JP2009162678A - Laser radar system - Google Patents

Laser radar system Download PDF

Info

Publication number
JP2009162678A
JP2009162678A JP2008001972A JP2008001972A JP2009162678A JP 2009162678 A JP2009162678 A JP 2009162678A JP 2008001972 A JP2008001972 A JP 2008001972A JP 2008001972 A JP2008001972 A JP 2008001972A JP 2009162678 A JP2009162678 A JP 2009162678A
Authority
JP
Japan
Prior art keywords
spectrum
wind speed
ratio
ratio region
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008001972A
Other languages
Japanese (ja)
Other versions
JP5197023B2 (en
Inventor
Shunpei Kameyama
俊平 亀山
Toshiyuki Ando
俊行 安藤
Yoshihito Hirano
嘉仁 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008001972A priority Critical patent/JP5197023B2/en
Publication of JP2009162678A publication Critical patent/JP2009162678A/en
Application granted granted Critical
Publication of JP5197023B2 publication Critical patent/JP5197023B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a laser radar apparatus for utilizing predictive information on a receive spectrum and a wind speed obtained from a measurement result in a high receive S/N ratio region, and accurately detecting the wind speed in a low receive S/N ratio region. <P>SOLUTION: In the laser radar apparatus for transmitting a single frequency laser light to the air, receiving it, processing a received signal obtained by a heterodyne detection and detecting the wind speed, a signal processing section 10 is provided with: a means for causing a gate to divide the received signal in accordance with a distance from the laser radar apparatus, and acquiring a distance dependency of the receive S/N ratio from the receive spectrum obtained by a FFT applied to the divided received signals; a means for dividing a to-be-detected region into the high S/N ratio region and the low S/N ratio region and discriminating them based on the distance dependency of the receive S/N ratio; and a means for processing the reception spectrum in the low S/N ratio region by acquiring the predictive information based on the information obtained from the reception spectrum in the high S/N ratio region, and detecting the wind speed in the low S/N ratio region. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、レーザ光からなる送信信号を大気中に送信して大気からの散乱信号を受信し、散乱信号のドップラー周波数シフトを検出することから、大気中の風速を計測するレーザレーダ装置に関する。   The present invention relates to a laser radar device that measures a wind speed in the atmosphere by transmitting a transmission signal composed of laser light into the atmosphere, receiving a scattered signal from the atmosphere, and detecting a Doppler frequency shift of the scattered signal.

従来のこの種のレーザレーダ装置としては、例えば特許文献1や非特許文献1に記載されているものが知られている。このレーザレーダ装置では、パルスレーザ光を大気中に送信して、大気中のエアロゾルからの散乱光をヘテロダイン検波により電気信号領域に変換し、受信信号を得る。受信信号にゲートをかけて各距離からの信号に分割した後、分割後の各信号にFFT(Fast Fourier Transform)をかけて受信スペクトルを得る。受信S/N比が高い場合、この信号のピーク周波数がドップラー周波数シフトに対応するため、ピーク周波数を検出することから風速を計測することが可能となる。   As conventional laser radar devices of this type, those described in Patent Document 1 and Non-Patent Document 1, for example, are known. In this laser radar device, pulsed laser light is transmitted to the atmosphere, and scattered light from aerosol in the atmosphere is converted into an electric signal region by heterodyne detection to obtain a received signal. After the received signal is gated and divided into signals from each distance, each divided signal is subjected to FFT (Fast Fourier Transform) to obtain a received spectrum. When the reception S / N ratio is high, the peak frequency of this signal corresponds to the Doppler frequency shift, so that the wind speed can be measured by detecting the peak frequency.

特開2007−85758号公報JP 2007-85758 A S. Kameyama et al., Applied Optics, Vol. 46, No. 11, pp. 1953-1962, 2007S. Kameyama et al., Applied Optics, Vol. 46, No. 11, pp. 1953-1962, 2007

このようなレーザレーダ装置の信号処理では、受信スペクトルのピーク周波数を検出して風速計測を行う。このピーク周波数の検出は、受信S/N比が高い場合においては問題ないが、受信S/N比が低い場合、一般的に、誤検出が生じることが知られている。図9は受信S/N比が高い場合(図9の(a))と低い場合(図9の(b))の受信スペクトルの模式図である。図9の(a)の場合では、図に示されている全周波数領域におけるピークを検出すれば、信号成分を正しく検出できるのに対し、図9の(b)の場合では、信号成分の強度が低いため、単純にピークを検出すると雑音成分を検出する、つまり誤検出してしまうという課題が存在していた。   In the signal processing of such a laser radar device, the wind speed is measured by detecting the peak frequency of the reception spectrum. The detection of the peak frequency is not problematic when the reception S / N ratio is high, but it is generally known that erroneous detection occurs when the reception S / N ratio is low. FIG. 9 is a schematic diagram of the reception spectrum when the reception S / N ratio is high ((a) in FIG. 9) and low ((b) in FIG. 9). In the case of (a) in FIG. 9, the signal component can be correctly detected by detecting peaks in the entire frequency region shown in the figure, whereas in the case of (b) in FIG. 9, the intensity of the signal component. Therefore, there is a problem that if a peak is simply detected, a noise component is detected, that is, erroneously detected.

この発明は上記した課題を鑑みてなされたもので、従来とは異なり、受信スペクトルを求めた後の信号処理において、受信S/N比が高い領域における計測結果から受信スペクトルや風速に関する先見情報を求め、この先見情報を利用することで、受信S/N比が低い領域において上記誤検出を低減できるレーザレーダ装置を提供することを目的とする。   The present invention has been made in view of the above-described problems, and unlike conventional techniques, in signal processing after obtaining a reception spectrum, foresight information regarding the reception spectrum and wind speed is obtained from measurement results in a region where the reception S / N ratio is high. Accordingly, an object of the present invention is to provide a laser radar device that can reduce the erroneous detection in a region where the reception S / N ratio is low by using this foresight information.

この発明は、単一周波数からなるレーザ光を大気中に対し送受し、ヘテロダイン検波により得られた受信信号を信号処理して風速検出を行うレーザレーダ装置において、受信信号を信号処理して風速検出を行う信号処理部が、受信信号にレーザレーダ装置からの距離に従って分割するようにゲートをかけて分割し、分割した各々の受信信号に対してFFTを行って得られた受信スペクトルから受信S/N比の距離依存性を求める手段と、前記受信S/N比の距離依存性に基づき検出対象領域を高S/N比領域と低S/N比領域に区別する手段と、前記高S/N比領域での受信スペクトルから求めた情報に基づいて先見情報を得て、この先見情報を用いて前記低S/N比領域での受信スペクトルに対する処理を行い、前記低S/N比領域での風速検出を行う手段と、を備えたことを特徴とするレーザレーダ装置にある。   The present invention relates to a laser radar device that detects a wind speed by transmitting / receiving a laser beam having a single frequency to the atmosphere and processing the received signal obtained by heterodyne detection to detect the wind speed. A signal processing unit that performs a gate division so as to divide the received signal according to the distance from the laser radar device, and receives the received S / S from the received spectrum obtained by performing FFT on each of the divided received signals. Means for determining the distance dependence of the N ratio, means for distinguishing the detection target area into a high S / N ratio area and a low S / N ratio area based on the distance dependence of the reception S / N ratio, Obtaining foresight information based on information obtained from the received spectrum in the N ratio region, using the foresight information to perform processing on the received spectrum in the low S / N ratio region, and in the low S / N ratio region s wind In the laser radar apparatus characterized by comprising: means for detecting a.

この発明では、受信S/N比が高い領域における計測結果から受信スペクトルや風速に関する先見情報を求め、この先見情報を利用して受信S/N比が低い領域での風速を求めることで、受信S/N比が低い領域での誤検出を低減できるレーザレーダ装置を提供することができる。   In the present invention, the foresight information regarding the reception spectrum and the wind speed is obtained from the measurement result in the region where the reception S / N ratio is high, and the wind speed in the region where the reception S / N ratio is low is obtained using this foresight information. It is possible to provide a laser radar device that can reduce erroneous detection in a region where the S / N ratio is low.

実施の形態1.
本発明の実施の形態1に係わるレーザレーダ装置について、図1〜図6を用いて説明する。図1は、本発明に係わるレーザレーダ装置の構成を模式的に示す図である。
Embodiment 1 FIG.
A laser radar apparatus according to Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 1 is a diagram schematically showing a configuration of a laser radar apparatus according to the present invention.

図1において、光源1は光分配器2に接続され、光分配器2はパルス変調器3と周波数シフタ6に接続されている。パルス変調器3は光サーキュレータ4に接続されている。光サーキュレータ4は送受光学系5と光カプラ7に接続されている。光カプラ7は周波数シフタ6と光受信機8に接続されている。光受信機8はA/D変換器9に接続されている。A/D変換器9は信号処理部10に接続されている。制御部11は、A/D変換器9、信号処理部10およびパルス変調器3に接続されている。   In FIG. 1, a light source 1 is connected to an optical distributor 2, and the optical distributor 2 is connected to a pulse modulator 3 and a frequency shifter 6. The pulse modulator 3 is connected to the optical circulator 4. The optical circulator 4 is connected to a transmission / reception optical system 5 and an optical coupler 7. The optical coupler 7 is connected to the frequency shifter 6 and the optical receiver 8. The optical receiver 8 is connected to the A / D converter 9. The A / D converter 9 is connected to the signal processing unit 10. The control unit 11 is connected to the A / D converter 9, the signal processing unit 10, and the pulse modulator 3.

また図1において、光源1と光分配器2との間、光分配器2とパルス変調器3との間、パルス変調器3と光サーキュレータ4との間、光サーキュレータ4と送受光学系5との間、光サーキュレータ4と光カプラ7との間、光分配器2と周波数シフタ6との間、周波数シフタ6と光カプラ7との間、および光カプラ7と光受信機8との間は、全て光回路接続されており(太線で示す)、たとえば光ファイバにより接続されている。また、光受信機8とA/D変換器9との間、A/D変換器9と信号処理部10との間、制御部11とA/D変換器9との間、制御部11と信号処理部10との間、制御部11とパルス変調器3との間は、全て電気回路により接続されている(細線で示す)。   In FIG. 1, between the light source 1 and the optical distributor 2, between the optical distributor 2 and the pulse modulator 3, between the pulse modulator 3 and the optical circulator 4, and between the optical circulator 4 and the transmission / reception optical system 5. Between the optical circulator 4 and the optical coupler 7, between the optical distributor 2 and the frequency shifter 6, between the frequency shifter 6 and the optical coupler 7, and between the optical coupler 7 and the optical receiver 8. Are all connected by optical circuits (indicated by thick lines), for example, by optical fibers. Also, between the optical receiver 8 and the A / D converter 9, between the A / D converter 9 and the signal processing unit 10, between the control unit 11 and the A / D converter 9, and between the control unit 11 and The signal processing unit 10 and the control unit 11 and the pulse modulator 3 are all connected by an electric circuit (indicated by a thin line).

制御部11は、パルス変調器3に対し変調信号を、A/D変換器9と信号処理部10に対しトリガ信号を、各々送信する。光源1は、単一周波数からなるCW光を送信する。光分配器2は、光源からの光を2分して一方をパルス変調器3に、他の一方を周波数シフタ6に、各々送る。パルス変調器3は、入力された光信号に対し制御部11からの変調信号に基づいてパルス変調をかける。周波数シフタ6は、入力された光信号に所定の周波数シフトを与える。   The control unit 11 transmits a modulation signal to the pulse modulator 3 and a trigger signal to the A / D converter 9 and the signal processing unit 10. The light source 1 transmits CW light having a single frequency. The light distributor 2 divides the light from the light source into two and sends one to the pulse modulator 3 and the other to the frequency shifter 6. The pulse modulator 3 applies pulse modulation to the input optical signal based on the modulation signal from the control unit 11. The frequency shifter 6 gives a predetermined frequency shift to the input optical signal.

光サーキュレータ4は、パルス変調器3からの光信号を送受光学系5に送り、送受光学系5からの光信号を光カプラ7に送る。送受光学系5は、光サーキュレータ4からの光信号を大気中に送信し、大気中からの散乱光を受信光として受信して光サーキュレータ4に送る。光カプラ7は、周波数シフタ6および光サーキュレータ4からの光信号を合波して光受信機8に送る。光受信機8は光カプラ7からの光信号をヘテロダイン検波により電気信号に変換して、受信信号としてA/D変換器9に送る。   The optical circulator 4 sends the optical signal from the pulse modulator 3 to the transmission / reception optical system 5 and sends the optical signal from the transmission / reception optical system 5 to the optical coupler 7. The transmission / reception optical system 5 transmits an optical signal from the optical circulator 4 to the atmosphere, receives scattered light from the atmosphere as reception light, and transmits the received light to the optical circulator 4. The optical coupler 7 combines the optical signals from the frequency shifter 6 and the optical circulator 4 and sends them to the optical receiver 8. The optical receiver 8 converts the optical signal from the optical coupler 7 into an electrical signal by heterodyne detection, and sends it to the A / D converter 9 as a received signal.

A/D変換器9は、制御部11からのトリガ信号が入力されると同時に上記受信信号をA/D変換し、信号処理部10に送る。信号処理部10は制御部11からのトリガ信号に同期してA/D変換器9からの受信信号を信号処理し、風速のレーザビーム送受信方向における距離依存性を計測する。   The A / D converter 9 performs A / D conversion on the received signal simultaneously with the input of the trigger signal from the control unit 11, and sends it to the signal processing unit 10. The signal processing unit 10 processes the reception signal from the A / D converter 9 in synchronization with the trigger signal from the control unit 11, and measures the distance dependency of the wind speed in the laser beam transmission / reception direction.

なお、図1において、上記周波数シフタ6による周波数シフトは、ヘテロダイン検波して得られる電気信号にIF周波数を乗せ、ドップラー周波数シフトの正負を識別することを目的として配置されているが、周波数シフタ6を図1に示した位置から除き、パルス変調器3に周波数シフタ6を用いてこれに変調信号を送ることで、周波数シフタ6をパルス変調器3として機能させることもできる。上記非特許文献1では、この構成をとっている。   In FIG. 1, the frequency shift by the frequency shifter 6 is arranged for the purpose of identifying the positive or negative of the Doppler frequency shift by placing the IF frequency on the electric signal obtained by heterodyne detection. 1 can be removed from the position shown in FIG. 1, and the frequency shifter 6 can be made to function as the pulse modulator 3 by using the frequency shifter 6 to the pulse modulator 3 and sending a modulation signal thereto. In the said nonpatent literature 1, this structure is taken.

次に、図1のレーザレーダ装置の動作について説明する。まず、制御部11は、パルス変調器3に対し、所定のパルス幅と繰り返し周期からなる変調信号を送信するとともに、A/D変換器9および信号処理部10に対し、上記変調信号に同期したトリガ信号を送信する。これと並行し、光源1からは単一周波数からなるCW光信号を送信し、この光信号を光分配器2により分配した後、一方をパルス変調器3に、他の一方を周波数シフタ6に送る。   Next, the operation of the laser radar device of FIG. 1 will be described. First, the control unit 11 transmits a modulation signal having a predetermined pulse width and repetition period to the pulse modulator 3 and synchronizes with the modulation signal to the A / D converter 9 and the signal processing unit 10. Send a trigger signal. In parallel with this, a CW optical signal having a single frequency is transmitted from the light source 1, and after this optical signal is distributed by the optical distributor 2, one is supplied to the pulse modulator 3 and the other is supplied to the frequency shifter 6. send.

次に、パルス変調器3において、制御部11からの変調信号に基づいて入力されたCW光信号をパルス化する。このパルス化された光信号を光サーキュレータ4、送受光学系5を介し大気中に送信する。大気中に送信された光信号は、大気中に浮遊するエアロゾル等の散乱体により散乱され、この散乱光が送受光学系5により受信光として受信される。この際、エアロゾル等の散乱体が風に乗って移動しているため、受信光には風速に相当するドップラー周波数シフトが生じている。上記受信光は、送受光学系5、光サーキュレータ4を介し光カプラ7に送られる。光カプラ7では、周波数シフタ6からのローカル光と上記受信光とを合波した後、光受信機8に送る。   Next, in the pulse modulator 3, the CW optical signal input based on the modulation signal from the control unit 11 is pulsed. This pulsed optical signal is transmitted to the atmosphere via the optical circulator 4 and the transmission / reception optical system 5. The optical signal transmitted to the atmosphere is scattered by a scatterer such as aerosol floating in the atmosphere, and this scattered light is received by the transmission / reception optical system 5 as reception light. At this time, since a scatterer such as aerosol moves on the wind, a Doppler frequency shift corresponding to the wind speed occurs in the received light. The received light is sent to the optical coupler 7 via the transmission / reception optical system 5 and the optical circulator 4. In the optical coupler 7, the local light from the frequency shifter 6 and the received light are combined and sent to the optical receiver 8.

光受信機8では、上記ローカル光と上記受信光とをヘテロダイン検波して電気信号領域である受信信号に変換する。このとき、受信信号の周波数は、風速に相当するドップラー周波数シフトと同じ値となる。次に、A/D変換器9において、トリガ信号を受けると同時に光受信機8からの受信信号のA/D変換を開始し、このデジタル信号を信号処理部10に送る。   In the optical receiver 8, the local light and the received light are subjected to heterodyne detection and converted into a received signal which is an electric signal region. At this time, the frequency of the received signal has the same value as the Doppler frequency shift corresponding to the wind speed. Next, the A / D converter 9 starts the A / D conversion of the received signal from the optical receiver 8 simultaneously with receiving the trigger signal, and sends this digital signal to the signal processing unit 10.

信号処理部10では、トリガ信号を受けとるのに同期して信号処理を開始する。この信号処理について以降において説明する。図2は、信号処理において距離ごとのドップラースペクトルを求める動作の模式図を示すものである。信号処理ではまず、受信したデジタル信号に対し、距離分解能に相当する時間幅でゲートをかけ、分割する((a)の時間サンプル)。距離分解能をΔL、ゲート番号をn(=1,2,・・・N)とすると、各ゲートは距離ΔL×nに相当する。   The signal processing unit 10 starts signal processing in synchronization with receiving the trigger signal. This signal processing will be described below. FIG. 2 shows a schematic diagram of an operation for obtaining a Doppler spectrum for each distance in signal processing. In the signal processing, the received digital signal is first gated and divided (time sample (a)) with a time width corresponding to the distance resolution. When the distance resolution is ΔL and the gate number is n (= 1, 2,... N), each gate corresponds to a distance ΔL × n.

次に、分割した各々のゲートのデジタル信号に対しFFTをかけ、距離ごとの受信スペクトルを求める((b)の受信スペクトル)。次に、各受信スペクトルに関し、ピーク強度の検出を行い、この強度から、受信S/N比を求める。この受信S/N比に関しては、受信光がない場合の雑音のみのスペクトルにおける周波数軸上における強度の標準偏差を求めておき、この標準偏差に対する上記ピーク強度の比として求めればよい。   Next, the divided digital signal of each gate is subjected to FFT to obtain a reception spectrum for each distance (reception spectrum of (b)). Next, the peak intensity is detected for each received spectrum, and the received S / N ratio is obtained from this intensity. Regarding the received S / N ratio, the standard deviation of the intensity on the frequency axis in the spectrum of only noise when there is no received light is obtained, and the ratio of the peak intensity to the standard deviation may be obtained.

上記受信S/N比導出を各距離(各ゲート)に関し行い、横軸を距離、縦軸を受信S/N比とした、受信S/N比距離依存性を求める。この受信S/N比距離依存性を図3に模式的に示す。このとき、図3に示すように一般的に、近距離領域では受信S/N比が高く、遠距離領域になるにつれ受信S/N比が低下していく傾向となる。   The reception S / N ratio derivation is performed for each distance (each gate), and the reception S / N ratio distance dependency is obtained with the horizontal axis representing the distance and the vertical axis representing the reception S / N ratio. This reception S / N ratio distance dependency is schematically shown in FIG. At this time, as shown in FIG. 3, generally, the reception S / N ratio is high in the short-distance region, and the reception S / N ratio tends to decrease as the region becomes a long-distance region.

次に、予め設定した受信S/N比に関する閾値と、上記受信S/N比距離依存性とを比較し、上記閾値よりも受信S/N比が高い領域を高S/N比領域、上記閾値よりも受信S/N比が低い領域を低S/N比領域、として区別する。   Next, a threshold value relating to a reception S / N ratio set in advance is compared with the reception S / N ratio distance dependency, and a region having a reception S / N ratio higher than the threshold value is a high S / N ratio region, A region having a reception S / N ratio lower than the threshold is distinguished as a low S / N ratio region.

次に、上述の高S/N比領域に関し、風速検出を行う。この検出は従来と同じく、受信スペクトル上における予め設定した固定の風速検出範囲全体においてピーク検出を行い、このピークの周辺に関する重心演算を行う等、このピークを利用して風速検出を行う。この風速検出処理を行うのは、受信S/N比が高いゲートに対してのみ行っているので、ピーク検出における検出範囲を、受信スペクトル上における予め設定した固定の風速検出範囲全体として広くとったとしても、信号ピークを正確に検出することができる。   Next, wind speed detection is performed for the above-described high S / N ratio region. In the same manner as in the prior art, the peak speed is detected in the entire fixed wind speed detection range set in advance on the reception spectrum, and the center of gravity is calculated for the periphery of this peak. Since this wind speed detection process is performed only for the gate having a high reception S / N ratio, the detection range in the peak detection is wide as the entire fixed wind speed detection range set in advance on the reception spectrum. However, the signal peak can be accurately detected.

次に、高S/N比領域に関する風速検出結果から、この領域における風速の距離依存性を求める。風速の距離依存性を模式的に示したものを図4に示す。このとき、風速の距離に対する変動は、一般的に連続的なものであるが、風速場全体の乱れの程度に応じて、図4に示すように不規則な値をとる。   Next, the distance dependence of the wind speed in this region is obtained from the wind speed detection result for the high S / N ratio region. FIG. 4 schematically shows the distance dependence of the wind speed. At this time, the fluctuation of the wind speed with respect to the distance is generally continuous, but takes an irregular value as shown in FIG. 4 according to the degree of disturbance of the entire wind speed field.

次に、図4の風速の距離依存性を分析し、隣り合うゲート(距離)間における風速の標準偏差を求める。この標準偏差は、風速場全体の乱れの程度に相当するパラメータであり、高S/N比領域における最も遠距離に相当するゲートと、これと隣り合う低S/N比領域に相当するゲートとの間において、現在の風の乱れの状態では統計的にどれだけの風速差が生じうるか、ということを示す値となる。この値を後述の低S/N比領域での信号処理において、先見情報として利用する。   Next, the distance dependence of the wind speed in FIG. 4 is analyzed, and the standard deviation of the wind speed between adjacent gates (distances) is obtained. This standard deviation is a parameter corresponding to the degree of turbulence of the entire wind velocity field, and a gate corresponding to the farthest distance in the high S / N ratio region and a gate corresponding to the low S / N ratio region adjacent thereto. In the meantime, a value indicating how much the wind speed difference can be statistically generated in the current wind turbulence state. This value is used as look-ahead information in signal processing in the low S / N ratio region described later.

次に、上述の低S/N比領域に関し、風速検出を行う。この検出では、まず、高S/N比領域における最も遠距離に相当するゲートと、これと隣り合う低S/N比領域のゲートに着目する。後者の受信スペクトルにおいては、前者の風速検出値を中心として、上記標準偏差の幅の範囲に、ピーク検出範囲を限定し、この限定された範囲の中でピーク検出を行う。ピーク検出した後は、重心演算等高S/N比領域でのものと同じ方法で風速を検出する。   Next, wind speed detection is performed for the above-described low S / N ratio region. In this detection, attention is first paid to the gate corresponding to the longest distance in the high S / N ratio region and the gate in the low S / N ratio region adjacent thereto. In the latter received spectrum, the peak detection range is limited to the range of the standard deviation with the former wind speed detection value as the center, and the peak detection is performed within this limited range. After the peak detection, the wind speed is detected by the same method as that in the high S / N ratio region such as the gravity center calculation.

この低S/N比領域のゲートよりもさらに遠距離に相当する低S/N比領域のゲートに関しては、隣り合うゲートの内、近距離側のゲートにおける風速検出結果と上記標準偏差に基づいて、順次遠距離側に風速検出を行っていけばよい。   With respect to the gate in the low S / N ratio region corresponding to a far distance from the gate in the low S / N ratio region, based on the wind speed detection result and the standard deviation in the adjacent gate among the adjacent gates. Then, the wind speed may be detected sequentially on the long distance side.

以上に述べた本発明の実施の形態1に係わるレーザレーダ装置では、信号処理において従来とは異なり、受信S/N比を高S/N比領域と低S/N比領域に区別して異なる処理により風速検出を行っている。特に、低S/N比領域の信号処理において、高S/N比領域での確度の高い風速検出値と、その距離依存性から求めた乱れの程度とを先見情報として、受信スペクトルにおける検出範囲に限定をかけることで、受信スペクトルにおける誤検出を回避する確率を上げることができる。   In the laser radar apparatus according to the first embodiment of the present invention described above, in the signal processing, unlike the conventional case, the reception S / N ratio is differentiated into a high S / N ratio region and a low S / N ratio region. Is used to detect the wind speed. In particular, in the signal processing in the low S / N ratio region, the detection range in the reception spectrum using the wind speed detection value with high accuracy in the high S / N ratio region and the degree of disturbance obtained from the distance dependence as the foresight information. By limiting to the above, it is possible to increase the probability of avoiding erroneous detection in the reception spectrum.

図5は、この誤検出の回避に関する効果を示す図であり、高S/N比領域での受信スペクトルと、それと隣り合う低S/N比領域での受信スペクトルとを、模式的に示している。実線が高S/N比レンジの受信スペクトル、破線が隣接する低S/N比レンジの受信スペクトルを示す。この図において、低S/N比領域での受信スペクトルでは(破線で示す)、信号ピークよりも高い雑音ピークが生じており、受信スペクトル上の全風速検出範囲についてピーク検出を行うと、この雑音ピークを検出してしまうこととなる。しかし、本発明の実施の形態1に示した信号処理を行えば、図5に示す限定された範囲についてのみピーク検出を行うので、信号ピークを正しく検出することが可能となる。   FIG. 5 is a diagram showing an effect related to avoiding this false detection, schematically showing a reception spectrum in a high S / N ratio region and a reception spectrum in a low S / N ratio region adjacent thereto. Yes. A solid line indicates a reception spectrum with a high S / N ratio range, and a broken line indicates an adjacent reception spectrum with a low S / N ratio range. In this figure, in the received spectrum in the low S / N ratio region (indicated by a broken line), a noise peak higher than the signal peak occurs, and this noise is detected when peak detection is performed for the entire wind speed detection range on the received spectrum. A peak will be detected. However, if the signal processing shown in the first embodiment of the present invention is performed, peak detection is performed only for the limited range shown in FIG. 5, so that signal peaks can be detected correctly.

なお、以上に述べた本発明の実施の形態1に係わるレーザレーダ装置では、高S/N比領域において、隣り合うゲート(距離)間における風速の標準偏差を求め、これを先見情報として、低S/N比領域での処理に利用していた。この先見情報は、上記とは別の処理により求めても良い。これについて次に説明する。   In the laser radar apparatus according to the first embodiment of the present invention described above, the standard deviation of the wind speed between adjacent gates (distances) is obtained in the high S / N ratio region, and this is used as foresight information as a low-profile information. It was used for processing in the S / N ratio region. This foresight information may be obtained by a process different from the above. This will be described next.

高S/N比領域における風速の距離依存性をさらに詳細に分析し、横軸をゲート間の距離差、縦軸をゲート間の風速差の標準偏差としたグラフを作成する。次に、このグラフに対しモデル式を用いてフィッティングをかける。モデル式には、例えば、大気中の乱れに関する一般式であるコルモゴロフ風速場に基づいた次式(1)を用いればよい。   The distance dependence of the wind speed in the high S / N ratio region is analyzed in more detail, and a graph is created with the horizontal axis representing the distance difference between the gates and the vertical axis representing the standard deviation of the wind speed difference between the gates. Next, fitting is performed on this graph using a model formula. For example, the following equation (1) based on the Kolmogorov wind velocity field, which is a general equation related to turbulence in the atmosphere, may be used as the model equation.

σ=√(9/20)・ε1/3・D1/3 (1) σ 1 = √ (9/20) · ε 1/3 · D 1/3 (1)

ここで、εは渦消散係数(m/s)、Dはゲート間の距離差、である。εが風速場の乱れの程度を示すパラメータである。式(1)を上記グラフに対しフィッティングした模式図を図6に示す。図6のフィッティング結果から、隣り合うゲート間における風速差の標準偏差を、次式(2)により求めればよい。 Here, ε is a vortex dissipation coefficient (m 2 / s 3 ), and D is a distance difference between the gates. ε is a parameter indicating the degree of disturbance of the wind speed field. FIG. 6 shows a schematic diagram obtained by fitting Equation (1) to the above graph. From the fitting result of FIG. 6, the standard deviation of the wind speed difference between adjacent gates may be obtained by the following equation (2).

σ=√(9/20)・ε1/3・ΔL1/3 (2) σ 2 = √ (9/20) · ε 1/3 · ΔL 1/3 (2)

実施の形態2.
次に、本発明の実施の形態2に係わるレーザレーダ装置について、図7〜図8を用いて説明する。実施の形態1においては、風速場の乱れの程度を、高S/N比領域における風速の距離依存性から求めた。これに対し本実施の形態2においては、上記乱れの程度を、高S/N比領域における受信スペクトルの形状から求める。
Embodiment 2. FIG.
Next, a laser radar apparatus according to Embodiment 2 of the present invention will be described with reference to FIGS. In the first embodiment, the degree of turbulence in the wind speed field is obtained from the distance dependence of the wind speed in the high S / N ratio region. On the other hand, in the second embodiment, the degree of the disturbance is obtained from the shape of the reception spectrum in the high S / N ratio region.

図7は、高S/N比領域における受信スペクトルの模式図である。実線が乱流弱、破線が乱流中、一点鎖線が乱流強の状態を示す。図7から分かるように、受信スペクトルは、風速場の乱れの程度に応じて拡がりを持ち、乱れが強くなるにつれて拡がりが大きくなる。   FIG. 7 is a schematic diagram of a reception spectrum in a high S / N ratio region. A solid line indicates a weak turbulent flow, a broken line indicates a turbulent flow, and a one-dot chain line indicates a strong turbulent flow. As can be seen from FIG. 7, the reception spectrum has a spread according to the degree of disturbance of the wind speed field, and the spread increases as the disturbance becomes stronger.

次に、本発明の実施の形態2に係わるレーザレーダ装置の動作について説明する。高S/N比領域における風速検出までの動作に関しては、本発明の実施の形態1に係わるものと同じである。   Next, the operation of the laser radar device according to the second embodiment of the present invention will be described. The operation up to wind speed detection in the high S / N ratio region is the same as that according to the first embodiment of the present invention.

次に、本実施の形態2のレーザレーダ装置では、高S/N比領域における1つ以上の受信スペクトルに着目し、この受信スペクトルもしくはこれらを積算したスペクトルから、参照スペクトルを生成する。   Next, in the laser radar device of the second embodiment, attention is paid to one or more reception spectra in the high S / N ratio region, and a reference spectrum is generated from this reception spectrum or a spectrum obtained by integrating these.

次に、低S/N比領域における信号処理について説明する。低S/N比領域に関する受信スペクトルに対しては、まず、上記参照スペクトルとの相関演算を行うマッチング処理を行う。このマッチング処理により、受信スペクトル上から、上記参照スペクトルと最も類似の特徴を持つ成分を浮き上がらせる。このマッチング処理を行った結果に対しピーク検出を行い、このピークを利用して風速検出を行う。   Next, signal processing in the low S / N ratio region will be described. For the received spectrum related to the low S / N ratio region, first, matching processing for performing a correlation operation with the reference spectrum is performed. By this matching process, the component having the most similar characteristic to the reference spectrum is raised from the received spectrum. Peak detection is performed on the result of this matching processing, and wind speed detection is performed using this peak.

図8は、このマッチング処理の効果について模式的に示したものである。図8の(a)は高S/N比領域でのスペクトルから生成した参照スペクトル、(b)は低S/N比領域での受信スペクトル、(c)にマッチング処理後のスペクトルを示す。図8において、元の受信スペクトルでは信号ピークよりも大きい雑音ピークが生じているため、このままピーク検出を行うと誤検出となるが、マッチング処理後のスペクトルでは信号成分が浮かび上がっており、ピーク検出により信号を正しく検出できることとなる。   FIG. 8 schematically shows the effect of this matching process. 8A shows a reference spectrum generated from a spectrum in a high S / N ratio region, FIG. 8B shows a received spectrum in a low S / N ratio region, and FIG. 8C shows a spectrum after matching processing. In FIG. 8, since a noise peak larger than the signal peak is generated in the original reception spectrum, if the peak detection is performed as it is, a false detection occurs. However, in the spectrum after the matching process, the signal component is highlighted and the peak detection is performed. Thus, the signal can be correctly detected.

なお、上述した本発明の実施の形態2に係わるレーザレーダ装置では、参照スペクトルを高S/N比領域における受信スペクトルから求めていたが、このスペクトルの幅を計測してこの幅をもつ左右対称なスペクトルを別途参照用として生成してもよい。   In the above-described laser radar device according to the second embodiment of the present invention, the reference spectrum is obtained from the received spectrum in the high S / N ratio region. However, the width of this spectrum is measured and symmetrical with this width. A separate spectrum may be separately generated for reference.

本発明によるレーザレーダ装置の構成の一例を模式的に示す図である。It is a figure which shows typically an example of a structure of the laser radar apparatus by this invention. 本発明の実施の形態1に係るレーザレーダ装置での信号処理動作を説明するための図である。It is a figure for demonstrating the signal processing operation | movement with the laser radar apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るレーザレーダ装置での信号処理動作を説明するための図である。It is a figure for demonstrating the signal processing operation | movement with the laser radar apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るレーザレーダ装置での信号処理動作を説明するための図である。It is a figure for demonstrating the signal processing operation | movement with the laser radar apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るレーザレーダ装置での信号処理動作を説明するための図である。It is a figure for demonstrating the signal processing operation | movement with the laser radar apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るレーザレーダ装置での信号処理動作を説明するための図である。It is a figure for demonstrating the signal processing operation | movement with the laser radar apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係るレーザレーダ装置での信号処理動作を説明するための図である。It is a figure for demonstrating the signal processing operation | movement with the laser radar apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係るレーザレーダ装置での信号処理動作を説明するための図である。It is a figure for demonstrating the signal processing operation | movement with the laser radar apparatus which concerns on Embodiment 2 of this invention. 従来の受信S/N比が低い場合の誤検出を説明するための図である。It is a figure for demonstrating the erroneous detection in case the conventional receiving S / N ratio is low.

符号の説明Explanation of symbols

1 光源、2 光分配器、3 パルス変調器、4 光サーキュレータ、5 送受光学系、6 周波数シフタ、7 光カプラ、8 光受信機、9 A/D変換器、10 信号処理部、11 制御部。   DESCRIPTION OF SYMBOLS 1 Light source, 2 Optical distributor, 3 Pulse modulator, 4 Optical circulator, 5 Transmission / reception optical system, 6 Frequency shifter, 7 Optical coupler, 8 Optical receiver, 9 A / D converter, 10 Signal processing part, 11 Control part .

Claims (3)

単一周波数からなるレーザ光を大気中に対し送受し、ヘテロダイン検波により得られた受信信号を信号処理して風速検出を行うレーザレーダ装置において、
受信信号を信号処理して風速検出を行う信号処理部が、
受信信号にレーザレーダ装置からの距離に従って分割するようにゲートをかけて分割し、分割した各々の受信信号に対してFFTを行って得られた受信スペクトルから受信S/N比の距離依存性を求める手段と、
前記受信S/N比の距離依存性に基づき検出対象領域を高S/N比領域と低S/N比領域に区別する手段と、
前記高S/N比領域での受信スペクトルから求めた情報に基づいて先見情報を得て、この先見情報を用いて前記低S/N比領域での受信スペクトルに対する処理を行い、前記低S/N比領域での風速検出を行う手段と、
を備えたことを特徴とするレーザレーダ装置。
In a laser radar device that transmits and receives a laser beam having a single frequency to the atmosphere, performs signal processing on a reception signal obtained by heterodyne detection, and detects wind speed,
A signal processing unit that detects the wind speed by processing the received signal,
The received signal is divided by applying a gate so as to be divided according to the distance from the laser radar device, and the distance dependency of the received S / N ratio is obtained from the received spectrum obtained by performing FFT on each of the divided received signals. Means to seek,
Means for distinguishing a detection target region into a high S / N ratio region and a low S / N ratio region based on the distance dependency of the reception S / N ratio;
The foresight information is obtained based on the information obtained from the received spectrum in the high S / N ratio region, and the received spectrum in the low S / N ratio region is processed using the foresight information, and the low S / N Means for detecting wind speed in the N ratio region;
A laser radar device comprising:
前記高S/N比領域での受信スペクトルから求めた情報が、風速の距離依存性であり、前記先見情報が、前記風速の距離依存性から求めた、隣り合うゲート間の風速差の標準偏差であり、前記標準偏差に基づいて、低S/N比領域の受信スペクトルにおいて風速検出を行うことを特徴とする請求項1に記載のレーザレーダ装置。   The information obtained from the received spectrum in the high S / N ratio region is the wind speed distance dependence, and the foresight information is the standard deviation of the wind speed difference between adjacent gates obtained from the wind speed distance dependence. The laser radar apparatus according to claim 1, wherein wind speed detection is performed in a reception spectrum in a low S / N ratio region based on the standard deviation. 前記高S/N比領域での受信スペクトルから求めた情報が、受信スペクトルの拡がりであり、前記先見情報が、前記受信スペクトルの拡がりから求めた参照スペクトルであり、前記参照スペクトルを利用して、低S/N比領域の受信スペクトルにマッチング処理を行い、このマッチング処理後のスペクトルにおいて風速検出を行うことを特徴とする請求項1に記載のレーザレーダ装置。   The information obtained from the received spectrum in the high S / N ratio region is a spread of the received spectrum, and the foresight information is a reference spectrum obtained from the spread of the received spectrum, and using the reference spectrum, 2. The laser radar apparatus according to claim 1, wherein matching processing is performed on a reception spectrum in a low S / N ratio region, and wind speed is detected in the spectrum after the matching processing.
JP2008001972A 2008-01-09 2008-01-09 Laser radar equipment Active JP5197023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008001972A JP5197023B2 (en) 2008-01-09 2008-01-09 Laser radar equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008001972A JP5197023B2 (en) 2008-01-09 2008-01-09 Laser radar equipment

Publications (2)

Publication Number Publication Date
JP2009162678A true JP2009162678A (en) 2009-07-23
JP5197023B2 JP5197023B2 (en) 2013-05-15

Family

ID=40965452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008001972A Active JP5197023B2 (en) 2008-01-09 2008-01-09 Laser radar equipment

Country Status (1)

Country Link
JP (1) JP5197023B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300133A (en) * 2008-06-11 2009-12-24 Japan Aerospace Exploration Agency Airborne optical remote air current measuring apparatus
JP2010230613A (en) * 2009-03-30 2010-10-14 Japan Aerospace Exploration Agency Optical type remote airflow measuring instrument
WO2014002564A1 (en) 2012-06-25 2014-01-03 三菱電機株式会社 Wind measurement coherent lidar device
WO2014024508A1 (en) * 2012-08-08 2014-02-13 三菱電機株式会社 Radar device
WO2014045627A1 (en) 2012-09-24 2014-03-27 三菱電機株式会社 Coherent lidar device and laser radar device
WO2015052839A1 (en) 2013-10-11 2015-04-16 三菱電機株式会社 Wind measurement lidar device
CN106526615A (en) * 2016-10-26 2017-03-22 中国科学院武汉物理与数学研究所 Atmospheric Mie-Rayleigh scattering wind-measurement laser radar and inversion method
WO2017175297A1 (en) * 2016-04-05 2017-10-12 三菱電機株式会社 Laser radar device
EP3296765A4 (en) * 2015-05-12 2018-12-26 Mitsubishi Electric Corporation Laser radar device and wind speed observation method
WO2019008670A1 (en) 2017-07-04 2019-01-10 三菱電機株式会社 Laser radar device
WO2019130472A1 (en) 2017-12-27 2019-07-04 三菱電機株式会社 Laser radar device
CN112327319A (en) * 2020-11-09 2021-02-05 之江实验室 Solid-state laser radar detection method and system based on cyclic frequency shift ring
WO2021024759A1 (en) * 2019-08-08 2021-02-11 国立研究開発法人宇宙航空研究開発機構 Remote airstream observation device, remote airstream observation method, and program
JPWO2020261391A1 (en) * 2019-06-25 2021-10-28 三菱電機株式会社 Signal processing equipment, signal processing method and radar equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001159636A (en) * 1999-12-02 2001-06-12 Mitsubishi Electric Corp Wind profiler device and wind velocity vector calculation method
JP2002048866A (en) * 2000-08-01 2002-02-15 Mitsubishi Electric Corp Device and method for detecting air turbulence
WO2003100458A1 (en) * 2002-05-29 2003-12-04 Mitsubishi Denki Kabushiki Kaisha Laser doppler radar apparatus
JP2004347540A (en) * 2003-05-26 2004-12-09 National Institute Of Information & Communication Technology Method, program, and device for signal processing in wind profiler
JP2007085756A (en) * 2005-09-20 2007-04-05 Mitsubishi Electric Corp Laser radar device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001159636A (en) * 1999-12-02 2001-06-12 Mitsubishi Electric Corp Wind profiler device and wind velocity vector calculation method
JP2002048866A (en) * 2000-08-01 2002-02-15 Mitsubishi Electric Corp Device and method for detecting air turbulence
WO2003100458A1 (en) * 2002-05-29 2003-12-04 Mitsubishi Denki Kabushiki Kaisha Laser doppler radar apparatus
JP2004347540A (en) * 2003-05-26 2004-12-09 National Institute Of Information & Communication Technology Method, program, and device for signal processing in wind profiler
JP2007085756A (en) * 2005-09-20 2007-04-05 Mitsubishi Electric Corp Laser radar device

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300133A (en) * 2008-06-11 2009-12-24 Japan Aerospace Exploration Agency Airborne optical remote air current measuring apparatus
JP2010230613A (en) * 2009-03-30 2010-10-14 Japan Aerospace Exploration Agency Optical type remote airflow measuring instrument
JP5868504B2 (en) * 2012-06-25 2016-02-24 三菱電機株式会社 Wind measurement coherent rider device
WO2014002564A1 (en) 2012-06-25 2014-01-03 三菱電機株式会社 Wind measurement coherent lidar device
US9599714B2 (en) 2012-06-25 2017-03-21 Mitsubishi Electric Corporation Wind measurement coherent lidar
WO2014024508A1 (en) * 2012-08-08 2014-02-13 三菱電機株式会社 Radar device
JPWO2014024508A1 (en) * 2012-08-08 2016-07-25 三菱電機株式会社 Radar equipment
US9804265B2 (en) 2012-08-08 2017-10-31 Mitsubushi Electric Corporation Radar device
CN104662440A (en) * 2012-09-24 2015-05-27 三菱电机株式会社 Coherent lidar device and laser radar device
WO2014045627A1 (en) 2012-09-24 2014-03-27 三菱電機株式会社 Coherent lidar device and laser radar device
US9618530B2 (en) 2012-09-24 2017-04-11 Mitsubishi Electric Corporation Laser radar device
WO2015052839A1 (en) 2013-10-11 2015-04-16 三菱電機株式会社 Wind measurement lidar device
US9971035B2 (en) 2013-10-11 2018-05-15 Mitsubishi Electric Corporation Wind measurement lidar
US10175346B2 (en) 2015-05-12 2019-01-08 Mitsubishi Electric Corporation Laser radar apparatus and wind velocity observation method
EP3296765A4 (en) * 2015-05-12 2018-12-26 Mitsubishi Electric Corporation Laser radar device and wind speed observation method
CN108885261A (en) * 2016-04-05 2018-11-23 三菱电机株式会社 Laser radar apparatus
JPWO2017175297A1 (en) * 2016-04-05 2018-09-20 三菱電機株式会社 Laser radar equipment
WO2017175297A1 (en) * 2016-04-05 2017-10-12 三菱電機株式会社 Laser radar device
EP3428685A4 (en) * 2016-04-05 2019-04-17 Mitsubishi Electric Corporation Laser radar device
CN108885261B (en) * 2016-04-05 2022-03-29 三菱电机株式会社 Laser radar device
US11112502B2 (en) 2016-04-05 2021-09-07 Mitsubishi Electric Corporation Laser radar system
CN106526615A (en) * 2016-10-26 2017-03-22 中国科学院武汉物理与数学研究所 Atmospheric Mie-Rayleigh scattering wind-measurement laser radar and inversion method
CN106526615B (en) * 2016-10-26 2019-04-26 中国科学院武汉物理与数学研究所 Atmosphere rice-Rayleigh scattering anemometry laser radar and inversion method
WO2019008670A1 (en) 2017-07-04 2019-01-10 三菱電機株式会社 Laser radar device
US11899112B2 (en) 2017-07-04 2024-02-13 Mitsubishi Electric Corporation Laser radar device
WO2019130472A1 (en) 2017-12-27 2019-07-04 三菱電機株式会社 Laser radar device
US11327176B2 (en) 2017-12-27 2022-05-10 Mitsubishi Electric Corporation Laser radar device
JP7042975B2 (en) 2019-06-25 2022-03-28 三菱電機株式会社 Signal processing equipment, signal processing methods and radar equipment
JPWO2020261391A1 (en) * 2019-06-25 2021-10-28 三菱電機株式会社 Signal processing equipment, signal processing method and radar equipment
JP2021025976A (en) * 2019-08-08 2021-02-22 国立研究開発法人宇宙航空研究開発機構 Remote airflow observation device, remote airflow observation method, and program
WO2021024759A1 (en) * 2019-08-08 2021-02-11 国立研究開発法人宇宙航空研究開発機構 Remote airstream observation device, remote airstream observation method, and program
JP7336134B2 (en) 2019-08-08 2023-08-31 国立研究開発法人宇宙航空研究開発機構 Remote airflow observation device, remote airflow observation method and program
CN112327319B (en) * 2020-11-09 2023-12-19 之江实验室 Solid-state laser radar detection method and system based on cyclic frequency shift ring
CN112327319A (en) * 2020-11-09 2021-02-05 之江实验室 Solid-state laser radar detection method and system based on cyclic frequency shift ring

Also Published As

Publication number Publication date
JP5197023B2 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
JP5197023B2 (en) Laser radar equipment
JP6560165B2 (en) Radar equipment
JP5881099B2 (en) Colored noise reduction method and device for optical remote airflow measurement device
JP6244862B2 (en) Laser radar equipment
US20160299216A1 (en) Axial misalignment determination apparatus
JP5235737B2 (en) Pulse Doppler radar device
WO2019187056A1 (en) Velocity measurement device, velocity measurement program, recording medium, and velocity measurement method
KR101188285B1 (en) Method and apparatus for detecting moving target
JP2010230613A (en) Optical type remote airflow measuring instrument
JP2019109179A (en) Object detection device for vehicle
JP5436652B1 (en) Vehicle periphery monitoring device and vehicle periphery monitoring method
JP5595238B2 (en) Radar equipment
CN113009432B (en) Method, device and equipment for improving measurement accuracy and target detection accuracy
JP2009276248A (en) Laser radar device
KR20140064489A (en) Target recognition based on track information
Wassaf et al. Wake Vortex Tangential Velocity Adaptive Spectral (TVAS) algorithm for pulsed Lidar systems.
JP5553970B2 (en) Radar equipment
JP6177008B2 (en) Radar equipment
JP6610224B2 (en) Bistatic active sonar device and its receiver
KR101670474B1 (en) Optics mechanism and method operating the same
JP2016125945A (en) Radar signal processor and radar device
JP2007315951A (en) Pulse radar device
JP5636974B2 (en) Radar signal processing device, radar device, and radar signal processing method
JPWO2020079775A1 (en) Distance measuring device and distance measuring method
JP5586217B2 (en) Radar equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5197023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250