JP2006282910A - Method for producing insulating film for printed wiring board and polyimide/copper laminated body and printed wiring board - Google Patents

Method for producing insulating film for printed wiring board and polyimide/copper laminated body and printed wiring board Download PDF

Info

Publication number
JP2006282910A
JP2006282910A JP2005106327A JP2005106327A JP2006282910A JP 2006282910 A JP2006282910 A JP 2006282910A JP 2005106327 A JP2005106327 A JP 2005106327A JP 2005106327 A JP2005106327 A JP 2005106327A JP 2006282910 A JP2006282910 A JP 2006282910A
Authority
JP
Japan
Prior art keywords
layer
printed wiring
polyimide
insulating film
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005106327A
Other languages
Japanese (ja)
Other versions
JP5069844B2 (en
Inventor
Masaru Nishinaka
賢 西中
Kanji Shimooosako
寛司 下大迫
Taku Ito
卓 伊藤
Mutsuaki Murakami
睦明 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2005106327A priority Critical patent/JP5069844B2/en
Publication of JP2006282910A publication Critical patent/JP2006282910A/en
Application granted granted Critical
Publication of JP5069844B2 publication Critical patent/JP5069844B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To rapidly increase the productivity of a thermoplastic polyimide resin having excellent adhesion to electroless plating and of the insulating film for printed wiring board laminated with high heat resistant polyimide film. <P>SOLUTION: In this method for producing insulating film for the printed wiring board, a layer (B) including a thermoplastic polyimide that is prepared from diamines containing a diamine represented by general formula (1) is coated on at least one surface of the layer (A) including high heat resistant polyimide to form the insulating film for the printed wiring board. At this time, a solution of high heat-resistance polyimide included in the layer (A) and a solution including thermoplastic polyimide included in the layer (B) or a solution including the precursor of the thermoplastic polyimide are used to carry out co-extrusion or film casting thereby producing insulating film for printed wiring board. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高耐熱性ポリイミドを含む層(A)の少なくとも片面に、一般式(1)で表されるジアミンを含むジアミンを原料とする熱可塑性ポリイミドを含有する層(B)を設けたプリント配線板用絶縁フィルムの製造方法および使用方法に関する。   The present invention is a print in which a layer (B) containing a thermoplastic polyimide made from a diamine containing a diamine represented by the general formula (1) is provided on at least one side of a layer (A) containing a high heat resistant polyimide. The present invention relates to a method for producing and using a wiring board insulating film.

Figure 2006282910
(式中、gは1以上の整数を表す。また、R1は、同一または異なっていてよく、低級アルキレン基またはフェニレン基を表す。R2は、同一または異なっていてよく、低級アルキル基、またはフェニル基、またはフェノキシ基を表す。)
Figure 2006282910
(In the formula, g represents an integer of 1 or more. Moreover, R 1 may be the same or different and represents a lower alkylene group or a phenylene group. R 2 may be the same or different and represents a lower alkyl group, Or a phenyl group or a phenoxy group.)

プリント配線板は電子部品や半導体素子等を実装するために広く用いられている。近年の電子機器の小型化、高機能化の要求に伴い、配線の高密度化や薄型化が強く望まれている。特にライン/スペースの間隔が25μm/25μm以下であるような微細配線形成方法の確立はプリント配線板分野の重要な課題である。   Printed wiring boards are widely used for mounting electronic components, semiconductor elements, and the like. With recent demands for downsizing and higher functionality of electronic devices, there is a strong demand for higher density and thinner wiring. In particular, establishment of a fine wiring forming method in which the line / space spacing is 25 μm / 25 μm or less is an important issue in the field of printed wiring boards.

微細配線形成の場合、絶縁層表面の凹凸を極力小さくしないと、配線形状や配線幅、配線厚みなどを設計通りに良好に形成することができない。あるいは、配線パターンのスペース部分にエッチング残りを生じることにもなる。また、細線化により回路と絶縁層が接触する面積が小さくなるために高い接着強度が求められる。   In the case of fine wiring formation, the wiring shape, wiring width, wiring thickness, and the like cannot be satisfactorily formed as designed unless the unevenness on the surface of the insulating layer is made as small as possible. Alternatively, an etching residue is generated in the space portion of the wiring pattern. Further, since the area of contact between the circuit and the insulating layer is reduced by thinning, high adhesive strength is required.

このように、微細配線形成のために好ましい絶縁層は、表面の凹凸が極めて小さく、且つ微細配線との接着性が十分高い絶縁層である。   Thus, a preferable insulating layer for forming fine wiring is an insulating layer having extremely small surface irregularities and sufficiently high adhesion to the fine wiring.

しかし、従来、配線基板に用いられる上記絶縁層と配線との接着は、(特許文献1)に示す様に、アンカー効果と呼ばれる表面の凹凸によって達成されているため、形成する表面凹凸を小さくし、若しくは特に凹凸を形成せずに配線との充分な接着力を得ることは困難であった。   However, conventionally, the adhesion between the insulating layer and the wiring used in the wiring board has been achieved by surface unevenness called the anchor effect, as shown in (Patent Document 1), so the surface unevenness to be formed is reduced. Or, it was difficult to obtain a sufficient adhesive force with the wiring without forming irregularities.

一方、表面粗度が小さい樹脂表面に形成した配線との接着性改善について、(特許文献2)にはポリイミドフィルム表面に蒸着、スパッタリング等の物理的方法で導体層を形成する方法が開示されている。形成した金属層は、通常のポリイミドフィルム表面に形成した銅金属層に比較して優れた接着強度を有している。しかし、真空プロセスを用いる為、コストが高くなる、また、生産性に劣るという欠点を有している。
また、半導体素子の高性能化、高速化に際し、半導体素子の強度が低下する(割れやすくなる)、プリント配線板の高密度化に際しては、素子と基板の実装の高精度化が要求され、位置のズレの許容範囲も小さくなってきている。
On the other hand, regarding improvement in adhesion to wiring formed on a resin surface having a small surface roughness, (Patent Document 2) discloses a method of forming a conductor layer on a polyimide film surface by a physical method such as vapor deposition or sputtering. Yes. The formed metal layer has excellent adhesive strength as compared with a copper metal layer formed on the surface of a normal polyimide film. However, since the vacuum process is used, there are disadvantages that the cost is high and the productivity is inferior.
In addition, when the performance and speed of a semiconductor element are increased, the strength of the semiconductor element is reduced (becomes easy to break). The allowable range of deviation is also getting smaller.

また、フィルム全体の強度、可とう性、寸法安定性を実現するために、これらの特性に富む非熱可塑性ポリイミドフィルムの表面に、回路配線を形成する導体層との密着性を向上するための層を設けることが考えられる。このような多層ポリイミドフィルムの生産性の高い製造方法として(特許文献3)や(特許文献4)には非熱可塑性ポリイミド層と熱可塑性ポリイミド層を同時に流延塗布して形成する「共押出-流延塗布法」が開示されているが、平滑な樹脂表面に銅めっきが高い密着強度で密着することに関してなんら開示していない。
特開2000−198907 特開平11−71474 特許第2946416号 特開平7−214637号
In addition, in order to improve the overall strength, flexibility and dimensional stability of the film, the surface of the non-thermoplastic polyimide film rich in these properties can be improved in adhesion to the conductor layer forming the circuit wiring. It is conceivable to provide a layer. As a highly productive manufacturing method of such a multilayer polyimide film (Patent Document 3) and (Patent Document 4), a “non-thermoplastic polyimide layer and a thermoplastic polyimide layer are formed by simultaneous casting and coating” The “casting method” is disclosed, but there is no disclosure regarding that the copper plating adheres to a smooth resin surface with high adhesion strength.
JP2000-198907 JP-A-11-71474 Patent No. 2946416 JP-A-7-214636

本発明は、上記の課題に鑑みてなされたものであって、導体層、特に微細回路の形成に適した極薄の導体層を生産性高く形成できる無電解めっきと、導体層との密着性を向上するための層との界面の密着性が高く、かつ従来に比して、強度、寸法安定性、可とう性に優れたプリント配線板用絶縁フィルムの製造方法に関し、その目的は、このような優れたプリント配線板用絶縁フィルムの、飛躍的に高い生産性を有する製造方法を提供することにある。   The present invention has been made in view of the above problems, and is an electroless plating capable of forming a conductor layer, particularly an extremely thin conductor layer suitable for forming a fine circuit, with high productivity, and adhesion between the conductor layer. The purpose of this method is to produce an insulating film for a printed wiring board that has high adhesion at the interface with the layer for improving the strength and is superior in strength, dimensional stability, and flexibility as compared with the conventional one. An object of the present invention is to provide a method for manufacturing such an excellent insulating film for printed wiring boards, which has dramatically high productivity.

また、このような多層ポリイミドフィルムにおいては非熱可塑性ポリイミドフィルムと、導体層との密着性を向上するための層との界面の密着性が十分でないことがあり、耐熱性等に問題が生じることがあるが、本発明の製造方法によれば、非熱可塑性ポリイミドフィルムと導体層との密着性を向上するための層との界面の密着性が向上する。   In addition, in such a multilayer polyimide film, the adhesion at the interface between the non-thermoplastic polyimide film and the layer for improving the adhesion between the conductor layer may not be sufficient, resulting in problems in heat resistance, etc. However, according to the production method of the present invention, the adhesion at the interface between the non-thermoplastic polyimide film and the layer for improving the adhesion between the conductor layers is improved.

本発明者らは、上記の課題に鑑み鋭意検討した結果、無電解めっきの密着性、強度、可とう性、寸法安定性に優れたプリント配線板用絶縁フィルムの製造方法、およびその用途を独自に見出し、本発明を完成させるに至った。即ち、本発明は、
(1)高耐熱性ポリイミドを含む層(A)の少なくとも片面に、一般式(1)で表されるジアミンを含むジアミンを原料とする熱可塑性ポリイミドを含有する層(B)を積層して、プリント配線板用絶縁フィルムを製造する方法であって、層(A)に含まれる高耐熱性ポリイミドの前駆体溶液と、層(B)に含まれる熱可塑性ポリイミドを含有する溶液もしくは熱可塑性ポリイミドの前駆体を含有する溶液とを用いて、共押出−流延塗布法により製造する、プリント配線板用絶縁フィルムの製造方法、
As a result of intensive studies in view of the above-mentioned problems, the present inventors have independently developed a method for producing an insulating film for printed wiring boards excellent in adhesion, strength, flexibility, and dimensional stability of electroless plating, and its use. The present invention has been completed. That is, the present invention
(1) A layer (B) containing a thermoplastic polyimide using a diamine containing a diamine represented by the general formula (1) as a raw material is laminated on at least one side of the layer (A) containing a high heat resistant polyimide, A method for producing an insulating film for a printed wiring board, comprising a precursor solution of a high heat resistant polyimide contained in the layer (A) and a solution containing the thermoplastic polyimide contained in the layer (B) or a thermoplastic polyimide. A method for producing an insulating film for a printed wiring board, which is produced by a coextrusion-casting method using a solution containing a precursor,

Figure 2006282910
(式中、gは1以上の整数を表す。また、R1は、同一または異なっていてよく、低級アルキレン基またはフェニレン基を表す。R2は、同一または異なっていてよく、低級アルキル基、またはフェニル基、またはフェノキシ基を表す。)
(2)前記層(A)に含まれる高耐熱性ポリイミドの前駆体溶液と、前記層(B)に含まれる熱可塑性ポリイミドを含有する溶液もしくは熱可塑性ポリイミドの前駆体を含有する溶液との少なくとも一方に化学脱水剤及び触媒を含むことを特徴とする、(1)に記載のプリント配線板用絶縁フィルムの製造方法、
(3)(1)もしくは(2)のいずれかに記載の方法により得られたプリント配線板用絶縁フィルムの層(B)の表面に無電解銅めっきを施すことを特徴とする、ポリイミド/銅積層体、
(4)(1)もしくは(2)のいずれかに記載の方法により得られたプリント配線板用絶縁フィルムまたは(3)に記載のポリイミド/銅積層体を用いることを特徴とするプリント配線板である。
Figure 2006282910
(In the formula, g represents an integer of 1 or more. Moreover, R 1 may be the same or different and represents a lower alkylene group or a phenylene group. R 2 may be the same or different and represents a lower alkyl group, Or a phenyl group or a phenoxy group.)
(2) at least a precursor solution of a high heat-resistant polyimide contained in the layer (A) and a solution containing a thermoplastic polyimide or a solution containing a precursor of a thermoplastic polyimide contained in the layer (B) The method for producing an insulating film for a printed wiring board according to (1), which contains a chemical dehydrating agent and a catalyst on one side,
(3) Polyimide / copper, characterized in that electroless copper plating is applied to the surface of the layer (B) of the insulating film for printed wiring boards obtained by the method according to either (1) or (2) Laminate,
(4) A printed wiring board characterized by using the insulating film for a printed wiring board obtained by the method according to (1) or (2) or the polyimide / copper laminate according to (3). is there.

本発明者らは、上記の課題に鑑み鋭意検討した結果、無電解めっきの密着性、強度、可とう性、寸法安定性に優れたプリント配線板用絶縁フィルムの製造方法、およびその用途を独自に見出し、本発明を完成させるに至った。   As a result of intensive studies in view of the above-mentioned problems, the present inventors have independently developed a method for producing an insulating film for printed wiring boards excellent in adhesion, strength, flexibility, and dimensional stability of electroless plating, and its use. The present invention has been completed.

本発明によれば、導体層、特に微細回路の形成に適した極薄の導体層を生産性高く形成できる無電解めっきと、導体層との密着性を向上するための層との界面の密着性が高く、かつ従来に比して、強度、寸法安定性、可とう性に優れたプリント配線板用絶縁フィルムを生産性良く製造することができ、ひいては、微細配線に適したプリント配線板を提供可能となる。また、層(A)に含まれる高耐熱性ポリイミドを前駆体溶液の状態で、層(B)と積層することにより、層(A)と層(B)の界面の密着性を向上する効果もあり、特に層(A)と層(B)の高温時の密着性が向上することからプリント配線板用絶縁フィルムの耐熱性も向上する。   According to the present invention, the adhesion of the interface between the electroless plating capable of forming a conductor layer, particularly an extremely thin conductor layer suitable for forming a fine circuit, with high productivity and the layer for improving the adhesion between the conductor layer. Insulating films for printed wiring boards that have high performance and superior strength, dimensional stability, and flexibility compared to conventional products can be manufactured with high productivity. As a result, printed wiring boards suitable for fine wiring can be manufactured. It can be provided. Moreover, the effect which improves the adhesiveness of the interface of a layer (A) and a layer (B) by laminating | stacking the high heat resistant polyimide contained in a layer (A) with a layer (B) in the state of a precursor solution is also effective. In particular, since the adhesiveness of the layer (A) and the layer (B) at high temperatures is improved, the heat resistance of the insulating film for printed wiring boards is also improved.

本発明の実施の形態について、以下に説明する。   Embodiments of the present invention will be described below.

本発明に係るプリント配線板用絶縁フィルムは、高耐熱性ポリイミドを含む層(A)の少なくとも片面に一般式(1)で表されるジアミンを含むジアミンを原料とする熱可塑性ポリイミドを含有する層(B)を設けて成ることを特徴とする。   The insulating film for printed wiring boards according to the present invention comprises a layer containing a thermoplastic polyimide made from a diamine containing a diamine represented by the general formula (1) on at least one side of the layer (A) containing a high heat-resistant polyimide. (B) is provided.

Figure 2006282910
(式中、gは1以上の整数を表す。また、R1は、同一または異なっていてよく、低級アルキレン基またはフェニレン基を表す。R2は、同一または異なっていてよく、低級アルキル基、またはフェニル基、またはフェノキシ基を表す。)
本発明に係る高耐熱性ポリイミドを含む層(A)は、そのプリント配線板用絶縁フィルムを用いて加工する際の工程、または最終製品の形態で通常さらされる温度において、容易に熱変形しないものであれば各種ポリイミド材料を使用して形成することができるが、特に非熱可塑性ポリイミド樹脂を90wt%以上含有していることが好ましい。尚、その分子構造、厚みは特に限定されない。
Figure 2006282910
(In the formula, g represents an integer of 1 or more. Moreover, R 1 may be the same or different and represents a lower alkylene group or a phenylene group. R 2 may be the same or different and represents a lower alkyl group, Or a phenyl group or a phenoxy group.)
The layer (A) containing the high heat-resistant polyimide according to the present invention is not easily thermally deformed at the temperature usually exposed in the process of using the insulating film for printed wiring boards or in the form of the final product. If it is, it can be formed using various polyimide materials, but it is preferable to contain 90 wt% or more of non-thermoplastic polyimide resin. The molecular structure and thickness are not particularly limited.

以下、実施の形態の一例に基づき説明する。
(高耐熱性ポリイミドを含む層(A))
本発明に用いられる高耐熱性ポリイミドの前駆体のポリアミド酸の製造方法としては公知のあらゆる方法を用いることができるが、通常、芳香族酸二無水物と芳香族ジアミンを、実質的等モル量を有機溶媒中に溶解させて、得られた溶液を、制御された温度条件下で、上記酸二無水物とジアミンの重合が完了するまで攪拌することによって製造される。これらのポリアミド酸溶液は通常5〜35wt%、好ましくは10〜30wt%の濃度で得られる。この範囲の濃度である場合に適当な分子量と溶液粘度が得やすくなる。
Hereinafter, description will be given based on an example of the embodiment.
(Layer containing highly heat-resistant polyimide (A))
Any known method can be used as a method for producing the polyamic acid as the precursor of the high heat-resistant polyimide used in the present invention. Usually, the aromatic acid dianhydride and the aromatic diamine are substantially equimolar amounts. Is dissolved in an organic solvent and the resulting solution is stirred under controlled temperature conditions until the polymerization of the acid dianhydride and diamine is complete. These polyamic acid solutions are usually obtained at a concentration of 5 to 35 wt%, preferably 10 to 30 wt%. When the concentration is within this range, an appropriate molecular weight and solution viscosity are easily obtained.

重合方法としてはあらゆる公知の方法およびそれらを組み合わせた方法を用いることができる。ポリアミド酸の重合における重合方法の特徴はそのモノマーの添加順序にあり、このモノマー添加順序を制御することにより得られる高耐熱性ポリイミドの諸物性を制御することができる。従い、本発明においてポリアミド酸の重合にはいかなるモノマーの添加方法を用いても良い。代表的な重合方法として次のような方法が挙げられる。すなわち、
1)芳香族ジアミンを有機極性溶媒中に溶解し、これと実質的に等モルの芳香族テトラカルボン酸二無水物を反応させて重合する方法。
2)芳香族テトラカルボン酸二無水物とこれに対し過小モル量の芳香族ジアミン化合物とを有機極性溶媒中で反応させ、両末端に酸無水物基を有するプレポリマーを得る。続いて、全工程において芳香族テトラカルボン酸二無水物と芳香族ジアミン化合物が実質的に等モルとなるように芳香族ジアミン化合物を用いて重合させる方法。
3)芳香族テトラカルボン酸二無水物とこれに対し過剰モル量の芳香族ジアミン化合物とを有機極性溶媒中で反応させ、両末端にアミノ基を有するプレポリマーを得る。続いてここに芳香族ジアミン化合物を追加添加後、全工程において芳香族テトラカルボン酸二無水物と芳香族ジアミン化合物が実質的に等モルとなるように芳香族テトラカルボン酸二無水物を用いて重合する方法。
4)芳香族テトラカルボン酸二無水物を有機極性溶媒中に溶解及び/または分散させた後、実質的に等モルとなるように芳香族ジアミン化合物を用いて重合させる方法。
5)実質的に等モルの芳香族テトラカルボン酸二無水物と芳香族ジアミンの混合物を有機極性溶媒中で反応させて重合する方法。 などのような方法である。これらの方法を単独で用いても良いし、部分的に組み合わせて用いることもできる。
As the polymerization method, any known method and a combination thereof can be used. The characteristic of the polymerization method in the polymerization of polyamic acid is the order of addition of the monomers, and various physical properties of the high heat-resistant polyimide obtained can be controlled by controlling the order of addition of the monomers. Therefore, in the present invention, any method of adding monomers may be used for the polymerization of polyamic acid. The following method is mentioned as a typical polymerization method. That is,
1) A method in which an aromatic diamine is dissolved in an organic polar solvent and this is reacted with a substantially equimolar amount of an aromatic tetracarboxylic dianhydride for polymerization.
2) An aromatic tetracarboxylic dianhydride is reacted with a small molar amount of an aromatic diamine compound in an organic polar solvent to obtain a prepolymer having acid anhydride groups at both ends. Then, the method of superposing | polymerizing using an aromatic diamine compound so that an aromatic tetracarboxylic dianhydride and an aromatic diamine compound may become substantially equimolar in all the processes.
3) An aromatic tetracarboxylic dianhydride is reacted with an excess molar amount of an aromatic diamine compound in an organic polar solvent to obtain a prepolymer having amino groups at both ends. Subsequently, after adding an aromatic diamine compound here, using the aromatic tetracarboxylic dianhydride so that the aromatic tetracarboxylic dianhydride and the aromatic diamine compound are substantially equimolar in all steps. How to polymerize.
4) A method in which an aromatic tetracarboxylic dianhydride is dissolved and / or dispersed in an organic polar solvent and then polymerized using an aromatic diamine compound so as to be substantially equimolar.
5) A method in which a substantially equimolar mixture of aromatic tetracarboxylic dianhydride and aromatic diamine is reacted in an organic polar solvent for polymerization. And so on. These methods may be used singly or in combination.

本発明において、上記のいかなる重合方法を用いて得られたポリアミド酸を用いても良く、重合方法は特に限定されるのもではない。   In the present invention, the polyamic acid obtained by using any of the above polymerization methods may be used, and the polymerization method is not particularly limited.

本発明に係るプリント配線板用絶縁フィルムに使用するのに適した物性を有する高耐熱性ポリイミド層を得るためには、パラフェニレンジアミンや置換ベンジジンに代表される剛直構造を有するジアミン成分を用いてプレポリマーを得る重合方法を用いることが好ましい。本方法を用いることにより、弾性率が高く、吸湿膨張係数が小さいポリイミドフィルムが得やすくなる傾向にある。本方法においてプレポリマー調製時に用いる剛直構造を有するジアミンと酸二無水物のモル比は100:70〜100:99もしくは70:100〜99:100、さらには100:75〜100:90もしくは75:100〜90:100が好ましい。   In order to obtain a highly heat-resistant polyimide layer having physical properties suitable for use in an insulating film for a printed wiring board according to the present invention, a diamine component having a rigid structure typified by paraphenylenediamine or substituted benzidine is used. It is preferable to use a polymerization method for obtaining a prepolymer. By using this method, a polyimide film having a high elastic modulus and a small hygroscopic expansion coefficient tends to be easily obtained. The molar ratio of the diamine having a rigid structure and the acid dianhydride used in preparing the prepolymer in the present method is 100: 70 to 100: 99 or 70: 100 to 99: 100, and further 100: 75 to 100: 90 or 75: 100-90: 100 is preferable.

ここで、本発明に係る高耐熱性ポリイミドの前駆体のポリアミド酸組成物に好適に用いられる材料について説明する。   Here, the material used suitably for the polyamic acid composition of the precursor of the high heat resistant polyimide which concerns on this invention is demonstrated.

本発明において好適に用いうる適当な酸無水物は、ピロメリット酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、3,3',4,4'−ビフェニルテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、2,2',3,3'−ビフェニルテトラカルボン酸二無水物、3,3',4,4'−ベンゾフェノンテトラカルボン酸二無水物、4,4'−オキシフタル酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)プロパン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)エタン二無水物、オキシジフタル酸二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、p−フェニレンビス(トリメリット酸モノエステル酸無水物)、エチレンビス(トリメリット酸モノエステル酸無水物)、ビスフェノールAビス(トリメリット酸モノエステル酸無水物)及びそれらの類似物を含み、これらを単独または、任意の割合の混合物が好ましく用い得る。   Suitable acid anhydrides that can be suitably used in the present invention include pyromellitic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic acid. Acid dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone Tetracarboxylic dianhydride, 4,4'-oxyphthalic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 3,4,9,10-perylenetetracarboxylic acid dianhydride Anhydride, bis (3,4-dicarboxyphenyl) propane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ) Ethane dianhydride, bis (2 , 3-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) ethane dianhydride, oxydiphthalic dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, p- Includes phenylene bis (trimellitic acid monoester acid anhydride), ethylene bis (trimellitic acid monoester acid anhydride), bisphenol A bis (trimellitic acid monoester acid anhydride) and the like, these alone Alternatively, a mixture of any ratio can be preferably used.

本発明に係るプリント配線板用絶縁フィルムに使用するのに適した物性を有する高耐熱性ポリイミド層を得るためには、これら酸二無水物の中で特にはピロメリット酸二無水物及び/又は3,3',4,4'−ベンゾフェノンテトラカルボン酸二無水物及び/又は4,4'−オキシフタル酸二無水物及び/又は3,3',4,4'−ビフェニルテトラカルボン酸二無水物及び/又はp−フェニレンビス(トリメリット酸モノエステル酸無水物)の使用が好ましい。   In order to obtain a highly heat-resistant polyimide layer having physical properties suitable for use in the insulating film for printed wiring boards according to the present invention, among these acid dianhydrides, pyromellitic acid dianhydride and / or in particular. 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride and / or 4,4′-oxyphthalic dianhydride and / or 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride And / or p-phenylenebis (trimellitic acid monoester anhydride) is preferred.

本発明に係る高耐熱性ポリイミドの前駆体のポリアミド酸組成物において好適に使用し得る適当なジアミンとしては、1,4−ジアミノベンゼン(p−フェニレンジアミン)、1,3−ジアミノベンゼン、1,2−ジアミノベンゼン、4,4'−ジアミノジフェニルプロパン、4,4'−ジアミノジフェニルメタン、3,3'−ジクロロベンジジン、3,3'−ジメチルベンジジン、2,2'−ジメチルベンジジン、3,3'−ジメトキシベンジジン、2,2'−ジメトキシベンジジン、3,3'−ジヒドロキシベンジジン、4,4'−ジアミノジフェニルスルフィド、3,3'−ジアミノジフェニルスルホン、4,4'−ジアミノジフェニルスルホン、4,4'−オキシジアニリン、3,3'−オキシジアニリン、3,4'−オキシジアニリン、1,5−ジアミノナフタレン、4,4'−ジアミノジフェニルジエチルシラン、4,4'−ジアミノジフェニルシラン、4,4'−ジアミノジフェニルエチルホスフィンオキシド、4,4'−ジアミノジフェニルN−メチルアミン、4,4'−ジアミノジフェニル N−フェニルアミン、、ビス{4−(4−アミノフェノキシ)フェニル}スルホン、ビス{4−(3−アミノフェノキシ)フェニル}スルホン、4,4'−ビス(4−アミノフェノキシ)ビフェニル、4,4'−ビス(3−アミノフェノキシ)ビフェニル、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、3,3'−ジアミノベンゾフェノン、4,4'−ジアミノベンゾフェノン及びそれらの類似物などが挙げられる。   Suitable diamines that can be suitably used in the polyamic acid composition of the precursor of the high heat resistant polyimide according to the present invention include 1,4-diaminobenzene (p-phenylenediamine), 1,3-diaminobenzene, 1, 2-diaminobenzene, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenylmethane, 3,3′-dichlorobenzidine, 3,3′-dimethylbenzidine, 2,2′-dimethylbenzidine, 3,3 ′ -Dimethoxybenzidine, 2,2'-dimethoxybenzidine, 3,3'-dihydroxybenzidine, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 4,4 '-Oxydianiline, 3,3'-oxydianiline, 3,4'-oxydianiline, 1,5-dia Nonaphthalene, 4,4'-diaminodiphenyldiethylsilane, 4,4'-diaminodiphenylsilane, 4,4'-diaminodiphenylethylphosphine oxide, 4,4'-diaminodiphenyl N-methylamine, 4,4'- Diaminodiphenyl N-phenylamine, bis {4- (4-aminophenoxy) phenyl} sulfone, bis {4- (3-aminophenoxy) phenyl} sulfone, 4,4′-bis (4-aminophenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) ) Benzene, 1,3-bis (3-aminophenoxy) benzene, 3,3′-diaminobenzophenone, 4, '- such as diamino benzophenone and their analogs thereof.

これらジアミン類をジアミノベンゼン類、ベンジジン類などに代表されるいわゆる剛直構造のジアミンとエーテル基、スルホン基、ケトン基、スルフィド基など柔構造を有するジアミンとに分類して考えると、剛構造と柔構造のジアミンの使用比率はモル比で80/20〜20/80、好ましくは70/30〜30/70、特に好ましくは60/40〜30/70である。剛構造のジアミンの使用比率が上記範囲を上回ると得られる層の引張伸びが小さくなる傾向にあり、またこの範囲を下回るとガラス転移温度が低くなりすぎたり、熱時の貯蔵弾性率が低くなりすぎて製膜が困難になるなどの場合がある。   If these diamines are classified into so-called rigid diamines such as diaminobenzenes and benzidines and diamines having flexible structures such as ether groups, sulfone groups, ketone groups and sulfide groups, rigid structures and flexible diamines are considered. The use ratio of the structural diamine is 80/20 to 20/80, preferably 70/30 to 30/70, particularly preferably 60/40 to 30/70, in molar ratio. If the use ratio of the rigid diamine exceeds the above range, the tensile elongation of the resulting layer tends to be small, and if it falls below this range, the glass transition temperature becomes too low or the storage modulus during heat decreases. In some cases, film formation becomes difficult.

本発明において用いられる層(A)に含まれる高耐熱性ポリイミドは、上記の範囲に限定される訳ではないが、上記の範囲の中で所望の特性を有する層となるように適宜芳香族酸二無水物および芳香族ジアミンの種類、配合比を決定して用いることが特に好ましい。   Although the high heat-resistant polyimide contained in the layer (A) used in the present invention is not limited to the above range, an aromatic acid is appropriately used so that the layer has desired characteristics within the above range. It is particularly preferable to determine and use the dianhydride and aromatic diamine, and the mixing ratio.

ポリアミド酸を合成するための好ましい溶媒は、ポリアミド酸を溶解する溶媒であればいかなるものも用いることができ、例えば、ジメチルスルホキシド、ジエチルスルホキシドなどのスルホキシド系溶媒、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミドなどのホルムアミド系溶媒、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミドなどのアセトアミド系溶媒、N−メチル−2−ピロリドン、N−ビニル−2−ピロリドンなどのピロリドン系溶媒、フェノール、o−、m−、またはp−クレゾール、キシレノール、ハロゲン化フェノール、カテコールなどのフェノール系溶媒、テトラヒドロフラン、ジオキサン、ジオキソラン等のエーテル系溶媒、メタノール、エタノール、ブタノール等のアルコール系溶媒、ブチルセロソルブ等のセロソルブ系あるいはヘキサメチルホスホルアミド、γ−ブチロラクトンなどをあげることができ、これらを単独または混合物として用いるのが望ましいが、更にはキシレン、トルエンのような芳香族炭化水素も使用可能である。中でも、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミドなどのホルムアミド系溶媒が特に好ましく用い得る。また、水は、ポリアミック酸の分解を促進するため、可能な限り除去されねばならない。   As the preferred solvent for synthesizing the polyamic acid, any solvent that dissolves the polyamic acid can be used. For example, sulfoxide solvents such as dimethyl sulfoxide and diethyl sulfoxide, N, N-dimethylformamide, N, Formamide solvents such as N-diethylformamide, N, N-dimethylacetamide, acetamide solvents such as N, N-diethylacetamide, pyrrolidone solvents such as N-methyl-2-pyrrolidone and N-vinyl-2-pyrrolidone, Phenol solvents such as phenol, o-, m-, or p-cresol, xylenol, halogenated phenol, catechol, ether solvents such as tetrahydrofuran, dioxane, dioxolane, alcohol solvents such as methanol, ethanol, butanol Examples include cellosolve such as butyl cellosolve, hexamethylphosphoramide, γ-butyrolactone, etc., and these are preferably used alone or as a mixture, but aromatic hydrocarbons such as xylene and toluene can also be used. is there. Among these, formamide solvents such as N, N-dimethylformamide and N, N-diethylformamide can be particularly preferably used. Also, water should be removed as much as possible to promote the degradation of the polyamic acid.

また、ブロッキング性改善、摺動性、熱伝導性、導電性、耐コロナ性、ループスティフネス、寸法安定性、強度等のフィルムの諸特性を改善する目的でフィラーを添加することもできる。フィラーとしてはいかなるものを用いても良いが、好ましい例としてはシリカ、酸化チタン、アルミナ、窒化珪素、窒化ホウ素、リン酸水素カルシウム、リン酸カルシウム、雲母などが挙げられる。   In addition, a filler can be added for the purpose of improving various properties of the film such as blocking property improvement, slidability, thermal conductivity, conductivity, corona resistance, loop stiffness, dimensional stability and strength. Any filler may be used, but preferred examples include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica and the like.

フィラーの粒子径は改質すべきフィルム特性と添加するフィラーの種類によって決定されるため、特に限定されるものではないが、一般的には平均粒径が0.05〜20μm、好ましくは0.1〜15μm、更に好ましくは0.1〜10μm、特に好ましくは0.1〜5μmである。粒子径がこの範囲を下回ると改質効果が現れにくくなり、この範囲を上回ると表面性を大きく損なったり、機械的特性が大きく低下したりする可能性がある。また、フィラーの添加部数についても改質すべきフィルム特性やフィラー粒子径などにより決定されるため特に限定されるものではない。しかし、一般的にフィラーの添加量はポリイミド100重量部に対して0.01〜100重量部、好ましくは0.01〜90重量部、更に好ましくは0.02〜80重量部である。フィラー添加量がこの範囲を下回るとフィラーによる改質効果が現れにくく、この範囲を上回るとフィルムの機械的特性が大きく損なわれる可能性がある。フィラーの添加は、
1.重合前または途中に重合反応液に添加する方法
2.重合完了後、3本ロールなどを用いてフィラーを混錬する方法
3.フィラーを含む分散液を用意し、これをポリアミド酸有機溶媒溶液に混合する方法
などいかなる方法を用いてもよいが、フィラーを含む分散液をポリアミド酸溶液に混合する方法、特に製膜直前に混合する方法が製造ラインのフィラーによる汚染が最も少なくすむため、好ましい。フィラーを含む分散液を用意する場合、ポリアミド酸の重合溶媒と同じ溶媒を用いるのが好ましい。また、フィラーを良好に分散させ、また分散状態を安定化させるために、分散剤、増粘剤等をフィルム物性に影響を及ぼさない範囲内で用いることもできる。また,分散液を重合反応溶液に添加する際にフィラーが最凝集することを防ぐために、フィラー分散液に少量の重合反応溶液(ポリアミド酸溶液)を加えても良い。層(A)は高耐熱性ポリイミドの特性を十分発現するために、層(A)の全重量に対し50%以上の高耐熱性ポリイミドを含有することが好ましい。
(熱可塑性ポリイミドを含有する層(B))
層(B)に含有される熱可塑性ポリイミドとしては、一般式(1)で表されるジアミンを含むジアミンを原料とすることを必須とする。
The particle size of the filler is not particularly limited because it is determined by the film characteristics to be modified and the type of filler to be added, but generally the average particle size is 0.05 to 20 μm, preferably 0.1. -15 μm, more preferably 0.1-10 μm, particularly preferably 0.1-5 μm. If the particle size is below this range, the modification effect is less likely to appear. If the particle size is above this range, the surface properties may be greatly impaired or the mechanical properties may be greatly deteriorated. Further, the number of added parts of the filler is not particularly limited because it is determined by the film properties to be modified, the filler particle diameter, and the like. However, generally the addition amount of a filler is 0.01-100 weight part with respect to 100 weight part of polyimide, Preferably it is 0.01-90 weight part, More preferably, it is 0.02-80 weight part. If the amount of filler added is less than this range, the effect of modification by the filler hardly appears, and if it exceeds this range, the mechanical properties of the film may be greatly impaired. Addition of filler
1. 1. A method of adding to a polymerization reaction solution before or during polymerization 2. A method of kneading fillers using three rolls after the completion of polymerization. Any method such as preparing a dispersion containing filler and mixing it with a polyamic acid organic solvent solution may be used, but a method of mixing a dispersion containing filler with a polyamic acid solution, particularly immediately before film formation. This method is preferable because the contamination by the filler in the production line is minimized. When preparing a dispersion containing a filler, it is preferable to use the same solvent as the polymerization solvent for the polyamic acid. Moreover, in order to disperse | distribute a filler favorably and stabilize a dispersion state, a dispersing agent, a thickener, etc. can also be used in the range which does not affect a film physical property. In addition, a small amount of a polymerization reaction solution (polyamic acid solution) may be added to the filler dispersion to prevent the filler from aggregating when the dispersion is added to the polymerization reaction solution. The layer (A) preferably contains 50% or more of the high heat resistant polyimide with respect to the total weight of the layer (A) in order to fully express the characteristics of the high heat resistant polyimide.
(Layer containing thermoplastic polyimide (B))
As the thermoplastic polyimide contained in the layer (B), it is essential to use a diamine containing the diamine represented by the general formula (1) as a raw material.

Figure 2006282910
(式中、gは1以上の整数を表す。また、R1は、同一または異なっていてよく、低級アルキレン基またはフェニレン基を表す。R2は、同一または異なっていてよく、低級アルキル基、またはフェニル基、またはフェノキシ基を表す。)
この熱可塑性ポリイミドの前駆体のポリアミド酸についても、層(A)に用いる高耐熱性ポリイミドと同様に、種々の特性を改善するためにフィラーやその他の添加物を用いることや、ポリアミド酸の製造に関して、公知の原料や反応条件等を用いることができる(例えば、後述する実施例参照)。また、必要に応じて一般式(1)で表されるジアミンを含むジアミンを原料とする熱可塑性ポリイミドの前駆体溶液とその他のポリイミドの前駆体溶液を混合して用いることも可能である。
Figure 2006282910
(In the formula, g represents an integer of 1 or more. Moreover, R 1 may be the same or different and represents a lower alkylene group or a phenylene group. R 2 may be the same or different and represents a lower alkyl group, Or a phenyl group or a phenoxy group.)
As for the polyamic acid which is a precursor of this thermoplastic polyimide, like the high heat-resistant polyimide used for the layer (A), fillers and other additives may be used to improve various properties, and the polyamic acid may be produced. As for, known raw materials, reaction conditions, and the like can be used (for example, see Examples described later). Moreover, it is also possible to mix and use the precursor solution of the thermoplastic polyimide which uses the diamine containing the diamine represented by General formula (1) as a raw material as needed, and the precursor solution of another polyimide.

Figure 2006282910
(式中、gは1以上の整数を表す。また、R1は、同一または異なっていてよく、低級アルキレン基またはフェニレン基を表す。R2は、同一または異なっていてよく、低級アルキル基、またはフェニル基、またはフェノキシ基を表す。)
また、一般式(1)で表されるジアミンを含むジアミンを原料とする熱可塑性ポリイミドの前駆体溶液を、事前に熱的方法あるいは化学的方法あるいは熱的方法と化学的方法を組み合わせた方法によりイミド化し、その熱可塑性ポリイミドを有機溶剤に溶解したポリイミド溶液を本発明に適用することも可能である。
Figure 2006282910
(In the formula, g represents an integer of 1 or more. Moreover, R 1 may be the same or different and represents a lower alkylene group or a phenylene group. R 2 may be the same or different and represents a lower alkyl group, Or a phenyl group or a phenoxy group.)
Further, a precursor solution of a thermoplastic polyimide using a diamine containing the diamine represented by the general formula (1) as a raw material is obtained by a thermal method, a chemical method, or a combination of a thermal method and a chemical method in advance. A polyimide solution obtained by imidization and dissolving the thermoplastic polyimide in an organic solvent can also be applied to the present invention.

Figure 2006282910
(式中、gは1以上の整数を表す。また、R1は、同一または異なっていてよく、低級アルキレン基またはフェニレン基を表す。R2は、同一または異なっていてよく、低級アルキル基、またはフェニル基、またはフェノキシ基を表す。)
また,これらの層(B)を形成するための溶液に、その特性を損なわない範囲で無機物あるいは有機物のフィラーやその他の添加剤、樹脂成分等を添加しても良い。
層(B)は導体層との密着性を向上するための層としての特性を十分発現するために、層(B)の全重量に対し、一般式(1)で表されるジアミンを含むジアミンを原料とする熱可塑性ポリイミドを50%以上含有することが好ましい。
Figure 2006282910
(In the formula, g represents an integer of 1 or more. Moreover, R 1 may be the same or different and represents a lower alkylene group or a phenylene group. R 2 may be the same or different and represents a lower alkyl group, Or a phenyl group or a phenoxy group.)
In addition, inorganic or organic fillers, other additives, resin components, and the like may be added to the solution for forming these layers (B) as long as the properties are not impaired.
The layer (B) is a diamine containing the diamine represented by the general formula (1) with respect to the total weight of the layer (B) in order to fully express the characteristics as a layer for improving the adhesion to the conductor layer. It is preferable to contain 50% or more of a thermoplastic polyimide made from a raw material.

(本発明のプリント配線板用絶縁フィルムの製造方法)
ここで、本発明に係るプリント配線板用絶縁フィルムの製造方法は、高耐熱性ポリイミドを含む層(A)の少なくとも片面に、一般式(1)で表されるジアミンを含むジアミンを原料とする熱可塑性ポリイミドを含有する層(B)を積層して、プリント配線板用絶縁フィルムを製造する方法であって、層(A)に含まれる高耐熱性ポリイミドの前駆体溶液と、層(B)に含まれる熱可塑性ポリイミドを含有する溶液もしくは熱可塑性ポリイミドの前駆体を含有する溶液とを用いて、共押出−流延塗布法により製造する事を必須とする。
(Method for producing insulating film for printed wiring board of the present invention)
Here, the manufacturing method of the insulating film for printed wiring boards according to the present invention uses, as a raw material, a diamine containing the diamine represented by the general formula (1) on at least one surface of the layer (A) containing the high heat-resistant polyimide. A method for producing an insulating film for a printed wiring board by laminating a layer (B) containing a thermoplastic polyimide, comprising a precursor solution of a high heat-resistant polyimide contained in the layer (A), and the layer (B) It is essential to manufacture by a coextrusion-casting method using a solution containing a thermoplastic polyimide contained in or a solution containing a precursor of a thermoplastic polyimide.

本発明に係る、共押出−流延塗布法とは、高耐熱性ポリイミドの前駆体溶液と、熱可塑性ポリイミドを含有する溶液若しくは熱可塑性ポリイミドの前駆体を含有する溶液とを、二層以上の押出し成形用ダイスを有する押出成形機へ同時に供給して、前記ダイスの吐出口から両溶液を少なくとも二層の薄膜状体として押出す工程を含むフィルムの製造方法である。一般的に用いられる方法について説明すると、二層以上の押出し成型用ダイスから押出された前記の両溶液を、平滑な支持体上に連続的に押し出し、次いで、前記支持体上の多層の薄膜状体の溶媒の少なくとも一部を揮散せしめることで、自己支持性を有する多層フィルムが得られる。さらに、当該多層フィルムを前記支持体上から剥離し、当該多層フィルムを加熱処理することによって、溶媒を実質的に除去すると共にイミド化を進行させることで、目的のプリント配線板用絶縁フィルムが得られる。また、層(B)の溶融流動性や密着性などを改善する目的で、意図的にイミド化率を低くする及び/又は溶媒を残留させてもよい。   The coextrusion-casting method according to the present invention is a method comprising two or more layers of a highly heat-resistant polyimide precursor solution and a solution containing a thermoplastic polyimide or a solution containing a thermoplastic polyimide precursor. It is a method for producing a film including a step of simultaneously supplying to an extrusion molding machine having an extrusion die and extruding both solutions as at least two layers of thin film bodies from the discharge port of the die. A generally used method will be described. Both solutions extruded from two or more extrusion dies are continuously extruded onto a smooth support, and then a multilayer thin film on the support is formed. By volatilizing at least part of the body solvent, a multilayer film having self-supporting properties can be obtained. Further, the multilayer film is peeled off from the support, and the multilayer film is heat-treated to substantially remove the solvent and advance imidization, thereby obtaining a target insulating film for printed wiring board. It is done. Further, for the purpose of improving the melt fluidity and adhesion of the layer (B), the imidization rate may be intentionally lowered and / or the solvent may be left.

二層以上の押出し成型用ダイスから押出された高耐熱性ポリイミドの前駆体溶液と、熱可塑性ポリイミドを含有する溶液若しくは熱可塑性ポリイミドの前駆体を含有する溶液中の溶媒の揮散方法に関しては特に限定されないが、加熱かつ/または送風による方法が最も簡易な方法である。上記加熱の温度は、高すぎると溶媒が急激に揮散し、当該揮散の痕が最終的に得られるプリント配線板用絶縁フィルム中に微小欠陥を形成する要因となるため、用いる溶媒の沸点+50℃未満であることが好ましい。   Particularly limited with respect to the method of volatilization of the solvent in the precursor solution of the high heat-resistant polyimide extruded from the die for extrusion molding of two or more layers and the solution containing the thermoplastic polyimide or the precursor of the thermoplastic polyimide Although not, the method by heating and / or blowing is the simplest method. If the temperature of the heating is too high, the solvent is volatilized rapidly, and the trace of the volatilization becomes a factor for forming minute defects in the insulating film for printed wiring boards, so the boiling point of the solvent used + 50 ° C. It is preferable that it is less than.

上記の二層以上の押出し成形用ダイスとしては各種構造のものが使用できるが、例えば複数層用フィルム作成用のTダイス等が使用できる。また、従来既知のあらゆる構造のものを好適に使用可能であるが、特に好適に使用可能なものとして、フィードブロックTダイスやマルチマニホールドTダイスが例示される。   As the above-mentioned two or more layers of extrusion-molding dies, those having various structures can be used. For example, a T-die for forming a multi-layer film can be used. In addition, any conventionally known structure can be suitably used, but feed block T dice and multi-manifold T dice are exemplified as those that can be particularly suitably used.

Figure 2006282910
(式中、gは1以上の整数を表す。また、R1は、同一または異なっていてよく、低級アルキレン基またはフェニレン基を表す。R2は、同一または異なっていてよく、低級アルキル基、またはフェニル基、またはフェノキシ基を表す。)
一般的にポリイミドは、ポリイミドの前駆体、即ちポリアミド酸からの脱水転化反応により得られ、当該転化反応を行う方法としては、熱によってのみ行う熱的方法と、化学脱水剤を使用する化学的方法,あるいは熱的方法と化学的方法を組み合わせる方法が広く知られている。
従って、本発明に係るプリント配線板用絶縁フィルムの製造方法は、高耐熱性ポリイミド層かつ/または熱可塑性ポリイミド層を、化学キュア法を用いて形成せしめることを含む。化学キュア法は、熱キュア法に比して、ポリイミド樹脂の製造に際し、飛躍的に高い生産性を付与する。
Figure 2006282910
(In the formula, g represents an integer of 1 or more. Moreover, R 1 may be the same or different and represents a lower alkylene group or a phenylene group. R 2 may be the same or different and represents a lower alkyl group, Or a phenyl group or a phenoxy group.)
In general, polyimide is obtained by a dehydration conversion reaction from a polyimide precursor, that is, a polyamic acid. As a method for performing the conversion reaction, a thermal method using only heat and a chemical method using a chemical dehydrating agent are used. Or a combination of thermal and chemical methods is widely known.
Therefore, the manufacturing method of the insulating film for printed wiring boards which concerns on this invention includes forming a high heat resistant polyimide layer and / or a thermoplastic polyimide layer using a chemical curing method. The chemical curing method provides dramatically higher productivity in the production of polyimide resin than the thermal curing method.

本発明に係る化学脱水剤としては、各種ポリアミド酸に対する脱水閉環剤が使用できるが、脂肪族酸無水物、芳香族酸無水物、N,N′−ジアルキルカルボジイミド、低級脂肪族ハロゲン化物、ハロゲン化低級脂肪族酸無水物、アリールスルホン酸ジハロゲン化物、チオニルハロゲン化物またはそれら2種以上の混合物を好ましく用いることができる。その中でも特に、脂肪族酸無水物及び芳香族酸無水物が良好に作用する。また、触媒とは、ポリアミド酸に対する化学脱水剤の脱水閉環作用を促進する効果を有する成分を広く示すが、例えば、脂肪族3級アミン、芳香族3級アミン、複素環式3級アミンを用いることができる。そのうち、イミダゾ−ル、ベンズイミダゾ−ル、イソキノリン、キノリン、またはβ−ピコリンなどの含窒素複素環化合物であることが特に好ましい。   As the chemical dehydrating agent according to the present invention, dehydrating ring-closing agents for various polyamic acids can be used, but aliphatic acid anhydrides, aromatic acid anhydrides, N, N′-dialkylcarbodiimides, lower aliphatic halides, halogenated compounds. Lower aliphatic acid anhydrides, aryl sulfonic acid dihalides, thionyl halides or mixtures of two or more thereof can be preferably used. Of these, aliphatic acid anhydrides and aromatic acid anhydrides work particularly well. In addition, the term “catalyst” refers to a component that has an effect of promoting the dehydration ring-closing action of a chemical dehydrating agent on polyamic acid. For example, an aliphatic tertiary amine, an aromatic tertiary amine, or a heterocyclic tertiary amine is used. be able to. Of these, nitrogen-containing heterocyclic compounds such as imidazole, benzimidazole, isoquinoline, quinoline, and β-picoline are particularly preferable.

化学脱水剤の好ましい量は、化学脱水剤及び触媒を含有せしめる溶液に含まれるポリアミド酸中のアミド酸ユニット1モルに対して、0.5〜5モル、好ましくは0.7〜4モルである。また、触媒の好ましい量は、化学脱水剤及び触媒を含有せしめる溶液に含まれるポリアミド酸中のアミド酸ユニット1モルに対して、0.05〜3モル、好ましくは0.2〜2モルである。脱水剤及び触媒が上記範囲を下回ると化学的イミド化が不十分で、焼成途中で破断したり、機械的強度が低下したりすることがある。また、これらの量が上記範囲を上回ると、イミド化の進行が早くなりすぎ、フィルム状にキャストすることが困難となることがある。   The preferable amount of the chemical dehydrating agent is 0.5 to 5 mol, preferably 0.7 to 4 mol, based on 1 mol of the amic acid unit in the polyamic acid contained in the solution containing the chemical dehydrating agent and the catalyst. . Moreover, the preferable amount of a catalyst is 0.05-3 mol with respect to 1 mol of amic acid units in the polyamic acid contained in the solution which contains a chemical dehydrating agent and a catalyst, Preferably it is 0.2-2 mol. . If the dehydrating agent and the catalyst are below the above ranges, chemical imidization may be insufficient, and may break during firing or mechanical strength may decrease. Moreover, when these amounts exceed the above range, the progress of imidization becomes too fast and it may be difficult to cast into a film.

最終的に得られるプリント配線板用絶縁フィルムは、無電解めっき法により導体層を少なくとも片側表面に形成することが、好ましい実施の形態の一つである。   One of the preferred embodiments of the finally obtained insulating film for printed wiring boards is to form a conductor layer on at least one surface by electroless plating.

プリント配線板用絶縁フィルム各層の厚み構成については、用途に応じた総厚みになるように適宜調整すれば良いが、得られるプリント配線板用絶縁フィルムの長手方向及び幅方向の引張弾性率が、5.0〜11GPa、好ましくは5.5〜10GPaとなるようにすることが好ましい。引張弾性率が上記範囲を下回る場合、ロール・ツーロールでの搬送工程において張力の影響を受けやすくなるため、MD方向とTD方向で異なる応力が発生し、得られるフレキシブル金属張積層板の寸法変化が大きくなる場合がある。逆に引張弾性率が上記範囲を上回る場合、得られるプリント配線板用絶縁フィルムの屈曲性が劣る場合がある。一般的に、高耐熱性ポリイミド層よりも接着層の引張弾性率の方が小さいため、接着層の厚み比率が増えるに従って、プリント配線板用絶縁フィルムの引張弾性率が低下する傾向にある。   About the thickness constitution of each layer of the insulating film for printed wiring board, it may be adjusted as appropriate so as to be the total thickness according to the use, but the tensile elastic modulus in the longitudinal direction and the width direction of the obtained insulating film for printed wiring board is It is preferable that the pressure is 5.0 to 11 GPa, preferably 5.5 to 10 GPa. When the tensile elastic modulus is lower than the above range, it becomes easy to be affected by tension in the roll-to-roll conveyance process, so that different stresses are generated in the MD direction and the TD direction, and the resulting flexible metal-clad laminate has a dimensional change. May be larger. Conversely, if the tensile modulus exceeds the above range, the resulting insulating film for printed wiring board may be inferior in flexibility. Generally, since the tensile elastic modulus of the adhesive layer is smaller than that of the high heat resistant polyimide layer, the tensile elastic modulus of the insulating film for printed wiring board tends to decrease as the thickness ratio of the adhesive layer increases.

また、プリント配線板用絶縁フィルムの熱膨張係数と、導体層を形成する金属層の熱膨張係数の差が大きくなると、貼り合わせ時の膨張・収縮の挙動の差が大きくなるため、得られるフレキシブル金属張積層板に歪みが残留し、金属箔除去後の寸法変化率が大きくなる場合がある。プリント配線板用絶縁フィルムの熱膨張係数は、200〜300℃における値が、金属箔の熱膨張係数±6ppm/℃の範囲となるように調整することが好ましい。プリント配線板用絶縁フィルムの熱膨張係数は、高耐熱性ポリイミド層と接着層の厚み比率を変更することにより、調整することが可能である。   In addition, if the difference between the thermal expansion coefficient of the insulating film for printed wiring boards and the thermal expansion coefficient of the metal layer that forms the conductor layer increases, the difference in expansion / contraction behavior during bonding increases, resulting in the obtained flexible In some cases, strain remains in the metal-clad laminate, and the dimensional change rate after removal of the metal foil may increase. The thermal expansion coefficient of the insulating film for printed wiring boards is preferably adjusted so that the value at 200 to 300 ° C. is in the range of the thermal expansion coefficient ± 6 ppm / ° C. of the metal foil. The thermal expansion coefficient of the insulating film for printed wiring boards can be adjusted by changing the thickness ratio between the high heat-resistant polyimide layer and the adhesive layer.

また、本発明のプリント配線板用絶縁フィルムは、高耐熱性ポリイミドフィルムの片方の面に一般式(1)で表されるジアミンを含むジアミンを原料とする熱可塑性ポリイミドを含有する層(B)を積層し、もう一方の面に多層プリント配線板に積層するための接着剤層を積層した構成とすることも可能である。   Moreover, the insulating film for printed wiring boards of this invention is a layer (B) containing the thermoplastic polyimide which uses as a raw material the diamine containing the diamine represented by General formula (1) on the one side of a highly heat-resistant polyimide film. It is also possible to have a configuration in which an adhesive layer is laminated on the other surface of the multilayer printed wiring board.

Figure 2006282910
(式中、gは1以上の整数を表す。また、R1は、同一または異なっていてよく、低級アルキレン基またはフェニレン基を表す。R2は、同一または異なっていてよく、低級アルキル基、またはフェニル基、またはフェノキシ基を表す。)
Figure 2006282910
(In the formula, g represents an integer of 1 or more. Moreover, R 1 may be the same or different and represents a lower alkylene group or a phenylene group. R 2 may be the same or different and represents a lower alkyl group, Or a phenyl group or a phenoxy group.)

次に、本発明に係るプリント配線板用絶縁フィルムの製造方法を実施例により詳しく説明する。   Next, the manufacturing method of the insulating film for printed wiring boards which concerns on this invention is demonstrated in detail by an Example.

(合成例1;高耐熱性ポリイミドの前駆体のポリアミド酸の合成)
10℃に冷却したN,N−ジメチルホルムアミド(以下、DMFともいう)239kgに4,4'−オキシジアニリン(以下、ODAともいう)6.9kg、p−フェニレンジアミン(以下、p−PDAともいう)6.2kg、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン(以下、BAPPともいう)9.4kgを溶解した後、ピロメリット酸二無水物(以下、PMDAともいう)10.4kgを添加し1時間撹拌して溶解させた。ここに、ベンゾフェノンテトラカルボン酸二無水物(以下、BTDAともいう)20.3kgを添加し1時間撹拌させて溶解させた。
(Synthesis Example 1; Synthesis of Polyamic Acid as Precursor of High Heat-Resistant Polyimide)
239 kg of N, N-dimethylformamide (hereinafter also referred to as DMF) cooled to 10 ° C., 6.9 kg of 4,4′-oxydianiline (hereinafter also referred to as ODA), p-phenylenediamine (hereinafter also referred to as p-PDA) After dissolving 9.4 kg of 2,2-bis [4- (4-aminophenoxy) phenyl] propane (hereinafter also referred to as BAPP) 6.2 kg, pyromellitic dianhydride (hereinafter also referred to as PMDA). ) 10.4 kg was added and dissolved by stirring for 1 hour. To this, 20.3 kg of benzophenone tetracarboxylic dianhydride (hereinafter also referred to as BTDA) was added and dissolved by stirring for 1 hour.

別途調製しておいたPMDAのDMF溶液(PMDA:DMF=0.9kg:7.0kg)を上記反応液に徐々に添加し、粘度が3000ポイズ程度に達したところで添加を止めた。1時間撹拌を行って固形分濃度18重量%、23℃での回転粘度が3500ポイズの、高耐熱性ポリイミドの前駆体のポリアミド酸溶液を得た。   A separately prepared DMF solution of PMDA (PMDA: DMF = 0.9 kg: 7.0 kg) was gradually added to the reaction solution, and the addition was stopped when the viscosity reached about 3000 poise. Stirring was performed for 1 hour to obtain a polyamic acid solution of a precursor of a high heat-resistant polyimide having a solid content concentration of 18% by weight and a rotational viscosity at 23 ° C. of 3500 poise.

(合成例2;高耐熱性ポリイミドの前駆体のポリアミド酸の合成)
10℃に冷却したDMF239kgにODAを12.6kg、p−PDAを6.8kg溶解した後、PMDAを15.6kg添加し1時間撹拌させて溶解させた。続いて、BTDAを12.2kg添加し1時間撹拌させて溶解させた。ここに、p−フェニレンビス(トリメリット酸モノエステル酸無水物)(以下、TMHQともいう)5.8kgを添加し、2時間撹拌して溶解させた。
(Synthesis Example 2: Synthesis of polyamic acid as a precursor of high heat-resistant polyimide)
After dissolving 12.6 kg of ODA and 6.8 kg of p-PDA in 239 kg of DMF cooled to 10 ° C., 15.6 kg of PMDA was added and stirred for 1 hour to dissolve. Subsequently, 12.2 kg of BTDA was added and stirred for 1 hour to dissolve. To this, 5.8 kg of p-phenylenebis (trimellitic acid monoester acid anhydride) (hereinafter also referred to as TMHQ) was added and dissolved by stirring for 2 hours.

別途調製しておいたPMDAのDMF溶液(PMDA:DMF=0.9kg:7.0kg)を上記反応液に徐々に添加し、粘度が3000ポイズ程度に達したところで添加を止めた。1時間撹拌を行って固形分濃度18重量%、23℃での回転粘度が3500ポイズの、高耐熱性ポリイミドの前駆体のポリアミド酸溶液を得た。   A separately prepared DMF solution of PMDA (PMDA: DMF = 0.9 kg: 7.0 kg) was gradually added to the reaction solution, and the addition was stopped when the viscosity reached about 3000 poise. Stirring was performed for 1 hour to obtain a polyamic acid solution of a precursor of a high heat-resistant polyimide having a solid content concentration of 18% by weight and a rotational viscosity at 23 ° C. of 3500 poise.

(合成例3;高耐熱性ポリイミドの前駆体のポリアミド酸の合成)
10℃に冷却したDMF232kgにODA21.1kgを溶解した後、PMDA30.6kgを添加し1時間撹拌して溶解させた。ここに、p−PDA3.78kgを添加し1時間撹拌させて溶解させた。
(Synthesis Example 3; Synthesis of Polyamic Acid as Precursor of High Heat-Resistant Polyimide)
After 21.1 kg of ODA was dissolved in 232 kg of DMF cooled to 10 ° C., 30.6 kg of PMDA was added and dissolved by stirring for 1 hour. To this, 3.78 kg of p-PDA was added and stirred for 1 hour to dissolve.

別途調製しておいたp−PDAのDMF溶液(p−PDA:DMF=3.78kg:38.0kg)を上記反応液に徐々に添加し、粘度が3000ポイズ程度に達したところで添加を止めた。1時間撹拌を行って固形分濃度18重量%、23℃での回転粘度が3400ポイズの高耐熱性ポリイミドの前駆体のポリアミド酸溶液を得た。   A separately prepared DMF solution of p-PDA (p-PDA: DMF = 3.78 kg: 38.0 kg) was gradually added to the reaction solution, and the addition was stopped when the viscosity reached about 3000 poise. . Stirring was performed for 1 hour to obtain a polyamic acid solution of a precursor of a highly heat-resistant polyimide having a solid content concentration of 18% by weight and a rotational viscosity at 23 ° C. of 3400 poise.

(合成例4:熱可塑性ポリイミドの前駆体のポリアミド酸の合成)
10℃に冷却したDMF203kgに1,1,3,3,−テトラメチル−1,3−ビス(3−アミノプロピル)ジシロキサン34.9kgと、4,4'−ジアミノジフェニルエーテル8.4kgを添加し、1時間攪拌させて溶解させた。ここに、4,4´―(4,4´―イソプロピリデンジフェノキシ)ビスフタル酸無水物43.7kgを添加し、1時間撹拌し、固形分濃度30%のポリアミド酸のDMF溶液を得た。
(Synthesis Example 4: Synthesis of polyamic acid as precursor of thermoplastic polyimide)
To 1,3,3,3-tetramethyl-1,3-bis (3-aminopropyl) disiloxane (34.9 kg) and 4,4'-diaminodiphenyl ether (8.4 kg) were added to DMF (203 kg) cooled to 10 ° C. Stir for 1 hour to dissolve. To this, 43.7 kg of 4,4 ′-(4,4′-isopropylidenediphenoxy) bisphthalic anhydride was added and stirred for 1 hour to obtain a DMF solution of polyamic acid having a solid content concentration of 30%.

(合成例5:熱可塑性ポリイミドの前駆体のポリアミド酸の合成)
10℃に冷却したDMF204kgに、1,1,3,3,−テトラメチル−1,3−ビス(3−アミノプロピル)ジシロキサン23.9kgと4,4'−オキシジアニリン13.4kgを添加し、1時間攪拌させて溶解し、4,4´―(4,4´―イソプロピリデンジフェノキシ)ビスフタル酸無水物50.0kgを添加、1時間撹拌して、固形分濃度30%のポリアミド酸のDMF溶液を得た。
(Synthesis Example 5: Synthesis of polyamic acid as precursor of thermoplastic polyimide)
To 2,204 kg of 1,1,3,3-tetramethyl-1,3-bis (3-aminopropyl) disiloxane and 13.4 kg of 4,4′-oxydianiline were added to 204 kg of DMF cooled to 10 ° C. Stir for 1 hour to dissolve, add 50.0 kg of 4,4 ′-(4,4′-isopropylidenediphenoxy) bisphthalic anhydride, stir for 1 hour, and polyamic acid with a solid content of 30% Of DMF was obtained.

(合成例6;熱可塑性ポリイミドの前駆体のポリアミド酸の合成)
10℃に冷却したDMF226kgに、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン(BAPP)を33.5kg加え、窒素雰囲気下で攪拌しながら、3,3',4,4'−ビフェニルテトラカルボン酸二無水物(BPDA)を22.8kgを徐々に添加した。続いて、エチレンビス(トリメリット酸モノエステル酸無水物)(TMEG)を1.1kg添加し、0.6kgのTMEGを5.8kgのDMFに溶解させた溶液を別途調製し、これを上記反応溶液に、粘度に注意しながら徐々に添加、撹拌を行った。粘度が3000poiseに達したところで添加、撹拌をやめ、固形分濃度20%の熱可塑性ポリイミドの前駆体のポリアミド酸溶液を得た。
(合成例7:熱可塑性ポリイミド溶液の合成)
合成例4で得られたポリアミド酸溶液をテフロン(登録商標)コートしたバットにとり、真空オーブンで、200℃、120分、665Paで減圧加熱し、熱可塑性ポリイミド樹脂を得た。得られた熱可塑性ポリイミドをDMFに溶解し、固形分濃度10%の熱可塑性ポリイミド溶液を得た。
(Synthesis Example 6; Synthesis of Polyamic Acid as Precursor of Thermoplastic Polyimide)
33.5 kg of 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP) was added to 226 kg of DMF cooled to 10 ° C., and while stirring under a nitrogen atmosphere, 3,3 ′, 4,4 22.8 kg of '-biphenyltetracarboxylic dianhydride (BPDA) was gradually added. Subsequently, 1.1 kg of ethylenebis (trimellitic acid monoester acid anhydride) (TMEG) was added, and a solution in which 0.6 kg of TMEG was dissolved in 5.8 kg of DMF was separately prepared. The solution was gradually added and stirred while paying attention to the viscosity. When the viscosity reached 3000 poise, addition and stirring were stopped to obtain a polyamic acid solution as a precursor of thermoplastic polyimide having a solid content concentration of 20%.
(Synthesis Example 7: Synthesis of thermoplastic polyimide solution)
The polyamic acid solution obtained in Synthesis Example 4 was placed in a vat coated with Teflon (registered trademark) and heated under reduced pressure at 665 Pa at 200 ° C. for 120 minutes in a vacuum oven to obtain a thermoplastic polyimide resin. The obtained thermoplastic polyimide was dissolved in DMF to obtain a thermoplastic polyimide solution having a solid content concentration of 10%.

(実施例1)
合成例1で得られた高耐熱性ポリイミドの前駆体のポリアミド酸溶液に、以下の化学脱水剤及び触媒を含有せしめた。
1.化学脱水剤:無水酢酸を高耐熱性ポリイミドの前駆体のポリアミド酸のアミド酸ユニット1モルに対して2モル
2.触媒:イソキノリンを高耐熱性ポリイミドの前駆体のポリアミド酸のアミド酸ユニット1モルに対して1モル
更に、合成例4で得られた熱可塑性ポリイミドの前駆体のポリアミド酸溶液を用い、3層マルチマニホールドTダイスから、外層が熱可塑性ポリイミドの前駆体のポリアミド酸溶液、内層が高耐熱性ポリイミド溶液の前駆体のポリアミド酸溶液となる順番で、各ポリアミド酸溶液を連続的に押出して、当該Tダイスの下20mmを走行しているステンレス製のエンドレスベルト上に流延した。この樹脂膜を130℃×100秒で加熱した後エンドレスベルトから自己支持性のゲル膜を引き剥がしてテンタークリップに固定し、300℃×30秒、400℃×50秒、450℃×10秒で乾燥・イミド化させ、各熱可塑性ポリイミド層2μm、高耐熱性ポリイミド層10μmのプリント配線板用絶縁フィルムを得た。
Example 1
The following chemical dehydrating agent and catalyst were contained in the polyamic acid solution of the precursor of the high heat-resistant polyimide obtained in Synthesis Example 1.
1. Chemical dehydrating agent: 2 moles per mole of amic acid unit of polyamic acid which is a precursor of high heat resistant polyimide with acetic anhydride 2. Catalyst: 1 mol of isoquinoline with respect to 1 mol of polyamic acid amic acid unit as a precursor of high heat-resistant polyimide. Further, using a polyamic acid solution of a precursor of thermoplastic polyimide obtained in Synthesis Example 4, a three-layer multi-layer From the manifold T die, each polyamic acid solution is continuously extruded in the order that the outer layer is the polyamic acid solution of the precursor of the thermoplastic polyimide and the inner layer is the polyamic acid solution of the precursor of the high heat-resistant polyimide solution. It was cast on a stainless steel endless belt running 20 mm below the die. The resin film is heated at 130 ° C. for 100 seconds, and then the self-supporting gel film is peeled off from the endless belt and fixed to the tenter clip. At 300 ° C. for 30 seconds, 400 ° C. for 50 seconds, 450 ° C. for 10 seconds. It was made to dry and imidize and the insulating film for printed wiring boards of each thermoplastic polyimide layer 2 micrometers and the high heat resistant polyimide layer 10 micrometers was obtained.

(実施例2)
合成例1で得られた高耐熱性ポリイミドの前駆体のポリアミド酸溶液の代わりに合成例2で得られた高耐熱性ポリイミドの前駆体のポリアミド酸溶液を用いる以外は実施例1と同様の手順でプリント配線板用絶縁フィルムを作製した。
(Example 2)
The same procedure as in Example 1 except that the polyamic acid solution of the precursor of the high heat resistance polyimide obtained in Synthesis Example 2 was used instead of the polyamic acid solution of the precursor of the high heat resistance polyimide obtained in Synthesis Example 1. Thus, an insulating film for a printed wiring board was produced.

(実施例3)
合成例1で得られた高耐熱性ポリイミドの前駆体のポリアミド酸溶液の代わりに合成例3で得られた高耐熱性ポリイミドの前駆体のポリアミド酸溶液を用いる以外は実施例1と同様の手順でプリント配線板用絶縁フィルムを作製した。
(Example 3)
A procedure similar to that in Example 1 except that the polyamic acid solution of the precursor of the high heat resistance polyimide obtained in Synthesis Example 3 was used instead of the polyamic acid solution of the precursor of the high heat resistance polyimide obtained in Synthesis Example 1. Thus, an insulating film for printed wiring board was produced.

(実施例4)
合成例4で得られた熱可塑性ポリイミドの前駆体のポリアミド酸溶液の代わりに合成例5で得られた熱可塑性ポリイミド溶液を用いる以外は実施例1と同様の手順でプリント配線板用絶縁フィルムを作製した。
Example 4
An insulating film for a printed wiring board was prepared in the same procedure as in Example 1 except that the thermoplastic polyimide solution obtained in Synthesis Example 5 was used instead of the polyamic acid solution of the thermoplastic polyimide precursor obtained in Synthesis Example 4. Produced.

(実施例5)
合成例4で得られた熱可塑性ポリイミドの前駆体のポリアミド酸溶液の代わりに合成例7で得られた熱可塑性ポリイミド溶液を用いる以外は実施例1と同様の手順でプリント配線板用絶縁フィルムを作製した。
(Example 5)
An insulating film for printed wiring board was prepared in the same manner as in Example 1 except that the thermoplastic polyimide solution obtained in Synthesis Example 7 was used instead of the polyamic acid solution of the precursor of thermoplastic polyimide obtained in Synthesis Example 4. Produced.

(実施例6)
合成例1で得られた高耐熱性ポリイミドの前駆体のポリアミド酸溶液と、合成例4で得られた熱可塑性ポリイミドの前駆体のポリアミド酸溶液を、3層マルチマニホールドTダイスから、外層が熱可塑性ポリイミドの前駆体のポリアミド酸溶液、内層が高耐熱性ポリイミド溶液の前駆体のポリアミド酸溶液となる順番で、各ポリアミド酸溶液を連続的に押出して、当該Tダイスの下20mmを走行しているステンレス製のエンドレスベルト上に流延した。この樹脂膜を130℃×600秒で加熱した後、エンドレスベルトから自己支持性のゲル膜を引き剥がしてテンタークリップに固定し、200℃×300秒、300℃×300秒、400℃×300秒、450℃×60秒(加熱時間:計1560秒)で乾燥・イミド化させることで、目的のプリント配線板用絶縁フィルムを得た。
(Example 6)
The polyamic acid solution of the precursor of the high heat-resistant polyimide obtained in Synthesis Example 1 and the polyamic acid solution of the precursor of the thermoplastic polyimide obtained in Synthesis Example 4 are heated from the three-layer multi-manifold T die and the outer layer is heated. Each polyamic acid solution is continuously extruded in the order in which the polyamic acid solution of the precursor of the plastic polyimide and the inner layer become the polyamic acid solution of the precursor of the high heat resistant polyimide solution, and run under 20 mm under the T die. Cast on a stainless steel endless belt. After heating this resin film at 130 ° C. × 600 seconds, the self-supporting gel film is peeled off from the endless belt and fixed to the tenter clip, and 200 ° C. × 300 seconds, 300 ° C. × 300 seconds, 400 ° C. × 300 seconds. The film was dried and imidized at 450 ° C. for 60 seconds (heating time: 1560 seconds in total) to obtain the intended insulating film for printed wiring board.

(比較例1)
合成例4で得られた熱可塑性ポリイミドの前駆体のポリアミド酸溶液の代わりに合成例6で得られた熱可塑性ポリイミド溶液を用いる以外は実施例6と同様の手順でプリント配線板用絶縁フィルムを作製した。
(Comparative Example 1)
An insulating film for a printed wiring board was prepared in the same procedure as in Example 6 except that the thermoplastic polyimide solution obtained in Synthesis Example 6 was used instead of the polyamic acid solution of the precursor of thermoplastic polyimide obtained in Synthesis Example 4. Produced.

(比較例2)
合成例1で得られた高耐熱性ポリイミドの前駆体のポリアミド酸溶液に、以下の化学脱水剤及び触媒を含有せしめた。
1.化学脱水剤:無水酢酸を高耐熱性ポリイミドの前駆体のポリアミド酸のアミド酸ユニット1モルに対して2モル
2.触媒:イソキノリンを高耐熱性ポリイミドの前駆体のポリアミド酸のアミド酸ユニット1モルに対して1モル
さらに得られた高耐熱性ポリイミド溶液の前駆体のポリアミド酸溶液をTダイスから連続的に押出して、当該Tダイスの下20mmを走行しているステンレス製のエンドレスベルト上に流延した。この樹脂膜を130℃×600秒で加熱した後、エンドレスベルトから自己支持性のゲル膜を引き剥がしてテンタークリップに固定し、200℃×300秒、300℃×300秒、400℃×300秒、450℃×60秒(加熱時間:計1560秒)で乾燥・イミド化させることで、高耐熱性のポリイミドフィルム(厚み10ミクロン)を得た。
(Comparative Example 2)
The following chemical dehydrating agent and catalyst were contained in the polyamic acid solution of the precursor of the high heat-resistant polyimide obtained in Synthesis Example 1.
1. Chemical dehydrating agent: 2 moles per mole of amic acid unit of polyamic acid which is a precursor of high heat resistant polyimide with acetic anhydride 2. Catalyst: 1 mol of isoquinoline with respect to 1 mol of amic acid unit of polyamic acid which is a precursor of high heat resistant polyimide. Further, a polyamic acid solution which is a precursor of the obtained high heat resistant polyimide solution is continuously extruded from a T-die. Then, it was cast on a stainless steel endless belt running 20 mm below the T die. After heating this resin film at 130 ° C. × 600 seconds, the self-supporting gel film is peeled off from the endless belt and fixed to the tenter clip, and 200 ° C. × 300 seconds, 300 ° C. × 300 seconds, 400 ° C. × 300 seconds. The film was dried and imidized at 450 ° C. for 60 seconds (heating time: 1560 seconds in total) to obtain a highly heat-resistant polyimide film (thickness 10 microns).

得られたポリイミドフィルムの両面に合成例4で得られた熱可塑性ポリイミドの前駆体のポリアミド酸溶液を乾燥後の厚みが2ミクロンになるように塗布し、150℃で2分間、390℃で1分間加熱して熱可塑性ポリイミド層を形成し、プリント配線板用絶縁フィルムを得た。   The polyamic acid solution of the thermoplastic polyimide precursor obtained in Synthesis Example 4 was applied to both sides of the obtained polyimide film so that the thickness after drying was 2 microns, and the temperature was 1 minute at 390 ° C. for 2 minutes at 150 ° C. A thermoplastic polyimide layer was formed by heating for a minute to obtain an insulating film for a printed wiring board.

(比較例3)
合成例4で得られた熱可塑性ポリイミドの前駆体のポリアミド酸溶液を乾燥後の厚みが2ミクロンになるように塗布し、150℃で2分間、390℃で1分間加熱して熱可塑性ポリイミド層を形成する代わりに、合成例7で得られた熱可塑性ポリイミド溶液を高耐熱性ポリイミドフィルムに塗布し、150℃で2分間乾燥する以外は比較例2と同様の手順でプリント配線板用絶縁フィルムを得た。
(Comparative Example 3)
The thermoplastic polyimide precursor solution obtained in Synthesis Example 4 was applied so that the thickness after drying was 2 microns, and the thermoplastic polyimide layer was heated at 150 ° C. for 2 minutes and 390 ° C. for 1 minute. Insulating film for printed wiring board in the same procedure as Comparative Example 2 except that the thermoplastic polyimide solution obtained in Synthesis Example 7 is applied to a high heat resistant polyimide film and dried at 150 ° C. for 2 minutes. Got.

実施例1〜6および比較例1〜3で得られたプリント配線板用絶縁フィルムを以下の表1に示す条件で処理し、無電解銅めっき、電解銅めっきを施して、絶縁フィルム上に導体層(厚み18ミクロン)を形成し、ポリイミド/銅積層体を作製した。   Insulating films for printed wiring boards obtained in Examples 1 to 6 and Comparative Examples 1 to 3 were processed under the conditions shown in Table 1 below, and electroless copper plating and electrolytic copper plating were applied, and a conductor was formed on the insulating film. A layer (18 microns thick) was formed to produce a polyimide / copper laminate.

Figure 2006282910
得られた、ポリイミド/銅積層体を、180℃、30分の乾燥処理を行った後、JPCA−BU01−1998(社団法人日本プリント回路工業会発行)に従い、常態、及びプレッシャークッカー試験(PCT)後の接着強度を測定した。
常態接着強度:25℃、50%の雰囲気下、24時間放置した後に測定した接着強度。
PCT後接着強度:121℃、100%の雰囲気下、96時間放置した後に測定した接着強度。
Figure 2006282910
The obtained polyimide / copper laminate was dried at 180 ° C. for 30 minutes, and then subjected to normal and pressure cooker tests (PCT) according to JPCA-BU01-1998 (issued by the Japan Printed Circuits Association). The subsequent adhesive strength was measured.
Normal-state adhesive strength: Adhesive strength measured after standing for 24 hours in an atmosphere of 25 ° C. and 50%.
Adhesive strength after PCT: Adhesive strength measured after standing for 96 hours in an atmosphere of 121 ° C. and 100%.

また,上記得られたポリイミド/銅積層体を180℃30分乾燥処理した後、15mm×30mmの大きさに切り出したサンプルを23℃50%の環境に24時間静置した後熱風オーブンにて260℃で10秒間加熱した。加熱後のサンプルの外観を観察して導体層の膨れの有無を判断した。   Also, after the polyimide / copper laminate obtained above was dried at 180 ° C. for 30 minutes, a sample cut into a size of 15 mm × 30 mm was left in an environment of 23 ° C. and 50% for 24 hours, and then heated in a hot air oven. Heat at 10 ° C. for 10 seconds. The appearance of the sample after heating was observed to determine whether the conductor layer was swollen.

得られた結果を(表2)に示す。   The obtained results are shown in (Table 2).

Figure 2006282910
この表から明らかなように、共押出−流延塗布法により製造した、高耐熱性ポリイミド層(A)と一般式(1)で表されるジアミンを含むジアミンを原料とする熱可塑性ポリイミド樹脂を含有する層(B)とを積層してなるプリント配線板用絶縁フィルムは、めっき銅と熱可塑性ポリイミド樹脂の常態およびPCT後の接着強度が高く、かつはんだリフロー工程のために必要な260℃の耐熱性を兼ね備えており、プリント配線板用絶縁フィルムとして好適である。
Figure 2006282910
As is apparent from this table, a thermoplastic polyimide resin produced by a coextrusion-casting coating method and made from a diamine containing a diamine represented by the general heat-resistant polyimide layer (A) and the general formula (1) is used. The insulating film for printed wiring boards formed by laminating the containing layer (B) has a normal state of plated copper and a thermoplastic polyimide resin and a high adhesive strength after PCT, and has a 260 ° C. necessary for the solder reflow process. It has heat resistance and is suitable as an insulating film for printed wiring boards.

Claims (4)

高耐熱性ポリイミドを含む層(A)の少なくとも片面に、一般式(1)で表されるジアミンを含むジアミンを原料とする熱可塑性ポリイミドを含有する層(B)を積層して、プリント配線板用絶縁フィルムを製造する方法であって、層(A)に含まれる高耐熱性ポリイミドの前駆体溶液と、層(B)に含まれる熱可塑性ポリイミドを含有する溶液もしくは熱可塑性ポリイミドの前駆体を含有する溶液とを用いて、共押出−流延塗布法により製造する、プリント配線板用絶縁フィルムの製造方法。
Figure 2006282910
(式中、gは1以上の整数を表す。また、R1は、同一または異なっていてよく、低級アルキレン基またはフェニレン基を表す。R2は、同一または異なっていてよく、低級アルキル基、またはフェニル基、またはフェノキシ基を表す。)
A layer (B) containing a thermoplastic polyimide using a diamine containing a diamine represented by the general formula (1) as a raw material is laminated on at least one side of the layer (A) containing a high heat resistant polyimide, and a printed wiring board A method for producing an insulating film for a high temperature heat-resistant polyimide precursor solution contained in the layer (A) and a solution containing the thermoplastic polyimide contained in the layer (B) or a thermoplastic polyimide precursor. The manufacturing method of the insulating film for printed wiring boards manufactured by the coextrusion-casting coating method using the solution to contain.
Figure 2006282910
(In the formula, g represents an integer of 1 or more. Moreover, R 1 may be the same or different and represents a lower alkylene group or a phenylene group. R 2 may be the same or different and represents a lower alkyl group, Or a phenyl group or a phenoxy group.)
前記層(A)に含まれる高耐熱性ポリイミドの前駆体溶液と、前記層(B)に含まれる熱可塑性ポリイミドを含有する溶液もしくは熱可塑性ポリイミドの前駆体を含有する溶液との少なくとも一方に化学脱水剤及び触媒を含むことを特徴とする、請求項1に記載のプリント配線板用絶縁フィルムの製造方法。 Chemically at least one of the precursor solution of the high heat-resistant polyimide contained in the layer (A) and the solution containing the thermoplastic polyimide or the solution containing the precursor of the thermoplastic polyimide contained in the layer (B). The method for producing an insulating film for a printed wiring board according to claim 1, comprising a dehydrating agent and a catalyst. 請求項1もしくは2のいずれか1項に記載の方法により得られたプリント配線板用絶縁フィルムの層(B)の表面に無電解銅めっきを施すことを特徴とする、ポリイミド/銅積層体。   A polyimide / copper laminate, wherein the surface of the layer (B) of the insulating film for printed wiring boards obtained by the method according to claim 1 or 2 is subjected to electroless copper plating. 請求項1もしくは2のいずれか1項に記載の方法により得られたプリント配線板用絶縁フィルムまたは請求項3に記載のポリイミド/銅積層体を用いることを特徴とするプリント配線板。   A printed wiring board comprising the insulating film for a printed wiring board obtained by the method according to claim 1 or the polyimide / copper laminate according to claim 3.
JP2005106327A 2005-04-01 2005-04-01 Method for producing insulating film for printed wiring board, polyimide / copper laminate and printed wiring board Active JP5069844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005106327A JP5069844B2 (en) 2005-04-01 2005-04-01 Method for producing insulating film for printed wiring board, polyimide / copper laminate and printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005106327A JP5069844B2 (en) 2005-04-01 2005-04-01 Method for producing insulating film for printed wiring board, polyimide / copper laminate and printed wiring board

Publications (2)

Publication Number Publication Date
JP2006282910A true JP2006282910A (en) 2006-10-19
JP5069844B2 JP5069844B2 (en) 2012-11-07

Family

ID=37405155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005106327A Active JP5069844B2 (en) 2005-04-01 2005-04-01 Method for producing insulating film for printed wiring board, polyimide / copper laminate and printed wiring board

Country Status (1)

Country Link
JP (1) JP5069844B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008265069A (en) * 2007-04-18 2008-11-06 Kaneka Corp Insulating adhesion sheet, laminate, and printed wiring board

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06152128A (en) * 1992-11-06 1994-05-31 Toray Ind Inc Manufacture of multilayer wiring board
JPH07214637A (en) * 1993-12-22 1995-08-15 E I Du Pont De Nemours & Co Production of coextruded multilayer aromatic polyimide film
JPH08335653A (en) * 1995-04-07 1996-12-17 Nitto Denko Corp Semiconductor device, its production and tape carrier for semiconductor device used for production of the semiconductor device
JPH1199554A (en) * 1998-07-24 1999-04-13 Ube Ind Ltd Thermal pressure bondable multilayered polyimide film and its lamination
JP2001270034A (en) * 2000-03-28 2001-10-02 Ube Ind Ltd Flexible metal foil laminate
JP2004123857A (en) * 2002-10-01 2004-04-22 Teijin Ltd Polyamic acid composition and process for preparing polyamic acid
JP2005026542A (en) * 2003-07-04 2005-01-27 Toray Ind Inc Board for printed circuit and printed circuit board using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06152128A (en) * 1992-11-06 1994-05-31 Toray Ind Inc Manufacture of multilayer wiring board
JPH07214637A (en) * 1993-12-22 1995-08-15 E I Du Pont De Nemours & Co Production of coextruded multilayer aromatic polyimide film
JPH08335653A (en) * 1995-04-07 1996-12-17 Nitto Denko Corp Semiconductor device, its production and tape carrier for semiconductor device used for production of the semiconductor device
JPH1199554A (en) * 1998-07-24 1999-04-13 Ube Ind Ltd Thermal pressure bondable multilayered polyimide film and its lamination
JP2001270034A (en) * 2000-03-28 2001-10-02 Ube Ind Ltd Flexible metal foil laminate
JP2004123857A (en) * 2002-10-01 2004-04-22 Teijin Ltd Polyamic acid composition and process for preparing polyamic acid
JP2005026542A (en) * 2003-07-04 2005-01-27 Toray Ind Inc Board for printed circuit and printed circuit board using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008265069A (en) * 2007-04-18 2008-11-06 Kaneka Corp Insulating adhesion sheet, laminate, and printed wiring board

Also Published As

Publication number Publication date
JP5069844B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
US7678315B2 (en) Process for producing adhesive film
JP4625458B2 (en) Adhesive film and use thereof
JP6971580B2 (en) Multilayer polyimide film and flexible metal-clad laminate
JP6788357B2 (en) Polyimide film, multilayer polyimide film, coverlay, and flexible printed wiring board
JPWO2007108284A1 (en) Adhesive film
JPWO2006115258A1 (en) Novel polyimide film and its use
JP2006192800A (en) Multilayer-extruded polyimide film and its utilization
JPWO2005115752A1 (en) Polyimide laminate and method for producing the same
JP2008188954A (en) Base material for single-sided metal-clad laminated sheet and manufacturing method of single-sided metal-clad laminated sheet
KR20080044330A (en) Heat resistant adhesive sheet
JP4901509B2 (en) Multilayer film of polyimide precursor solution, multilayer polyimide film, single-sided metal-clad laminate, and method for producing multilayer polyimide film
JP2008188843A (en) Multilayer film of polyimide precursor solution, multilayer polyimide film, single sided metal-clad laminated sheet and manufacturing method of multilayer polyimide film
JP3938058B2 (en) POLYIMIDE FILM HAVING HEAT FUSION, LAMINATE USING SAME, AND METHOD FOR PRODUCING THEM
JP5546304B2 (en) Method for producing adhesive film and flexible metal-clad laminate
JP2006218767A (en) Method for producing multilayer polyimide film and its utilization
JP2013028146A (en) Method of manufacturing metal-clad laminated sheet
KR101665060B1 (en) Method for preparing a multilayered polyimide film
JP5069844B2 (en) Method for producing insulating film for printed wiring board, polyimide / copper laminate and printed wiring board
JP2006110772A (en) Manufacturing method of adhesive film
JP2007230019A (en) Manufacturing method of metal clad laminated sheet
JP2005305968A (en) Manufacturing method of adhesive film
JP2004315601A (en) Polyimide film with improved adhesiveness, its preparation method, and its laminate
JP2019014062A (en) Laminate, flexible metal-clad laminated sheet, and flexible printed circuit board
WO2023162745A1 (en) Non-thermoplastic polyimide film, multilayer polyimide film, and metal-clad laminated plate
JP2006316232A (en) Adhesive film and its preparation process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5069844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250