JP2006283176A - Water-cooled steel pipe structure having excellent corrosion resistance and wear resistance, and method for producing the same - Google Patents

Water-cooled steel pipe structure having excellent corrosion resistance and wear resistance, and method for producing the same Download PDF

Info

Publication number
JP2006283176A
JP2006283176A JP2005108232A JP2005108232A JP2006283176A JP 2006283176 A JP2006283176 A JP 2006283176A JP 2005108232 A JP2005108232 A JP 2005108232A JP 2005108232 A JP2005108232 A JP 2005108232A JP 2006283176 A JP2006283176 A JP 2006283176A
Authority
JP
Japan
Prior art keywords
alloy
steel pipe
water
pipe structure
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005108232A
Other languages
Japanese (ja)
Other versions
JP4546867B2 (en
Inventor
Yoshiaki Azuma
佳昭 四阿
Hideki Hamaya
秀樹 濱谷
Yasumasa Yamanaka
康聖 山中
Keisuke Okuhara
圭介 奥原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005108232A priority Critical patent/JP4546867B2/en
Publication of JP2006283176A publication Critical patent/JP2006283176A/en
Application granted granted Critical
Publication of JP4546867B2 publication Critical patent/JP4546867B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water-cooled steel pipe structure having excellent corrosion resistance and wear resistance to atmospheres of high temperature corrosion, erosion wear and dew point corrosion, e.g., in converter exhaust gas treatment equipment of a steel making workshop. <P>SOLUTION: A film material obtained by blending an Ni-based self-fluxing alloy comprising, by mass, 10 to 20% Cr, 2 to 4.5% B, 2 to 5% Si, 0.4 to 1.1% C, ≤5% Fe, ≤1% Co, ≤4% Mo and ≤4% Cu, and the balance Ni with an Ni-based alloy comprising 20 to 23% Cr, 8 to 10% Mo, 2 to 7% Fe and 1 to 4% (Nb+Ta), and the balance Ni with inevitable impurities by 10 to 90% is thermally sprayed on the surface of a water-cooled steel pipe structure, and remelting treatment is performed, so as to form a film. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、製鋼工場の転炉における排ガス処理設備や発電所のボイラ設備において、塩素等を含有する高温の排ガスやダストによる高温腐食および摩耗に対して長期間の耐久性を有する水冷鋼管構造体に関する。   The present invention relates to a water-cooled steel pipe structure that has long-term durability against high-temperature corrosion and wear due to high-temperature exhaust gas and dust containing chlorine and the like in an exhaust gas treatment facility in a converter of a steelmaking factory and a boiler facility in a power plant. About.

製鋼工場における転炉の排ガス処理設備においては、高温の排ガスの顕熱と排ガスに含まれる熱源としての有用成分を回収するために、図1に示すようにスカート2・下部フード3・上部フード4・集塵ダクト5等の名称の水冷鋼管構造体が構成されている。
これらの水冷鋼管構造体は、使用中にCl等の成分を含有する高温排ガスによる高温腐食と、溶鋼および副原料として投入される各種鉱石などから吹錬中に発生するダストの衝突により著しいエロージョン摩耗が発生する。
In an exhaust gas treatment facility for a converter in a steelmaking factory, a skirt 2, a lower hood 3, and an upper hood 4 as shown in FIG. 1 are used to recover sensible heat of high-temperature exhaust gas and useful components as a heat source contained in the exhaust gas. -A water-cooled steel pipe structure having a name such as the dust collection duct 5 is formed.
These water-cooled steel pipe structures have significant erosion wear due to high-temperature corrosion caused by high-temperature exhaust gas containing components such as Cl during use and collision of dust generated during blowing from molten steel and various ores that are added as auxiliary materials. Will occur.

また、樹脂類が混在する鉄スクラップや副原料から発生するClやSなどによる腐食性ガスおよび高温酸化による高温腐食、さらに間欠式操業の繰り返しによる熱疲労も発生する。これらの高温腐食、摩耗や熱疲労により、鋼管構造体が減肉損耗や亀裂により損傷して、管構造体の管内に流れる冷却用の水や水蒸気が漏れ出すと、熱回収が不能となるばかりでなく高温の溶鋼と漏洩水との反応で水蒸気爆発を起こし、重大事故が発生する可能性がある。
上記の状況に鑑み、定期的に設備を停止して水冷鋼管構造体の高温排ガス接触面の補修が行われており、生産性の低下要因になっていた。
In addition, corrosive gases such as Cl and S generated from iron scrap and auxiliary materials mixed with resins, high-temperature corrosion due to high-temperature oxidation, and thermal fatigue due to repeated intermittent operation also occur. If the steel pipe structure is damaged by thinning wear and cracks due to these high-temperature corrosion, wear and thermal fatigue, and cooling water and water vapor flowing into the pipe of the pipe structure leaks out, heat recovery becomes impossible. Otherwise, a steam explosion may occur due to the reaction between high-temperature molten steel and leaked water, resulting in a serious accident.
In view of the above situation, the facility was periodically stopped to repair the high-temperature exhaust gas contact surface of the water-cooled steel pipe structure, which was a factor in reducing productivity.

これらの問題を解決するために、特許文献1において、水冷鋼管の表面に炭化物サーメットを溶射施工した上に、MCrAlX合金を溶射することによって、耐熱性と耐摩耗性に優れた被覆を形成する方法が提案されている。
特許文献2では、冷却管などの基材表面に耐熱金属もしくはその合金あるいは炭化物サーメットの下地溶射皮膜を形成し、必要に応じて多孔状無機質皮膜を塗布した上に、クロム酸とリン酸を主成分とするシール剤を塗布し乾燥後、加熱焼成して、ガラス質酸化クロム皮膜を上層に形成してなる複合溶射部材が提案されている。
特許文献3においては、冷却管の壁面にNi基、Co基などの自溶性合金粉末を高圧・高速ガス溶射法にて皮膜を形成し、再溶融させて壁面に溶着させることによる保護皮膜の形成方法が提案されている。
特開平7−18320号公報 特許第3039850号公報 特開2005−8921号公報
In order to solve these problems, in Patent Document 1, a method of forming a coating excellent in heat resistance and wear resistance by spraying carbide cermet on the surface of a water-cooled steel pipe and then spraying MCrAlX alloy. Has been proposed.
In Patent Document 2, a base sprayed coating of a refractory metal or its alloy or carbide cermet is formed on the surface of a substrate such as a cooling pipe, and a porous inorganic coating is applied as necessary, and then chromic acid and phosphoric acid are mainly used. There has been proposed a composite sprayed member in which a sealing agent as a component is applied, dried and then heated and fired to form a glassy chromium oxide film as an upper layer.
In Patent Document 3, a protective film is formed by forming a film of a self-fluxing alloy powder such as Ni-base or Co-base on the wall surface of a cooling pipe by high-pressure, high-speed gas spraying, and re-melting it to adhere to the wall surface. A method has been proposed.
Japanese Patent Laid-Open No. 7-18320 Japanese Patent No. 3039850 JP 2005-8921 A

しかしながら、上記技術には以下のような課題がある。
特許文献1および特許文献2に記載されている技術においては、溶射皮膜の形成にはガス溶射、高速ガス溶射、プラズマ溶射などの溶射法が用いられるが、いずれの皮膜も基材である水冷鋼管表面と溶射皮膜との密着機構が機械的な投錨効果によるものであり、基材との密着性が不充分で、使用中に短期間で剥離する問題がある。
また、特許文献3に記載されている技術による皮膜は、排ガスによる高温腐食に対して耐久性が不充分である。また高圧・超高速溶射ガンによる溶射と再溶融処理を組み合わせた方法であるため、コストが高いという問題もある。
However, the above technique has the following problems.
In the techniques described in Patent Document 1 and Patent Document 2, thermal spraying methods such as gas spraying, high-speed gas spraying, and plasma spraying are used for forming the sprayed coating. The adhesion mechanism between the surface and the thermal spray coating is due to the mechanical anchoring effect, and the adhesion with the substrate is insufficient, and there is a problem of peeling in a short period during use.
Moreover, the coating film by the technique described in Patent Document 3 has insufficient durability against high temperature corrosion caused by exhaust gas. In addition, since this method combines spraying with a high-pressure / ultra-high-speed spray gun and remelting treatment, there is also a problem of high cost.

本発明は、上記課題に鑑み、塩素等を含有する高温の排ガスやダストによる高温腐食および摩耗に対して長期間の耐久性を有する皮膜を形成し、製鋼工場の転炉における排ガス処理設備や発電所のボイラー設備において、長期間の稼働を可能とし、メンテナンス費用の低減、稼働率向上を達成する水冷鋼管構造体を提供することを目的としている。   In view of the above problems, the present invention forms a film having long-term durability against high-temperature corrosion and wear caused by high-temperature exhaust gas and dust containing chlorine, etc. The purpose of this plant is to provide a water-cooled steel pipe structure that enables long-term operation of boiler facilities, reduces maintenance costs, and improves operating rates.

上記目的を達成するため、本発明者は、塩素等を含有する高温の排ガスやダストによる高温腐食、および高温域での摩耗に対して耐久性のある被膜について広く研究を行った。これにより、基材との密着性および耐摩耗性の双方が高い材質は自溶性合金であること、また、塩素等を含有する高温の排ガスやダストによる高温腐食に対して耐食性が高いのは、特定の組成のNi合金であることを見いだし、種々の溶射被膜を試作、評価の結果本発明を完成させるに至った。   In order to achieve the above object, the present inventor has extensively studied a coating film that is durable against high temperature exhaust gas containing chlorine or the like, high temperature corrosion due to dust, and wear in a high temperature range. As a result, the material having both high adhesion and wear resistance to the base material is a self-fluxing alloy, and the high corrosion resistance against high temperature exhaust gas containing chlorine or the like and high temperature corrosion due to dust is As a result of finding a Ni alloy having a specific composition and making various thermal sprayed coatings and evaluating them, the present invention has been completed.

本発明は上記の知見を基になされたものであって、その要旨は以下のとおりである。
(1)質量で、
Cr=10〜20%、 B =2〜4.5%、
Si=2〜5%、 C =0.4〜1.1%、
残部Niの合金であるNi基の自溶性合金に、質量で、
Cr=20〜23%、 Mo=8〜10%、
Fe=2〜7%、 (Nb+Ta)=1〜4%、
残部Niおよび不可避の不純物からなるNi基合金を、質量で10〜90%配合した材料を溶射材料とし、この溶射材料を基材に溶射し、再溶融処理して形成された被膜を有することを特徴とする耐食性と耐摩耗性に優れた水冷鋼管構造体の製造方法。
(2)自溶性合金に配合された前記Ni基合金が、質量で、
Cr=20〜23%、 Mo=8〜10%、
Fe=2〜7%、
残部Niおよび不可避の不純物からなる合金であることを特徴とする前記(1)に記載の耐食性と耐摩耗性に優れた水冷鋼管構造体の製造方法。
(3)自溶性合金に配合された前記Ni基合金が、質量で、
Cr=14〜17%、 Mo=15〜17%、
W =3〜5%、 Fe=4〜7%、
残部Niおよび不可避の不純物からなる合金であることを特徴とする前記(1)に記載の耐食性と耐摩耗性に優れた水冷鋼管構造体の製造方法。
The present invention has been made on the basis of the above findings, and the gist thereof is as follows.
(1) By mass
Cr = 10 to 20%, B = 2 to 4.5%,
Si = 2-5%, C = 0.4-1.1%,
In the Ni-based self-fluxing alloy which is the remaining Ni alloy,
Cr = 20-23%, Mo = 8-10%,
Fe = 2-7%, (Nb + Ta) = 1-4%,
A material containing 10 to 90% by mass of the remaining Ni and an inevitable impurity Ni-based alloy is used as a thermal spray material, and the thermal spray material is sprayed on a base material and has a film formed by remelting treatment. A method for producing a water-cooled steel pipe structure having excellent corrosion resistance and wear resistance.
(2) The Ni-based alloy blended in the self-fluxing alloy is, by mass,
Cr = 20-23%, Mo = 8-10%,
Fe = 2 to 7%,
The method for producing a water-cooled steel pipe structure having excellent corrosion resistance and wear resistance as described in (1) above, wherein the alloy is composed of the balance Ni and inevitable impurities.
(3) The Ni-based alloy blended in the self-fluxing alloy is, by mass,
Cr = 14-17%, Mo = 15-17%,
W = 3-5%, Fe = 4-7%,
The method for producing a water-cooled steel pipe structure having excellent corrosion resistance and wear resistance as described in (1) above, wherein the alloy is composed of the balance Ni and inevitable impurities.

(4)質量で、
Cr=10〜20%、 B =2〜4.5%、
Si=2〜5%、 C =0.4〜1.1%、
残部Niの合金であるNi基の自溶性合金を基材に下層被膜として溶射し、その被覆の表面に、Ni基の前記自溶性合金に、質量で、
Cr=20〜23%、 Mo=8〜10%、
Fe=2〜7%、 (Nb+Ta)=1〜4%、
残部Niおよび不可避の不純物からなる合金を質量で10〜90%配合した材料を上層被膜の溶射材料とし、この溶射材料を1層あるいはそれ以上の層になるように溶射し、再溶融処理して形成された被膜を有することを特徴とする耐食性と耐摩耗性に優れた水冷鋼管構造体の製造方法。
(5)自溶性合金に配合された前記Ni基合金が、質量で、
Cr=20〜23%、 Mo=8〜10%、
Fe=2〜7%、
残部Niおよび不可避の不純物からなる合金であることを特徴とする前記(4)に記載の耐食性と耐摩耗性に優れた水冷鋼管構造体の製造方法。
(6)自溶性合金に配合された前記Ni基合金が、質量で、
Cr=14〜17%、 Mo=15〜17%、
W =3〜5%、 Fe=4〜7%、
残部Niおよび不可避の不純物からなる合金であることを特徴とする前記(4)に記載の耐食性と耐摩耗性に優れた水冷鋼管構造体の製造方法。
(7)Ni基の自溶性合金が、質量でさらに、
Fe=5%以下、 Co=1%以下、
Mo=4%以下、 Cu=4%以下
の1種または2種以上を含有することを特徴とする前記(1)または(4)に記載の耐食性と耐摩耗性に優れた水冷鋼管構造体の製造方法。
(4) By mass,
Cr = 10 to 20%, B = 2 to 4.5%,
Si = 2-5%, C = 0.4-1.1%,
The Ni-based self-fluxing alloy, which is the remaining Ni alloy, is sprayed as a lower layer coating on the base material, and the Ni-based self-fluxing alloy is mass-coated on the surface of the coating.
Cr = 20-23%, Mo = 8-10%,
Fe = 2-7%, (Nb + Ta) = 1-4%,
A material in which the alloy composed of the balance Ni and inevitable impurities is blended in an amount of 10 to 90% is used as a thermal spray material for the upper coating, and this thermal spray material is sprayed to form one or more layers and remelted. A method for producing a water-cooled steel pipe structure having excellent corrosion resistance and wear resistance, comprising a formed coating.
(5) The Ni-based alloy blended in the self-fluxing alloy is, by mass,
Cr = 20-23%, Mo = 8-10%,
Fe = 2 to 7%,
The method for producing a water-cooled steel pipe structure having excellent corrosion resistance and wear resistance as described in (4) above, wherein the alloy is composed of the balance Ni and inevitable impurities.
(6) The Ni-based alloy blended in the self-fluxing alloy is, by mass,
Cr = 14-17%, Mo = 15-17%,
W = 3-5%, Fe = 4-7%,
The method for producing a water-cooled steel pipe structure having excellent corrosion resistance and wear resistance as described in (4) above, wherein the alloy is composed of the balance Ni and inevitable impurities.
(7) The Ni-based self-fluxing alloy further has a mass,
Fe = 5% or less, Co = 1% or less,
The water-cooled steel pipe structure having excellent corrosion resistance and wear resistance according to the above (1) or (4), characterized by containing one or more of Mo = 4% or less and Cu = 4% or less Production method.

(8)質量で、
Cr=10〜20%、 B =2〜4.5%、
Si=2〜5%、 C =0.4〜1.1%、
残部Niの合金であるNi基の自溶性合金中に、質量で、
Cr=20〜23%、 Mo=8〜10%、
Fe=2〜7%、 (Nb+Ta)=1〜4%、
残部Niおよび不可避の不純物からなるNi基合金を質量で10〜90%が分散して含まれる被膜を有することを特徴とする耐食性と耐摩耗性に優れた水冷鋼管構造体。
(9)自溶性合金に分散して含まれる前記Ni基合金が、質量で、
Cr=20〜23%、 Mo=8〜10%、
Fe=2〜7%、
残部Niおよび不可避の不純物からなる合金であることを特徴とする前記(8)に記載の耐食性と耐摩耗性に優れた水冷鋼管構造体。
(10)自溶性合金に分散して含まれる前記Ni基合金が、質量で、
Cr=14〜17%、 Mo=15〜17%、
W =3〜5%、 Fe=4〜7%、
残部Niおよび不可避の不純物からなる合金であることを特徴とする前記(8)に記載の耐食性と耐摩耗性に優れた水冷鋼管構造体。
(8) By mass,
Cr = 10 to 20%, B = 2 to 4.5%,
Si = 2-5%, C = 0.4-1.1%,
In a Ni-based self-fluxing alloy that is an alloy of the balance Ni, by mass,
Cr = 20-23%, Mo = 8-10%,
Fe = 2-7%, (Nb + Ta) = 1-4%,
A water-cooled steel pipe structure excellent in corrosion resistance and wear resistance, characterized by having a coating containing 10 to 90% of a Ni-based alloy consisting of the balance Ni and inevitable impurities dispersed in mass.
(9) The Ni-based alloy dispersed and contained in the self-fluxing alloy is, by mass,
Cr = 20-23%, Mo = 8-10%,
Fe = 2 to 7%,
The water-cooled steel pipe structure having excellent corrosion resistance and wear resistance as described in (8) above, which is an alloy comprising the remaining Ni and inevitable impurities.
(10) The Ni-based alloy dispersed and contained in the self-fluxing alloy is, by mass,
Cr = 14-17%, Mo = 15-17%,
W = 3-5%, Fe = 4-7%,
The water-cooled steel pipe structure having excellent corrosion resistance and wear resistance as described in (8) above, which is an alloy comprising the remaining Ni and inevitable impurities.

(11)質量で、
Cr=10〜20%、 B =2〜4.5%、
Si=2〜5%、 C =0.4〜1.1%、
残部Niの合金であるNi基の自溶性合金の下層被膜と、前記自溶性合金中に、質量で、 Cr=20〜23%、 Mo=8〜10%、
Fe=2〜7%、 (Nb+Ta)=1〜4%、
残部Niおよび不可避の不純物からなるNi基合金を質量で10〜90%が分散して含まれる上層被膜と、を有することを特徴とする耐食性と耐摩耗性に優れた水冷鋼管構造体。(12)上層被膜として自溶性合金に分散して含まれる前記Ni基合金が、質量で、
Cr=20〜23%、 Mo=8〜10%、
Fe=2〜7%、
残部Niおよび不可避の不純物からなる合金であることを特徴とする前記(11)に記載の耐食性と耐摩耗性に優れた水冷鋼管構造体。
(13)上層被膜として自溶性合金に分散して含まれる前記Ni基合金が、質量で、
Cr=14〜17%、 Mo=15〜17%、
W =3〜5%、 Fe=4〜7%、
残部Niおよび不可避の不純物からなる合金であることを特徴とする前記(11)に記載の耐食性と耐摩耗性に優れた水冷鋼管構造体。
(14)Ni基の自溶性合金が、質量%でさらに、
Fe=5%以下、 Co=1%以下、
Mo=4%以下、 Cu=4%以下
の1種または2種以上を含有することを特徴とする前記(8)または(11)に記載の耐食性と耐摩耗性に優れた水冷鋼管構造体。
(11) By mass,
Cr = 10 to 20%, B = 2 to 4.5%,
Si = 2-5%, C = 0.4-1.1%,
In the lower layer coating of the Ni-based self-fluxing alloy that is the remaining Ni alloy, and in the self-fluxing alloy, Cr = 20 to 23%, Mo = 8 to 10%,
Fe = 2-7%, (Nb + Ta) = 1-4%,
A water-cooled steel pipe structure excellent in corrosion resistance and wear resistance, comprising an upper layer film containing 10 to 90% of a Ni-based alloy composed of the balance Ni and inevitable impurities dispersed therein. (12) The Ni-based alloy dispersed and contained in the self-fluxing alloy as the upper layer coating is, by mass,
Cr = 20-23%, Mo = 8-10%,
Fe = 2 to 7%,
The water-cooled steel pipe structure having excellent corrosion resistance and wear resistance as described in (11) above, which is an alloy composed of the remaining Ni and inevitable impurities.
(13) The Ni-based alloy dispersed and contained in the self-fluxing alloy as the upper layer coating is, by mass,
Cr = 14-17%, Mo = 15-17%,
W = 3-5%, Fe = 4-7%,
The water-cooled steel pipe structure having excellent corrosion resistance and wear resistance as described in (11) above, which is an alloy composed of the remaining Ni and inevitable impurities.
(14) The Ni-based self-fluxing alloy is further in mass%,
Fe = 5% or less, Co = 1% or less,
The water-cooled steel pipe structure having excellent corrosion resistance and wear resistance as described in (8) or (11) above, which contains one or more of Mo = 4% or less and Cu = 4% or less.

本発明によれば、塩素等を含有する高温の排ガスやダストによる高温腐食および摩耗に対して長期間の耐久性を有する被膜を形成し、製鋼工場の転炉における排ガス処理設備や発電所のボイラー設備において、長期間の稼働を可能とし、メンテナンス費用の低減、稼働率向上を達成することができ、産業上の貢献が顕著である。   According to the present invention, a coating film having a long-term durability against high-temperature corrosion and wear due to high-temperature exhaust gas or dust containing chlorine or the like is formed, and an exhaust gas treatment facility in a converter of a steelmaking factory or a boiler of a power plant Equipment can be operated for a long period of time, maintenance costs can be reduced, and the operating rate can be improved.

本発明者は、塩素等を含有する高温の排ガスやダストによる高温腐食、および高温域での摩耗に対して耐久性のある皮膜を提供する目的で、種々の材料を試作評価し、基材との密着性および耐摩耗性の双方が高く、かつ塩素等を含有する高温の排ガスやダストによる高温腐食に対して耐食性が高いのは、Ni基の自溶性合金に、特定の組成のNi合金を質量で10〜90%配合した材料を溶射し再溶融処理して形成した被膜であることを見いだした。
以下、本発明の実施の形態について詳細に説明する。
The present inventor evaluated various materials on a trial basis for the purpose of providing a coating that is durable against high temperature exhaust gas and dust containing high temperature corrosion caused by chlorine and the like, and wear in a high temperature range. Both high adhesion and wear resistance, and high corrosion resistance against high temperature exhaust gas and dust containing chlorine, etc., are based on Ni-based self-fluxing alloys and Ni alloys with a specific composition. It was found that the film was formed by thermal spraying and remelting a material containing 10 to 90% by mass.
Hereinafter, embodiments of the present invention will be described in detail.

本発明は、Ni基の自溶性合金に、Ni基の特定の組成の合金を質量で10〜90%配合した材料を溶射した後、再溶融処理して形成した被膜を有する水冷鋼管構造体である。 上記特性の組成のNi基合金とは、下記の3種類である。
なお、以下の記述でNi基合金とは、下記の2種類の組成の合金を示すものとする。
(1)質量で、Cr=20〜23%、Mo=8〜10%、Fe=2〜7%、(Nb+Ta)=1〜4%、残部Niの合金。
(2)質量で、Cr=20〜23%、Mo=8〜10%、Fe=2〜7%、残部Niの合金。
上記合金の具体的な好ましい組成例は、
インコネル(登録商標)625:Bal Ni-9Mo-21.5Cr-2.5Fe-3.7Nb (単位は質量%)
である。
(3)質量で、Cr=14〜17%、Mo=15〜17%、W=3〜5%、Fe=4〜7%、残部Niの合金。
上記合金の具体的な好ましい組成例は、
ハステロイ(登録商標)C276:Bal Ni-16Mo-16Cr-4W-5Fe-0.005C-0.05Si (単位は質量%)
である。
上記Ni基合金は、塩素等を含有する高温の排ガスやダストによる高温腐食に対して極めて耐食性に優れる。しかし、硬度はHV200程度であり、飛散ダストの衝突によるエロージョン摩耗に対しては十分な耐摩耗性を有していない。
The present invention is a water-cooled steel pipe structure having a coating formed by spraying a material in which a Ni-based self-fluxing alloy is blended with an alloy having a specific composition of Ni-based by 10 to 90% by mass and then remelting. is there. The Ni-based alloys having the composition having the above characteristics are the following three types.
In the following description, the Ni-based alloy refers to an alloy having the following two types of compositions.
(1) An alloy of Cr = 20-23%, Mo = 8-10%, Fe = 2-7%, (Nb + Ta) = 1-4% and the balance Ni by mass.
(2) An alloy of Cr = 20-23%, Mo = 8-10%, Fe = 2-7% and the balance Ni by mass.
Specific preferred composition examples of the above alloys are:
Inconel (registered trademark) 625: Bal Ni-9Mo-21.5Cr-2.5Fe-3.7Nb (unit: mass%)
It is.
(3) Alloy of Cr = 14-17%, Mo = 15-17%, W = 3-5%, Fe = 4-7%, balance Ni by mass.
Specific preferred composition examples of the above alloys are:
Hastelloy (registered trademark) C276: Bal Ni-16Mo-16Cr-4W-5Fe-0.005C-0.05Si (unit: mass%)
It is.
The Ni-based alloy is extremely excellent in corrosion resistance against high-temperature corrosion caused by high-temperature exhaust gas or dust containing chlorine or the like. However, the hardness is about HV200, and it does not have sufficient wear resistance against erosion wear caused by collision of scattered dust.

Ni基自溶性合金は、NiとCrの共晶組成を基に、B、Si等を添加した合金であり、溶射後、940〜1100℃程度で加熱して再溶融処理を行い、基材と被膜との密着面を冶金的結合状態とし密着力を向上させることができる溶射材である。JIS H8303規格において、再溶融後の被膜の硬度に応じて、規格記号SFNi1〜SFNi5の5種類の組成が定められている。
Ni基自溶性合金の組成は、
質量で、Cr=10〜20%、B=2〜4.5%、Si=2〜5%、C=0.4〜1.1%、Fe=5%以下(0%を含む)、Co=1%以下(0%を含む)、Mo=4%以下(0%を含む)、Cu=4%以下(0%を含む)、残部Niの合金である。
The Ni-based self-fluxing alloy is an alloy in which B, Si, etc. are added based on the eutectic composition of Ni and Cr, and after thermal spraying, it is heated at about 940 to 1100 ° C. and re-melted, It is a thermal spray material that can improve the adhesion by bringing the adhesion surface with the coating into a metallurgical bonding state. In the JIS H8303 standard, five types of compositions of standard symbols SFNi1 to SFNi5 are defined according to the hardness of the film after remelting.
The composition of the Ni-based self-fluxing alloy is
By mass, Cr = 10 to 20%, B = 2 to 4.5%, Si = 2 to 5%, C = 0.4 to 1.1%, Fe = 5% or less (including 0%), Co = 1% or less (including 0%), Mo = 4% or less (including 0%), Cu = 4% or less (including 0%), and the balance Ni.

本発明の水冷鋼管構造体の被膜においては、上記Ni基自溶性合金のうち、被膜の硬度が高く再溶融処理も容易なSFNi4が好ましい組成である。
SFNi4の具体的な組成は、
Cr=12〜17%、B=2.5〜4.0%、Si=3.5〜5.0%、C=0.4〜0.9%、Fe=5%以下(0%を含む)、Co=1%以下(0%を含む)、Mo=4%以下(0%を含む)、Cu=4%以下(0%を含む)、残部Niである。
しかしながら、本発明に用いるNi基自溶性合金の組成は、上記SFNi4に限定されるものではない。
なお、上記Ni基自溶性合金の組成において、Fe,Co,Mo及びCuは任意添加元素であり、それぞれに「0を含む」と表現した。
In the coating of the water-cooled steel pipe structure according to the present invention, among the Ni-based self-fluxing alloys, SFNi4 having a high coating hardness and easy remelting treatment is a preferred composition.
The specific composition of SFNi4 is
Cr = 12-17%, B = 2.5-4.0%, Si = 3.5-5.0%, C = 0.4-0.9%, Fe = 5% or less (including 0%) ), Co = 1% or less (including 0%), Mo = 4% or less (including 0%), Cu = 4% or less (including 0%), and the balance Ni.
However, the composition of the Ni-based self-fluxing alloy used in the present invention is not limited to the above SFNi4.
In the composition of the Ni-based self-fluxing alloy, Fe, Co, Mo, and Cu are arbitrarily added elements, and each of them is expressed as “including 0”.

Ni基合金の被膜を基材に形成するための溶射法としては、ガス溶射法、アーク溶射法、プラズマ溶射法等が用いられるが、本発明の被膜においては、安価で作業が容易な粉末ガス溶射法で十分に目的を達成することができる。
ガス溶射では一般に被膜に気孔が多く見られ、溶射ままでは緻密な被膜が得られ難いが、本発明におけるNi基自溶性合金を含有する溶射被膜では、溶射の後に再溶融処理を行うため、被膜内の気孔が消滅し、同時に基材との間に冶金的結合が生じるため、緻密であり基材との密着性の極めて高く高硬度の被膜の形成が可能である。
As a thermal spraying method for forming a Ni-based alloy coating on a substrate, a gas spraying method, an arc spraying method, a plasma spraying method, or the like is used. In the coating of the present invention, a powder gas that is inexpensive and easy to work with. The objective can be sufficiently achieved by the thermal spraying method.
In gas spraying, there are generally many pores in the coating, and it is difficult to obtain a dense coating if sprayed as it is. However, in the sprayed coating containing the Ni-based self-fluxing alloy in the present invention, re-melting treatment is performed after spraying. The inner pores disappear, and at the same time, metallurgical bonding occurs with the base material, so that it is possible to form a coating film that is dense and has extremely high adhesion to the base material and high hardness.

本発明においては、Ni基自溶性合金に、上記の3種類のうちいずれかのNi基合金を質量で10〜90%配合して溶射材料とし、この溶射材料を基材に溶射し、再溶融処理を施すことにより、塩素等を含有する高温の排ガスやダストによる高温腐食に対する耐食性および飛散ダストの衝突によるエロージョンに対する耐摩耗性を兼ね備えた被膜を形成することが可能である。   In the present invention, the Ni-based self-fluxing alloy is blended with 10 to 90% by mass of any of the above three types of Ni-based alloys to form a thermal spray material, and this thermal spray material is sprayed onto the base material and remelted. By performing the treatment, it is possible to form a film having both corrosion resistance against high-temperature corrosion caused by high-temperature exhaust gas and dust containing chlorine and the like, and wear resistance against erosion caused by collision of scattered dust.

次に、本発明の被膜の形態を、図2を参照して説明する。
図2(a)は、本発明により形成された水冷鋼管構造体の被膜の1形態を示す断面図である。基材6の表面に密着したNi基自溶性合金7中にNi基合金8の粒子が分散した構造となっている。
このNi基合金8の粒子は微細であるほど被膜材の均質性が高く、好ましいが、1mm以下であれば充分な性能を発揮することを確認している。通常、上記粒子径は溶射粉末の粒径で決まる。溶射のために好適な粒子径は10μm以上100μm以下の範囲であるが、多くは10μm以上50μm以下の粒径範囲の溶射粉末が使用される。これにより本発明の方法で形成された被膜中のNi基合金8の粒子径は10μm以上1mm未満の範囲となる。
Next, the form of the film of the present invention will be described with reference to FIG.
Fig.2 (a) is sectional drawing which shows 1 form of the film of the water-cooled steel pipe structure formed by this invention. The structure is such that the Ni-based alloy 8 particles are dispersed in the Ni-based self-fluxing alloy 7 in close contact with the surface of the substrate 6.
The finer the particles of the Ni-based alloy 8 are, the higher the homogeneity of the coating material is, and it is preferable, but it has been confirmed that sufficient performance is exhibited if it is 1 mm or less. Usually, the particle size is determined by the particle size of the thermal spray powder. The particle size suitable for thermal spraying is in the range of 10 μm or more and 100 μm or less, but in many cases, a thermal spray powder having a particle size range of 10 μm or more and 50 μm or less is used. Thereby, the particle diameter of the Ni-based alloy 8 in the film formed by the method of the present invention is in the range of 10 μm or more and less than 1 mm.

この被膜は、Ni基自溶性合金7に対するNi基合金8の配合率を変化させることにより、耐食性および耐摩耗性を制御することが容易である。耐摩耗性を重視した特性の被膜を得るためには、Ni基合金8の配合率を質量で10〜50%とすることが望ましい。また耐食性を重視した特性の被膜を得るためには、同配合率を質量で30〜90%とすることが望ましい。
被膜の膜厚は、腐食しろ、および摩耗しろの点では、厚いほど有利であるが、過度に厚い場合には、基材の変形の影響や熱衝撃、内外表面の温度差によって被膜の割れや剥離が発生しやすくなる。以上の理由で膜厚は再溶融後の状態で100μm〜3mmとすることが望ましい。
This coating can easily control the corrosion resistance and wear resistance by changing the blending ratio of the Ni-based alloy 8 to the Ni-based self-fluxing alloy 7. In order to obtain a coating film with a focus on wear resistance, it is desirable that the mixing ratio of the Ni-based alloy 8 is 10 to 50% by mass. Further, in order to obtain a film having a characteristic with an emphasis on corrosion resistance, it is desirable that the mixing ratio is 30 to 90% by mass.
The thicker the film, the more advantageous it is in terms of corrosion and wear, but if it is too thick, it may cause cracking of the film due to the influence of deformation of the substrate, thermal shock, or temperature difference between the inner and outer surfaces. Peeling is likely to occur. For the above reasons, it is desirable that the film thickness be 100 μm to 3 mm after remelting.

図2(b)は、本発明により形成された水冷鋼管構造体の被膜の他の1形態を示す断面図である。基材6の表層にまずNi基自溶性合金のみの下層被膜9を形成し、表面に(a)に示す被膜と同じ形態の被膜を被覆した構造となっている。
下層被膜は基材と本発明の被膜との密着性をより向上させる役割を有する。下層被膜は表面に、耐食性を重視した特性の被膜、すなわちNi基自溶性合金にNi基合金を質量で30〜90%配合した成分の被膜を形成する際に、より好ましい。
下層被膜の厚みは薄くて良く、10μm〜1mm程度が好ましい。また表面の被膜の厚みは、下層被膜とあわせて(a)の場合と同様に再溶融後の状態で100μm〜3mmとすることが望ましい。
FIG.2 (b) is sectional drawing which shows another one form of the film of the water-cooled steel pipe structure formed by this invention. First, a lower layer film 9 made only of a Ni-based self-fluxing alloy is formed on the surface layer of the substrate 6, and the surface is coated with a film having the same form as the film shown in FIG.
A lower layer film has a role which improves the adhesiveness of a base material and the film of this invention more. The lower layer coating is more preferable when forming a coating on the surface with a characteristic that emphasizes corrosion resistance, that is, a coating of a component in which a Ni-based self-fluxing alloy is blended by 30 to 90% by mass with a Ni-based alloy.
The thickness of the lower layer film may be thin, and is preferably about 10 μm to 1 mm. The thickness of the coating on the surface is desirably 100 μm to 3 mm in the state after remelting in the same manner as in the case of (a) together with the lower layer coating.

以下、実施例により本発明をさらに具体的に説明する。
本発明の被膜の特性を他の被膜と比較して評価した結果を表1、表2を参照して説明する。
本発明の被膜材としては、Ni基自溶性合金SFNi4にNi基合金インコネル(登録商標)625を質量40%配合したものを普通鋼の基材に粉末ガス溶射にて溶射し、再溶融処理を施したものを用いた。比較材としては、Ni自溶性合金はSFNi4の単体をガス溶射し再溶融処理を施したもの、Ni−Cr(50%/50%)のプラズマ溶射品、CrC/NiCrの高速ガス溶射品およびインコネル(登録商標)625の溶接肉盛品を用いた。
Hereinafter, the present invention will be described more specifically with reference to examples.
The results of evaluating the properties of the coating of the present invention in comparison with other coatings will be described with reference to Tables 1 and 2.
As the coating material of the present invention, a Ni-based self-fluxing alloy SFNi4 mixed with 40% by mass of Ni-based alloy Inconel (registered trademark) 625 is sprayed on a normal steel base material by powder gas spraying, and then remelted. What was given was used. As comparative materials, a Ni self-fluxing alloy is obtained by gas spraying a single body of SFNi4 and remelting, a plasma sprayed product of Ni-Cr (50% / 50%), a high-speed gas sprayed product of CrC / NiCr, and Inconel (Registered trademark) 625 weld overlay was used.

表1は腐食灰浸漬試験法により、耐高温腐食性を比較評価した結果を示す。腐食灰浸漬試験は、Clを1%含有する集塵ダスト中に試験片を埋没させ、密閉後400℃の温度に加熱し、4MPaの圧縮力を与えて300時間保持し、試験後の試験片溶損量を測定した。
溶損比率とは、ボイラー溶鋼管SB410の溶損量を100%とした比率を表す。
試験の結果、本発明の被膜およびインコネル(登録商標)625はボイラー用鋼管単体の1/25〜1/100の良好な耐食性を示した。
Table 1 shows the results of comparative evaluation of high-temperature corrosion resistance by the corrosive ash immersion test method. In the corrosive ash immersion test, a test piece is immersed in dust collection dust containing 1% of Cl, and after sealing, heated to a temperature of 400 ° C., applied with a compressive force of 4 MPa, and maintained for 300 hours. The amount of erosion was measured.
The erosion ratio represents a ratio in which the amount of erosion of the boiler molten steel pipe SB410 is 100%.
As a result of the test, the coating of the present invention and Inconel (registered trademark) 625 showed a good corrosion resistance of 1/25 to 1/100 of the boiler steel pipe alone.

Figure 2006283176
Figure 2006283176

表2はエロージョン摩耗試験により、耐摩耗性を比較評価した結果を示す。エロージョン摩耗試験は、HV470のスチールグリッドを90m/秒の速度の圧縮空気ノズルから試験片の表面に投射した。ノズルと試験片表面中心点との距離は30mmで、投射角度は45度である。
摩耗率は、一定時間投射後の試験片の被膜重量減で摩耗重量を求め、試験時間内に投射したスチールグリッドの重量で除して求めた。
試験の結果、本発明の被膜および自溶性合金単体被膜はボイラー用鋼管の摩耗量の1/40〜1/100の良好な耐摩耗性を示した。
以上の評価結果から、本発明の被膜は耐食性及び耐摩耗性の双方において、最も良好な性能を有することが判明した。
Table 2 shows the results of comparative evaluation of wear resistance by erosion wear test. In the erosion abrasion test, a steel grid of HV470 was projected from the compressed air nozzle at a speed of 90 m / sec onto the surface of the test piece. The distance between the nozzle and the test piece surface center point is 30 mm, and the projection angle is 45 degrees.
The wear rate was determined by calculating the wear weight by reducing the coating weight of the test piece after projecting for a certain period of time and dividing by the weight of the steel grid projected during the test time.
As a result of the test, the coating of the present invention and the self-fluxing alloy single coating showed good wear resistance of 1/40 to 1/100 of the wear amount of the steel pipe for boiler.
From the above evaluation results, it was found that the coating film of the present invention has the best performance in both corrosion resistance and wear resistance.

Figure 2006283176
Figure 2006283176

図1に示す製鋼工場の転炉における排ガス処理設備において、高温腐食、エロージョン摩耗、および露点腐食の雰囲気にさらされている水冷鋼管構造体である下部フード3において、図3に示す形態で本発明の被膜11を水冷鋼管構造体10の上記雰囲気側である内面に被覆した。被膜は、Ni基自溶性合金SFNi4にNi基合金インコネル625を質量で40%配合したものを溶射し、1000〜1100℃の温度で再溶融処理を施した。膜厚は、2〜3mmである。   In the lower hood 3, which is a water-cooled steel pipe structure exposed to an atmosphere of high temperature corrosion, erosion wear, and dew point corrosion in the exhaust gas treatment facility in the converter of the steelmaking factory shown in FIG. Of the water-cooled steel pipe structure 10 was coated on the inner surface which is the atmosphere side. The coating was thermally sprayed with 40% by mass of Ni-based alloy Inconel 625 mixed with Ni-based self-fluxing alloy SFNi4 and subjected to remelting treatment at a temperature of 1000 to 1100 ° C. The film thickness is 2 to 3 mm.

この被膜を被覆した下部フードを1年間にわたり転炉の実操業で使用したところ、膜厚の減少量は最大で0.2mmであり、操業や設備管理に関する支障が発生する等の問題は皆無であった。
なお、本実施例における下部フードは、従来、基材のボイラー鋼管SB410のみの場合は、主として高温腐食によって、6ヶ月で最大約2mmの減肉が発生していた。よって、本発明の被膜によって約10倍の大幅な寿命向上効果が確認された。
When the lower hood coated with this coating was used in actual operation of the converter for one year, the maximum reduction in film thickness was 0.2 mm, and there were no problems such as troubles related to operation and equipment management. there were.
In the case of the lower hood in this embodiment, conventionally, when only the boiler steel pipe SB410 as the base material is used, the maximum thickness reduction of about 2 mm has occurred in six months mainly due to high temperature corrosion. Therefore, a significant life improvement effect of about 10 times was confirmed by the coating of the present invention.

上記のように、本発明の水冷鋼管構造体を、例えば製鋼工場の転炉排ガス処理設備に適用することにより、高温腐食、エロージョン摩耗、および露点腐食の雰囲気に対しての設備の耐久性を大幅に向上することが可能となり、設備を休止しての補修頻度が従来に比べて低減し、稼働率も向上し、さらに補修費用も大幅に低減し、操業の安定化、費用削減に大きく貢献する。   As described above, by applying the water-cooled steel pipe structure of the present invention to, for example, converter exhaust gas treatment equipment of a steelmaking factory, the durability of the equipment against the atmosphere of high temperature corrosion, erosion wear, and dew point corrosion is greatly increased. As a result, the frequency of repairs when equipment is shut down is reduced compared to conventional systems, the operation rate is improved, and repair costs are greatly reduced, contributing to stabilization of operations and cost reduction. .

本発明に係わる製鋼工場の転炉における排ガス処理設備を示した概念図である。It is the conceptual diagram which showed the waste gas treatment equipment in the converter of the steelmaking factory concerning this invention. 本発明により形成された水冷鋼管構造体の被膜の1形態(a)と他の形態(b)を示した断面図である。It is sectional drawing which showed 1 form (a) and the other form (b) of the film of the water-cooled steel pipe structure formed by this invention. 本発明に係わる転炉排ガス処理設備の水冷鋼管構造体の被膜の形態を示した断面図である。It is sectional drawing which showed the form of the film of the water-cooled steel pipe structure of the converter exhaust gas processing equipment concerning this invention.

符号の説明Explanation of symbols

1:転炉
2:スカート
3:下部フード
4:上部フード
5:集塵ダクト
6:基材
7:Ni基自溶性合金
8:Ni基合金
9:下層被膜
10:水冷鋼管構造体基材
11:被膜
1: Converter 2: Skirt 3: Lower hood 4: Upper hood 5: Dust collection duct 6: Base material 7: Ni-based self-fluxing alloy 8: Ni-based alloy 9: Lower layer coating 10: Water-cooled steel pipe structure base material 11: Coating

Claims (14)

質量で、
Cr=10〜20%、 B =2〜4.5%、
Si=2〜5%、 C =0.4〜1.1%、
残部Niの合金であるNi基の自溶性合金に、質量で、
Cr=20〜23%、 Mo=8〜10%、
Fe=2〜7%、 (Nb+Ta)=1〜4%、
残部Niおよび不可避の不純物からなるNi基合金を、質量で10〜90%配合した材料を溶射材料とし、この溶射材料を基材に溶射し、再溶融処理して形成された被膜を有することを特徴とする耐食性と耐摩耗性に優れた水冷鋼管構造体の製造方法。
By mass
Cr = 10 to 20%, B = 2 to 4.5%,
Si = 2-5%, C = 0.4-1.1%,
In the Ni-based self-fluxing alloy which is the remaining Ni alloy,
Cr = 20-23%, Mo = 8-10%,
Fe = 2-7%, (Nb + Ta) = 1-4%,
A material containing 10 to 90% by mass of the remaining Ni and an inevitable impurity Ni-based alloy is used as a thermal spray material, and the thermal spray material is sprayed on a base material and has a film formed by remelting treatment. A method for producing a water-cooled steel pipe structure having excellent corrosion resistance and wear resistance.
自溶性合金に配合された前記Ni基合金が、質量で、
Cr=20〜23%、 Mo=8〜10%、
Fe=2〜7%、
残部Niおよび不可避の不純物からなる合金であることを特徴とする請求項1に記載の耐食性と耐摩耗性に優れた水冷鋼管構造体の製造方法。
The Ni-based alloy blended in the self-fluxing alloy is, by mass,
Cr = 20-23%, Mo = 8-10%,
Fe = 2 to 7%,
2. The method for producing a water-cooled steel pipe structure excellent in corrosion resistance and wear resistance according to claim 1, wherein the alloy is composed of the balance Ni and inevitable impurities.
自溶性合金に配合された前記Ni基合金が、質量で、
Cr=14〜17%、 Mo=15〜17%、
W =3〜5%、 Fe=4〜7%、
残部Niおよび不可避の不純物からなる合金であることを特徴とする請求項1に記載の耐食性と耐摩耗性に優れた水冷鋼管構造体の製造方法。
The Ni-based alloy blended in the self-fluxing alloy is, by mass,
Cr = 14-17%, Mo = 15-17%,
W = 3-5%, Fe = 4-7%,
2. The method for producing a water-cooled steel pipe structure excellent in corrosion resistance and wear resistance according to claim 1, wherein the alloy is composed of the balance Ni and inevitable impurities.
質量で、
Cr=10〜20%、 B =2〜4.5%、
Si=2〜5%、 C =0.4〜1.1%、
残部Niの合金であるNi基の自溶性合金を基材に下層被膜として溶射し、その被覆の表面に、Ni基の前記自溶性合金に、質量で、
Cr=20〜23%、 Mo=8〜10%、
Fe=2〜7%、 (Nb+Ta)=1〜4%、
残部Niおよび不可避の不純物からなる合金を質量で10〜90%配合した材料を上層被膜の溶射材料とし、この溶射材料を1層あるいはそれ以上の層になるように溶射し、再溶融処理して形成された被膜を有することを特徴とする耐食性と耐摩耗性に優れた水冷鋼管構造体の製造方法。
By mass
Cr = 10 to 20%, B = 2 to 4.5%,
Si = 2-5%, C = 0.4-1.1%,
The Ni-based self-fluxing alloy, which is the remaining Ni alloy, is sprayed as a lower layer coating on the base material, and the Ni-based self-fluxing alloy is mass-coated on the surface of the coating.
Cr = 20-23%, Mo = 8-10%,
Fe = 2-7%, (Nb + Ta) = 1-4%,
A material in which the alloy composed of the balance Ni and inevitable impurities is blended in an amount of 10 to 90% is used as a thermal spray material for the upper coating, and this thermal spray material is sprayed to form one or more layers and remelted. A method for producing a water-cooled steel pipe structure having excellent corrosion resistance and wear resistance, comprising a formed coating.
自溶性合金に配合された前記Ni基合金が、質量で、
Cr=20〜23%、 Mo=8〜10%、
Fe=2〜7%、
残部Niおよび不可避の不純物からなる合金であることを特徴とする請求項4に記載の耐食性と耐摩耗性に優れた水冷鋼管構造体の製造方法。
The Ni-based alloy blended in the self-fluxing alloy is, by mass,
Cr = 20-23%, Mo = 8-10%,
Fe = 2 to 7%,
5. The method for producing a water-cooled steel pipe structure having excellent corrosion resistance and wear resistance according to claim 4, wherein the alloy is composed of the balance Ni and inevitable impurities.
自溶性合金に配合された前記Ni基合金が、質量で、
Cr=14〜17%、 Mo=15〜17%、
W =3〜5%、 Fe=4〜7%、
残部Niおよび不可避の不純物からなる合金であることを特徴とする請求項4に記載の耐食性と耐摩耗性に優れた水冷鋼管構造体の製造方法。
The Ni-based alloy blended in the self-fluxing alloy is, by mass,
Cr = 14-17%, Mo = 15-17%,
W = 3-5%, Fe = 4-7%,
5. The method for producing a water-cooled steel pipe structure having excellent corrosion resistance and wear resistance according to claim 4, wherein the alloy is composed of the balance Ni and inevitable impurities.
Ni基の自溶性合金が、質量でさらに、
Fe=5%以下、 Co=1%以下、
Mo=4%以下、 Cu=4%以下
の1種または2種以上を含有することを特徴とする請求項1または4に記載の耐食性と耐摩耗性に優れた水冷鋼管構造体の製造方法。
Ni-based self-fluxing alloy further in mass,
Fe = 5% or less, Co = 1% or less,
The method for producing a water-cooled steel pipe structure excellent in corrosion resistance and wear resistance according to claim 1 or 4, characterized by containing one or more of Mo = 4% or less and Cu = 4% or less.
質量で、
Cr=10〜20%、 B =2〜4.5%、
Si=2〜5%、 C =0.4〜1.1%、
残部Niの合金であるNi基の自溶性合金中に、質量で、
Cr=20〜23%、 Mo=8〜10%、
Fe=2〜7%、 (Nb+Ta)=1〜4%、
残部Niおよび不可避の不純物からなるNi基合金を質量で10〜90%が分散して含まれる被膜を有することを特徴とする耐食性と耐摩耗性に優れた水冷鋼管構造体。
By mass
Cr = 10 to 20%, B = 2 to 4.5%,
Si = 2-5%, C = 0.4-1.1%,
In a Ni-based self-fluxing alloy that is an alloy of the balance Ni, by mass,
Cr = 20-23%, Mo = 8-10%,
Fe = 2-7%, (Nb + Ta) = 1-4%,
A water-cooled steel pipe structure excellent in corrosion resistance and wear resistance, characterized by having a coating containing 10 to 90% of a Ni-based alloy consisting of the balance Ni and inevitable impurities dispersed in mass.
自溶性合金に分散して含まれる前記Ni基合金が、質量で、
Cr=20〜23%、 Mo=8〜10%、
Fe=2〜7%、
残部Niおよび不可避の不純物からなる合金であることを特徴とする請求項8に記載の耐食性と耐摩耗性に優れた水冷鋼管構造体。
The Ni-based alloy dispersed and contained in the self-fluxing alloy is, by mass,
Cr = 20-23%, Mo = 8-10%,
Fe = 2 to 7%,
The water-cooled steel pipe structure having excellent corrosion resistance and wear resistance according to claim 8, wherein the water-cooled steel pipe structure is an alloy composed of the remaining Ni and inevitable impurities.
自溶性合金に分散して含まれる前記Ni基合金が、質量で、
Cr=14〜17%、 Mo=15〜17%、
W =3〜5%、 Fe=4〜7%、
残部Niおよび不可避の不純物からなる合金であることを特徴とする請求項8に記載の耐食性と耐摩耗性に優れた水冷鋼管構造体。
The Ni-based alloy dispersed and contained in the self-fluxing alloy is, by mass,
Cr = 14-17%, Mo = 15-17%,
W = 3-5%, Fe = 4-7%,
The water-cooled steel pipe structure having excellent corrosion resistance and wear resistance according to claim 8, wherein the water-cooled steel pipe structure is an alloy composed of the remaining Ni and inevitable impurities.
質量で、
Cr=10〜20%、 B =2〜4.5%、
Si=2〜5%、 C =0.4〜1.1%、
残部Niの合金であるNi基の自溶性合金の下層被膜と、前記自溶性合金中に、質量で、 Cr=20〜23%、 Mo=8〜10%、
Fe=2〜7%、 (Nb+Ta)=1〜4%、
残部Niおよび不可避の不純物からなるNi基合金を質量で10〜90%が分散して含まれる上層被膜と、を有することを特徴とする耐食性と耐摩耗性に優れた水冷鋼管構造体。
By mass
Cr = 10 to 20%, B = 2 to 4.5%,
Si = 2-5%, C = 0.4-1.1%,
In the lower layer coating of the Ni-based self-fluxing alloy that is the remaining Ni alloy, and in the self-fluxing alloy, Cr = 20 to 23%, Mo = 8 to 10%,
Fe = 2-7%, (Nb + Ta) = 1-4%,
A water-cooled steel pipe structure excellent in corrosion resistance and wear resistance, comprising an upper layer film containing 10 to 90% of a Ni-based alloy composed of the balance Ni and inevitable impurities dispersed therein.
上層被膜として自溶性合金に分散して含まれる前記Ni基合金が、質量で、
Cr=20〜23%、 Mo=8〜10%、
Fe=2〜7%、
残部Niおよび不可避の不純物からなる合金であることを特徴とする請求項11に記載の耐食性と耐摩耗性に優れた水冷鋼管構造体。
The Ni-based alloy dispersed and contained in the self-fluxing alloy as the upper layer coating is, by mass,
Cr = 20-23%, Mo = 8-10%,
Fe = 2 to 7%,
The water-cooled steel pipe structure having excellent corrosion resistance and wear resistance according to claim 11, wherein the water-cooled steel pipe structure is excellent in corrosion resistance and wear resistance.
上層被膜として自溶性合金に分散して含まれる前記Ni基合金が、質量で、
Cr=14〜17%、 Mo=15〜17%、
W =3〜5%、 Fe=4〜7%、
残部Niおよび不可避の不純物からなる合金であることを特徴とする請求項11に記載の耐食性と耐摩耗性に優れた水冷鋼管構造体。
The Ni-based alloy dispersed and contained in the self-fluxing alloy as the upper layer coating is, by mass,
Cr = 14-17%, Mo = 15-17%,
W = 3-5%, Fe = 4-7%,
The water-cooled steel pipe structure having excellent corrosion resistance and wear resistance according to claim 11, wherein the water-cooled steel pipe structure is excellent in corrosion resistance and wear resistance.
Ni基の自溶性合金が、質量でさらに、
Fe=5%以下、 Co=1%以下、
Mo=4%以下、 Cu=4%以下
の1種または2種以上を含有することを特徴とする請求項8または11に記載の耐食性と耐摩耗性に優れた水冷鋼管構造体。
Ni-based self-fluxing alloy further in mass,
Fe = 5% or less, Co = 1% or less,
The water-cooled steel pipe structure excellent in corrosion resistance and wear resistance according to claim 8 or 11, characterized by containing one or more of Mo = 4% or less and Cu = 4% or less.
JP2005108232A 2005-04-05 2005-04-05 Water-cooled steel pipe structure with excellent corrosion resistance and wear resistance and its manufacturing method Active JP4546867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005108232A JP4546867B2 (en) 2005-04-05 2005-04-05 Water-cooled steel pipe structure with excellent corrosion resistance and wear resistance and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005108232A JP4546867B2 (en) 2005-04-05 2005-04-05 Water-cooled steel pipe structure with excellent corrosion resistance and wear resistance and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2006283176A true JP2006283176A (en) 2006-10-19
JP4546867B2 JP4546867B2 (en) 2010-09-22

Family

ID=37405383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005108232A Active JP4546867B2 (en) 2005-04-05 2005-04-05 Water-cooled steel pipe structure with excellent corrosion resistance and wear resistance and its manufacturing method

Country Status (1)

Country Link
JP (1) JP4546867B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103643194A (en) * 2013-12-10 2014-03-19 镇江市华阳机电制造有限公司 Process for wear-resistant treatment of valve core of instrument valve
KR101494766B1 (en) 2013-10-15 2015-02-23 정정운 Tube of fluidized bed boiler and method of manufacturing tube of fluidized bed boiler
CN106363359A (en) * 2016-10-31 2017-02-01 成都市红鑫科技有限公司 Manufacturing process of acid-resisting valve element
CN106363358A (en) * 2016-10-31 2017-02-01 成都市红鑫科技有限公司 Production process of corrosion resistance valve element
CN106475742A (en) * 2016-10-31 2017-03-08 成都市红鑫科技有限公司 A kind of manufacturing process of high rigidity valve element
CN106563920A (en) * 2016-10-31 2017-04-19 成都市红鑫科技有限公司 Sintering manufacturing technique of valve element
CN108265260A (en) * 2018-03-09 2018-07-10 河北工业大学 A kind of preparation method of the wear-resisting endurance coating of nickel chromium triangle borosilicate
CN113649677A (en) * 2021-08-17 2021-11-16 江苏科环新材料有限公司 Method for reinforcing explosion-proof pipe in subarea by induction fusion welding and surfacing welding on fire facing side of boiler pipeline
CN113832370A (en) * 2020-06-24 2021-12-24 中国科学院金属研究所 Medium-temperature oxidation-resistant nickel-based corrosion-resistant alloy and preparation process thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106392479A (en) * 2016-10-31 2017-02-15 成都市红鑫科技有限公司 Manufacturing process for anti-rust valve core

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0975832A (en) * 1995-09-11 1997-03-25 Nittetsu Hard Kk Boiler tube with corrosion-resistant and wear-resistant surface flame-sprayed layer
JPH1053880A (en) * 1996-08-12 1998-02-24 Nippon Steel Corp Production of high temperature member and bright annealing furnace excellent in nitriding resistance
JP2004225110A (en) * 2003-01-23 2004-08-12 Nippon Steel Corp Pipe of excellent wear resistance, and pipe repairing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0975832A (en) * 1995-09-11 1997-03-25 Nittetsu Hard Kk Boiler tube with corrosion-resistant and wear-resistant surface flame-sprayed layer
JPH1053880A (en) * 1996-08-12 1998-02-24 Nippon Steel Corp Production of high temperature member and bright annealing furnace excellent in nitriding resistance
JP2004225110A (en) * 2003-01-23 2004-08-12 Nippon Steel Corp Pipe of excellent wear resistance, and pipe repairing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101494766B1 (en) 2013-10-15 2015-02-23 정정운 Tube of fluidized bed boiler and method of manufacturing tube of fluidized bed boiler
CN103643194A (en) * 2013-12-10 2014-03-19 镇江市华阳机电制造有限公司 Process for wear-resistant treatment of valve core of instrument valve
CN106363359A (en) * 2016-10-31 2017-02-01 成都市红鑫科技有限公司 Manufacturing process of acid-resisting valve element
CN106363358A (en) * 2016-10-31 2017-02-01 成都市红鑫科技有限公司 Production process of corrosion resistance valve element
CN106475742A (en) * 2016-10-31 2017-03-08 成都市红鑫科技有限公司 A kind of manufacturing process of high rigidity valve element
CN106563920A (en) * 2016-10-31 2017-04-19 成都市红鑫科技有限公司 Sintering manufacturing technique of valve element
CN108265260A (en) * 2018-03-09 2018-07-10 河北工业大学 A kind of preparation method of the wear-resisting endurance coating of nickel chromium triangle borosilicate
CN113832370A (en) * 2020-06-24 2021-12-24 中国科学院金属研究所 Medium-temperature oxidation-resistant nickel-based corrosion-resistant alloy and preparation process thereof
CN113649677A (en) * 2021-08-17 2021-11-16 江苏科环新材料有限公司 Method for reinforcing explosion-proof pipe in subarea by induction fusion welding and surfacing welding on fire facing side of boiler pipeline

Also Published As

Publication number Publication date
JP4546867B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
JP4546867B2 (en) Water-cooled steel pipe structure with excellent corrosion resistance and wear resistance and its manufacturing method
Szymański et al. Thermally sprayed coatings resistant to erosion and corrosion for power plant boilers-A review
Branagan et al. High-performance nanoscale composite coatings for boiler applications
JP6391154B2 (en) Iron-base alloy and alloy welding method
MXPA04008463A (en) Corrosion resistant powder and coating.
JPH06172958A (en) Method of improving corrosion and wear resistance of substrate
CN107042370A (en) A kind of high-Cr Ni-base high-temperature alloy welding wire and preparation technology
JPS6054389B2 (en) Ferrous metal substrate with alloy coating
JP2011147947A (en) Copper member and method for preventing corrosion of the same
JP4451885B2 (en) Thermal spray coating forming method and high-speed flame spraying apparatus
JP2005213605A (en) Composite material, thermally sprayed film coated member and method for manufacturing the member
CN114945769A (en) Pipe and manufacturing method thereof
JP4602998B2 (en) Thermal spray coating formation method
JP4360971B2 (en) Water-cooled steel pipe structure excellent in high-temperature corrosion resistance, high-temperature wear resistance, dew condensation corrosion resistance and film peeling resistance, and method for producing the same
JP4827047B2 (en) Steel structure with corrosion resistance, wear resistance and heat crack resistance
JP6796446B2 (en) Thermal spray coating
TWI785246B (en) Ni-Fe-based alloy powder and method for producing alloy film using the Ni-Fe-based alloy powder
US7828913B1 (en) Peritectic, metastable alloys containing tantalum and nickel
JP3576479B2 (en) Water-cooled steel structure
JP2001170823A (en) Repairing method for cracked part of metallic structure
JP2021080524A (en) Corrosive wear resistant and wear resistant alloy film and heat transfer pipe, method for manufacturing the same and method for repairing heat transfer pipe
WO2023277063A1 (en) Coating material for in-furnace structure, surface coating method, and in-furnace structure
Prashar et al. A review on the processing of various coating materials using surface modification techniques for high-temperature solid particle erosion applications
JP3286770B2 (en) Manufacturing method of corrosion and wear resistant coating
JP4475376B2 (en) Water-cooled steel structure and method for forming protective film on water-cooled steel structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4546867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350