power-source system, output control device, output control method, and storage medium
JP6452330B2 (en) Power generation device, power generation system, and power generation method
JP2007248000A (en) Operation planning device and operation planning method for cogeneration device, its program, and cogeneration system
RU2010120496A (en) METHOD AND DEVICE FOR HEAT AND ENERGY SUPPLY
JP6668420B2 (en) Transmission power control device and distributed generation equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302