JP2006284386A - Probe method and probe apparatus for buried linear metallic object - Google Patents

Probe method and probe apparatus for buried linear metallic object Download PDF

Info

Publication number
JP2006284386A
JP2006284386A JP2005105248A JP2005105248A JP2006284386A JP 2006284386 A JP2006284386 A JP 2006284386A JP 2005105248 A JP2005105248 A JP 2005105248A JP 2005105248 A JP2005105248 A JP 2005105248A JP 2006284386 A JP2006284386 A JP 2006284386A
Authority
JP
Japan
Prior art keywords
depth
buried
buried metal
metal object
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005105248A
Other languages
Japanese (ja)
Inventor
Kenji Kubota
兼士 久保田
Masaru Tsunasaki
勝 綱崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Fuji Tecom Inc
Original Assignee
Osaka Gas Co Ltd
Fuji Tecom Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Fuji Tecom Inc filed Critical Osaka Gas Co Ltd
Priority to JP2005105248A priority Critical patent/JP2006284386A/en
Publication of JP2006284386A publication Critical patent/JP2006284386A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Abstract

<P>PROBLEM TO BE SOLVED: To avoid errors during depth measurement even when a buried metallic tube or the like includes curve parts and branch parts to provide it with congestion and even when a commercial current, a signal current, or the like is passed through the buried metallic tube. <P>SOLUTION: The probe method for a buried linear metallic object allows an AC current to pass through the buried linear metallic object 1, detects a change in a magnetic field generated thereby by a probe coil 2, and probes the buried position and depth of the buried metallic linear object. At least two burying-depth measurement methods are adopted and on the basis of measurement results by the methods, a depth measurement value is corrected. By discretely detecting depth measurement signals, removing a plurality of detected values close to a maximum value and a plurality of detected values close to a minimum value in a predetermined time, averaging and performing operations on remaining detected values, a depth measurement value in the time is obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ガス管、水道管等の埋設金属管、電力ケーブル、通信ケーブル等の埋設ケーブル等の線状埋設金属物体に微小な交流電流を流通させ、線状埋設金属物体に沿って発生する磁界を検出することによって、線状埋設金属物体の埋設位置及び深度を探査する線状埋設金属物体探査方法及び探査装置に関する。   The present invention causes a minute alternating current to flow through a linear buried metal object such as a buried metal pipe such as a gas pipe or a water pipe, a buried cable such as a power cable or a communication cable, and is generated along the linear buried metal object. The present invention relates to a linear buried metal object search method and a search device that search for a buried position and depth of a linear buried metal object by detecting a magnetic field.

無限長直線状導体を流通する交流電流によって発生する磁界は、無限長直線状導体を中心として同心円状に形成され、その強さは無限長直線状導体からの距離に反比例することが知られている。
このような性質を利用して、従来、埋設金属管、埋設ケーブル等の線状埋設金属物体の探査方法が種々提案され、かかる探査方法を適用する埋設金属物体探査装置が開発されている(例えば、特許文献1参照)。
It is known that the magnetic field generated by alternating current flowing through an infinitely long linear conductor is formed concentrically around the infinitely long linear conductor, and its strength is inversely proportional to the distance from the infinitely long linear conductor. Yes.
By utilizing such properties, various methods for exploring linear buried metal objects such as buried metal pipes and buried cables have been proposed in the past, and buried metal object exploration devices to which such exploration methods are applied have been developed (for example, , See Patent Document 1).

実用新案登録第3065242号Utility model registration No. 3065242

しかし、埋設金属管、埋設ケーブル等の線状埋設金属物体は、現実的には、無限長直線状導体と見做せる訳ではなく、埋設金属管等には曲線部分、分岐部分が存在し、又、埋設金属管等が輻輳している場合もある。そのような場合には、埋設金属管等の曲線部分、分岐部分、又、他の埋設金属管等の影響によって、発生した磁界が歪み、深度測定時に誤差を生じる。   However, linear buried metal objects such as buried metal pipes and buried cables are not actually regarded as infinitely long linear conductors, and there are curved parts and branched parts in buried metal pipes, etc. Moreover, the buried metal pipe or the like may be congested. In such a case, the generated magnetic field is distorted due to the influence of the curved portion, branching portion, or other buried metal tube of the buried metal tube, and an error occurs during depth measurement.

又、埋設金属管等には商用電流、各種の信号電流等が流されており、これら電流によっても磁界が発生し、これら磁界は雑音として検出されるから、深度測定時に誤差を生じさせる要因となった。   In addition, commercial currents and various signal currents are passed through buried metal pipes, etc., and these currents also generate magnetic fields, which are detected as noise. became.

本発明は、上記問題点に鑑みて為されたものであり、埋設金属管等に曲線部分、分岐部分が存在し、又、埋設金属管等が輻輳している場合にあっても、さらには、埋設金属管等に商用電流、信号電流等が流されている場合にあっても、深度測定時に極力誤差を生じさせないようにした線状埋設金属物体探査方法及びそれを適用した探査装置を提供することを目的とする。   The present invention has been made in view of the above problems, and even when a buried metal pipe or the like has a curved part or a branched part, and the buried metal pipe or the like is congested, Provided a method for exploring a linear buried metal object that prevents errors from occurring as much as possible during depth measurement even when a commercial current, a signal current, etc. are flowing through the buried metal pipe, etc. The purpose is to do.

又、本発明は、上記線状埋設金属物体探査方法を適用した線状埋設金属物体探査装置を提供することを目的とする。   Another object of the present invention is to provide a linear buried metal object search apparatus to which the above-described linear buried metal object search method is applied.

上記目的を達成するために、本発明の線状埋設金属物体探査方法は、少なくとも2つの埋設金属物体探査方法を採用し、それらによる測定結果に基づいて深度測定値を補正することを特徴とする。 In order to achieve the above object, the linear buried metal object search method of the present invention employs at least two buried metal object search methods, and corrects the depth measurement value based on the measurement results thereof. .

又、離散的に深度測定信号を検出し、所定時間内における最高値に近い複数の検出値及び最低値に近い複数の検出値を除去した後、残存するその他の検出値を平均して、当該時間内における深度測定値とすることを特徴とする。   In addition, after detecting depth measurement signals discretely and removing a plurality of detection values close to the maximum value and a plurality of detection values close to the minimum value within a predetermined time, the other detection values remaining are averaged, It is a depth measurement value in time.

本発明の線状埋設金属物体探査装置は、上記線状埋設金属物体探査方法を適用したことを特徴とする。   The linear buried metal object searching apparatus of the present invention is characterized by applying the above-described linear buried metal object searching method.

以下、本発明の好適な実施形態について、図面を参照して説明する。
ここで、図1は、埋設金属物体探査装置における探査コイルと埋設金属管との位置関係を模式的に示す説明図、図2は、埋設金属管が輻輳している場合において、各種測定方法によって深度測定を実施した時の誤差を示すグラフ、図3は、埋設金属管の分岐部分の近傍において、各種測定方法によって深度測定を実施した時の誤差を示すグラフ、図4は、 埋設金属管の分岐部分の近傍において、深度測定を実施した時の位置関係を示す説明図である。
Preferred embodiments of the present invention will be described below with reference to the drawings.
Here, FIG. 1 is an explanatory view schematically showing the positional relationship between the exploration coil and the buried metal pipe in the buried metal object exploration device, and FIG. 2 shows various measurement methods when the buried metal pipe is congested. FIG. 3 is a graph showing errors when depth measurement is performed, FIG. 3 is a graph showing errors when depth measurement is performed by various measurement methods in the vicinity of the branch portion of the buried metal pipe, and FIG. It is explanatory drawing which shows the positional relationship when depth measurement is implemented in the vicinity of a branch part.

埋設金属管、埋設ケーブル等の線状埋設金属物体の探査方法としては、従来、幾つもの探査方法が提案されているが、ここでは、埋設金属物体の直上において探査コイルを所定距離引き上げて測定する方法と、埋設金属物体の直上から探査コイルを水平方向に移動させて測定する方法について説明する。   As a method for exploring a linear buried metal object such as a buried metal pipe or a buried cable, a number of exploration methods have been proposed in the past, but here, a survey coil is pulled up a predetermined distance and measured immediately above the buried metal object. A method and a method of measuring by moving the search coil in the horizontal direction from directly above the buried metal object will be described.

先ず、微小導体dlに電流Iが流れている場合、dlから距離rにある点Pに生じる磁界の強さdHは、
dH=(Isinθ)/(4πr)・dl ・・・(1)
で与えられる。ここで、θは微小長さdlと、微小長さdlと点Pとを結ぶ線分との為す角であり、磁界の方向は微小長さdlと点Pを含む面に垂直で、右ネジの法則に従う。
直線状無限長導体に電流Iが流れている場合には、
H=I/(2πr) ・・・(2)
となる。ここで、rは点Pと無限長導体との距離である。
First, when the current I flows through the minute conductor dl, the strength dH of the magnetic field generated at a point P at a distance r from dl is:
dH = (Isin θ) / (4πr 2 ) · dl (1)
Given in. Here, θ is an angle formed by the minute length dl and the line segment connecting the minute length dl and the point P, and the direction of the magnetic field is perpendicular to the plane including the minute length dl and the point P. Follow the law.
When the current I flows through the linear infinite length conductor,
H = I / (2πr 0 ) (2)
It becomes. Here, r 0 is the distance between the point P and the infinitely long conductor.

巻き数Nのコイルを貫通する磁束φが変化すると、コイルに起電力を生じる。この起電力eは、
e=−N(dφ)/(dt) ・・・(3)
となる。
コイルが交流磁界Hsin(ωt)中に在るとすると、起電力eは、
e=NSμHωcos(ωt)・cosφ ・・・(4)
となる。ここで、μはコイル芯材の実効透磁率、Sはコイルの断面積、φはコイル断面の法線と磁界との為す角である。
When the magnetic flux φ penetrating through the coil having N turns changes, an electromotive force is generated in the coil. This electromotive force e is
e = −N (dφ) / (dt) (3)
It becomes.
If the coil is in the alternating magnetic field Hsin (ωt), the electromotive force e is
e = NSμHωcos (ωt) · cosφ (4)
It becomes. Here, μ is the effective magnetic permeability of the coil core material, S is the cross-sectional area of the coil, and φ is the angle between the normal of the coil cross-section and the magnetic field.

図1に示すように、探査コイル2から垂直距離yの位置に、直線状に充分長い金属管1が埋設されており、金属管1には電流Isin(ωt)が流れているとする。この金属管1の直上付近に、地表に平行に探査コイル2を配置した場合、探査コイル2に発生する起電力は、次の式で与えられる。
=k((y)/(x+y))Iωsin(ωt) ・・・(5)
ここで、xは金属管1の直上から探査コイル2までの水平距離、kは探査コイル2によって定まる定数である。
式(5)から、起電力eは金属管1の直上位置で最大となり、その大きさは金属管1を流れる電流に比例し、深度yに反比例する。
As shown in FIG. 1, it is assumed that a sufficiently long metal tube 1 is embedded in a straight line at a position of a vertical distance y from the search coil 2, and a current Isin (ωt) flows through the metal tube 1. When the exploration coil 2 is arranged near the metal tube 1 in parallel with the ground surface, the electromotive force generated in the exploration coil 2 is given by the following equation.
e h = k ((y) / (x 2 + y 2 )) Iωsin (ωt) (5)
Here, x is a horizontal distance from directly above the metal tube 1 to the search coil 2, and k is a constant determined by the search coil 2.
From equation (5), the electromotive force e h becomes maximum at a position directly above the metal tube 1, whose magnitude is proportional to the current flowing through the metal pipe 1, is inversely proportional to the depth y.

先ず、金属管1の直上位置において、探査コイル2をΔy引き上げた場合について考察する。
探査コイル2を引き上げる前の起電力は式(5)にx=0を、又、引き上げた後の起電力は式(5)にx=0及びy=y+Δyを代入することによって求めることができ、その比をEとすると、
=y/(y+Δy) ・・・(6)
となる。
式(6)から、探査コイル2の引き上げ前後の起電力を測定し、その比を求めることによって、金属管1の埋設深度yを測定することができる。
First, a case where the search coil 2 is pulled up by Δy at a position immediately above the metal tube 1 will be considered.
The electromotive force before raising the exploration coil 2 can be obtained by substituting x = 0 in the equation (5), and the electromotive force after raising the coil can be obtained by substituting x = 0 and y = y + Δy into the equation (5). If the ratio is E h ,
E h = y / (y + Δy) (6)
It becomes.
From the equation (6), the embedding depth y of the metal tube 1 can be measured by measuring the electromotive force before and after the exploration coil 2 is pulled up and obtaining the ratio thereof.

次に、探査コイル2を金属管1の直上位置から水平方向にΔx移動した場合について考察する。
移動前の起電力は式(5)にx=0を、又、移動後の起電力は式(5)にx=x+Δxを代入することによって求めることができ、その比をEとすると、
=(y)/(Δx+y) ・・・(7)
となる。
式(7)から、探査コイル2の移動前後の起電力を測定し、その比を求めることによっても、金属管1の埋設深度yを測定することができる。
Next, the case where the search coil 2 is moved by Δx in the horizontal direction from the position immediately above the metal tube 1 will be considered.
The electromotive force before movement can be obtained by substituting x = 0 in equation (5), and the electromotive force after movement by substituting x = x + Δx in equation (5), where the ratio is E v .
E v = (y 2 ) / (Δx 2 + y 2 ) (7)
It becomes.
From the equation (7), the embedding depth y of the metal tube 1 can also be measured by measuring the electromotive force before and after the movement of the exploration coil 2 and obtaining the ratio thereof.

探査コイル2を金属管1の直上位置から水平方向に移動させて、金属管1の埋設深度yを測定する方法としては、次のような方法も挙げられる。
金属管1の直上位置において、探査コイル2に発生する起電力は、式(5)にx=0を代入して求められ、
=k(1/y)Iωsin(ωt) ・・・(8)
となる。
又、金属管1の直上位置から水平方向に、埋設深度yと同距離だけ離れて位置した場合の起電力は、式(5)にx=yを代入して求められ、
=k(1/2y)Iωsin(ωt) ・・・(9)
となる。
すなわち、探査コイル2を金属管1の直上位置から水平方向に移動させ、探査コイル2に発生する起電力が直上位置における起電力の1/2になる点を求めると、金属管1の直上位置からの水平移動距離xは埋設深度yに等しくなる。よって、この水平移動距離xを測定することによって、金属管1の埋設深度yを求めることができる。
As a method for measuring the burying depth y of the metal tube 1 by moving the exploration coil 2 from the position directly above the metal tube 1 in the horizontal direction, the following method may be mentioned.
The electromotive force generated in the exploration coil 2 at a position directly above the metal tube 1 is obtained by substituting x = 0 into Equation (5),
e 0 = k (1 / y) Iωsin (ωt) (8)
It becomes.
Moreover, the electromotive force in the case where it is located in the horizontal direction from the position directly above the metal tube 1 by the same distance as the embedding depth y is obtained by substituting x = y into the equation (5)
e y = k (1 / 2y) Iωsin (ωt) (9)
It becomes.
That is, when the search coil 2 is moved in the horizontal direction from the position directly above the metal tube 1 and the point where the electromotive force generated in the search coil 2 is ½ of the electromotive force at the position immediately above is obtained, The horizontal movement distance x from is equal to the embedding depth y. Therefore, the embedding depth y of the metal tube 1 can be obtained by measuring the horizontal movement distance x.

上記の各測定方法においては、何れも、埋設金属管1、すなわち、線状埋設金属物体が直線状無限長導体であるとして、埋設深度を計算しているが、線状埋設金属物体が直線状と見做されない場合等においては、上記の各測定方法によって埋設深度を正確に測定できるとは限らない。
例えば、埋設金属管が輻輳している場合には、図2に示すように、探査コイル2を金属管1の直上位置において所定距離引き上げる測定方法を適用した方が、埋設深度の測定誤差は小さくなる。逆に、図4に示すように、埋設金属管に分岐部分が存在する場合には、図3に示すように、探査コイル2を金属管1の直上位置から水平方向に移動する測定方法を適用した方が、埋設深度の測定誤差は小さくなる。
In each of the above measurement methods, the buried depth is calculated assuming that the buried metal tube 1, that is, the linear buried metal object is a linear infinite length conductor, but the linear buried metal object is linear. When it is not regarded as such, the embedment depth cannot always be accurately measured by the above-described measurement methods.
For example, when the buried metal pipe is congested, the measurement error of the buried depth is smaller when the measurement method of pulling up the exploration coil 2 at a position directly above the metal pipe 1 is applied as shown in FIG. Become. On the contrary, as shown in FIG. 4, when a buried metal pipe has a branching portion, a measurement method is adopted in which the exploration coil 2 is moved in the horizontal direction from a position immediately above the metal pipe 1 as shown in FIG. The measurement error of the burial depth becomes smaller.

従来の埋設金属物体探査装置においては、探査性能を向上させる為に、又、外来雑音の影響を軽減する為に、2本のコイルを上下平行に配置し、逆極性となるように結線した差動コイルを用いるのが一般的であるが、このような埋設金属物体探査装置においても、埋設深度の測定誤差に関する傾向は、上記と同様である。   In a conventional buried metal object exploration device, in order to improve exploration performance and to reduce the influence of external noise, the difference between two coils arranged in parallel in the vertical direction and connected in reverse polarity Generally, a moving coil is used, but in such a buried metal object exploration apparatus, the tendency regarding the measurement error of the buried depth is the same as described above.

以上の考察から、埋設金属物体探査装置に2以上の埋設金属物体探査方法を実施する手段を具有させ、深度を測定する場所の状況に対応させて、最適な測定方法を選択するようにすれば、従来の埋設金属物体探査装置に比較して、深度測定における誤差を大幅に低減することができる。   From the above considerations, if the buried metal object exploration apparatus has means for carrying out two or more buried metal object exploration methods, and selects the optimum measurement method according to the situation of the place where the depth is measured. Compared with the conventional buried metal object exploration device, the error in depth measurement can be greatly reduced.

次に、深度測定信号を離散的に検出し、所定の信号処理をすることによって、深度測定値から不要な磁界による雑音を除去する方法について説明する。   Next, a method for removing noise due to an unnecessary magnetic field from a depth measurement value by discretely detecting a depth measurement signal and performing predetermined signal processing will be described.

埋設金属管、埋設ケーブルには商用電流、各種の信号電流等が流れており、これら電流によっても磁界が発生し、これら磁界は雑音となって深度測定時に誤差を生じさせる要因となっていた。   Commercial current, various signal currents, etc. flow through the buried metal pipe and buried cable, and these currents generate magnetic fields, which become noise and cause errors during depth measurement.

埋設金属物体探査装置では、このような雑音の影響を軽減するために、狭帯域のフィルターを採用するのが普通であるが、フィルターの通過帯域内における雑音は除去することはできない。
深度測定において誤差要因となる最大のものは、突発的に入力されるスパイクノイズであるが、このスパイクノイズは、アナログ的手法によって除去することは困難であり、測定信号をディジタル処理することによって除去することが可能となる。
In a buried metal object exploration apparatus, in order to reduce the influence of such noise, a narrow band filter is usually adopted, but noise in the pass band of the filter cannot be removed.
The largest error factor in depth measurement is spike noise that is suddenly input, but this spike noise is difficult to remove by analog techniques and is removed by digital processing of the measurement signal. It becomes possible to do.

このスパイクノイズを除去する手法として、離散的信号検出手段によって3個の信号値を採取し、それらの中間値を真の測定値とするディジタル処理を行なうメディアンフィルターを採用することが考えられる。   As a technique for removing this spike noise, it is conceivable to employ a median filter that performs digital processing by collecting three signal values by a discrete signal detecting means and using the intermediate value as a true measurement value.

しかし、狭帯域フィルターを採用した埋設金属物体探査装置においては、スパイクノイズの立ち上がり及び立ち下がりは緩やかになるため、通常のメディアンフィルターによっては、このようなスパイクノイズを除去するには不十分であった。   However, in buried metal object exploration devices that employ narrowband filters, spike noise rises and falls slowly, and some median filters are insufficient to remove such spike noise. It was.

そこで、本発明の埋設金属物体探査装置においては、離散的信号検出手段によって深度測定信号を検出し、所定時間内における最高値に近い複数の検出値及び最低値に近い複数の検出値を除去した後、残存するその他の検出値を平均し、演算処理した結果を当該時間内における深度測定値とするようにした。   Therefore, in the buried metal object exploration device of the present invention, the depth measurement signal is detected by the discrete signal detection means, and a plurality of detection values close to the maximum value and a plurality of detection values close to the minimum value within a predetermined time are removed. Thereafter, the remaining detected values were averaged, and the result of the calculation process was taken as the depth measurement value within the time.

これによって、通過帯域を10Hzとするフィルターを採用した埋設金属物体探査装置において、30msecの間隔で20データをサンプリングし、最高値及び次に高い検出値と、最低値及び次に低い検出値とを除去し、残存する検出値を平均することによって、雑音の影響を無視できるほどの結果を得ることができた。   Thus, in the buried metal object exploration apparatus employing a filter with a pass band of 10 Hz, 20 data are sampled at intervals of 30 msec, and the highest value and the next highest detection value, and the lowest value and the next lowest detection value are obtained. By removing and averaging the remaining detection values, it was possible to obtain results that could ignore the influence of noise.

埋設金属物体探査装置における探査コイルと埋設金属管との位置関係を模式的に示す説明図である。It is explanatory drawing which shows typically the positional relationship of the investigation coil and buried metal pipe in a buried metal object search apparatus. 埋設金属管が輻輳している場合において、各種測定方法によって深度測定を実施した時の誤差を示すグラフである。It is a graph which shows an error when carrying out depth measurement by various measuring methods, when an embedded metal pipe is congested. 埋設金属管の分岐部分の近傍において、各種測定方法によって深度測定を実施した時の誤差を示すグラフである。It is a graph which shows the error at the time of implementing depth measurement by various measuring methods in the vicinity of the branched part of a buried metal pipe. 埋設金属管の分岐部分の近傍において、深度測定を実施した時の位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship when depth measurement is implemented in the vicinity of the branch part of a buried metal pipe.

符号の説明Explanation of symbols

1 埋設金属管
2 探査コイル
1 buried metal pipe 2 exploration coil

Claims (7)

線状埋設金属物体に交流信号を流し、それにより発生した磁界の変化を探査コイルによって検出して、線状埋設金属物体の埋設位置及び深度を探査する線状埋設金属物体探査方法であって、
少なくとも2つの埋設深度測定方法を採用し、それらによる測定結果に基づいて、深度測定値を補正することを特徴とする線状埋設金属物体探査方法。
A linear buried metal object exploration method for exploring a buried position and depth of a linear buried metal object by flowing an alternating current signal to the linear buried metal object, detecting a change in the magnetic field generated thereby by a search coil,
A method for exploring a linear buried metal object, which employs at least two buried depth measurement methods and corrects the depth measurement value based on the measurement results obtained therefrom.
少なくとも、探査コイルを垂直方向に移動して埋設深度を測定する方法と、探査コイルを水平方向に移動して埋設深度を測定する方法と、を採用したことを特徴とする請求項1に記載の線状埋設金属物体探査方法。   2. The method according to claim 1, wherein at least a method for measuring the embedment depth by moving the search coil in the vertical direction and a method for measuring the embedment depth by moving the search coil in the horizontal direction are employed. Linear buried metal object search method. 離散的に深度測定信号を検出し、所定時間内における最高値に近い複数の検出値及び最低値に近い複数の検出値を除去した後、残存するその他の検出値を平均して、当該時間内における深度測定値とすることを特徴とする請求項1又は2に記載の線状埋設金属物体探査方法。   After detecting depth measurement signals discretely and removing multiple detection values close to the maximum value and multiple detection values close to the minimum value within a predetermined time, the remaining detection values remaining are averaged, and within that time The method for searching for a linear buried metal object according to claim 1, wherein the depth measurement value is set to a depth measurement value. 線状埋設金属物体に交流信号を流すことによって発生した磁界の変化を検出する探査コイルと、検出した信号を出力する検出信号出力手段と、を有する線状埋設金属物体探査装置であって、
少なくとも2つの埋設深度測定方法を実行できる埋設深度測定手段を有し、それら埋設深度測定手段による測定結果に基づいて、深度測定値を補正することを特徴とする線状埋設金属物体探査装置。
A linear buried metal object search device comprising: a search coil for detecting a change in a magnetic field generated by flowing an alternating current signal to a linear buried metal object; and a detection signal output means for outputting the detected signal.
A linear buried metal object exploration device comprising buried depth measuring means capable of executing at least two buried depth measuring methods, and correcting a depth measurement value based on a measurement result by the buried depth measuring means.
前記埋設深度測定手段は、少なくとも、探査コイルを垂直方向に移動して埋設深度を測定する方法と、探査コイルを水平方向に移動して埋設深度を測定する方法と、を実行できることを特徴とする請求項4に記載の線状埋設金属物体探査装置。   The burying depth measuring means can execute at least a method for measuring the burying depth by moving the search coil in the vertical direction and a method for measuring the burying depth by moving the search coil in the horizontal direction. The linear buried metal object exploration device according to claim 4. さらに、離散的に深度測定信号を検出する離散的信号検出手段を有することを特徴とする請求項4又は5に記載の線状埋設金属物体探査装置。   The linear buried metal object exploration device according to claim 4 or 5, further comprising discrete signal detection means for discretely detecting a depth measurement signal. 前記離散的信号検出手段は、所定時間内における最高値に近い複数の検出値及び最低値に近い複数の検出値を除去した後、残存するその他の検出値を平均して、当該時間内における深度測定値とすることを特徴とする請求項6に記載の線状埋設金属物体探査装置。   The discrete signal detection means removes a plurality of detection values close to the highest value and a plurality of detection values close to the lowest value within a predetermined time, and then averages the remaining other detection values to obtain a depth within the time. It is set as a measured value, The linear buried metal object search apparatus of Claim 6 characterized by the above-mentioned.
JP2005105248A 2005-03-31 2005-03-31 Probe method and probe apparatus for buried linear metallic object Pending JP2006284386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005105248A JP2006284386A (en) 2005-03-31 2005-03-31 Probe method and probe apparatus for buried linear metallic object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005105248A JP2006284386A (en) 2005-03-31 2005-03-31 Probe method and probe apparatus for buried linear metallic object

Publications (1)

Publication Number Publication Date
JP2006284386A true JP2006284386A (en) 2006-10-19

Family

ID=37406467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005105248A Pending JP2006284386A (en) 2005-03-31 2005-03-31 Probe method and probe apparatus for buried linear metallic object

Country Status (1)

Country Link
JP (1) JP2006284386A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160134654A (en) 2014-03-17 2016-11-23 후지 테콤 가부시키가이샤 Buried-metal detection method, and detection device therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160134654A (en) 2014-03-17 2016-11-23 후지 테콤 가부시키가이샤 Buried-metal detection method, and detection device therefor
US9939546B2 (en) 2014-03-17 2018-04-10 Fuji Tecom Inc. Detection method and detection device of buried metal

Similar Documents

Publication Publication Date Title
US9562877B2 (en) Evaluation tool for concentric wellbore casings
KR102295246B1 (en) Buried-metal detection method, and detection device therefor
CN101776770B (en) Electromagnetic prospecting sending-receiving integration method and device
US10514362B2 (en) Wire rope flaw detection device
EP1674861A1 (en) Eddy current probe and inspection method comprising a pair of sense coils
EP3132114A1 (en) Micro-focused imaging of wellbore pipe defects
CN107346037B (en) Three-dimensional underground piping accurately detecting method
JP2006284386A (en) Probe method and probe apparatus for buried linear metallic object
JP2019526791A (en) Improvements in or related to fault location in transmission lines
JP2004347541A (en) Underground cavity survey device and method
CN110441825B (en) Visual detection method for electric wire in wall
JP3112490U (en) Linear buried metal object exploration equipment
KR101532901B1 (en) System and its method for multi detection of underground object
JP6234690B2 (en) Transmitter of buried pipe detection device and induction coil for transmitter
RU2328731C2 (en) Magnetic locator of defects and damages in pipes
JP6437866B2 (en) Method for setting transmission signal for detection of buried metal and detection device using this setting method
CN114726460B (en) Inter-well mirror image differential current type ground transceiving antenna device and communication method thereof
EP1217391A2 (en) Conductor tracing system
CN110687338A (en) Detection method for alternating current and direct current stray current of buried pipeline
JP2007139706A (en) Position detection system
CN106705827A (en) Method for calculating optimal diameter of lead in coil of eddy current probe
JP5211276B2 (en) Electromagnetic induction voltage prediction method
JP6273095B2 (en) Embedded pipe detector receiver
JPH099439A (en) Cable recognition device and current sensor that can be used of the device
JPH0535344Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100202