JP2006283138A - Aluminum or aluminum alloy material and structure using the same - Google Patents

Aluminum or aluminum alloy material and structure using the same Download PDF

Info

Publication number
JP2006283138A
JP2006283138A JP2005105154A JP2005105154A JP2006283138A JP 2006283138 A JP2006283138 A JP 2006283138A JP 2005105154 A JP2005105154 A JP 2005105154A JP 2005105154 A JP2005105154 A JP 2005105154A JP 2006283138 A JP2006283138 A JP 2006283138A
Authority
JP
Japan
Prior art keywords
aluminum
aluminum alloy
hardness
plate thickness
alloy material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005105154A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Ema
光弘 江間
Takeo Sakurai
健夫 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005105154A priority Critical patent/JP2006283138A/en
Publication of JP2006283138A publication Critical patent/JP2006283138A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Connection Of Plates (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide aluminum or an aluminum alloy from which a structure can be produced at a low cost, and which is excellent in bending workability and press moldability, is high in threshold surface pressure in the case of fastening by mechanical means, and can be made higher in axial force, and a structure using the same. <P>SOLUTION: When the portion of 1/4 the plate thickness from the surface is defined as a surface layer and the portion of l/3 the plate thickness making 1/6 thicknesses respectively from the center in the thickness direction toward both surfaces is defined as a central layer, the difference between the average hardness of the surface layer and the average hardness of the central layer is ≥4 Hv and ≤12 Hv in Vickers hardness. When the portion up to the position where the hardness from the surface attains a mean value X is defined as a surface part when the mean value of the hardness distribution in the plate thickness direction is defined as X, the thickness in the surface layer part is ≥1/4 the plate thickness. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ボルト・ナット及びリベット等の機械的締結方法により、アルミニウム又はアルミニウム合金材同士を結合し、又はアルミニウム又はアルミニウム合金材と鋼材とを結合して、構造材を製造する際等に使用されるアルミニウム又はアルミニウム合金材に関する。   The present invention is used when a structural material is manufactured by joining aluminum or aluminum alloy materials or by joining aluminum or aluminum alloy materials and steel materials by a mechanical fastening method such as bolts, nuts and rivets. Relates to aluminum or aluminum alloy material.

船舶、鉄道車両、自動車、航空機等の輸送機又は橋梁等の土木・建築構造物において、アルミニウム又はアルミニウム合金製部材又は部品を、ボルト・ナット及びリベット等により機械的に締結する場合、アルミニウム又はアルミニウム合金材は鋼材等に比して、締結部の近傍が変形しやすいという問題点がある。特に、機械的締結により、アルミニウム又はアルミニウム合金材の座面が陥没して、軸力(締結力)が低下してしまう可能性が高いという問題点がある。この問題点の解決方法として、(1)被締結材であるアルミニウム又はアルミニウム合金材の強度を高め、座面が陥没しはじめる限界の面圧(限界面圧)を高める方法、(2)ボルト・ナット及びリベット等の座面外径を大きくすることにより、座面面積を広げ、所定の軸力に対する座面の面圧を低くする方法が考えられる。   When mechanically fastening aluminum or aluminum alloy members or parts with bolts, nuts, rivets, etc. in civil engineering or building structures such as ships, railway vehicles, automobiles, aircraft, etc. or bridges, etc., aluminum or aluminum The alloy material has a problem that the vicinity of the fastening portion is easily deformed as compared with the steel material. In particular, there is a problem in that the seating surface of aluminum or an aluminum alloy material is depressed due to mechanical fastening, and the axial force (fastening force) is likely to be reduced. To solve this problem, (1) a method of increasing the strength of aluminum or aluminum alloy material to be fastened and increasing the limit surface pressure (limit surface pressure) at which the seat surface begins to sink, (2) bolts, A method is conceivable in which the bearing surface area is expanded by increasing the outer diameter of the seating surface such as a nut and a rivet, and the surface pressure of the seating surface with respect to a predetermined axial force is lowered.

また、特許文献1(特開2002−339990号公報)のように、被締結材表面に硬質のめっき層を設け、被締結材の限界面圧を高める方法、特許文献2(特開平6−122950号公報)、特許文献3(特開2004−149893号公報)のように、ボルト孔又はリベット孔の近傍部分のみ材質を改良強化し、座面の陥没を防ぐ方法が提案されている。   Further, as disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2002-339990), a method of providing a hard plating layer on the surface of a material to be fastened to increase the limit surface pressure of the material to be fastened, Patent Document 2 (Japanese Patent Laid-Open No. 6-122950). No. 2) and Patent Document 3 (Japanese Patent Laid-Open No. 2004-149893) have proposed a method in which the material is improved and strengthened only in the vicinity of the bolt hole or the rivet hole to prevent the seat surface from being depressed.

特開2002−339990号公報JP 2002-339990 A 特開平6−122950号公報JP-A-6-122950 特開2004−149893号公報JP 2004-149893 A

しかしながら、アルミニウム又はアルミニウム合金材の強度を高めることにより、被締結材の限界面圧を高める方法は、座面陥没を抑制できる反面、曲げ加工及びプレス成形などによる部材の加工性(成形性)を低下させてしまうという問題点がある。また、アルミニウム又はアルミニウム合金材の強度を高めるためには、マグネシウム等の合金元素の添加量を増やす必要があるが、マグネシウム等の合金元素の添加量を増やすと、材料の耐食性、特に応力腐食割れ感受性が敏感になり、高温多湿等の腐食環境の厳しい部位には塗装等、何らかの防食処理をしなければならず、そのコストが極めて高くなる。防食処理を省くためには、マグネシウム等の合金元素の添加量が少なく、比較的強度が低いアルミニウム合金材を使用する必要があり、これらのアルミニウム又はアルミニウム合金材をボルト・ナット及びリベット等により機械的に締結すると、締結部近傍が変形しやすく、特に座面が陥没して軸力が低下してしまう可能性が高い。このため、高い軸力を付与することができず、高強度の締結部を得ることができないばかりか、使用時に座面が陥没して軸力が低下し、破壊に至る場合も懸念される。   However, the method of increasing the limit surface pressure of the material to be fastened by increasing the strength of the aluminum or aluminum alloy material can suppress the depression of the seating surface, but the workability (formability) of the member by bending or press molding is reduced. There is a problem that it is lowered. In order to increase the strength of aluminum or aluminum alloy materials, it is necessary to increase the amount of alloy elements such as magnesium. However, if the amount of alloy elements such as magnesium is increased, the corrosion resistance of the material, particularly stress corrosion cracking, is increased. Sensitivity becomes sensitive, and some parts of the corrosive environment such as high temperature and high humidity have to be subjected to some anticorrosion treatment such as painting, and the cost becomes extremely high. In order to eliminate the anticorrosion treatment, it is necessary to use an aluminum alloy material having a relatively low strength with a small amount of addition of an alloy element such as magnesium. These aluminum or aluminum alloy materials are machined by bolts, nuts, rivets, etc. When fastened, the vicinity of the fastened portion is likely to be deformed, and in particular, there is a high possibility that the seating surface is depressed and the axial force is reduced. For this reason, not only a high axial force cannot be applied and a high-strength fastening portion cannot be obtained, but also there is a concern that the seat surface may collapse during use, resulting in a reduction in axial force, leading to destruction.

一方、座面の面積を広げるか、又は座金等を使用することにより、所定の軸力に対する座面の面圧を低くする方法は、座面面積の広い特殊なボルト・ナット及びリベット等を使用する必要があり、締結コストが高くなる。また、これにより、重量も増してしまうため、軽量なアルミニウム又はアルミニウム合金材料を使用しても、その軽量効果が低減してしまうという問題点がある。   On the other hand, the method of reducing the surface pressure of the seating surface for a given axial force by increasing the seating surface area or using a washer, etc. uses special bolts, nuts and rivets that have a large seating surface area. It is necessary to do this, and the fastening cost becomes high. Moreover, since this also increases weight, even if it uses lightweight aluminum or aluminum alloy material, there exists a problem that the lightweight effect will reduce.

また、特開2002−339990号公報のように、被締結材表面に硬質のめっき層を設け、被締結材の限界面圧を高める方法は、曲げ加工性及びプレス成形性が低くなり、また、めっき工程が必要で、素材コストが高くなるという問題点がある。   Further, as disclosed in JP-A-2002-339990, a method of providing a hard plating layer on the surface of a material to be fastened and increasing the limit surface pressure of the material to be fastened has low bending workability and press formability, There is a problem that the plating process is necessary and the material cost becomes high.

更に、特開平6−122950のように、ボルト孔周辺を高密度熱エネルギーにより溶融させ、アルミニウム又はアルミニウム合金材を改質強化する方法は、この部分の改質工程が一工程増え、ボルト締結部が多数存在する構造体を作製するためには、コストが著しく高くなる。   Furthermore, as disclosed in JP-A-6-122950, the method for melting and strengthening the periphery of a bolt hole with high-density thermal energy and reforming and strengthening the aluminum or aluminum alloy material adds one step to the modification step, and the bolt fastening portion In order to fabricate a structure in which a large number of is present, the cost is remarkably increased.

特開2004−149893号公報記載の技術においても、ボルト・ナット及びリベット等の締結部が多数ある構造体を作製するためには、一ヶ所ずつ孔を開けるか、又は多数のツールを具備する装置を使用して一度に孔を開ける必要があり、一ヶ所ずつ孔を開ける方法はコストが高くなり量産品には向かず、多数のツールを具備する装置により一度に孔を開ける場合は、その設備費用が高くなり、やはり構造体の製作コストが高くなるという問題点がある。   Even in the technique described in Japanese Patent Application Laid-Open No. 2004-149893, in order to produce a structure having a large number of fastening parts such as bolts, nuts, rivets, etc., a device in which holes are made one by one or provided with a number of tools It is necessary to drill holes at a time using one of them, and the method of drilling holes one by one is costly and is not suitable for mass-produced products. There is a problem that the cost increases and the manufacturing cost of the structure also increases.

本発明はかかる問題点に鑑みてなされたものであって、低コストで構造体を製造することができ、また曲げ加工性及びプレス成形性が優れており、機械的手段により締結する場合の限界面圧が高く、軸力を高くすることができるアルミニウム又はアルミニウム合金材及びそれを用いた構造体を提供することを目的とする。   The present invention has been made in view of such a problem, and can produce a structure at a low cost, has excellent bending workability and press formability, and is a limit for fastening by mechanical means. An object is to provide an aluminum or aluminum alloy material having a high surface pressure and a high axial force, and a structure using the same.

本願第1発明に係るアルミニウム又はアルミニウム合金材は、機械的手段により締結される用途に使用されるアルミニウム又はアルミニウム合金材において、表面が板厚方向中心部より硬さが高く、板厚方向の硬さ分布の平均値をXとしたとき、表面から硬さが平均値Xとなる位置までの表層部の厚さが板厚の1/4以上であることを特徴とする。   In the aluminum or aluminum alloy material according to the first invention of the present application, the surface of the aluminum or aluminum alloy material used for fastening by mechanical means is harder than the central portion in the plate thickness direction, and the hardness in the plate thickness direction is high. When the average value of the thickness distribution is X, the thickness of the surface layer portion from the surface to the position where the hardness becomes the average value X is ¼ or more of the plate thickness.

本願第2発明に係るアルミニウム又はアルミニウム合金材は、機械的手段により締結される用途に使用されるアルミニウム又はアルミニウム合金材において、表面が板厚方向中心部より硬さが高く、表面から板厚の1/4の表面層の平均硬さと、板厚方向の中心から両表面に向けて夫々板厚の1/6となる厚さが板厚の1/3の中心層の平均硬さとの差が、ビッカース硬さで4Hv以上12Hv以下であることを特徴とする。   In the aluminum or aluminum alloy material according to the second invention of the present application, the surface of the aluminum or aluminum alloy material used for fastening by mechanical means is harder than the central portion in the plate thickness direction, There is a difference between the average hardness of the 1/4 surface layer and the average hardness of the center layer whose thickness is 1/6 of the plate thickness from the center in the plate thickness direction to both surfaces. Vickers hardness is 4 Hv or more and 12 Hv or less.

第2発明に係るアルミニウム又はアルミニウム合金材において、板厚方向の硬さ分布の平均値がビッカース硬さで60Hv以上85Hv以下であることが好ましい。また、これらのアルミニウム又はアルミニウム合金は、例えば、構造用3000系又は5000系アルミニウム合金である。   In the aluminum or aluminum alloy material according to the second aspect of the present invention, it is preferable that the average value of the hardness distribution in the thickness direction is not less than 60 Hv and not more than 85 Hv in terms of Vickers hardness. Moreover, these aluminum or aluminum alloys are structural 3000 series or 5000 series aluminum alloys, for example.

また、本発明に係る構造体は、上述のアルミニウム又はアルミニウム合金材同士、又はこのアルミニウム又はアルミニウム合金と、他の品種の材料とを、機械的手段により締結したことを特徴とする。   The structure according to the present invention is characterized in that the above-described aluminum or aluminum alloy materials, or the aluminum or aluminum alloy and other kinds of materials are fastened by mechanical means.

本発明によれば、アルミニウム又はアルミニウム合金材の中心部を含む板厚方向の中央部分(中心層等)は、硬度(ビッカース硬さ)が低いので、アルミニウム又はアルミニウム合金材の曲げ加工性及びプレス成形性を損なうことはない。このため、プレスにより一度に多数の孔開け加工を実施することができる。一方、アルミニウム又はアルミニウム合金材の表面(表層部又は表面層)は、硬度(ビッカース硬さ)が高いので、ボルト・ナットでアルミニウム又はアルミニウム合金材同士又はアルミニウム又はアルミニウム合金材と鋼材とを締結した場合に、アルミニウム又はアルミニウム合金材の表面にボルト又はナットの跡が残ることが抑制される。つまり、ボルト・ナットを緊締したときに、アルミニウム又はアルミニウム合金材の表面に、例えば0.004mmの陥没(跡)が発生した場合に、アルミニウム又はアルミニウム合金材の表面に作用した圧力が、そのアルミニウム又はアルミニウム合金材の締結時の限界面圧であるとすると、この限界面圧を高めることができる。このように、本発明においては、限界面圧が高いために、より高い軸力でアルミニウム又はアルミニウム合金材を締結することができる。   According to the present invention, since the central portion (center layer, etc.) in the thickness direction including the central portion of aluminum or aluminum alloy material has low hardness (Vickers hardness), bending workability of aluminum or aluminum alloy material and press There is no loss of moldability. For this reason, a large number of holes can be drilled at a time by pressing. On the other hand, since the surface (surface layer portion or surface layer) of aluminum or aluminum alloy material has high hardness (Vickers hardness), aluminum or aluminum alloy materials or aluminum or aluminum alloy materials and steel materials are fastened with bolts and nuts. In this case, it is possible to prevent the traces of bolts or nuts from remaining on the surface of the aluminum or aluminum alloy material. In other words, when a depression (a trace) of 0.004 mm, for example, is generated on the surface of the aluminum or aluminum alloy material when the bolts and nuts are tightened, the pressure acting on the surface of the aluminum or aluminum alloy material is Or if it is the limit surface pressure at the time of fastening of an aluminum alloy material, this limit surface pressure can be raised. Thus, in the present invention, since the limit surface pressure is high, it is possible to fasten the aluminum or aluminum alloy material with a higher axial force.

このため、本発明によれば、ボルト・ナット及びリベット等の機械的締結方法を用いて、軽量なアルミニウム又はアルミニウム合金材からなる構造体を低コストで製作することができる。また、座面面積の広いボルト・ナット及びリベットを使用する必要がないので、軽量効果も維持できる。   For this reason, according to this invention, the structure which consists of lightweight aluminum or aluminum alloy material can be manufactured at low cost using mechanical fastening methods, such as a volt | bolt nut and a rivet. Further, since it is not necessary to use bolts, nuts and rivets having a large seating surface area, the light weight effect can be maintained.

そして、本発明のアルミニウム又はアルミニウム合金材は、表層部又は表面層の硬度が高いので、構造体として使用中に、アルミニウム又はアルミニウム合金の表面が変形しにくく、構造体使用中の座面陥没及びそれによるボルト・ナット及びリベットの軸力低下を抑制することができる。   And since the aluminum or aluminum alloy material of the present invention has a high hardness of the surface layer portion or the surface layer, the surface of the aluminum or aluminum alloy is not easily deformed during use as a structure, and the bearing surface is depressed during use of the structure. Accordingly, it is possible to suppress a decrease in the axial force of the bolt, nut and rivet.

本発明によれば、曲げ加工性及びプレス成形性を高く維持しつつ、アルミニウム又はアルミニウム合金材を機械的手段により締結する場合の限界面圧を高くすることができ、軸力を高くすることができるという効果を奏する。これにより、限界面圧が高いアルミニウム又はアルミニウム合金材の構造体をえることができる。   According to the present invention, while maintaining high bending workability and press formability, it is possible to increase the critical surface pressure when fastening aluminum or an aluminum alloy material by mechanical means, and to increase the axial force. There is an effect that can be done. Thereby, the structure of aluminum or aluminum alloy material with a high limit surface pressure can be obtained.

以下、本発明の実施の形態について図面を参照して説明する。本発明においては、アルミニウム又はアルミニウム合金材の板厚方向について、硬度(ビッカース硬さ)を以下のように制御する。但し、いずれの実施形態であっても、表面が板厚方向中心部より硬さが高い。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present invention, the hardness (Vickers hardness) is controlled as follows in the plate thickness direction of aluminum or aluminum alloy material. However, in any embodiment, the surface is harder than the central portion in the thickness direction.

(1)第1実施形態
板厚方向の硬さ分布の平均値をXとしたとき、表面から硬さが平均値Xとなる位置までの部分を表層部と定義する。この平均値は、アルミニウム又はアルミニウム合金材の板厚方向について表面から中心まで、一定ピッチで硬さを測定し、その測定値の総和を測定点数で除したものである。例えば、板厚が4〜6mmである場合は、測定点数は7〜11点である。第1実施形態においては、この表層部の厚さが板厚の1/4以上である。
(1) 1st Embodiment When the average value of the hardness distribution of a plate | board thickness direction is set to X, the part from the surface to the position where hardness becomes the average value X is defined as a surface layer part. This average value is obtained by measuring the hardness at a constant pitch from the surface to the center in the thickness direction of the aluminum or aluminum alloy material, and dividing the sum of the measured values by the number of measurement points. For example, when the plate thickness is 4 to 6 mm, the number of measurement points is 7 to 11 points. In the first embodiment, the thickness of the surface layer portion is ¼ or more of the plate thickness.

(2)第2実施形態
第2実施形態では、表面から板厚の1/4の部分を表面層と定義する。また、板厚方向の中心から両表面に向けて夫々板厚の1/6となる厚さが板厚の1/3の部分を中心層と定義する。この第2実施形態においては、この表面層の平均硬さと、中心層の平均硬さとの差が、ビッカース硬さで4Hv以上12Hv以下である。
(2) Second Embodiment In the second embodiment, a quarter of the plate thickness from the surface is defined as the surface layer. Further, a portion where 1/6 of the plate thickness from the center in the plate thickness direction toward both surfaces is 1/3 of the plate thickness is defined as a central layer. In the second embodiment, the difference between the average hardness of the surface layer and the average hardness of the center layer is 4 Hv or more and 12 Hv or less in terms of Vickers hardness.

(3)第2実施形態の好ましい態様
第2実施形態においては、板厚方向の硬さ分布の平均値がビッカース硬さで60Hv以上85Hv以下であることが好ましい。また、これらのアルミニウム又はアルミニウム合金は、例えば、構造用3000系又は5000系アルミニウム合金である。
(3) Preferred aspect of the second embodiment In the second embodiment, it is preferable that the average value of the hardness distribution in the thickness direction is not less than 60 Hv and not more than 85 Hv in terms of Vickers hardness. Moreover, these aluminum or aluminum alloys are structural 3000 series or 5000 series aluminum alloys, for example.

図1は、横軸に板表面からの距離をとり、縦軸にビッカース硬さをとって、本件発明の実施形態のアルミニウム又はアルミニウム合金板の板厚方向の硬さ分布を示すグラフ図である。板厚は6mmであり、その中心部(板表面から3mmの位置を含む部分)でビッカース硬さが最も低く、表面及び裏面でビッカース硬さが最も高い。図2は焼鈍処理したままのアルミニウム又はアルミニウム合金板であり、ビッカース硬さは約65Hv(64.8Hv)でほぼ一定である。図1の材料は図3(c)と同一材料であり、図2の材料は図3(a)と同一材料である。即ち、マグネシウムの添加量が2.7質量%のJIS A5454Al合金を常法により鋳造し、熱間圧延及び冷間圧延により板厚を6mmとした後、350℃で焼鈍処理を行ったものが図2の材料であり、圧延(スキンパス)を施して表面加工率(5%)を変化させたものが図1の材料である。   FIG. 1 is a graph showing the hardness distribution in the thickness direction of an aluminum or aluminum alloy plate according to an embodiment of the present invention, where the horizontal axis represents the distance from the plate surface and the vertical axis represents Vickers hardness. . The plate thickness is 6 mm, the Vickers hardness is lowest at the center (including the position 3 mm from the plate surface), and the Vickers hardness is highest at the front and back surfaces. FIG. 2 shows an annealed aluminum or aluminum alloy plate, and the Vickers hardness is approximately constant at about 65 Hv (64.8 Hv). The material of FIG. 1 is the same material as FIG. 3C, and the material of FIG. 2 is the same material as FIG. That is, a JIS A5454Al alloy with a magnesium addition amount of 2.7% by mass was cast by a conventional method, the thickness was changed to 6 mm by hot rolling and cold rolling, and then annealed at 350 ° C. The material of FIG. 1 is the material of FIG. 1 that is subjected to rolling (skin pass) to change the surface processing rate (5%).

本発明においては、図1に示すように、中心層を含む中心部が板表裏面よりも硬さが低いので、曲げ加工性及びプレス成形性等の加工性が優れている。また、板表裏面の表層部又は表面層は、硬さが高いので、ボルト・ナット及びリベット等により機械的に締結するときに、座面が陥没することが抑制され、限界面圧及び軸力を高めることができる。また、構造体としての使用時にも、外力により締結部近傍が変形し、座面が陥没して軸力が低下してしまうことを抑止することができる。なお、限界面圧とは、座面の陥没量が0.004mmを超えるときの座面圧力(アルミニウム又はアルミニウム合金材とボルト・ナット又はリベットとの接触部の圧力)であり、この限界面圧以下で緊締すれば、軸力の低下による影響が実質的に生じない。よって、限界面圧が高い材料の方が、より高い締結力でボルト・ナット及びリベット等により緊締することができるという利点がある。また、軸力とは、ボルト・ナットの緊締力又はリベットの打ち込み力のことであり、いずれもアルミニウム又はアルミニウム合金材に対しボルト又はリベットの軸方向に作用する力である。   In the present invention, as shown in FIG. 1, since the central portion including the central layer has a lower hardness than the front and back surfaces of the plate, the workability such as bending workability and press formability is excellent. In addition, since the surface layer portion or surface layer on the front and back surfaces of the plate is high in hardness, it is possible to suppress the depression of the seating surface when mechanically fastened with bolts, nuts, rivets, etc. Can be increased. Further, even when used as a structure, it is possible to prevent the vicinity of the fastening portion from being deformed by an external force and the seating surface from being depressed to reduce the axial force. The limit surface pressure is the seat surface pressure (pressure at the contact portion between the aluminum or aluminum alloy material and the bolt / nut or rivet) when the amount of depression of the seat surface exceeds 0.004 mm. If tightened below, there will be virtually no effect due to a reduction in axial force. Therefore, a material having a higher limit surface pressure has an advantage that it can be tightened with a bolt, nut, rivet or the like with a higher fastening force. The axial force is a tightening force of a bolt / nut or a driving force of a rivet, and both are forces acting in the axial direction of the bolt or rivet against aluminum or an aluminum alloy material.

このような作用効果は、(1)のように、表層部の厚さが板厚の1/4以上であることにより得ることができる。   Such an effect can be obtained when the thickness of the surface layer portion is ¼ or more of the plate thickness as in (1).

また、(2)のように、表面層の平均硬さと、中心層の平均硬さとの差が、ビッカース硬さで4Hv以上12Hv以下であることによっても、上述の作用効果を得ることができる。   Further, as described in (2), the above-described effects can also be obtained when the difference between the average hardness of the surface layer and the average hardness of the center layer is 4 Vv or more and 12 Hv or less in terms of Vickers hardness.

上述のアルミニウム又はアルミニウム合金材を製造するためには、常法により素材を溶解・鋳造・均質化処理を施した後、そのまま熱間圧延工程を経て、所定の板厚としてアルミニウム又はアルミニウム合金板を得る。そして、そのときの熱間圧延仕上げ温度を制御することにより、アルミニウム又はアルミニウム合金板の表面層の硬さを維持しつつ、板厚中央の部分においては成形加工しやすい特性とするために軟化させる。例えば、熱間圧延の巻き取り温度を250℃〜300℃の範囲内になるように制御することにより、前述した特性が得られる。   In order to manufacture the above-mentioned aluminum or aluminum alloy material, the raw material is melted, cast and homogenized by a conventional method, and then subjected to a hot rolling process as it is to obtain an aluminum or aluminum alloy plate as a predetermined thickness. obtain. Then, by controlling the hot rolling finishing temperature at that time, the surface layer of the aluminum or aluminum alloy plate is maintained to be soft, and in the central portion of the plate thickness, it is softened so as to be easily processed. . For example, the above-described characteristics can be obtained by controlling the hot rolling coiling temperature to be in the range of 250 ° C to 300 ° C.

又は、常法により素材を溶解・鋳造・均質化処理を施した後、熱間圧延及び冷間圧延を施し、所定の板厚とした後、このアルミニウム又はアルミニウム合金板を所定の温度で焼鈍処理し、その後、表面に若干の圧延(スキンパス)を行い、アルミニウム又はアルミニウム合金板の表面層の硬さを高くする。例えば、焼鈍処理後の圧延(スキンパス)は表面の加工率を2〜8%とすることで、前述した特性が得られる。   Or after melting, casting, and homogenizing the material by a conventional method, hot rolling and cold rolling are performed to obtain a predetermined plate thickness, and then the aluminum or aluminum alloy plate is annealed at a predetermined temperature. Thereafter, the surface is slightly rolled (skin pass) to increase the hardness of the surface layer of the aluminum or aluminum alloy plate. For example, in the rolling (skin pass) after the annealing treatment, the above-described characteristics can be obtained by setting the surface processing rate to 2 to 8%.

次に、本発明の効果を実証するために行った実験結果について説明する。先ず、主添加元素であるマグネシウムの添加量が2.7質量%で、耐応力腐食割れ感受性が良好なJIS A5454Al合金を常法により製造し、熱間圧延及び冷間圧延により板厚を6mmとした後、350℃で焼鈍処理を行い、表面加工率を変化させて圧延(スキンパス)を施し、4種類のA5454アルミニウム合金板(1)乃至(4)を得た。図3(a)は焼鈍材の板厚方向のビッカース硬さの分布を示し、図3(b)乃至(e)はスキンパス圧延した4種類のA5454アルミニウム合金板(1)乃至(4)の板厚方向のビッカース硬さ分布を示す。なお、各アルミニウム合金板の硬さ分布は板表面から0.5mmピッチで、ビッカース硬さ試験機(試験荷重0.29N)により測定した。   Next, the results of experiments conducted to verify the effects of the present invention will be described. First, a JIS A 5454 Al alloy having an additive amount of magnesium as a main additive element of 2.7% by mass and good resistance to stress corrosion cracking is manufactured by a conventional method, and a thickness of 6 mm is obtained by hot rolling and cold rolling. After that, annealing was performed at 350 ° C., and the surface processing rate was changed to perform rolling (skin pass) to obtain four types of A5454 aluminum alloy plates (1) to (4). 3 (a) shows the distribution of Vickers hardness in the thickness direction of the annealed material, and FIGS. 3 (b) to 3 (e) show four types of A5454 aluminum alloy plates (1) to (4) subjected to skin pass rolling. The Vickers hardness distribution in the thickness direction is shown. The hardness distribution of each aluminum alloy plate was measured with a Vickers hardness tester (test load 0.29 N) at a pitch of 0.5 mm from the plate surface.

次に、図4(a)に示すように、これらの材料を50mm角に切り出して供試アルミニウム板1とした。この供試アルミニウム板1の中心に直径13mm(JIS B1001 1級)のボルト孔を開け、M12の六角孔付きボルト2(JIS B1176)と、六角ナット3(JIS B1181)と、平座金4(JIS B1256)とを使用し、図4のように、アルミニウム板1、ボルト2、ナット3及び座金4を配置して、プリセット式トルクレンチにより、40N・mのトルクを設定し、供試アルミニウム板に座面面圧を付与した。この座面面圧を付与して5時間以上放置した後、締結を解除して、測定部先端の尖ったマイクロメータにより、座面面圧が印加された部位の供試材の板厚を測定して座面陥没量を測定した。図4(b)はこのアルミニウム板1に残った陥没域5を示す。この陥没域5はボルト2の跡である。   Next, as shown to Fig.4 (a), these materials were cut out to 50 square mm, and it was set as the test aluminum plate 1. FIG. A bolt hole having a diameter of 13 mm (JIS B1001 grade 1) is drilled in the center of the test aluminum plate 1, and an M12 hexagon socket head bolt 2 (JIS B1176), a hexagon nut 3 (JIS B1181), and a plain washer 4 (JIS). B1256), and as shown in FIG. 4, the aluminum plate 1, the bolt 2, the nut 3 and the washer 4 are arranged, and a torque of 40 N · m is set by a preset type torque wrench. A bearing surface pressure was applied. After applying this seating surface pressure and leaving it to stand for more than 5 hours, the fastening is released, and the thickness of the test material at the site where the seating surface pressure is applied is measured with a micrometer with a sharp tip at the measurement part. Then, the amount of depression of the seat surface was measured. FIG. 4B shows the depressed area 5 remaining on the aluminum plate 1. The depressed area 5 is a trace of the bolt 2.

また、図5に示すように、曲げ加工性を調査するため、幅50mm、長さ250mmの板を用意して、曲げ半径=5.0mmの90°曲げ試験を実施した。つまり、供試アルミニウム板1を90°曲げブロック6上に配置し、先端半径が5mmのポンチ7によりアルミニウム板1を曲げることにより、90°曲げ試験(曲げ半径)を実施した。   Further, as shown in FIG. 5, in order to investigate the bending workability, a plate having a width of 50 mm and a length of 250 mm was prepared, and a 90 ° bending test with a bending radius of 5.0 mm was performed. That is, the 90 ° bending test (bending radius) was performed by placing the test aluminum plate 1 on the 90 ° bending block 6 and bending the aluminum plate 1 with the punch 7 having a tip radius of 5 mm.

以上の試験結果を下記表1に示す。座面陥没量は、締め付けトルクを40N・mとして測定した。   The above test results are shown in Table 1 below. The amount of depression on the bearing surface was measured with a tightening torque of 40 N · m.

Figure 2006283138
Figure 2006283138

本発明の実施例であるアルミニウム合金板(2)、(3)の場合は、表面層と中心層との平均ビッカース硬さの差(α−β)が、4乃至12Hvであり、しかも、表面硬化層の厚さが板厚の1/4以上であるので、座面陥没量が0.001mm以下と極めて小さいと共に、曲げ試験結果も良好なものであった。   In the case of the aluminum alloy plates (2) and (3), which are examples of the present invention, the difference in average Vickers hardness (α−β) between the surface layer and the center layer is 4 to 12 Hv, Since the thickness of the hardened layer was ¼ or more of the plate thickness, the amount of depression of the bearing surface was as extremely small as 0.001 mm or less, and the bending test result was also good.

これに対し、焼鈍材及びスキンパスの加工率が少ない比較例のアルミニウム材(1)の場合は、表面層と中心層との平均ビッカース硬さの差(α−β)が、4Hvに満たないので、座面陥没量が0.009mm以上と大きなものであった。また、比較例のアルミニウム合金板(4)のように、板厚方向の全厚にわたって硬さ分布が高い場合には、座面陥没量は低いものの、硬すぎて曲げ試験で割れが発生した。   On the other hand, in the case of the comparative example aluminum material (1) with a low processing rate of the annealed material and the skin pass, the difference in average Vickers hardness (α-β) between the surface layer and the center layer is less than 4 Hv. The amount of depression on the bearing surface was as large as 0.009 mm or more. Further, when the hardness distribution was high over the entire thickness in the plate thickness direction as in the aluminum alloy plate (4) of the comparative example, the amount of depression on the seat surface was low, but it was too hard and cracks occurred in the bending test.

実施例1におけるアルミニウム合金板(2)(実施例)と、焼鈍材(比較例)とを使用して、プリセット式トルクレンチにより設定トルクを変化させ、供試アルミニウム合金板に種々の座面面圧を付与し、その座面面圧で5時間以上放置した後、締結を解除して、測定部先端の尖ったマイクロメータにより座面面圧のかかった部位の供試材の板厚を測定して座面陥没量を求めた。その結果を下記表2に示す。   Using the aluminum alloy plate (2) (Example) in Example 1 and the annealed material (Comparative Example), the set torque is changed by a preset type torque wrench, and various seating surfaces are applied to the test aluminum alloy plate. After applying pressure and leaving the seating surface pressure for 5 hours or longer, release the fastening and measure the thickness of the specimen at the part where the seating surface pressure was applied using a micrometer with a sharp tip at the measuring section. Then, the amount of depression of the seat surface was obtained. The results are shown in Table 2 below.

Figure 2006283138
Figure 2006283138

アルミニウム合金板(2)の場合は、締め付けトルクが40n・mであっても、座面陥没量が0.001mmであり、限界面圧は、座面の陥没量が0.004mmを超えるときの座面圧力であるので、アルミニウム合金板(2)の限界面圧は、40N・m以上である。これに対し、焼鈍材の場合は、締め付けトルクが20N・mの場合は、陥没が発生していないものの、締め付け力が40N・mになると、陥没量が0.012mmになってしまい、限界圧力を超えてしまった。また、締め付け力が60N・m又は80N・mの高トルクで締付け座面に高い面圧を負荷した場合、本発明実施例のアルミニウム合金板(2)の方が焼鈍材よりも、著しく陥没量が少ない。   In the case of the aluminum alloy plate (2), even if the tightening torque is 40 nm, the seating surface depression amount is 0.001 mm, and the critical surface pressure is the value when the seating surface depression amount exceeds 0.004 mm. Since it is a bearing surface pressure, the limit surface pressure of the aluminum alloy plate (2) is 40 N · m or more. On the other hand, in the case of the annealed material, when the tightening torque is 20 N · m, no depression occurs, but when the tightening force is 40 N · m, the amount of depression becomes 0.012 mm, which is the limit pressure. Has been exceeded. In addition, when the tightening force is high torque of 60 N · m or 80 N · m and a high surface pressure is applied to the fastening seat surface, the aluminum alloy plate (2) of the embodiment of the present invention is significantly more depressed than the annealed material. Less is.

JIS A5454P合金以外のアルミニウム合金への本発明の適用の可否について調査した。常法により製造したA3004、A5052、A5154、A5083の4種類の合金を熱間圧延及び冷間圧延により板厚を4mmとした後、350℃で焼鈍処理を行い、表面加工率が2〜8%になるように圧延(スキンパス)を施した。その後、実施例1と同様に、各合金につき表面加工率が2〜8%になるように圧延(スキンパス)を施した実施例と、焼鈍処理のままで圧延(スキンパス)を施していない比較例と、加工硬化材で焼鈍処理をしていない比較例材料(A5083P−H32)とについて、そのボルト軸力による座面の陥没量及び曲げ加工性を求めた。   The applicability of the present invention to aluminum alloys other than JIS A5454P alloy was investigated. Four types of alloys A3004, A5052, A5154, and A5083 manufactured by ordinary methods were hot rolled and cold rolled to a plate thickness of 4 mm, and then annealed at 350 ° C., and the surface processing rate was 2 to 8%. Rolling (skin pass) was applied. After that, as in Example 1, each alloy was rolled (skin pass) so that the surface processing rate was 2 to 8%, and the comparative example was not subjected to rolling (skin pass) as it was annealed. With respect to the comparative material (A5083P-H32) that has not been annealed with the work hardening material, the amount of depression of the bearing surface and the bending workability due to the bolt axial force were obtained.

断面硬さの測定及びボルト軸力による座面の陥没量、曲げ加工性の調査については実施例1にて使用した試験方法と同様とした。なお、ボルトの締付けトルクは40N・mと80N・mの2水準、曲げ半径は5mmと10mmの2水準で試験を実施した。その結果を図7並びに下記表3及び4に示す。   The measurement of the cross-sectional hardness, the amount of depression of the bearing surface due to the bolt axial force, and the investigation of the bending workability were the same as the test method used in Example 1. The bolt tightening torque was tested at two levels of 40 N · m and 80 N · m, and the bending radius was tested at two levels of 5 mm and 10 mm. The results are shown in FIG. 7 and Tables 3 and 4 below.

Figure 2006283138
Figure 2006283138

Figure 2006283138
Figure 2006283138

焼鈍処理後、表面の加工率が2〜8%になるように圧延(スキンパス)を施した本発明の実施例のアルミニウム合金板は、40N・mの締付けトルクでは座面陥没が発生せず(限界面圧0.004mm以下)、80N・mのトルクで締め付けた場合でも陥没量が比較的少なくなっている。但し、A5083の場合は素材強度が高く、平均硬さが高いため、若干の曲げ加工性の低下が認められた。この比較的強度が高いA5083材料に本発明を適用した場合には、最小曲げ半径が大きくなり、設計形状に制約を受けるが、座面陥没の抑制には効果が認められる。   After the annealing treatment, the aluminum alloy plate of the embodiment of the present invention that was rolled (skin pass) so that the processing rate of the surface was 2 to 8%, the seating surface depression did not occur at a tightening torque of 40 N · m ( Even when tightened with a torque of 80 N · m (limit surface pressure 0.004 mm or less), the amount of depression is relatively small. However, in the case of A5083, since the material strength was high and the average hardness was high, a slight decrease in bending workability was recognized. When the present invention is applied to this relatively high strength A5083 material, the minimum bending radius is increased and the design shape is restricted, but an effect is recognized in suppressing the seat surface depression.

一方、焼鈍処理のままでスキンパスを施していない比較例の場合は、40N・mの締付けトルクでも、少なくとも0.006mm以上の座面陥没が認められ、80N・mのトルクで締め付けた場合は、座面陥没量が0.099mm以上と本発明の実施例の場合よりも著しく大きなものであった。また、加工硬化材で焼鈍処理をしていないA5083−H32材は座面陥没は認められないものの、曲げ半径=10mmの曲げ試験でも割れが発生してしまい、曲げ加工性が悪いものであった。   On the other hand, in the case of the comparative example in which the annealing process is not performed and the skin pass is not applied, even when the tightening torque is 40 N · m, at least 0.006 mm or more of the seat surface is depressed, and when tightened with the torque of 80 N · m, The amount of depression of the bearing surface was 0.099 mm or more, which was significantly larger than that in the example of the present invention. In addition, although the A5083-H32 material that has not been annealed with the work-hardening material does not show a depression of the seating surface, cracking occurred even in a bending test with a bending radius of 10 mm, and the bending workability was poor. .

本発明の構成を説明するための硬さ分布(ビッカース硬さ)を示すグラフ図である。It is a graph which shows the hardness distribution (Vickers hardness) for demonstrating the structure of this invention. 従来の焼鈍材の硬さ分布を示すグラフ図である。It is a graph which shows the hardness distribution of the conventional annealing material. (a)乃至(e)は、表1のアルミニウム合金板(1)乃至(4)及び焼鈍材の硬さ分布を示すグラフ図である。(A) thru | or (e) are graphs which show the hardness distribution of aluminum alloy plate (1) thru | or (4) of Table 1, and an annealing material. (a)、(b)はトルクレンチによる締め付け試験方法を示す図である。(A), (b) is a figure which shows the fastening test method by a torque wrench. ピンチによる曲げ試験方法を示す図である。It is a figure which shows the bending test method by a pinch. 種々の材料について、スキンパスを行った実施例のアルミニウム板と、焼鈍材との硬さ分布を示すグラフ図である。It is a graph which shows the hardness distribution of the aluminum plate of the Example which performed the skin pass about various materials, and an annealing material.

符号の説明Explanation of symbols

1:アルミニウム合金板
2:ボルト
3:ナット
4:平座金
5:陥没域
6:曲げブロック
7:ポンチ
1: Aluminum alloy plate 2: Bolt 3: Nut 4: Plain washer 5: Recessed area 6: Bending block 7: Punch

Claims (5)

機械的手段により締結される用途に使用されるアルミニウム又はアルミニウム合金材において、表面が板厚方向中心部より硬さが高く、板厚方向の硬さ分布の平均値をXとしたとき、表面から硬さが平均値Xとなる位置までの表層部の厚さが板厚の1/4以上であることを特徴とするアルミニウム又はアルミニウム合金材。 In aluminum or aluminum alloy materials used for applications that are fastened by mechanical means, the surface is harder than the central part in the thickness direction, and the average value of the hardness distribution in the thickness direction is X. An aluminum or aluminum alloy material, characterized in that the thickness of the surface layer portion up to a position where the hardness is an average value X is ¼ or more of the plate thickness. 機械的手段により締結される用途に使用されるアルミニウム又はアルミニウム合金材において、表面が板厚方向中心部より硬さが高く、表面から板厚の1/4の表面層の平均硬さと、板厚方向の中心から両表面に向けて夫々板厚の1/6となる厚さが板厚の1/3の中心層の平均硬さとの差が、ビッカース硬さで4Hv以上12Hv以下であることを特徴とするアルミニウム又はアルミニウム合金材。 In aluminum or aluminum alloy materials used for applications that are fastened by mechanical means, the surface is harder than the central portion in the plate thickness direction, and the average hardness of the surface layer that is 1/4 of the plate thickness from the surface, and the plate thickness The difference from the average hardness of the central layer having a thickness of 1/6 of the plate thickness from the center in the direction to both surfaces to 1/3 of the plate thickness is 4 Hv or more and 12 Hv or less in terms of Vickers hardness. Characteristic aluminum or aluminum alloy material. 板厚方向の硬さ分布の平均値がビッカース硬さで60Hv以上85Hv以下であることを特徴とする請求項2に記載のアルミニウム又はアルミニウム合金材。 3. The aluminum or aluminum alloy material according to claim 2, wherein the average value of the hardness distribution in the thickness direction is not less than 60 Hv and not more than 85 Hv in terms of Vickers hardness. 構造用3000系又は5000系アルミニウム合金であることを特徴とする請求項3に記載のアルミニウム又はアルミニウム合金材。 The aluminum or aluminum alloy material according to claim 3, wherein the aluminum or aluminum alloy material is a structural 3000 series or 5000 series aluminum alloy. 請求項1乃至4のいずれか1項に記載のアルミニウム又はアルミニウム合金材同士、又はこのアルミニウム又はアルミニウム合金と、他の品種の材料とを、機械的手段により締結したことを特徴とする構造体。

A structure characterized in that the aluminum or aluminum alloy material according to any one of claims 1 to 4, or the aluminum or aluminum alloy, and another kind of material are fastened by mechanical means.

JP2005105154A 2005-03-31 2005-03-31 Aluminum or aluminum alloy material and structure using the same Pending JP2006283138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005105154A JP2006283138A (en) 2005-03-31 2005-03-31 Aluminum or aluminum alloy material and structure using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005105154A JP2006283138A (en) 2005-03-31 2005-03-31 Aluminum or aluminum alloy material and structure using the same

Publications (1)

Publication Number Publication Date
JP2006283138A true JP2006283138A (en) 2006-10-19

Family

ID=37405344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005105154A Pending JP2006283138A (en) 2005-03-31 2005-03-31 Aluminum or aluminum alloy material and structure using the same

Country Status (1)

Country Link
JP (1) JP2006283138A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021059151A (en) * 2019-10-03 2021-04-15 日本製鉄株式会社 Member for vehicle
JP2021526594A (en) * 2018-06-11 2021-10-07 アレリス、ロールド、プロダクツ、ジャーマニー、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングAleris Rolled Products Germany Gmbh A method for producing an Al-Mg-Mn alloy plate product having improved corrosion resistance.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570879A (en) * 1986-08-06 1993-03-23 Honda Motor Co Ltd Connecting rod for internal combustion engine
JPH06192781A (en) * 1992-05-12 1994-07-12 Sky Alum Co Ltd Aluminum alloy sheet excellent in galling resistance and scuffing resistance
JPH06323326A (en) * 1993-05-11 1994-11-25 Sumitomo Light Metal Ind Ltd Connecting rod made of aluminum powder alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570879A (en) * 1986-08-06 1993-03-23 Honda Motor Co Ltd Connecting rod for internal combustion engine
JPH06192781A (en) * 1992-05-12 1994-07-12 Sky Alum Co Ltd Aluminum alloy sheet excellent in galling resistance and scuffing resistance
JPH06323326A (en) * 1993-05-11 1994-11-25 Sumitomo Light Metal Ind Ltd Connecting rod made of aluminum powder alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021526594A (en) * 2018-06-11 2021-10-07 アレリス、ロールド、プロダクツ、ジャーマニー、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングAleris Rolled Products Germany Gmbh A method for producing an Al-Mg-Mn alloy plate product having improved corrosion resistance.
JP7123254B2 (en) 2018-06-11 2022-08-22 ノベリス・コブレンツ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for producing Al-Mg-Mn alloy plate product with improved corrosion resistance
US12091735B2 (en) 2018-06-11 2024-09-17 Novelis Koblenz Gmbh Method of manufacturing an Al—Mg—Mn alloy plate product having an improved corrosion resistance
JP2021059151A (en) * 2019-10-03 2021-04-15 日本製鉄株式会社 Member for vehicle
JP7368710B2 (en) 2019-10-03 2023-10-25 日本製鉄株式会社 Steel parts for vehicles

Similar Documents

Publication Publication Date Title
Toroghinejad et al. On the use of accumulative roll bonding process to develop nanostructured aluminum alloy 5083
Sønstabø et al. Macroscopic strength and failure properties of flow-drill screw connections
EP2436792B1 (en) Linear object, bolt, nut and washer each comprising magnesium alloy
EP1990552B1 (en) Bolt and method for manufacturing bolt
WO2010007649A1 (en) Screw fastening structure with high-strength self-forming screw
US20040022603A1 (en) Method of manufacturing rivets having high strength and formability
EP2638989B1 (en) Process for manufacture of fastening component made from aluminum-based alloy, and fastening component made from aluminum-based alloy
EP2149618B1 (en) Hot pressing process, particularly for providing metal unions for pneumatic, hydraulic and fluid-operated circuits, and metal union obtained thereby
Nijgh Loss of preload in pretensioned bolts
JP2006283138A (en) Aluminum or aluminum alloy material and structure using the same
Tsoupis et al. Bending of high-strength low-alloyed steel with respect to edge crack sensitivity caused by shearing operations
JP6465040B2 (en) Manufacturing method of molded member
JP5642520B2 (en) Sealing agent, fastener, bolt and method for producing the same
JP4510572B2 (en) Manufacturing method for automotive parts having punched end faces with excellent fatigue characteristics
Matsumoto et al. Fracture of magnesium alloy in cold forging
US8070888B2 (en) High strength formed article comprising hyperfine grain structure steel and manufacturing method of the same
JP2003145222A (en) Method for pressing aluminum alloy plate and aluminum alloy plate
JP4519053B2 (en) Manufacturing method of high strength nut
JPH0932814A (en) Splice plate for friction junction of high power bolt
JP2013141670A (en) Method for evaluation of work cracking sensitivity
JP2003117614A (en) Method for press-working aluminum alloy sheet, and aluminum alloy sheet
WO2022196018A1 (en) Tapping screw and fastening structure using same
Slota et al. Ultimate Load-Carrying Ability of Rib-Stiffened 2024-T3 and 7075-T6 Aluminium Alloy Panels under Axial Compression. Materials 2021, 14, 1176
Holleitner et al. Design of aluminium solid self-piercing rivets for joining aluminium sheets by material and geometric modification
EP4052814A1 (en) Aluminum alloy bolt and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601