JP2006284260A - Laser radar device - Google Patents

Laser radar device Download PDF

Info

Publication number
JP2006284260A
JP2006284260A JP2005102111A JP2005102111A JP2006284260A JP 2006284260 A JP2006284260 A JP 2006284260A JP 2005102111 A JP2005102111 A JP 2005102111A JP 2005102111 A JP2005102111 A JP 2005102111A JP 2006284260 A JP2006284260 A JP 2006284260A
Authority
JP
Japan
Prior art keywords
signal
unit
noise ratio
integration
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005102111A
Other languages
Japanese (ja)
Other versions
JP4806949B2 (en
Inventor
Hisamichi Tanaka
久理 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005102111A priority Critical patent/JP4806949B2/en
Publication of JP2006284260A publication Critical patent/JP2006284260A/en
Application granted granted Critical
Publication of JP4806949B2 publication Critical patent/JP4806949B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve high-accuracy detection on wake turbulence by holding a satisfactory signal/noise ratio irrespective of changes in weather conditions without providing any referential target. <P>SOLUTION: This laser radar device is equipped with a light transmission/reception part for emitting laser light in an observation area provided in a flight route zone for aircraft to receive its reflected light, and a signal to noise ratio calculation/processing part for integration-processing a reception signal outputted from the transmission/reception part by using a plurality of different integration numbers to calculate the signal to noise ratio of the reception signal outputted from the transmission/reception part for each of the integration numbers. The reception signals outputted from the transmission/reception part are integration-processed by using the integration numbers used for calculating signal to noise ratios satisfying predetermined conditions, from among the plurality of signal to noise ratios calculated by the calculation/processing part, thereby detecting the wake turbulence brought about by the passage of aircraft. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、航空機の飛行経路上にレーザビームを走査しその反射光から航空機後方に発生する後方乱気流を検出するレーザレーダ装置に関する。   The present invention relates to a laser radar device that scans a laser beam on a flight path of an aircraft and detects wake turbulence generated behind the aircraft from the reflected light.

近年、航空機運行上の安全性確保等の観点から、レーザレーダ装置を用いて航空機が通過した飛行経路上に発生する後方乱気流を検出することが行われている。また、レーザレーダ装置は、大気中にて反射された反射光から後方乱気流を検出しているため、気象条件の変化による影響を受けやすく、このような気象条件の変化による探知機能の劣化を抑制する方式等も提案されている。   In recent years, from the viewpoint of ensuring safety in aircraft operation and the like, wake turbulence generated on a flight path through which an aircraft has passed is detected using a laser radar device. In addition, since the laser radar device detects wake turbulence from the reflected light reflected in the atmosphere, it is easily affected by changes in weather conditions and suppresses the deterioration of the detection function due to such changes in weather conditions. A method to do this has also been proposed.

特開2000−2763(第2−6頁、図5,図6等)JP 2000-2663 (page 2-6, FIG. 5, FIG. 6 etc.)

特開2000−275340(第3頁、図1,図2等)JP 2000-275340 (3rd page, FIG. 1, FIG. 2 etc.)

しかし、従来のレーザレーダ装置は以上のように構成されているので、光送受信機を介して受信した反射光の積分処理を行う積分処理部の最適な積分回数を算出するために、基準目標を設ける必要があり、また、基準目標の反射光から大気減衰率を算出する際には大気の条件が好適であることが必要である等、気象条件により運用上の制限を受けるという問題点があった。   However, since the conventional laser radar device is configured as described above, in order to calculate the optimum number of integrations of the integration processing unit that performs integration processing of the reflected light received via the optical transceiver, the reference target is set. In addition, there is a problem that operational conditions are limited by weather conditions, for example, the atmospheric conditions must be suitable when calculating the atmospheric attenuation rate from the reflected light of the reference target. It was.

この発明は、上記のような課題を解決するためになされたもので、基準目標を設けることなく、また、気象条件の変化にかかわらず、良好な信号雑音比を保つことができ、高精度に後方乱気流を検出することができる新規なレーザレーダ装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and can maintain a good signal-to-noise ratio without setting a reference target and regardless of changes in weather conditions, with high accuracy. It is an object of the present invention to provide a novel laser radar device capable of detecting wake turbulence.

この発明に係るレーザレーダ装置は、航空機の飛行経路区間に設けられた観測領域内にレーザ光を放射してその反射光を受信する光送受信部と、この光送受信部から出力された受信信号を複数の異なる積分数にて積分処理し、前記積分数毎に前記光送受信部から出力された受信信号の信号雑音比を算出する信号雑音比算出処理部と、この信号雑音比算出処理部により算出された複数の信号雑音比の中から予め定めた条件を満たす信号雑音比を算出した積分数により前記光送受信部から出力された受信信号を積分処理し、前記観測領域内のドップラ速度を算出するドップラ速度算出部と、このドップラ速度算出部により算出された前記観測領域内のドップラ速度から前記観測領域内の風速及び風向の空間分布を求め、この風速及び風向の空間分布から前記航空機の通過により発生した後方乱気流を検出する乱気流検出部とを備えたものである。   A laser radar device according to the present invention includes an optical transmission / reception unit that radiates laser light into an observation region provided in a flight path section of an aircraft and receives reflected light, and a reception signal output from the optical transmission / reception unit. A signal-to-noise ratio calculation processing unit that performs integration processing with a plurality of different integration numbers and calculates a signal-to-noise ratio of the reception signal output from the optical transmission / reception unit for each integration number, and is calculated by the signal-to-noise ratio calculation processing unit The received signal output from the optical transmission / reception unit is integrated by an integration number that calculates a signal-to-noise ratio satisfying a predetermined condition from a plurality of signal-to-noise ratios, and a Doppler velocity in the observation region is calculated. A spatial distribution of the wind speed and direction in the observation area is obtained from the Doppler speed calculation section and the Doppler speed in the observation area calculated by the Doppler speed calculation section, and the spatial distribution of the wind speed and wind direction is obtained. It is obtained by a turbulence detector for detecting a wake turbulence generated by the passage of the aircraft from.

この発明によれば、基準目標を設けることなく良好な信号雑音比を保つことができ、気象条件の変化にかかわらず高精度に後方乱気流を検出することができる。   According to the present invention, a good signal-to-noise ratio can be maintained without providing a reference target, and wake turbulence can be detected with high accuracy regardless of changes in weather conditions.

実施の形態1.
以下、この発明の実施の形態1について図1及び図2を用いて説明する。図1は実施の形態1によるレーザレーダ装置の構成を示すブロック図、図2は図1に示す信号雑音比算出処理部4の具体的構成を示す部分ブロック図である。図1において、1は後方乱気流の観測領域内であって航空機の飛行経路区間にビーム状のレーザ光を放射し、大気中の塵などで反射された当該レーザ光の反射光を受信処理する光送受信部、2は光送受信部1により受信処理された受信信号に基づいてドップラ速度を算出する信号処理部、3は信号処理部2において算出されたドップラ速度を距離方向と仰角方向に並び替えて風速・風向の空間分布のリアルタイムデータを生成すると共に、この空間分布のリアルデータにテンプレートマッチング処理等を施して後方乱気流に関するリアルタイムデータ(乱気流の発生位置、乱気流の渦の直径、乱気流強度(乱気流の渦の互いに反対方向の風速差)等)を検出する乱気流検出部である。この乱気流検出部3の検出結果は表示装置(図示省略する。)に出力されモニタ等の表示手段に表示される。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to FIGS. FIG. 1 is a block diagram showing a configuration of the laser radar apparatus according to the first embodiment, and FIG. 2 is a partial block diagram showing a specific configuration of the signal noise ratio calculation processing unit 4 shown in FIG. In FIG. 1, reference numeral 1 denotes a wake turbulence observation area, which emits a laser beam in the form of a flight path of an aircraft and receives and processes the reflected light of the laser light reflected by dust in the atmosphere. The transmission / reception unit 2 is a signal processing unit that calculates the Doppler velocity based on the reception signal received and processed by the optical transmission / reception unit 1, and 3 is a rearrangement of the Doppler velocity calculated by the signal processing unit 2 in the distance direction and the elevation angle direction. Real-time data on the spatial distribution of wind speed and direction is generated, and real-time data on wake turbulence (location of turbulence, vortex diameter, turbulence intensity (turbulence intensity) It is a turbulent air flow detection unit that detects a difference in wind speed in opposite directions of the vortex). The detection result of the turbulence detector 3 is output to a display device (not shown) and displayed on a display means such as a monitor.

また、4は光送受信部1から出力された受信信号に基づいて予め決められた積分数毎の信号雑音比を算出する信号雑音比算出処理部、5は信号雑音比算出処理部4により算出された積分数毎の信号雑音比の中からドップラ速度を算出する際に最適な積分数を選択する積分数選択部、6は積分数選択部5により選択された積分数に基づいて光送受信部1により受信処理された受信信号を積分処理し、その積分結果からドップラ速度を算出するドップラ速度算出部である。   Further, 4 is a signal noise ratio calculation processing unit that calculates a signal noise ratio for each integral number determined in advance based on the received signal output from the optical transmission / reception unit 1, and 5 is calculated by the signal noise ratio calculation processing unit 4. The integration number selection unit 6 selects an optimum integration number when calculating the Doppler speed from the signal-to-noise ratio for each integration number. The optical transmission / reception unit 1 is based on the integration number selected by the integration number selection unit 5. The Doppler speed calculation unit calculates the Doppler speed from the integration result by integrating the received signal received by the process.

また、図2において、7は光送受信機1により得られた受信信号をスペクトル変換するスペクトル変換部、8は予め大気からの反射がないときに検出した光送受信機1の雑音信号(以下、白色雑音という。)のスペクトル値を記憶した雑音記憶部、9は予め決められた複数の積分数に対応して観測領域内における受信信号のスペクトル値と雑音記憶部8に保持している白色雑音のスペクトル値とをそれぞれ積分処理する積分部、10は積分部9の積分結果から積分数毎の信号雑音比を算出する信号雑音比算出部である。なお、図中、同一符号は、同一又は相当部分を示し、これらについての詳細な説明は省略する。   In FIG. 2, reference numeral 7 denotes a spectrum conversion unit that performs spectrum conversion on a received signal obtained by the optical transceiver 1, and 8 denotes a noise signal of the optical transceiver 1 that is detected in advance when there is no reflection from the atmosphere (hereinafter, white). The noise storage unit 9 stores the spectrum value of the noise), and 9 indicates the spectrum value of the received signal in the observation region and the white noise stored in the noise storage unit 8 corresponding to a plurality of predetermined integral numbers. An integration unit 10 for integrating the spectrum values with each other, and a signal noise ratio calculation unit 10 for calculating a signal noise ratio for each integration number from the integration result of the integration unit 9. In the drawings, the same reference numerals denote the same or corresponding parts, and detailed description thereof will be omitted.

次に動作について図3を用いて説明する。図3は図1に示すようなレーザレーダ装置による後方乱気流の検出状況であって、航空機が離陸する際に航空機後方に発生した後方乱気流の検出状況を模式的に示した検出状況説明図である。図3において、11は滑走路、12は滑走路11から離陸した航空機、13は例えば滑走路11の周辺部であって、空港内に設置された光送受信部1により走査されたビーム状のレーザ光(以下、レーザビームという。)、14は航空機11が離陸する場合の後方乱気流の観測領域である。以下、航空機が離陸する場合を例として実施の形態1によるレーザレーダ装置の動作について説明する。光送受信部1は、航空機12が滑走路11を離陸すると後方乱気流の観測領域14内にレーザビーム13を走査すると共に、大気中の塵などで反射された当該レーザビーム13の反射光を受信して電気信号に変換する等の受信処理を行う。光送受信部1から出力された観測領域14内の受信信号は信号処理部2の信号雑音算出処理部4及びドップラ速度算出部6にそれぞれ出力される。レーザビーム12の走査は機械的走査又は電子的走査のいずれの方式を用いてもよい。   Next, the operation will be described with reference to FIG. FIG. 3 is a detection situation explanatory diagram schematically showing the detection situation of the backward turbulence generated by the laser radar apparatus as shown in FIG. 1 and generated behind the aircraft when the aircraft takes off. . In FIG. 3, 11 is a runway, 12 is an aircraft taking off from the runway 11, 13 is a periphery of the runway 11, for example, and is a beam-shaped laser scanned by the optical transceiver 1 installed in the airport. Light (hereinafter referred to as a laser beam) 14 is an observation region of wake turbulence when the aircraft 11 takes off. Hereinafter, the operation of the laser radar apparatus according to the first embodiment will be described by taking as an example the case where an aircraft takes off. When the aircraft 12 takes off the runway 11, the optical transmission / reception unit 1 scans the laser beam 13 in the backward turbulence observation region 14 and receives the reflected light of the laser beam 13 reflected by dust in the atmosphere. Receive processing such as conversion to an electrical signal. The received signal in the observation region 14 output from the optical transceiver 1 is output to the signal noise calculation processor 4 and the Doppler velocity calculator 6 of the signal processor 2, respectively. The laser beam 12 may be scanned using either mechanical scanning or electronic scanning.

信号雑音比算出処理部4では、まず光送受信部1から出力された観測領域14内の受信信号がスペクトル変換部7によりスペクトル信号に変換され、そのスペクトル値が積分部9に出力される。積分部9はスペクトル変換部7から出力された受信信号のスペクトル値と雑音記憶部8に保持している白色雑音のスペクトル値とを予め決められた複数の積分数毎に積分処理する。例えば、積分数がNの場合、N回積分を行うことによりスペクトルが積み重なり、スペクトル変換部7から出力された受信信号のスペクトル信号についての強度はN倍になる。一方、白色雑音、すなわち大気からの反射がない状態にて受信した受信信号のスペクトル信号は、その強度の揺らぎにより、Nの平方根倍となる。このように、積分部9は予め決められた複数の積分数毎に観測領域14内の受信信号強度及び雑音の積分値を算出する。   In the signal-to-noise ratio calculation processing unit 4, the received signal in the observation region 14 output from the optical transmission / reception unit 1 is first converted into a spectrum signal by the spectrum conversion unit 7, and the spectrum value is output to the integration unit 9. The integrator 9 integrates the spectrum value of the received signal output from the spectrum converter 7 and the spectrum value of the white noise held in the noise storage unit 8 for each of a plurality of predetermined integration numbers. For example, when the integration number is N, the spectrum is accumulated by performing N times of integration, and the intensity of the received signal output from the spectrum conversion unit 7 with respect to the spectrum signal becomes N times. On the other hand, the spectrum signal of the received signal received in a state where there is no white noise, that is, no reflection from the atmosphere, is a square root of N due to fluctuations in its intensity. As described above, the integrating unit 9 calculates the integrated value of the received signal intensity and noise in the observation region 14 for each of a plurality of predetermined integration numbers.

信号雑音比算出部10は、積分部9の積分処理の結果から対応する積分数毎に信号雑音比を算出して出力する。例えば、積分部9によりN回積分処理した白色雑音のスペクトル値及び受信信号のスペクトル値から積分数Nの信号雑音比を算出する。このようにして予め決められた複数の積分数毎に信号雑音比がそれぞれ算出され、各積分数毎に対応した複数の信号雑音比の値が信号雑音比算出処理部4から積分数選択部5に出力される。積分数選択部5は、信号雑音比算出処理部4において算出された複数の信号雑音比の中から予め定められた条件を満たす最適な積分数を選択してドップラ速度算出部6に通知する。   The signal-to-noise ratio calculation unit 10 calculates and outputs a signal-to-noise ratio for each corresponding integration number from the result of the integration process of the integration unit 9. For example, the signal noise ratio of the integration number N is calculated from the spectrum value of the white noise and the spectrum value of the received signal that have been integrated N times by the integrator 9. In this way, the signal-to-noise ratio is calculated for each of a plurality of integral numbers determined in advance, and a plurality of signal-to-noise ratio values corresponding to each integration number are obtained from the signal-to-noise ratio calculation processing unit 4 to the integration number selection unit 5. Is output. The integration number selection unit 5 selects an optimum integration number that satisfies a predetermined condition from the plurality of signal noise ratios calculated by the signal noise ratio calculation processing unit 4 and notifies the Doppler velocity calculation unit 6 of the selected integration number.

ここで、積分数の選択について説明する。信号雑音比は積分数を増やすほど改善される反面、積分処理に要する処理時間が長くなり受信信号の単位時間の出力数が減少する。単位時間の出力数が減少すると、一回の観測における後方乱気流の検出時間が長くなるため、当該検出結果をモニタ等にリアルタイムに表示することも難しくなる。また、空港等においては、航空機の離陸又は着陸によって発生した後方乱気流をリアルタイムに確認したいという要請もある。従って、予め定められた条件とは、例えば、ドップラ速度の算出に十分な信号雑音比を算出した積分数であって、そのような積分数のうち、ドップラ速度算出部6における処理時間が最も短時間となる積分数、すなわちドップラ速度の算出に十分な信号雑音比を算出した積分数の中で最も小さい積分数を積分数選択部5における選択の条件とする。   Here, selection of the integral number will be described. Although the signal-to-noise ratio is improved as the number of integrations is increased, the processing time required for integration processing is increased and the number of received signals per unit time is reduced. When the number of outputs per unit time decreases, the detection time of wake turbulence in one observation becomes longer, and it becomes difficult to display the detection result on a monitor or the like in real time. In airports and the like, there is also a demand for confirming wake turbulence generated by takeoff or landing of an aircraft in real time. Therefore, the predetermined condition is, for example, the number of integrals that has calculated a signal-to-noise ratio sufficient for calculating the Doppler speed, and among these integral numbers, the processing time in the Doppler speed calculation unit 6 is the shortest. The integral number that is the time, that is, the smallest integral number among the integral numbers for which the signal-to-noise ratio sufficient for calculating the Doppler velocity is selected as the selection condition in the integral number selection unit 5.

ドップラ速度算出部6は、積分数選択部5から通知された最適な積分数を用いて光送受信部1から出力された観測領域14内の受信信号を積分処理し、観測領域14内のドップラ速度を算出する。乱気流検出部3は、ドップラ速度算出部6により算出されたドップラ速度を距離方向と仰角方向に並び替え、風速・風向の空間分布のリアルタイムデータを生成すると共に、この空間分布のリアルデータを分析して検出した乱気流に関するリアルタイムデータ(乱気流の発生位置、乱気流の渦の直径、乱気流強度(乱気流の渦の互いに反対方向の風速差)等)を算出する。そして、算出したドップラ速度の空間分布に対してテンプレートマッチング処理等を施して航空機後方に発生した後方乱気流を検出する。乱気流検出部3により検出された後方乱気流の検出結果は、図示省略した表示装置に出力されて管制官等が利用するモニタ等の表示手段に表示される。   The Doppler velocity calculation unit 6 integrates the received signal in the observation region 14 output from the optical transmission / reception unit 1 using the optimum integration number notified from the integration number selection unit 5, and performs the Doppler velocity in the observation region 14. Is calculated. The turbulence detector 3 rearranges the Doppler velocity calculated by the Doppler velocity calculator 6 into the distance direction and the elevation angle direction, generates real-time data of the spatial distribution of the wind speed and direction, and analyzes the real data of the spatial distribution. Real-time data (turbulence generation position, turbulent vortex diameter, turbulence intensity (wind velocity difference in the opposite direction of the turbulent vortex), etc.), etc. are calculated. Then, template matching processing or the like is applied to the calculated spatial distribution of Doppler velocities to detect wake turbulence generated behind the aircraft. The detection result of the backward turbulence detected by the turbulence detection unit 3 is output to a display device (not shown) and displayed on a display unit such as a monitor used by a controller or the like.

以上のように、この実施の形態1によるレーザレーダ装置によれば、光送受信部1から出力された受信信号を複数の異なる積分数にて積分処理し、前記積分数毎に前記光送受信部から出力された受信信号の信号雑音比を算出する信号雑音比算出処理部4と、この信号雑音比算出処理部4により算出された複数の信号雑音比の中から予め定めた条件を満たす信号雑音比を算出した積分数により光送受信部1から出力された受信信号を積分処理して観測領域14内のドップラ速度を算出するようにしたので、基準目標を設ける必要がなく、また天候等の大気条件により運用が制限されることなく、航空機12が通過することにより滑走路11上に発生した後方乱気流を良好な信号雑音比にて検出することができる。   As described above, according to the laser radar device according to the first embodiment, the reception signal output from the optical transmission / reception unit 1 is integrated with a plurality of different integration numbers, and from the optical transmission / reception unit for each integration number. A signal noise ratio calculation processing unit 4 for calculating the signal noise ratio of the output received signal, and a signal noise ratio satisfying a predetermined condition from a plurality of signal noise ratios calculated by the signal noise ratio calculation processing unit 4 Since the Doppler velocity in the observation region 14 is calculated by integrating the received signal output from the optical transmitter / receiver 1 with the calculated integration number, there is no need to provide a reference target, and atmospheric conditions such as weather conditions Therefore, the backward turbulence generated on the runway 11 when the aircraft 12 passes can be detected with a good signal-to-noise ratio without being limited by the operation.

実施の形態1によるレーザレーダ装置の構成を示すブロック図である。1 is a block diagram illustrating a configuration of a laser radar device according to a first embodiment. 図1に示す信号雑音比算出処理部4の具体的構成を示す部分ブロック図である。It is a partial block diagram which shows the specific structure of the signal noise ratio calculation process part 4 shown in FIG. 図1に示すレーザレーダ装置による後方乱気流の検出状況を模式的に示す模式図である。It is a schematic diagram which shows typically the detection condition of the wake turbulence by the laser radar apparatus shown in FIG.

符号の説明Explanation of symbols

1 送受信部、2 信号処理部、3 乱気流検出部、4 信号雑音比算出処理部、
5 積分数選択部、6 ドップラ速度算出部、7 スペクトル変換部、
8 雑音記憶部、9 積分部、10 信号雑音比算出部。


1 transmission / reception unit, 2 signal processing unit, 3 turbulence detection unit, 4 signal noise ratio calculation processing unit,
5 integral number selector, 6 Doppler velocity calculator, 7 spectrum converter,
8 noise storage unit, 9 integration unit, 10 signal noise ratio calculation unit.


Claims (2)

航空機の飛行経路区間に設けられた観測領域内にレーザ光を放射してその反射光を受信する光送受信部と、この光送受信部から出力された受信信号を複数の異なる積分数にて積分処理し、前記積分数毎に前記光送受信部から出力された受信信号の信号雑音比を算出する信号雑音比算出処理部と、この信号雑音比算出処理部により算出された複数の信号雑音比の中から予め定めた条件を満たす信号雑音比を算出した積分数により前記光送受信部から出力された受信信号を積分処理し、前記観測領域内のドップラ速度を算出するドップラ速度算出部と、このドップラ速度算出部により算出された前記観測領域内のドップラ速度から前記観測領域内の風速及び風向の空間分布を求め、この風速及び風向の空間分布から前記航空機の通過により発生した後方乱気流を検出する乱気流検出部とを備えたレーザーレーダ装置。 An optical transmitter / receiver that radiates laser light into the observation area provided in the flight path section of the aircraft and receives the reflected light, and the received signal output from the optical transmitter / receiver is integrated with a plurality of different integration numbers A signal-to-noise ratio calculation processing unit that calculates a signal-to-noise ratio of the received signal output from the optical transmission / reception unit for each integration number, and a plurality of signal-to-noise ratios calculated by the signal-to-noise ratio calculation processing unit. A Doppler velocity calculation unit that integrates the received signal output from the optical transmission / reception unit with an integration number that calculates a signal-to-noise ratio that satisfies a predetermined condition from the above, and calculates a Doppler velocity in the observation region, and the Doppler velocity A spatial distribution of the wind speed and direction in the observation area is obtained from the Doppler velocity in the observation area calculated by the calculation unit, and is generated by the passage of the aircraft from the spatial distribution of the wind speed and wind direction. Laser radar apparatus provided with a turbulence detector for detecting a wake turbulence. 前記信号雑音比算出処理部は、前記光送受信部から出力された受信信号をスペクトル変換するスペクトル変換部と、予め前記光送受信部が発生する白色雑音信号のスペクトル値を記憶した雑音記憶部と、この雑音記憶部に記憶された前記白色雑音のスペクトル値及び前記スペクトル変換部から出力された前記受信信号のスペクトル値を複数の異なる積分数にてそれぞれ積分処理する積分部と、これら積分数毎に積分処理された前記白色雑音のスペクトル値及び前記受信信号のスペクトル値により前記積分数毎に前記光送受信部から出力された受信信号の信号雑音比を算出する信号雑音比算出部とを有する請求項1に記載のレーザーレーダ装置。
The signal-to-noise ratio calculation processing unit includes a spectrum conversion unit that performs spectrum conversion on a reception signal output from the optical transmission / reception unit, a noise storage unit that stores a spectral value of a white noise signal generated by the optical transmission / reception unit in advance, An integration unit for integrating the spectrum value of the white noise stored in the noise storage unit and the spectrum value of the received signal output from the spectrum conversion unit with a plurality of different integration numbers, and for each integration number A signal-to-noise ratio calculation unit that calculates a signal-to-noise ratio of the reception signal output from the optical transmission / reception unit for each integration number based on the spectrum value of the white noise and the spectrum value of the reception signal that have been integrated. The laser radar device according to 1.
JP2005102111A 2005-03-31 2005-03-31 Laser radar equipment Expired - Fee Related JP4806949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005102111A JP4806949B2 (en) 2005-03-31 2005-03-31 Laser radar equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005102111A JP4806949B2 (en) 2005-03-31 2005-03-31 Laser radar equipment

Publications (2)

Publication Number Publication Date
JP2006284260A true JP2006284260A (en) 2006-10-19
JP4806949B2 JP4806949B2 (en) 2011-11-02

Family

ID=37406353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005102111A Expired - Fee Related JP4806949B2 (en) 2005-03-31 2005-03-31 Laser radar equipment

Country Status (1)

Country Link
JP (1) JP4806949B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052961A (en) * 2007-08-24 2009-03-12 Mitsubishi Electric Corp Wind measuring apparatus
JP2012083267A (en) * 2010-10-13 2012-04-26 Japan Aerospace Exploration Agency Multi-lidar system
WO2014024508A1 (en) 2012-08-08 2014-02-13 三菱電機株式会社 Radar device
WO2014041852A1 (en) 2012-09-14 2014-03-20 三菱電機株式会社 Laser radar device and method for detecting speed of measured object
WO2017175297A1 (en) * 2016-04-05 2017-10-12 三菱電機株式会社 Laser radar device
JP2018146353A (en) * 2017-03-03 2018-09-20 Necネットワーク・センサ株式会社 Sonar device, acoustic signal processing system, acoustic signal processing method, and acoustic signal processing program
US10175346B2 (en) 2015-05-12 2019-01-08 Mitsubishi Electric Corporation Laser radar apparatus and wind velocity observation method
CN109916852A (en) * 2019-01-31 2019-06-21 上海禾赛光电科技有限公司 A kind of laser gas remote measurement instrument signal acquisition method and system
WO2020208896A1 (en) * 2019-04-08 2020-10-15 三菱電機株式会社 Wind measurement lidar device
CN112859044A (en) * 2021-02-19 2021-05-28 北京理工大学 Vortex rotation-based underwater laser radar system
EP3722828A4 (en) * 2017-12-06 2021-09-01 Japan Aerospace Exploration Agency Signal processing device and signal processing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252581A (en) * 1990-03-02 1991-11-11 Mitsubishi Electric Corp Radar device
JP2002168948A (en) * 2000-11-30 2002-06-14 Mitsubishi Electric Corp Device and method for processing signal in wind profiler
JP2002267753A (en) * 2001-03-14 2002-09-18 Mitsubishi Electric Corp Wind shear detector
JP2004037474A (en) * 2003-10-17 2004-02-05 Mitsubishi Electric Corp Laser radar device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252581A (en) * 1990-03-02 1991-11-11 Mitsubishi Electric Corp Radar device
JP2002168948A (en) * 2000-11-30 2002-06-14 Mitsubishi Electric Corp Device and method for processing signal in wind profiler
JP2002267753A (en) * 2001-03-14 2002-09-18 Mitsubishi Electric Corp Wind shear detector
JP2004037474A (en) * 2003-10-17 2004-02-05 Mitsubishi Electric Corp Laser radar device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052961A (en) * 2007-08-24 2009-03-12 Mitsubishi Electric Corp Wind measuring apparatus
JP2012083267A (en) * 2010-10-13 2012-04-26 Japan Aerospace Exploration Agency Multi-lidar system
US9804265B2 (en) 2012-08-08 2017-10-31 Mitsubushi Electric Corporation Radar device
WO2014024508A1 (en) 2012-08-08 2014-02-13 三菱電機株式会社 Radar device
EP2884306A1 (en) * 2012-08-08 2015-06-17 Mitsubishi Electric Corporation Radar device
EP2884306A4 (en) * 2012-08-08 2016-03-30 Mitsubishi Electric Corp Radar device
CN104541181A (en) * 2012-08-08 2015-04-22 三菱电机株式会社 Radar device
CN104603636A (en) * 2012-09-14 2015-05-06 三菱电机株式会社 Laser radar device and method for detecting speed of measured object
EP2896972A4 (en) * 2012-09-14 2016-04-13 Mitsubishi Electric Corp Laser radar device and method for detecting speed of measured object
JPWO2014041852A1 (en) * 2012-09-14 2016-08-18 三菱電機株式会社 Laser radar apparatus and speed calculation method for measurement object
CN104603636B (en) * 2012-09-14 2016-10-26 三菱电机株式会社 Laser radar apparatus and the speed calculation method of measuring object
WO2014041852A1 (en) 2012-09-14 2014-03-20 三菱電機株式会社 Laser radar device and method for detecting speed of measured object
US9851444B2 (en) 2012-09-14 2017-12-26 Mitsubishi Electric Corporation Laser radar device and method of calculating speed of object to be measured
US10175346B2 (en) 2015-05-12 2019-01-08 Mitsubishi Electric Corporation Laser radar apparatus and wind velocity observation method
JPWO2017175297A1 (en) * 2016-04-05 2018-09-20 三菱電機株式会社 Laser radar equipment
WO2017175297A1 (en) * 2016-04-05 2017-10-12 三菱電機株式会社 Laser radar device
JP2018146353A (en) * 2017-03-03 2018-09-20 Necネットワーク・センサ株式会社 Sonar device, acoustic signal processing system, acoustic signal processing method, and acoustic signal processing program
EP3722828A4 (en) * 2017-12-06 2021-09-01 Japan Aerospace Exploration Agency Signal processing device and signal processing method
US11796655B2 (en) 2017-12-06 2023-10-24 Japan Aerospace Exploration Agency Signal processing device and signal processing method
CN109916852A (en) * 2019-01-31 2019-06-21 上海禾赛光电科技有限公司 A kind of laser gas remote measurement instrument signal acquisition method and system
WO2020208896A1 (en) * 2019-04-08 2020-10-15 三菱電機株式会社 Wind measurement lidar device
JP7164613B2 (en) 2019-04-08 2022-11-01 三菱電機株式会社 Wind measurement lidar device
JPWO2020208896A1 (en) * 2019-04-08 2021-04-30 三菱電機株式会社 Wind measurement lidar device
CN112859044A (en) * 2021-02-19 2021-05-28 北京理工大学 Vortex rotation-based underwater laser radar system
CN112859044B (en) * 2021-02-19 2023-12-29 北京理工大学 Underwater laser radar system based on vortex rotation

Also Published As

Publication number Publication date
JP4806949B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
JP4806949B2 (en) Laser radar equipment
JP5252696B2 (en) Airborne optical remote airflow measurement device
US8508721B2 (en) Multifunction aircraft LIDAR
JP5376459B2 (en) Optical air data sensor
US7106447B2 (en) Molecular optical air data systems (MOADS)
EP2442136B1 (en) Multi-lidar system
JP5717174B2 (en) Remote turbulence detection method and apparatus for implementing the same
US20070171397A1 (en) Method and apparatus for detecting wind velocities by means of a doppler-lidar system
US20180156893A1 (en) Laser radar apparatus and wind velocity observation method
CN101825647A (en) Wind velocity measurement system and method
JPWO2017022556A1 (en) Gas detection device and gas detection method
US11828874B2 (en) Electronic apparatus and method
JP2009128236A (en) Fog detector and method of installing it
US11598859B2 (en) Electronic apparatus and method
US20200300988A1 (en) Electronic apparatus and method
JP2009162678A (en) Laser radar system
JP2017067680A (en) Remote air flow measurement device, remote air flow measurement method and program
JP4859208B2 (en) How to detect turbulence
JP2000002763A (en) Air current detecting method and laser radar device
WO2019111654A1 (en) Signal processing device and signal processing method
JP2000275340A (en) Laser radar device
JP2010190772A (en) Wake turbulence detector
JP3823965B2 (en) Laser radar equipment
JP2009276248A (en) Laser radar device
JP3821923B2 (en) A method for determining wake vortex turbulence or atmospheric turbulence in real time and an optical scintillometer that provides a corrected output for wake vortex air turbulence

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees