JP2006282454A - Method and apparatus for producing synthesis gas - Google Patents

Method and apparatus for producing synthesis gas Download PDF

Info

Publication number
JP2006282454A
JP2006282454A JP2005104660A JP2005104660A JP2006282454A JP 2006282454 A JP2006282454 A JP 2006282454A JP 2005104660 A JP2005104660 A JP 2005104660A JP 2005104660 A JP2005104660 A JP 2005104660A JP 2006282454 A JP2006282454 A JP 2006282454A
Authority
JP
Japan
Prior art keywords
gas
chamber
front chamber
oxygen
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005104660A
Other languages
Japanese (ja)
Other versions
JP4838526B2 (en
Inventor
Naoki Inoue
直樹 井上
Atsushi Iida
淳 飯田
Kouta Yokoyama
晃太 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Osaka Gas Co Ltd
Original Assignee
JGC Corp
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp, Osaka Gas Co Ltd filed Critical JGC Corp
Priority to JP2005104660A priority Critical patent/JP4838526B2/en
Publication of JP2006282454A publication Critical patent/JP2006282454A/en
Application granted granted Critical
Publication of JP4838526B2 publication Critical patent/JP4838526B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique for producing synthesis gas in which raw material gas and oxygen exist together and by which abnormal combustion in an anterior chamber portion with the potentiality of self-ignition is suppressed, the starting point of a catalyzed reaction can be made stable, and it is made possible to maintain a stable reaction over a prolonged period of time. <P>SOLUTION: The raw material gas which initiates a combustion reaction under coexistence of oxygen is introduced under coexistence of oxygen from an anterior chamber 9 into a catalyzed reaction chamber 5, where it is brought into contact with a catalyst c1 to initiate at least an oxidation reaction, whereby the synthesis gas is obtained from the raw material gas. At this time, residence inhibition gas p which inhibits residence of the raw material gas in the anterior chamber 9 is blown into the anterior chamber 9, whereby the raw material gas being under coexistence of oxygen is introduced into the catalyzed reaction chamber 5 and the synthesis gas is obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えばオートサーマル改質に見られるような、酸素との共存状態で燃焼反応を起こす原料ガスを、酸素との共存状態で前室より触媒反応室に導き、この触媒反応室で触媒と接触させて少なくとも酸化反応を起こさせ、原料ガスから合成ガスを得る合成ガスの製造技術に関する。   The present invention introduces a raw material gas that undergoes a combustion reaction in the coexistence state with oxygen, such as found in autothermal reforming, from the front chamber to the catalytic reaction chamber in the coexistence state with oxygen, and in this catalytic reaction chamber, The present invention relates to a synthesis gas production technique in which a synthesis gas is obtained from a raw material gas by causing at least an oxidation reaction to be brought into contact therewith.

例えば、FT(Fischer Tropsch)合成、メタノール合成又はアンモニア合成の原ガスとして、炭化水素系燃料を触媒反応を利用して改質して水素リッチなガスを得ることが提案されている。
この種の炭化水素系燃料の触媒改質反応としては、部分酸化反応と水蒸気改質反応が知られている。
前記部分酸化反応は、下記化1に示す化学式に従ったものであり、所謂、発熱反応である。
For example, as a raw gas for FT (Fischer Tropsch) synthesis, methanol synthesis, or ammonia synthesis, it has been proposed to obtain a hydrogen-rich gas by reforming a hydrocarbon fuel using a catalytic reaction.
As a catalytic reforming reaction of this type of hydrocarbon fuel, a partial oxidation reaction and a steam reforming reaction are known.
The partial oxidation reaction is in accordance with the chemical formula shown in the following chemical formula 1, and is a so-called exothermic reaction.

Figure 2006282454
Figure 2006282454

前記水蒸気改質反応は、下記化2に示す化学式に従ったものであり、所謂、吸熱反応である。   The steam reforming reaction is a so-called endothermic reaction according to the chemical formula shown in Chemical Formula 2 below.

Figure 2006282454
Figure 2006282454

ある種の改質触媒(例えばルテニウム触媒)にあっては、上記の水蒸気改質反応と部分酸化反応とが共に発生する。さらに、触媒反応室に収納する改質触媒としては、部分酸化に適した触媒を前段側に、水蒸気改質に適した触媒を後段側に配設することも考えられる。   In a certain reforming catalyst (for example, ruthenium catalyst), both the steam reforming reaction and the partial oxidation reaction occur. Further, as the reforming catalyst housed in the catalytic reaction chamber, it is conceivable to arrange a catalyst suitable for partial oxidation on the front side and a catalyst suitable for steam reforming on the rear side.

そこで、水蒸気と炭化水素系燃料とが混合された原料ガスに対して、この原料ガスに酸素含有ガス(例えば純酸素)を混合し、得られた混合ガスにおいて、部分酸化反応を触媒層の前段側で発生させ、反応ガスの温度を水蒸気改質反応の必要な温度にまで昇温し、触媒層の後段側で両反応(水蒸気改質反応・部分酸化反応)を起こさせて水素リッチなガスを得ることが提案されている。
この改質技術は、オートサーマル改質とも呼ばれ、一連の反応では、化1と化2に示された反応が同時に起こる。
Therefore, an oxygen-containing gas (for example, pure oxygen) is mixed with the raw material gas in which water vapor and hydrocarbon-based fuel are mixed. In the obtained mixed gas, a partial oxidation reaction is performed before the catalyst layer. The hydrogen-rich gas is generated by raising the temperature of the reaction gas to the temperature required for the steam reforming reaction and causing both reactions (steam reforming reaction and partial oxidation reaction) on the rear side of the catalyst layer. It has been proposed to get
This reforming technique is also called autothermal reforming, and in the series of reactions, the reactions shown in Chemical Formula 1 and Chemical Formula 2 occur simultaneously.

この改質形態では、改質触媒を充填した触媒反応室を単一の反応室とした場合、図4に実線で示すように、触媒反応室5の入口付近から昇温が始まり、下流側に行くに従って温度が上昇し、ピーク温度に到達する。その後、入口温度、入口ガス組成、反応圧力によって決る平衡温度に収束する。   In this reforming mode, when the catalytic reaction chamber filled with the reforming catalyst is a single reaction chamber, as shown by the solid line in FIG. 4, the temperature starts from the vicinity of the inlet of the catalytic reaction chamber 5 and moves downstream. As it goes, the temperature rises and reaches the peak temperature. After that, it converges to an equilibrium temperature determined by the inlet temperature, the inlet gas composition, and the reaction pressure.

オートサーマル反応では、触媒反応室の比較的高温側の部位で、両反応における熱収支が平衡した定常安定反応域を得ることが可能であるが、その上流側の領域にあっては、部分酸化反応を主に発生させ、比較的低温の酸素と共存状態の原料ガスを水蒸気改質が発生する下限温度以上まで昇温させる。   In the autothermal reaction, it is possible to obtain a steady and stable reaction zone where the heat balance in both reactions is balanced at a relatively high temperature side of the catalytic reaction chamber. The reaction is mainly generated, and the temperature of the raw material gas coexisting with relatively low temperature oxygen is raised to a temperature lower than the lower limit temperature at which steam reforming occurs.

しかしながら、触媒反応室の入口部位は、その下流側よりは比較的低温とはいえ、尚、酸素との共存状態において原料ガスが自着火を起こす可能性がある温度域である。   However, although the inlet portion of the catalytic reaction chamber is relatively cooler than the downstream side, it is a temperature range in which the raw material gas may cause self-ignition in the coexistence state with oxygen.

さて、オートサーマル技術として、特許文献1に開示される技術が知られている。
特許文献1には、当該明細書の図2に示すように、水蒸気改質反応を行う本触媒ゾーンの上流側に、部分酸化反応を行う前段無触媒反応室を設けた例が示されている。
A technique disclosed in Patent Document 1 is known as an autothermal technique.
Patent Document 1 shows an example in which a pre-catalyst reaction chamber for performing a partial oxidation reaction is provided on the upstream side of the catalyst zone for performing a steam reforming reaction, as shown in FIG. 2 of the specification. .

特開2000−84410号公報(図1、2)JP 2000-84410 A (FIGS. 1 and 2)

しかし、この技術には以下のような問題がある。
この構成にあっては、部分酸化反応を前段無触媒反応室で行うが、触媒反応を利用しないために、部分酸化を確実に得ることが難しく制御性がよくない。
従って、部分酸化も触媒反応室で初めて起こるようにするのが好ましい。
However, this technique has the following problems.
In this configuration, the partial oxidation reaction is performed in the previous stage non-catalytic reaction chamber, but since the catalytic reaction is not used, it is difficult to reliably obtain partial oxidation and the controllability is not good.
Therefore, it is preferable that partial oxidation occurs for the first time in the catalytic reaction chamber.

以上説明してきたように、触媒反応は、反応触媒が配される部位で起こさせることが好ましいが、先の例からも判るように、その上流側に無触媒の前室を設けることとなる。そして、酸素との共存状態にある原料ガスを、この前室を介して触媒反応室に導いて、酸化反応を含む反応を行わせる。従ってこの形態では、触媒反応室の入口近傍の温度によっては、原料ガスが自着火する可能性がある。
さらに詳細に説明すると、流れ主流においては、前室入口から触媒反応室入口に到達する移流時間が比較的短時間であるにもかかわらず、前室の壁面近傍あるいは流れのよどみ部にあっては、酸素との共存状態にある原料ガスが当該部位に長時間滞留し、自着火に至るおそれがある。自着火が発生すると前室において異常燃焼が生じる不都合である。この状況は、通常運転時のみならず、条件が厳しくなる起動・起動停止時、流量低下時、異常・トラブル時等に発生しやすいが、この状況を積極的に回避する技術の開示は見出せない。
As described above, the catalytic reaction is preferably caused at the site where the reaction catalyst is disposed. However, as can be seen from the previous example, a non-catalytic front chamber is provided on the upstream side. Then, the raw material gas coexisting with oxygen is guided to the catalytic reaction chamber through this front chamber, and a reaction including an oxidation reaction is performed. Therefore, in this embodiment, depending on the temperature in the vicinity of the inlet of the catalytic reaction chamber, the raw material gas may self-ignite.
More specifically, in the main flow, the advection time from the front chamber inlet to the catalyst reaction chamber inlet is relatively short, but it is not near the wall of the front chamber or the stagnation part of the flow. There is a risk that the raw material gas coexisting with oxygen stays in the site for a long time and leads to self-ignition. When self-ignition occurs, abnormal combustion occurs in the front chamber. This situation is likely to occur not only during normal operation but also when starting / starting / stopping when the conditions become severe, when the flow rate drops, when there is an abnormality / trouble, etc., but no disclosure of technology that actively avoids this situation can be found. .

本発明は、上記実情に鑑みてなされたものであり、原料ガスと酸素とが共存し、自着火の可能性のある前室部位での異常燃焼の発生等を低減し、触媒反応の開始点を安定したものとでき、長期に亘って安定した反応を維持することが可能となる合成ガスの製造技術を得ることである。   The present invention has been made in view of the above circumstances, the raw material gas and oxygen coexist, reduce the occurrence of abnormal combustion in the anterior chamber portion where there is a possibility of self-ignition, the starting point of the catalytic reaction It is possible to obtain a synthesis gas production technique capable of maintaining a stable reaction over a long period of time.

上記目的を達成するための、
酸素との共存状態で燃焼反応を起こす原料ガスを、酸素との共存状態で前室より触媒反応室に導き、前記触媒反応室で触媒と接触させて少なくとも酸化反応を起こさせ、前記原料ガスから合成ガスを得る合成ガスの製造方法の特徴構成は、
前記前室内での原料ガスの滞留を抑制する滞留抑制ガスを前記前室に吹き込み、酸素との共存状態にある前記原料ガスを前記触媒反応室に導き前記合成ガスを得ることにある。
To achieve the above purpose,
A raw material gas that undergoes a combustion reaction in the coexistence state with oxygen is led from the front chamber to the catalytic reaction chamber in a coexistence state with oxygen, and is brought into contact with the catalyst in the catalytic reaction chamber to cause at least an oxidation reaction. The characteristic configuration of the synthesis gas production method for obtaining synthesis gas is:
A stagnation suppressing gas for suppressing stagnation of the raw material gas in the front chamber is blown into the front chamber, and the raw material gas coexisting with oxygen is introduced into the catalytic reaction chamber to obtain the synthesis gas.

この方法を使用する、酸素との共存状態で燃焼反応を起こす原料ガスを、酸素との共存状態で前室より触媒反応室に導き、前記触媒反応室で触媒と接触させて少なくとも酸化反応を起こさせ、前記原料ガスから合成ガスを得る合成ガスの製造装置の特徴構成は、
前記前室に、前記前室内での原料ガスの滞留を抑制する滞留抑制ガスを吹き込む滞留抑制ガス吹き込み手段を設け、前記滞留抑制ガス吹き込み手段を作動させた前記滞留抑制ガスの吹き込み状態で、酸素との共存状態にある前記原料ガスを前記触媒反応室に導き前記合成ガスを得る合成ガスの製造装置とすることができる。
Using this method, a raw material gas that causes a combustion reaction in the coexistence state with oxygen is guided from the front chamber to the catalytic reaction chamber in the coexistence state with oxygen, and is brought into contact with the catalyst in the catalytic reaction chamber to cause at least an oxidation reaction. And the characteristic configuration of the synthesis gas production apparatus for obtaining synthesis gas from the raw material gas is:
The front chamber is provided with a retention suppression gas blowing means for blowing a retention suppression gas that suppresses the retention of the raw material gas in the front chamber, and in the state of blowing the retention suppression gas in which the retention suppression gas blowing means is operated, oxygen The raw material gas in a coexisting state with the catalyst can be led to the catalytic reaction chamber to obtain the synthesis gas.

この合成ガスの製造方法にあっては、酸素との共存状態にある原料ガスを、前室から触媒反応室に向けて流す。ここで、この流れに対して、原料ガスの滞留を抑制する滞留抑制ガスを吹き込む。この種の滞留抑制ガスとしては、不活性ガスや原料ガスそれ自体、あるいはそれらの成分ガスを使用することができるが、このようなガスを吹き込むことで、前室における原料ガスの滞留を防止でき、前室での滞留が長引き原料ガスが自着火を起こすことを抑制するこができる。結果、異常燃焼の発生を抑制することができ、通常運転状態のみならず、条件が厳しくなる起動・起動停止時、流量低下時、異常(自着火による異常燃焼を除く)・トラブル時等に前室側で問題が発生する可能性を低減することができる。
合成ガスの製造装置としては、装置に滞留抑制ガス吹き込み手段を備えることで、上記方法を使用し、安定した合成ガスの製造を行える。
In this synthesis gas production method, a raw material gas coexisting with oxygen is flowed from the front chamber toward the catalytic reaction chamber. Here, a staying suppression gas that suppresses the stay of the raw material gas is blown into this flow. As this type of retention-inhibiting gas, an inert gas, a raw material gas itself, or a component gas thereof can be used. By blowing such a gas, the retention of the raw material gas in the front chamber can be prevented. It is possible to prevent the raw material gas from self-igniting due to prolonged retention in the front chamber. As a result, the occurrence of abnormal combustion can be suppressed, and not only in normal operating conditions, but also at start-up / start-stop, when the flow rate decreases, abnormal (except abnormal combustion due to self-ignition), troubles, etc. The possibility of problems occurring on the room side can be reduced.
As a synthesis gas production apparatus, a stable synthesis gas can be produced using the above-mentioned method by providing the apparatus with a retention suppression gas blowing means.

異常燃焼の発生原因としては、前室から触媒反応室に至る流路壁近傍に滞留するガス、或いは前室内に形成されているよどみ部が、ガスの滞留時間を長くする要因となる。
以下、これらの箇所に関する具体的な対策を説明する。
1 前室流路壁近傍での滞留に関する処理
この場合、滞留抑制ガスの吹き込み形態としては、前記前室における前記酸素との共存状態にある前記原料ガスの流れに対して、流路壁側に前記滞留抑制ガスを流し、前記燃焼反応の発生を抑制するようにすることができる。
As a cause of occurrence of abnormal combustion, the gas staying in the vicinity of the flow path wall from the front chamber to the catalytic reaction chamber, or the stagnation part formed in the front chamber becomes a factor of increasing the gas residence time.
In the following, specific measures regarding these points will be described.
1 Treatment related to retention in the vicinity of the front chamber flow path wall In this case, the retention suppression gas is blown into the flow path wall side with respect to the flow of the source gas in the state of coexistence with the oxygen in the front chamber. The residence suppression gas can be flowed to suppress the occurrence of the combustion reaction.

この方法にあっては、滞留抑制ガスを流路壁側に吹き込むため、酸素との共存状態にある原料ガスが流路壁近傍に滞留して、その滞留時間が長くなり、このガスが自着火等を起こして前室内で異常燃焼が発生することを避けることができる。
この方法を使用する合成ガスの製造装置としては、前記滞留抑制ガス吹き込み手段が、前記前室における前記酸素との共存状態にある前記原料ガスの流れに対して、流路壁側に前記滞留抑制ガスを流すこととなる。
In this method, since the retention suppressing gas is blown to the flow path wall side, the raw material gas coexisting with oxygen stays in the vicinity of the flow path wall, and the retention time becomes longer, and this gas is self-ignited. It is possible to avoid the occurrence of abnormal combustion in the front chamber by causing the above.
As an apparatus for producing synthesis gas using this method, the retention suppression gas blowing means is configured to suppress the retention on the channel wall side with respect to the flow of the source gas in the coexistence state with the oxygen in the front chamber. Gas will flow.

2 前室よどみ部に対する処理
この場合、滞留抑制ガスを吹き込み形態としては、前記前室における前記酸素との共存状態にある前記原料ガスの流れのよどみ部に、前記滞留抑制ガスを流し、前記燃焼反応の発生を抑制する。
よどみ部にあっても、酸素と共存状態にある原料ガスが長期間、この部位に滞留し、その滞留時間に起因して、自着火し、異常燃焼に繋がる可能性があるが、この部位へ滞留抑制ガスを流すことで滞留を抑制し、上記問題を低減できる。
この方法を使用する合成ガスの製造装置としては、滞留抑制ガス吹き込み手段が、前記前室における前記酸素との共存状態にある前記原料ガスの流れのよどみ部に、前記滞留抑制ガスを流すものとしておけばよい。
2. Treatment for the stagnation part of the front chamber In this case, the retention suppression gas is blown into the stagnation part of the flow of the raw material gas in the coexistence state with the oxygen in the front chamber, and the combustion is performed. Suppresses the occurrence of reaction.
Even in the stagnation part, the source gas coexisting with oxygen stays in this part for a long time, and due to the residence time, there is a possibility that self-ignition and abnormal combustion may occur. By flowing the residence-suppressing gas, residence can be suppressed and the above problem can be reduced.
As an apparatus for producing synthesis gas using this method, the retention suppression gas blowing means flows the retention suppression gas into the stagnation part of the flow of the source gas in the coexistence state with the oxygen in the front chamber. Just keep it.

さらに、合成ガスの製造装置としては、前室において、酸素との共存状態にある原料ガスの流れの流路壁表面あるいはよどみ部に対する壁表面に燃焼反応の誘起抑制処理が施されていることが好ましい。
この種の処理としては、ガスと接触する面を金塗覆等により処理することとすることで、表面との相互作用による燃焼反応の誘起を抑制し、燃焼反応を抑制することができる。
Further, in the syngas production apparatus, in the front chamber, a combustion reaction induction suppression process is performed on the flow path wall surface of the flow of the source gas in a coexistence state with oxygen or the wall surface with respect to the stagnation portion. preferable.
As this type of treatment, by treating the surface in contact with the gas by gold coating or the like, the induction of the combustion reaction due to the interaction with the surface can be suppressed, and the combustion reaction can be suppressed.

以上は、ガスがほぼ一定部位に留まることがある場合に対する対策であるが、酸素と共存する原料ガスの流れに関しても、自着火、異常燃焼を避ける意味からは、以下の対策を施しておくのがよい。   The above is a measure against the case where the gas may remain at a substantially constant site, but the following measures should be taken for the flow of the raw material gas coexisting with oxygen from the viewpoint of avoiding autoignition and abnormal combustion. Is good.

酸素と共存する原料ガスの流れ主流側の安定化
この主流側に対する対策としては、前記酸素との共存状態にある原料ガスの流れが前室入口から触媒反応室入口に到達するまでの移流時間で自着火する自着火温度未満の温度で、前記酸化反応が起こる下限温度以上の温度に、前記前室の温度を設定する。
ここで、移流時間としては、流れの代表速度(例えば、平均流速、・・・・)を選択する。そして、その代表流速で前室入口から触媒反応室入口に到達するに要する時間を割り出し、その時間で前室内のガスが自着火しないように、上記下限温度以下の温度に前室を保つ。従って、主流側での異常燃焼の発生の確率が低下する。一方、この前室の温度を触媒との関係で酸化反応を起こす以上の温度とする。
このようにすることで、前室での自着火を伴った異常燃焼を回避しながら、触媒反応室への流入に伴って酸化反応を起こさせることが可能となる。
Stabilization of the mainstream flow of the raw material gas coexisting with oxygen As a countermeasure against this mainstream side, the flow time of the raw material gas coexisting with oxygen reaches the catalyst reaction chamber inlet from the front chamber inlet. The temperature of the anterior chamber is set to a temperature lower than the self-ignition temperature at which self-ignition occurs and a temperature equal to or higher than the lower limit temperature at which the oxidation reaction occurs.
Here, as the advection time, a representative flow velocity (for example, average flow velocity,...) Is selected. Then, the time required to reach the catalyst reaction chamber inlet from the front chamber inlet at the representative flow rate is determined, and the front chamber is maintained at a temperature equal to or lower than the lower limit temperature so that the gas in the front chamber does not self-ignite at that time. Therefore, the probability of occurrence of abnormal combustion on the mainstream side decreases. On the other hand, the temperature of the front chamber is set to a temperature higher than that causing an oxidation reaction in relation to the catalyst.
By doing in this way, it becomes possible to cause an oxidation reaction with the inflow to the catalytic reaction chamber while avoiding abnormal combustion accompanied by self-ignition in the front chamber.

この手法を使用する合成ガスの製造装置は、
前記酸素との共存状態にある原料ガスの流れが前室入口から触媒反応室入口に到達するまでの移流時間で自着火する自着火温度未満の温度で、前記酸化反応が起こる下限温度以上の温度に、前記前室の温度を設定する前室温度維持手段を備えて、装置を実現できる。
Syngas production equipment using this method is
A temperature that is lower than the self-ignition temperature at which the flow of the raw material gas coexisting with oxygen auto-ignites in the advection time from the front chamber inlet to the catalyst reaction chamber inlet and is equal to or higher than the lower limit temperature at which the oxidation reaction occurs. Further, the apparatus can be realized by including a front chamber temperature maintaining means for setting the temperature of the front chamber.

さて、前室内の圧力を常圧より高く設定することが好ましい。このようにしておくと、外部からの空気の流入により前室が影響を受けるのを避けることができる。   Now, it is preferable to set the pressure in the front chamber higher than the normal pressure. By doing so, it is possible to avoid the front chamber from being affected by the inflow of air from the outside.

さて、本願方法の適応例としては、前記原料ガスが水蒸気と炭化水素系燃料が混合したガスであり、前記触媒反応室で、部分酸化反応及び水蒸気改質反応を実行して、前記合成ガスとしての水素含有ガスを得るものとすることができる。
この場合、合成ガスの製造装置は、前記原料ガスが水蒸気と炭化水素系燃料が混合したガスであり、前記触媒反応室で、部分酸化反応及び水蒸気改質反応を実行して、前記合成ガスとしての水素含有ガスを得るものとなる。
As an application example of the method of the present application, the raw material gas is a gas in which steam and hydrocarbon fuel are mixed, and in the catalytic reaction chamber, a partial oxidation reaction and a steam reforming reaction are performed, and the synthesis gas is used. The hydrogen-containing gas can be obtained.
In this case, in the synthesis gas production apparatus, the raw material gas is a gas in which steam and hydrocarbon fuel are mixed, and in the catalytic reaction chamber, a partial oxidation reaction and a steam reforming reaction are performed to obtain the synthesis gas. The hydrogen-containing gas is obtained.

部分酸化反応と水蒸気改質反応とを起こさせて、水素含有ガスを得ることができるが、この反応形態における触媒反応室内の反応は、触媒反応室入口における温度に大きく依存する。そして、上記前室において自着火を伴って異常燃焼が起こると前室におけるガス状態が不安定となり、触媒反応室入口の温度が上昇しすぎ、触媒反応室内の最高温度が内部を流れる原料ガスの熱分解温度を上回り、触媒反応にとって問題となるカーボンの発生を起こすことともなりかねない。   Although a hydrogen-containing gas can be obtained by causing a partial oxidation reaction and a steam reforming reaction, the reaction in the catalytic reaction chamber in this reaction mode greatly depends on the temperature at the inlet of the catalytic reaction chamber. When abnormal combustion occurs in the front chamber with self-ignition, the gas state in the front chamber becomes unstable, the temperature of the catalyst reaction chamber inlet rises too much, and the maximum temperature of the catalyst reaction chamber reaches It can exceed the pyrolysis temperature and cause carbon generation, which is a problem for catalytic reactions.

しかしながら、これまで説明してきたように、前室におけるガス状態を自着火等を起こさない安定したものとすることで、結果的に水素含有ガスを継続的に安定的に得ることができる。   However, as described so far, by making the gas state in the front chamber stable without causing self-ignition or the like, the hydrogen-containing gas can be obtained continuously and stably.

さて、合成ガスの製造装置は、
前記酸素との共存関係にある原料ガスが、前記前室と前記触媒反応室とに渡って直線状の主流を形成して移流可能であり、
前記主流に直交する横断面に関して、前記前室の横断面の流路断面積が前記触媒反応室の横断面の流路断面積より小さいものとすることが、好ましい。
Now, the synthesis gas production equipment
The raw material gas coexisting with the oxygen can be transferred in a straight main flow across the front chamber and the catalytic reaction chamber,
Regarding the cross section orthogonal to the main flow, it is preferable that the cross-sectional area of the cross section of the front chamber is smaller than the cross-sectional area of the cross section of the catalytic reaction chamber.

この構成の場合、前室と触媒反応室との関係を直線的な位置関係に配設することで、ガスのスムーズな移流を起こさせることができる。そして、触媒反応室に関しては、合成ガスの製造量に見合うだけの触媒量を確保し、その部位の流路断面積を設定する。その状態で触媒反応室におけるガス流速は決定するが、この流速に対して前室のガス流速は流路断面積との関係で上昇する。結果、前室内をガスは高速で通過することとなり、その部位での移流時間を短くでき、本願が目的とする前室での自着火の抑制と、触媒反応室の反応の安定に寄与することができる。   In the case of this configuration, a smooth advection of gas can be caused by arranging the relationship between the front chamber and the catalytic reaction chamber in a linear positional relationship. And about a catalyst reaction chamber, the catalyst amount sufficient for the production amount of synthesis gas is ensured, and the flow-path cross-sectional area of the site | part is set. In this state, the gas flow rate in the catalytic reaction chamber is determined, but the gas flow rate in the front chamber increases with respect to this flow rate in relation to the cross-sectional area of the flow path. As a result, the gas passes through the front chamber at a high speed, the advection time at that part can be shortened, and this contributes to the suppression of auto-ignition in the front chamber and the stability of the reaction in the catalytic reaction chamber. Can do.

また、このように構成する場合に、前記前室と前記触媒反応室とが単一の直線筒状の反応筒形成体内に連続形成され、前記前室の前記流路断面積が、前記前室内に収納される中実の流路確定部材で確定してあることが好ましい。
この構成の合成ガスの製造装置では、直線筒状の反応筒形成体内に流路格納部材を収納するだけの簡単な構成で、容易且つ安価に本願の目的を達成することができる合成ガスの製造装置を得ることができる。
Further, when configured in this way, the front chamber and the catalytic reaction chamber are continuously formed in a single straight cylindrical reaction cylinder forming body, and the flow passage cross-sectional area of the front chamber has the front chamber It is preferable that it is determined by a solid flow path determining member housed in the housing.
In the syngas production apparatus having this configuration, the synthesis gas can be produced easily and inexpensively with a simple configuration in which the flow path storage member is housed in the linear cylindrical reaction cylinder forming body. A device can be obtained.

以下、図面に基づいて本願に係る合成ガスの製造方法を使用する合成ガスの製造装置の一例としての水素含有ガス製造装置1を説明する。
〔GTL製造プロセス〕
図1は、水素含有ガス製造装置1を、水素含有ガスを一方の原ガスとするGTL反応器2の上流側に備えたGTL製造プロセス3の構成を示したものである。同図に示すように、このシステム3は、水素含有ガス製造装置1をGTL反応器2の上流側に備えて構成されており、水素含有ガス製造装置1には、天然ガス等の炭化水素系燃料f、水蒸気s及び酸素含有ガスである酸素oが供給され、改質の後、水素リッチガスhがGTL反応器2に送られる。
炭化水素系燃料としては、前記天然ガスの他、ガス状態にあるアルコール、エーテル、LPG、ナフサ、ガソリン、灯油、軽油、重油、アスファルテン油、オイルサンド油、石炭液化油、シェールオイル、GTL、廃プラスチック油及びバイオフューエル等を採用できる。
Hereinafter, a hydrogen-containing gas production apparatus 1 as an example of a synthesis gas production apparatus that uses the synthesis gas production method according to the present application will be described with reference to the drawings.
[GTL manufacturing process]
FIG. 1 shows a configuration of a GTL production process 3 provided with a hydrogen-containing gas production apparatus 1 on the upstream side of a GTL reactor 2 using a hydrogen-containing gas as one raw gas. As shown in the figure, this system 3 is configured to include a hydrogen-containing gas production apparatus 1 on the upstream side of the GTL reactor 2, and the hydrogen-containing gas production apparatus 1 includes a hydrocarbon system such as natural gas. Fuel f, water vapor s and oxygen o which is an oxygen-containing gas are supplied, and after reforming, a hydrogen rich gas h is sent to the GTL reactor 2.
As hydrocarbon fuel, in addition to the natural gas, alcohol, ether, LPG, naphtha, gasoline, kerosene, light oil, heavy oil, asphaltene oil, oil sand oil, coal liquefied oil, shale oil, GTL, waste in the gas state Plastic oil and biofuel can be used.

炭化水素系燃料fに対する処理系統を説明すると、炭化水素系燃料fは脱硫装置4により1ppb以下まで脱硫された後、水蒸気sが添加され本願にいう原料ガスf1とされる。この原料ガスf1に対して、同図に示すように酸素oがさらに混合されて、単一の触媒反応室5に導入される。この触媒反応室5には、前記炭化水素系燃料f、水蒸気s及び酸素oが混合された混合ガスf2に対して、オートサーマル改質反応を発生可能な改質触媒c1が配置されている。この触媒反応室5にあっては、その入口側部位で主に部分酸化反応が発生し、その下流側において主に水蒸気改質反応が起こる。   The processing system for the hydrocarbon fuel f will be described. The hydrocarbon fuel f is desulfurized to 1 ppb or less by the desulfurization device 4, and then steam s is added to form the raw material gas f1 referred to in the present application. Oxygen o is further mixed with this raw material gas f1 as shown in the figure and introduced into a single catalytic reaction chamber 5. In the catalytic reaction chamber 5, a reforming catalyst c1 capable of generating an autothermal reforming reaction with respect to the mixed gas f2 in which the hydrocarbon fuel f, the steam s, and the oxygen o are mixed is disposed. In the catalytic reaction chamber 5, a partial oxidation reaction mainly occurs at the inlet side portion, and a steam reforming reaction mainly occurs at the downstream side.

この種の改質触媒としては、具体的には、ロジウム、イリジウム、白金、パラジウム、ルテニウムなどの貴金属系触媒が好ましく用いられ、その他、ニッケル系、コバルト系などの触媒も適用することができる。また、金属は1種類のみを用いてもよく、また、必要に応じて2種類以上を併用することもできる。これらの触媒はどのような形状でもよく、担体の制限も特にないが、望ましくはアルミナ、ジルコニア、シリカ、チタニア、マグネシア、カルシアから選ばれる1種を主成分とする担体が好ましく、この担体に担持して、タブレット状、球状、リング状の成型品の形で使用するか、ハニカム状に成型して使用するのが好ましい。
この種の触媒の製造に関して代表例を、アルミナ担体にルテニウムを担持させる場合に関して説明すると、例えば、球状のアルミナ担体(直径4〜6mm)を塩化ルテニウム(RuCl・3HO)水溶液に浸漬し、空気中80℃で2時間乾燥した後、固定化(NaOH水溶液による処理)、水素還元することにより調製できる。
Specifically, noble metal catalysts such as rhodium, iridium, platinum, palladium, and ruthenium are preferably used as this type of reforming catalyst, and nickel-based and cobalt-based catalysts can also be applied. Moreover, only 1 type may be used for a metal and it can also use 2 or more types together as needed. These catalysts may have any shape, and there is no particular limitation on the carrier. Desirably, a carrier mainly composed of one kind selected from alumina, zirconia, silica, titania, magnesia, and calcia is preferable. Then, it is preferably used in the form of a tablet-shaped, spherical, ring-shaped molded product, or molded into a honeycomb shape.
A typical example of the production of this type of catalyst will be described in the case where ruthenium is supported on an alumina support. For example, a spherical alumina support (diameter 4 to 6 mm) is immersed in an aqueous ruthenium chloride (RuCl 3 .3H 2 O) solution. It can be prepared by drying in air at 80 ° C. for 2 hours, followed by immobilization (treatment with aqueous NaOH) and hydrogen reduction.

図1に示すように、前記触媒反応室5は鉛直上下方向に配設されており、上部側から原料ガスf1(炭化水素系燃料fに水蒸気sを混ぜられたガス)が供給され、酸素oが混合された混合ガスf2が、触媒反応室5の上側に設けられた入口5aから導入され、改質反応を終えて、触媒反応室5の下方からGTL反応器2側へ水素リッチガスhが送られる。以下、本願に係る水素含有ガス製造装置1の具体的構成を、図1、2、3を参照しながら説明する。   As shown in FIG. 1, the catalytic reaction chamber 5 is arranged in a vertical vertical direction, and a raw material gas f1 (a gas obtained by mixing water vapor s with a hydrocarbon fuel f) is supplied from the upper side, and oxygen o Is introduced from an inlet 5a provided on the upper side of the catalytic reaction chamber 5, finishes the reforming reaction, and the hydrogen rich gas h is sent from the lower side of the catalytic reaction chamber 5 to the GTL reactor 2 side. It is done. Hereinafter, a specific configuration of the hydrogen-containing gas production apparatus 1 according to the present application will be described with reference to FIGS.

〔水素含有ガス製造装置〕
水素含有ガス製造装置1は、先に説明した炭化水素系燃料fに対する、脱硫、水蒸気添加、酸素混合及び改質までの工程を受持つように構成されている。
前記脱硫は脱硫室6において実行され、脱硫室6から送出される炭化水素系燃料fに水蒸気sを混合した原料ガスf1が生成される。図2は、この装置1における、原料ガス室7、混合室8、前室9及び触媒反応室5の具体的構成を示したものである。本願は、前室9の構成及びその使用形態に特徴があるため、同図には触媒反応室5の上部側のみを示している。触媒反応室5の下部側に設けられる出側は、出口5bを介して接続管5cでGTL反応器2の水素導入口2aに接続されている。図3は、前室9の詳細構造及び、その部位の流れ状態を示す図である。
[Hydrogen-containing gas production equipment]
The hydrogen-containing gas production apparatus 1 is configured to take steps up to desulfurization, steam addition, oxygen mixing and reforming for the hydrocarbon fuel f described above.
The desulfurization is performed in the desulfurization chamber 6, and a raw material gas f <b> 1 in which water vapor s is mixed with the hydrocarbon fuel f delivered from the desulfurization chamber 6 is generated. FIG. 2 shows a specific configuration of the source gas chamber 7, the mixing chamber 8, the front chamber 9, and the catalytic reaction chamber 5 in this apparatus 1. Since the present application is characterized by the configuration of the front chamber 9 and its usage, only the upper side of the catalytic reaction chamber 5 is shown in FIG. The outlet provided on the lower side of the catalytic reaction chamber 5 is connected to the hydrogen inlet 2a of the GTL reactor 2 through the outlet 5b through a connecting pipe 5c. FIG. 3 is a view showing a detailed structure of the front chamber 9 and a flow state of the portion.

脱硫
前記脱硫室6には酸化銅、酸化亜鉛等を混合した銅亜鉛系高次脱硫触媒等の脱硫触媒c2が配設され、この室6で、硫黄化合物濃度を1ppb以下にする。
上記した銅亜鉛系高次脱硫触媒の他、銀系触媒、さらには、ニッケル、クロム、マンガン、鉄、コバルト、パラジウム、イリジウム、白金、ルテニウム、ロジウム、金等を含む脱硫触媒も採用可能である。
Desulfurization The desulfurization chamber 6 is provided with a desulfurization catalyst c2 such as a copper-zinc high-order desulfurization catalyst mixed with copper oxide, zinc oxide or the like. In this chamber 6, the sulfur compound concentration is set to 1 ppb or less.
In addition to the above-described copper zinc-based high-order desulfurization catalyst, silver-based catalysts, and desulfurization catalysts containing nickel, chromium, manganese, iron, cobalt, palladium, iridium, platinum, ruthenium, rhodium, gold, etc. can also be employed. .

水蒸気混合
脱硫を経た炭化水素系燃料fは、別途水蒸気供給管10を経て供給される水蒸気sを添加される。ここで、炭化水素系燃料fに対する水蒸気s量は、燃料中に含まれる炭素Cに対する水蒸気HOの割合をモル比で〔HO/C〕として、0.1〜3.0(好ましくは0.1〜1.0)とされる。また、この部位での温度は200〜400℃(好ましくは200〜300℃)程度である。このようにして得られるガスを本願にあっては、原料ガスf1と呼ぶ。
The hydrocarbon-based fuel f that has undergone steam mixing and desulfurization is added with steam s that is separately supplied through the steam supply pipe 10. Here, the amount of water vapor s with respect to the hydrocarbon-based fuel f is 0.1 to 3.0 (preferably with the ratio of water vapor H 2 O to carbon C contained in the fuel as a molar ratio [H 2 O / C]. 0.1 to 1.0). Moreover, the temperature in this part is about 200-400 degreeC (preferably 200-300 degreeC). The gas thus obtained is referred to as a raw material gas f1 in the present application.

一方、本願の水素含有ガスの製造装置1には、図1、2、3に示すように、炭化水素系燃料fあるいは水蒸気s(原料ガスf1に対しては成分ガスとなる)、あるいは原料ガスf1あるいは不活性ガス等であるパージガスpが供給されるとともに、これまで説明してきたように、酸素oも供給される。そして、これらのガスが、下記に詳述する改質ユニット11で適切に反応処理される。   On the other hand, in the hydrogen-containing gas production apparatus 1 of the present application, as shown in FIGS. 1, 2, and 3, a hydrocarbon-based fuel f or water vapor s (becomes a component gas for the raw material gas f1), or a raw material gas. The purge gas p, which is f1 or an inert gas, is supplied, and oxygen o is also supplied as described above. These gases are appropriately reacted in the reforming unit 11 described in detail below.

改質ユニット11
図2、3に示すように、改質ユニット11は、ユニットの上部側に、原料ガス室7、混合室8及び前室9を備えて構成されており、その下側に触媒反応室5を備えている。
改質ユニット11の上部側は概略二重管構造とされており、その内管11a内を介して前記パージガスpが前記前室9の下部域に供給できるように構成されている。さらに、図2に示すように、この内管11a内には温度計測用の熱電対t1が前室概中間部位まで延出して配設されており、前室9の代表温度(入口温度)を計測可能に構成されている。
Reforming unit 11
As shown in FIGS. 2 and 3, the reforming unit 11 includes a source gas chamber 7, a mixing chamber 8 and a front chamber 9 on the upper side of the unit, and a catalytic reaction chamber 5 on the lower side. I have.
The upper part of the reforming unit 11 has a substantially double pipe structure, and is configured such that the purge gas p can be supplied to the lower region of the front chamber 9 through the inner pipe 11a. Further, as shown in FIG. 2, a thermocouple t1 for temperature measurement is disposed in the inner tube 11a so as to extend to the middle part of the front chamber, and the representative temperature (inlet temperature) of the front chamber 9 is set. It is configured to be measurable.

原料ガス室7
図2に示すように、原料ガス室7は水蒸気sが混合された原料ガスf1が導入される導入口7aと、この導入口7aが開口する中間路部7bと、この中間路部7bより流路断面が大きな流路拡大部7cを備えて構成されている。この流路拡大部7cの下手側に、混合室8が設けられている。
Source gas chamber 7
As shown in FIG. 2, the source gas chamber 7 has an introduction port 7a into which the source gas f1 mixed with water vapor s is introduced, an intermediate passage portion 7b in which the introduction port 7a is opened, and a flow from the intermediate passage portion 7b. The passage section 7c is configured to have a large passage section. A mixing chamber 8 is provided on the lower side of the flow path expanding portion 7c.

混合室8
混合室8は、所謂、シェルアンドチューブ型の混合構造が採用されており、前記流路拡大部7cから原料ガスf1が流入するチューブ8a内の流路に、その外側に設けられる酸素室8bから、酸素oが流入するように構成されている。従って、原料ガスf1に対して酸素oが流入することで、このチューブ8a内で原料ガスf1と酸素oとが混合した(共存状態にある)混合ガスf2を形成できる。
同図に示すように、前記チューブ8aは、混合室8を区画する仕切り板8c,8cの離間距離を越えて下部側の延出されており、この流路を流下することで、充分な混合状態が得られるように構成されている。
ここで、炭化水素系燃料fに対する酸素o量は、燃料中に含まれる炭素Cに対する酸素Oの割合をモル比で〔O/C〕として、0.05〜1.0(好ましくは0.3〜0.7)とされる。また、この部位での温度は200〜400℃(好ましくは200〜300℃)程度である。このようにして得られるガスを本願にあっては、混合ガスf2と呼ぶ。
Mixing chamber 8
The mixing chamber 8 employs a so-called shell-and-tube type mixing structure. From the oxygen chamber 8b provided outside the channel 8a into which the raw material gas f1 flows from the channel expanding portion 7c. , Oxygen o flows in. Accordingly, when oxygen o flows into the raw material gas f1, the mixed gas f2 in which the raw material gas f1 and the oxygen o are mixed (in a coexisting state) can be formed in the tube 8a.
As shown in the figure, the tube 8a is extended on the lower side beyond the separation distance between the partition plates 8c and 8c that divide the mixing chamber 8. By flowing down this flow path, sufficient mixing can be achieved. It is configured to obtain a state.
Here, the amount of oxygen o relative to the hydrocarbon-based fuel f is 0.05 to 1.0 (preferably 0), where the ratio of oxygen O 2 to carbon C contained in the fuel is [O 2 / C] in molar ratio. .3 to 0.7). Moreover, the temperature in this part is about 200-400 degreeC (preferably 200-300 degreeC). The gas thus obtained is referred to as a mixed gas f2 in the present application.

前室9
前室9は、触媒反応室5に対する調整室としての役割を果たすように設けられており、先に説明したチューブ8aが延出される導入部9aと、この導入部9aと触媒反応室5との間に設けられる調整部9bとを備えて構成されている。
前記導入部9aには、図示するようにチューブ8aが下方に侵入・延出されており、これらチューブ8aの先端から混合ガスf2が放出される。前記チューブ8aの外周部位9cは中実とされており、ガスが滞留することはない。さらに、前記内管11aを介して先に説明したパージガスpが導入部9aの先端に供給される構造が採用されており、上記パージガスpの供給及びチューブ8a外側の中実構造により、混合ガスf2の上側への上昇及び滞留は起こらない。
ここで、パージガスpは、図2、3からも判明するように、チューブ8aの先端下手側の周部に噴出す構成が採用されており、混合ガスf2に対する流路の壁面側を流れる。さらに、後述するように、調整部9bのガス流路9dには通気性を有する断熱材料9hが配設され、これがその先端部位及びその周部でよどみ部を形成することとなるが、混合ガスf2の流れとは異なった流れとしてパージガスpを流すことで、上記壁面9dw及びよどみ部9dsでのガス滞留の確率を低減できる。本願にあっては、前室9内での原料ガスの滞留を抑制する滞留抑制ガスを吹き込む構成を滞留抑制ガス吹き込み手段と称する。
Front room 9
The front chamber 9 is provided so as to serve as an adjustment chamber for the catalyst reaction chamber 5, and the introduction portion 9 a from which the tube 8 a described above is extended, and the introduction portion 9 a and the catalyst reaction chamber 5 And an adjusting portion 9b provided therebetween.
As shown in the drawing, tubes 8a penetrate and extend downward from the introduction portion 9a, and the mixed gas f2 is discharged from the tips of these tubes 8a. The outer peripheral portion 9c of the tube 8a is solid, and gas does not stay. Further, the structure in which the purge gas p described above is supplied to the tip of the introduction portion 9a through the inner pipe 11a is adopted, and the mixed gas f2 is provided by the supply of the purge gas p and the solid structure outside the tube 8a. Ascending to the upper side and stagnation do not occur.
Here, as will be understood from FIGS. 2 and 3, the purge gas p is jetted to the peripheral portion on the lower end side of the tube 8a, and flows on the wall surface side of the flow path with respect to the mixed gas f2. Further, as will be described later, the gas flow path 9d of the adjusting portion 9b is provided with a heat insulating material 9h having air permeability, which forms a stagnation portion at its tip portion and its peripheral portion. By flowing the purge gas p as a flow different from the flow of f2, the probability of gas stagnation at the wall surface 9dw and the stagnation portion 9ds can be reduced. In the present application, a configuration in which a retention suppression gas that suppresses the retention of the raw material gas in the front chamber 9 is referred to as a retention suppression gas blowing means.

前記調整部9bは、この部位において前室9の温度を適切に調整するとともに、比較的細い流路であるチューブ8a内を流れてきた混合ガスf2を、僅かに流路拡大しつつさらに混合し、触媒反応室5への導入をスムーズに行う。従って、図2、3に示すように、調整部9bにおいて混合ガスf2が流れるガス流路9dでは、その断面積が僅かに増加されて、ガス流速が低下する。   The adjusting portion 9b appropriately adjusts the temperature of the front chamber 9 at this portion, and further mixes the mixed gas f2 flowing in the tube 8a, which is a relatively thin flow path, while slightly expanding the flow path. Introducing into the catalytic reaction chamber 5 is performed smoothly. Therefore, as shown in FIGS. 2 and 3, in the gas flow path 9d through which the mixed gas f2 flows in the adjusting portion 9b, the cross-sectional area is slightly increased and the gas flow velocity is decreased.

同図に示すように調整部9bの上部側及び下部側には、前記調整部9bのガス流路9dを形成する状態で、それぞれアルミナブロック9e及び窒化珪素からなる多孔性のブロック9fが設けられている。これら材料を設ける理由は、触媒反応室5からの熱が上流側へ伝播するのを防止し断熱を良好に行うことを目的とする。同図において、前記ブロック9fの外径側部位にはセラミックロープ9gを設置し、ブロック9fと耐火材のすき間にガスが流れないようにしている。
さらに図2に示す例では、前記調整部9bのガス流路9d内に通気性を有する断熱材料9hが配設され、触媒反応室5と前室9との境界における断熱と混合未反応ガスの対流防止が確保されている。
As shown in the figure, an alumina block 9e and a porous block 9f made of silicon nitride are provided on the upper side and the lower side of the adjustment unit 9b, respectively, in a state where the gas flow path 9d of the adjustment unit 9b is formed. ing. The reason for providing these materials is to prevent heat from the catalytic reaction chamber 5 from propagating to the upstream side and to perform heat insulation well. In the figure, a ceramic rope 9g is installed on the outer diameter side portion of the block 9f so that gas does not flow between the block 9f and the refractory material.
Further, in the example shown in FIG. 2, a heat insulating material 9 h having air permeability is disposed in the gas flow path 9 d of the adjusting portion 9 b, and the heat insulating and mixed unreacted gas at the boundary between the catalytic reaction chamber 5 and the front chamber 9 is disposed. Convection prevention is ensured.

以上説明し、図2、3からも判明するように、本願構成にあっては、酸素との共存状態にある原料ガスが、前室9と触媒反応室5とに渡って直線状の主流を形成して移流可能であり、この主流に直交する横断面(図2において横方向の断面)に関して、前室9の横断面の流路断面積が触媒反応室5の横断面の流路断面積より小さく設定される。結果、流れは、触媒反応室5に流入する段階で、拡大し、流速が急速に低下する。
さらに、これら図からも明らかなように、前室9と触媒反応室5とは単一の直線筒状の反応筒形成体内に連続形成されており、この前室9の流路断面積が、前室9内に収納される中実の流路確定部材(上記したアルミナブロック9e、ブロック9f)で確定してある。
As described above and as can be seen from FIGS. 2 and 3, in the configuration of the present application, the raw material gas coexisting with oxygen flows in a straight main stream across the front chamber 9 and the catalytic reaction chamber 5. The cross-sectional area of the cross section of the front chamber 9 is the cross-sectional area of the cross section of the catalytic reaction chamber 5 with respect to the cross section (transverse section in FIG. 2) perpendicular to the main flow. Set smaller. As a result, the flow expands at the stage of entering the catalytic reaction chamber 5, and the flow velocity rapidly decreases.
Further, as is clear from these figures, the front chamber 9 and the catalytic reaction chamber 5 are continuously formed in a single straight cylindrical reaction cylinder forming body, and the flow passage cross-sectional area of the front chamber 9 is It is determined by solid flow path determining members (alumina block 9e and block 9f described above) housed in the front chamber 9.

触媒反応室5
触媒反応室5は、本願に係る水素含有ガス製造装置1の主要部となる部位であり、これまでも示したように改質触媒c1が配設される部位である。
また、触媒反応室5に供給する総ガス流量を時間あたりの気体空間速度(但し、標準状態換算の値)で750h−1〜300000h−1(好ましくは10000h−1〜300000h−1、より好ましくは50000h−1〜300000h−1)の範囲としている。
Catalytic reaction chamber 5
The catalytic reaction chamber 5 is a main part of the hydrogen-containing gas production apparatus 1 according to the present application, and is a part where the reforming catalyst c1 is disposed as described above.
Further, the gas space velocity per a total gas flow rate supplied to the catalytic reaction chamber 5 times (however, the standard values of the state conversion) 750h -1 ~300000h -1 (preferably 10000h -1 ~300000h -1 in, more preferably 50,000 h −1 to 300,000 h −1 ).

反応時の圧力についての制限は特にはない。用途により、反応圧力を変更することが可能である。実施例に示すように、GTL等の液体燃料合成用途に用いる場合は2〜7MPaで使用する。一方燃料電池の原ガスとする場合は常圧付近(例えば、1MPa以下)で使用することとなる。   There is no particular limitation on the pressure during the reaction. The reaction pressure can be changed depending on the application. As shown in the examples, when used for synthesizing liquid fuel such as GTL, it is used at 2 to 7 MPa. On the other hand, when it is used as the raw gas of the fuel cell, it is used near normal pressure (for example, 1 MPa or less).

以上が、本願に係る水素含有ガス製造装置1のハード側の構成であるが、この装置構成に対して、本願装置にあっては、前室9及び触媒反応室5における反応状態を適正なものとすべく構成されている。
即ち、本願装置1では、触媒反応室5への混合ガスf2の入口温度を適正化すべく工夫が成されている。例えば、これまで説明してきた構成において、混合ガスf2のガス流路9dを比較的小として、この流路9dにおける流速を上げることで、混合ガスf2の前室9内での滞留時間を一定時間以下としている。又、触媒反応室5と前室9との境界における断熱を高いものとして、触媒反応室5の温度が前室9に影響しないようにしている。さらには、パージガスpを前室9に導入して混合ガスf2の逆流及び滞留を防止している等が、本願におけるハード側の工夫点である。
The above is the configuration of the hardware side of the hydrogen-containing gas production apparatus 1 according to the present application. However, in this apparatus configuration, the reaction state in the front chamber 9 and the catalytic reaction chamber 5 is appropriate for the apparatus of the present application. It is configured to
That is, the device 1 of the present application is devised to optimize the inlet temperature of the mixed gas f2 to the catalytic reaction chamber 5. For example, in the configuration described so far, the gas flow path 9d of the mixed gas f2 is made relatively small, and the flow rate in the flow path 9d is increased, whereby the residence time of the mixed gas f2 in the front chamber 9 is set to a fixed time. It is as follows. Further, the heat insulation at the boundary between the catalytic reaction chamber 5 and the front chamber 9 is made high so that the temperature of the catalytic reaction chamber 5 does not affect the front chamber 9. Furthermore, the purge gas p is introduced into the front chamber 9 to prevent the mixed gas f2 from backflowing and staying, and the like, which is a contrivance on the hardware side in the present application.

本願の水素含有ガス製造装置1にあっては、図1に示すように、その反応状態を制御するための制御装置13が備えられており、炭化水素系燃料fの種類、系内への投入量及び温度、水蒸気sの系内への投入量及び温度さらには、酸素oの系内への投入量及び温度が、この制御装置13でモニター可能に構成されている。
一方、図2に示すように、先に説明した改質ユニット11の上部及び下部側からユニット11内に挿入される熱電対t1,t2により、前室9の調整部9bの入口及び出口(触媒反応室の入口5a)における温度、及び触媒反応室5内の流れ方向における温度もモニター可能に構成されている。
そして、制御装置13からの制御指令に従って、水素含有ガス製造装置1内への炭化水素系燃料投入量、水蒸気投入量、酸素投入量を調整可能とされている。
In the hydrogen-containing gas production apparatus 1 of the present application, as shown in FIG. 1, a control device 13 for controlling the reaction state is provided, and the type of hydrocarbon-based fuel f and input into the system are provided. The control device 13 can monitor the amount and temperature, the amount and temperature of steam s input into the system, and the amount and temperature of oxygen o into the system.
On the other hand, as shown in FIG. 2, the inlets and outlets (catalysts) of the adjusting portion 9b of the front chamber 9 are formed by the thermocouples t1 and t2 inserted into the unit 11 from the upper and lower sides of the reforming unit 11 described above. The temperature at the inlet 5a) of the reaction chamber and the temperature in the flow direction in the catalyst reaction chamber 5 can also be monitored.
And according to the control command from the control apparatus 13, the hydrocarbon fuel injection amount, the water vapor input amount, and the oxygen input amount into the hydrogen-containing gas production device 1 can be adjusted.

さて、制御装置13の構成に関して説明すると、図1,4に示すように、この制御装置13には、改質触媒c1が部分酸化反応を起こす下限温度を部分酸化下限温度T1、水蒸気改質反応を起こす下限温度を水蒸気改質下限温度T2として、部分酸化下限温度T1以上、水蒸気改質下限温度T2未満の温度で、混合室8から触媒反応室5に混合ガスf2が到達するのに要する移流時間で混合ガスf2が自着火する温度である自着火温度T3に対して、当該自着火温度未満の温度に、混合室8及び前室9の温度を設定する温度設定手段13aが備えられている。
さらに、この温度設定手段13aに対して、部分酸化下限温度と混合ガスf2の露点温度T4とに関して高い側の温度を前室下限温度とし、混合ガスf2の自着火温度を前室上限温度として、前室9を流れる混合ガスf2の温度を、前室上限温度未満、前室下限温度より高い温度に維持する前室混合ガス温度維持手段(図1に単に温度維持手段と記載)13bが備えられている。
ここで、本願にいう混合ガスの露点温度とは、その部位における水蒸気の分圧が飽和水蒸気圧となる温度であり、その環境下で温度のみが低下した場合に結露が生じる温度である
Now, the configuration of the control device 13 will be described. As shown in FIGS. 1 and 4, the control device 13 includes a lower limit temperature at which the reforming catalyst c1 causes a partial oxidation reaction as a partial oxidation lower limit temperature T1, a steam reforming reaction. The lower limit temperature that causes the steam reforming lower limit temperature T2 is the advection required for the mixed gas f2 to reach the catalytic reaction chamber 5 from the mixing chamber 8 at a temperature not lower than the partial oxidation lower limit temperature T1 and lower than the steam reforming lower limit temperature T2. A temperature setting means 13a for setting the temperatures of the mixing chamber 8 and the front chamber 9 to a temperature lower than the self-ignition temperature with respect to the self-ignition temperature T3, which is a temperature at which the mixed gas f2 self-ignites with time, is provided. .
Further, with respect to this temperature setting means 13a, the higher temperature with respect to the partial oxidation lower limit temperature and the dew point temperature T4 of the mixed gas f2 is set as the front chamber lower limit temperature, and the self-ignition temperature of the mixed gas f2 is set as the front chamber upper limit temperature. There is provided a front chamber mixed gas temperature maintaining means (simply referred to as temperature maintaining means in FIG. 1) 13b for maintaining the temperature of the mixed gas f2 flowing through the front chamber 9 at a temperature lower than the upper limit temperature of the front chamber and higher than the lower limit temperature of the front chamber. ing.
Here, the dew point temperature of the mixed gas referred to in the present application is a temperature at which the partial pressure of water vapor at that portion becomes a saturated water vapor pressure, and is a temperature at which dew condensation occurs when only the temperature decreases in that environment.

以下、制御装置13内における下限温度と上限温度とに関して説明する。
下限温度
部分酸化下限温度は混合ガスf2が改質触媒c1に接触して部分酸化反応を起こす下限温度T1であり、触媒反応室5に収納される改質触媒c1によって、この下限温度T1は決まる。例えば、改質触媒c1が上述のようなルテニウム系触媒である場合は200℃程度であり、改質触媒c1がロジウム系触媒である場合は300℃程度である。従って、制御装置13に設けられる記憶手段13c内には、この部分酸化下限温度が記憶格納されており、制御装置13側でこの部分酸化下限温度T1を適宜読み出し利用可能に構成されている。
Hereinafter, the lower limit temperature and the upper limit temperature in the control device 13 will be described.
Lower limit temperature The partial oxidation lower limit temperature is the lower limit temperature T1 at which the mixed gas f2 comes into contact with the reforming catalyst c1 to cause a partial oxidation reaction. The lower limit temperature T1 is determined by the reforming catalyst c1 accommodated in the catalyst reaction chamber 5. . For example, when the reforming catalyst c1 is a ruthenium-based catalyst as described above, the temperature is about 200 ° C., and when the reforming catalyst c1 is a rhodium-based catalyst, the temperature is about 300 ° C. Therefore, the partial oxidation lower limit temperature is stored and stored in the storage unit 13c provided in the control device 13, and the partial oxidation lower limit temperature T1 can be appropriately read and used on the control device 13 side.

一方、混合ガスf2に関しては、前記炭化水素系燃料f、水蒸気s及び酸素oの混合比に従った混合ガスの露点温度T4が決まる。そこで、前記記憶手段13cには各ガスの混合比に従った露点温度データが記憶されており、このデータを利用して現状で前記前室9内に存在する混合ガスf2の露点温度T4を、各ガスの投入量から推定可能としている。   On the other hand, for the mixed gas f2, the dew point T4 of the mixed gas is determined according to the mixing ratio of the hydrocarbon fuel f, the water vapor s, and the oxygen o. Therefore, dew point temperature data according to the mixing ratio of each gas is stored in the storage means 13c, and by using this data, the dew point temperature T4 of the mixed gas f2 present in the front chamber 9 at present is calculated. It can be estimated from the amount of each gas input.

従って、制御装置13にあっては、改質触媒c1の種類に基づく部分酸化下限温度T1及び前室内に存在すると推定される混合ガスf2の投入量・温度から推定される混合ガスf2の露点温度T4に従って、両者の高い側の温度として下限温度(前室下限温度)を求める。   Therefore, in the control device 13, the dew point temperature of the mixed gas f2 estimated from the partial oxidation lower limit temperature T1 based on the type of the reforming catalyst c1 and the input amount / temperature of the mixed gas f2 estimated to exist in the front chamber. According to T4, a lower limit temperature (anterior chamber lower limit temperature) is obtained as the temperature on the higher side of both.

上限温度
水蒸気改質下限温度は混合ガスf2が改質触媒c1に接触して水蒸気改質反応を起こす下限温度T2であり、触媒反応室5に収納される改質触媒c1によって、この水蒸気改質下限温度T2は決まる。例えば、改質触媒c1が上述のようなルテニウム系触媒である場合は400℃程度であり、改質触媒c1がニッケル系触媒である場合は400℃程度である。従って、制御装置13に設けられる記憶手段13c内には、この水蒸気改質下限温度T2が記憶格納されており、制御装置13側でこの水蒸気改質下限温度T2を適宜読み出し利用可能に構成されている。
The upper limit temperature steam reforming lower limit temperature is the lower limit temperature T2 at which the mixed gas f2 comes into contact with the reforming catalyst c1 to cause the steam reforming reaction, and the steam reforming is performed by the reforming catalyst c1 stored in the catalyst reaction chamber 5. The lower limit temperature T2 is determined. For example, when the reforming catalyst c1 is a ruthenium-based catalyst as described above, the temperature is about 400 ° C., and when the reforming catalyst c1 is a nickel-based catalyst, the temperature is about 400 ° C. Therefore, the steam reforming lower limit temperature T2 is stored and stored in the storage means 13c provided in the control device 13, and the steam reforming lower limit temperature T2 can be appropriately read and used on the control device 13 side. Yes.

この水蒸気改質下限温度T2に対して、前室9内に存在する混合ガスf2の自着火温度T3も考慮される。即ち、自着火温度T3は、前室9内の混合ガスf2の組成及びその前室9内における滞留時間(この滞留時間とは、混合室8において酸素oを混合された後、混合室8を出てから触媒反応室5の入口5aに至るまでの時間であり、本願の場合、混合室8出側のチューブ8a内を経て触媒反応室5の入口5aに至るまでの混合ガスf2の移流時間を意味する)に依存する。
そこで、記憶手段13cに、滞留時間において、初めて着火する混合ガスf2の組成状態に従った自着火温度T3が記憶されており、この温度と、上記水蒸気改質下限温度T2との関係で上限温度を得る。このような、滞留時間(図上「着火遅れ時間」と表示)と自着火温度T3(図上「混合ガス温度」と表示)との関係を混合ガスf2に関して示したのが図5である。同図は、混合ガスf2が、炭化水素系燃料が天然ガスで、〔N/C〕
、〔O/C〕が、それぞれ(0.6〜1.0)と、(0.1あるいは0.4)である場合を示している。この状態における混合ガスの圧力は4MPaである。燃焼反応は混合ガスの衝突頻度に律速され、実際の頻度因子は分子の直径や自由度によるが、HOの衝突頻度を1とするとNは0.7から0.8程度と同等になるので、同図の実施例では水蒸気に代えてN2を導入している。
The autoignition temperature T3 of the mixed gas f2 present in the front chamber 9 is also taken into consideration for the steam reforming lower limit temperature T2. That is, the self-ignition temperature T3 is determined by the composition of the mixed gas f2 in the front chamber 9 and the residence time in the front chamber 9 (this residence time refers to the mixing chamber 8 after the oxygen o is mixed in the mixing chamber 8). It is the time from the exit to the inlet 5a of the catalyst reaction chamber 5, and in the present case, the advancing time of the mixed gas f2 through the tube 8a on the outlet side of the mixing chamber 8 to the inlet 5a of the catalyst reaction chamber 5 Means).
Therefore, the self-ignition temperature T3 according to the composition state of the mixed gas f2 that is ignited for the first time during the residence time is stored in the storage means 13c. The upper limit temperature is related to this temperature and the steam reforming lower limit temperature T2. Get. FIG. 5 shows the relationship between the residence time (indicated as “ignition delay time” in the figure) and the self-ignition temperature T3 (indicated as “mixed gas temperature” in the figure) with respect to the mixed gas f2. The figure shows that the mixed gas f2 is a hydrocarbon-based fuel natural gas, and [N 2 / C]
, [O 2 / C] are (0.6 to 1.0) and (0.1 or 0.4), respectively. The pressure of the mixed gas in this state is 4 MPa. The combustion reaction is limited by the collision frequency of the mixed gas, and the actual frequency factor depends on the diameter and degree of freedom of the molecule, but if the collision frequency of H 2 O is 1, N 2 is equivalent to about 0.7 to 0.8. Therefore, in the embodiment of the figure, N 2 is introduced instead of water vapor.

制御装置13にあっては、前記温度設定手段13a、さらに具体的には前記前室混合ガス温度維持手段13bが、先に説明した手法に従って、炭化水素系燃料投入量、水蒸気投入量、酸素投入量等を調整して良好な運転状態を確保する。   In the control device 13, the temperature setting means 13a, more specifically, the front chamber mixed gas temperature maintaining means 13b, according to the above-described method, introduces the hydrocarbon-based fuel input, the steam input, and the oxygen input. Adjust the amount etc. to ensure a good driving condition.

さて、上記前室混合ガスf2の温度を、前室上限温度と下限温度との間に維持することは、結局、触媒反応室5の入口5aでの混合ガス温度を適切に調整することを意味する。そして、この温度は、触媒反応室5内での反応温度を適切に制御することに繋がる。
そこで、前記温度設定手段13a,前記前室混合ガス温度維持手段13bが、上記前室上限温度及び下限温度に関する要件を満たした状態で触媒反応室5の代表温度に従って、前室9における混合ガスf2の温度を調整する構成が採用されている。例えば、触媒反応室5内に収納されている触媒c1の劣化に伴い、部分酸化反応が遅れ、触媒反応室5の温度が水蒸気改質反応を起こすのに遅れが生じる(結果的には触媒反応室5におけるピーク温度位置が下流側へ移動したり、ピーク温度が上がったりする)。そこで、前記前室の温度を調整可能に構成されているのである。
この種の温度調整に関しては、炭化水素系燃料に対する水蒸気量あるいは酸素量の調整によりこれを実行することができる。
Now, maintaining the temperature of the front chamber mixed gas f2 between the upper limit temperature and the lower limit temperature of the front chamber means that the temperature of the mixed gas at the inlet 5a of the catalytic reaction chamber 5 is adjusted appropriately. To do. This temperature leads to appropriate control of the reaction temperature in the catalytic reaction chamber 5.
Therefore, the temperature setting means 13a and the front chamber mixed gas temperature maintaining means 13b satisfy the requirements related to the front chamber upper limit temperature and the lower limit temperature, and the mixed gas f2 in the front chamber 9 according to the representative temperature of the catalytic reaction chamber 5. The structure which adjusts the temperature of is adopted. For example, with the deterioration of the catalyst c1 accommodated in the catalytic reaction chamber 5, the partial oxidation reaction is delayed, and the temperature of the catalytic reaction chamber 5 is delayed to cause the steam reforming reaction (resulting in the catalytic reaction). The peak temperature position in the chamber 5 moves downstream or the peak temperature rises). Therefore, the temperature of the front chamber can be adjusted.
This type of temperature adjustment can be performed by adjusting the amount of water vapor or oxygen with respect to the hydrocarbon fuel.

以下、制御装置13による本願に係る水素含有ガス製造装置1の運転状態に関して説明する。
前室9内の混合ガス温度が前室上限温度(自着火温度)及び前室下限温度(部分酸化下限おんと露点温度の高い方)内にある状況下での制御
この状況は、触媒反応室5における反応は一応適切な状態にあると推定される。但し、このような適正な状態にあっても、触媒反応室5の状態を安定した状態に保つため、前室9に於ける混合ガスf2の温度を、前記前室上限温度及び前室下限温度との範囲内で、前記触媒反応室5の代表温度(例えばピーク温度)に従って制御する。このようにすることで、安定且つ適正な作動状態を維持できる。
Hereinafter, the operation state of the hydrogen-containing gas production device 1 according to the present application by the control device 13 will be described.
Control in the situation where the mixed gas temperature in the front chamber 9 is within the front chamber upper limit temperature (auto-ignition temperature) and the front chamber lower limit temperature (the lower of the partial oxidation lower limit and the dew point temperature). The reaction in 5 is presumed to be in an appropriate state. However, in order to keep the state of the catalytic reaction chamber 5 stable even in such an appropriate state, the temperature of the mixed gas f2 in the front chamber 9 is set to the front chamber upper limit temperature and the front chamber lower limit temperature. In this range, the temperature is controlled according to the representative temperature (for example, peak temperature) of the catalytic reaction chamber 5. By doing so, a stable and proper operating state can be maintained.

〔別実施の形態〕
本願の別実施の形態に関して説明する。
(1) 上記の実施の形態にあっては、オートサーマル改質反応の例を示したが、本願に係る技術思想は、酸素との共存状態で長期滞留が発生した場合に燃焼が起こるおそれがある反応に適応できる。この種の反応としては、エチレンのオキソ反応等の多くの気相酸化反応がある。
(2) 上記の実施の形態にあっては、混合室から延出されるチューブとほぼ同径のガス流路を前室の調整部内に設け、チューブ、ガス流路を介して混合ガスの流速を比較的高く維持して滞留時間を短くし、触媒反応室に混合ガスを導く例を示したが、図6に示すように、チューブ8aの出口より下流側に合流路90を設け、この合流路90を介して触媒反応室5に混合ガスf2を流入させるようにしてもよい。但し、この合流路90の断面積は、この部位で実現する流速が原料ガス室7の最低流速より高くなるようにする。このようにすると、混合ガスf2の性状を均一化し、触媒反応室5の入口近傍における混合ガスf2の触媒反応室断面方向への拡散を良好なものとできる。
(3) 上記の実施の形態にあっては、水素含有ガス製造装置に、前記温度設定手段13a,前室混合ガス温度維持手段13bを設け、積極的に炭化水素系燃料に対する水蒸気、酸素の投入量を制御して、触媒反応部の反応を適正な状態に維持したが、通常運転状態がほぼ確定している場合は、先に説明した改質ユニット11における各室7,8,9での流速がほぼ決定することから、前室9における混合ガスの温度が適切となるようにその流路断面構成を構成してもよい。
即ち、改質触媒c1によって部分酸化下限温度が決り、混合ガスf2のガス組成が決まると、その露点温度は決まることから、本願にいう前室下限温度は決まる。
一方、前室上限温度に関しては、改質触媒c1によって水蒸気改質下限温度が決り、混合ガスf2が流れるチューブ8a内および、その下流側の調整部9bのガス流路9dの形状により、混合ガスf2が混合室8から触媒反応室5に到達するまでの最大の滞留時間が決まる。そこで、先に説明したような図5に示す混合ガスの温度と滞留時間との関係を予め求めておき、上記最大の滞留時間分だけ混合ガスf2が前室に留まった場合にも、混合ガスf2が自着火しない温度を、前室上限温度とすることができる。
(4) 上記の実施の形態にあっては、前室における混合ガスの温度を、触媒反応室の代表温度に従って制御する例を示したが、基本的には、触媒反応部の入口で部分酸化反応を発生できればよいため、先に説明した、温度設定手段13a,前室混合ガスの温度維持手段13bの制御を構成するに、前室における混合ガスの温度を、前室下限温度側に導くように構成することもできる。
この場合、改質に必要となる部分酸化反応の発生を確保しながら、触媒反応部で問題となり易いカーボンの発生を回避する方向に反応を制御できる。
(5) 上記の実施の形態にあっては、前室における混合ガスの滞留時間と、その滞留時間分だけ混合ガスが前室に留まった場合に、混合ガスが自着火を起こさない温度に前室を設定して改質を行う例を示したが、前室内に積極的に火炎伝播を阻止する手段を設けてもよい。図7は、このような例を示したものであり、チューブ8aの先端にフレームアレスタ60を配設するとともに、ガス流路9dの内壁61及びよどみを発生する部位62に燃焼反応防止用に金塗覆処理wを施している。このようにしても、前室9での火炎形成・伝播を防止することができる。この処理を燃焼反応の誘起抑制処理と呼ぶ。
(6) これまで説明してきた実施の形態にあっては、オートサーマル反応としては、炭化水素系燃料に対して水蒸気を添加し、部分酸化反応を経た後、水蒸気改質反応を起こさせる例を示したが、所謂、二酸化炭素改質反応を起こさせてもよい。この二酸化炭素改質反応も吸熱反応であり、反応形態は以下に示す化3に従うものとなる。
[Another embodiment]
Another embodiment of the present application will be described.
(1) In the above embodiment, an example of the autothermal reforming reaction has been shown. However, the technical idea according to the present application may cause combustion when long-term residence occurs in a coexistence state with oxygen. Adaptable to certain reactions. This type of reaction includes many gas phase oxidation reactions such as ethylene oxo reaction.
(2) In the above-described embodiment, a gas flow path having substantially the same diameter as the tube extending from the mixing chamber is provided in the adjustment section of the front chamber, and the flow rate of the mixed gas is controlled via the tube and the gas flow path. Although an example has been shown in which the residence time is shortened by maintaining it relatively high and the mixed gas is guided to the catalytic reaction chamber, as shown in FIG. 6, a combined channel 90 is provided downstream from the outlet of the tube 8a. The mixed gas f <b> 2 may be caused to flow into the catalytic reaction chamber 5 through 90. However, the cross-sectional area of the combined flow path 90 is set so that the flow velocity realized at this portion is higher than the minimum flow velocity of the source gas chamber 7. In this way, the properties of the mixed gas f2 can be made uniform, and the diffusion of the mixed gas f2 in the cross section direction of the catalytic reaction chamber in the vicinity of the inlet of the catalytic reaction chamber 5 can be improved.
(3) In the above embodiment, the hydrogen-containing gas production apparatus is provided with the temperature setting means 13a and the front-chamber mixed gas temperature maintaining means 13b to positively input water vapor and oxygen to the hydrocarbon fuel. The amount was controlled and the reaction in the catalytic reaction section was maintained in an appropriate state. However, when the normal operation state was almost fixed, the reforming unit 11 described above in each chamber 7, 8, 9 Since the flow velocity is substantially determined, the flow path cross-sectional configuration may be configured so that the temperature of the mixed gas in the front chamber 9 is appropriate.
That is, when the partial oxidation lower limit temperature is determined by the reforming catalyst c1 and the gas composition of the mixed gas f2 is determined, the dew point temperature is determined, and thus the anterior chamber lower limit temperature referred to in the present application is determined.
On the other hand, with respect to the front chamber upper limit temperature, the steam reforming lower limit temperature is determined by the reforming catalyst c1, and the mixed gas depends on the shape of the gas flow path 9d in the tube 8a through which the mixed gas f2 flows and the adjusting section 9b on the downstream side. The maximum residence time until f2 reaches the catalytic reaction chamber 5 from the mixing chamber 8 is determined. Therefore, the relationship between the temperature and the residence time of the mixed gas shown in FIG. 5 as described above is obtained in advance, and even when the mixed gas f2 stays in the front chamber for the maximum residence time, the mixed gas is used. The temperature at which f2 does not self-ignite can be the front chamber upper limit temperature.
(4) In the above embodiment, the example of controlling the temperature of the mixed gas in the front chamber according to the representative temperature of the catalytic reaction chamber has been shown. Basically, partial oxidation is performed at the inlet of the catalytic reaction portion. Since it is sufficient that the reaction can be generated, the temperature of the mixed gas in the front chamber is guided to the lower limit temperature side of the front chamber in order to configure the control of the temperature setting unit 13a and the temperature maintaining unit 13b of the front chamber mixed gas described above. It can also be configured.
In this case, the reaction can be controlled in such a direction as to avoid the generation of carbon that is likely to be a problem in the catalytic reaction portion while ensuring the occurrence of the partial oxidation reaction necessary for the reforming.
(5) In the above embodiment, when the mixed gas stays in the front chamber and the mixed gas stays in the front chamber for the residence time, the mixed gas is heated to a temperature at which self-ignition does not occur. Although an example of performing reforming by setting a chamber has been shown, a means for actively preventing flame propagation may be provided in the front chamber. FIG. 7 shows such an example. A frame arrester 60 is disposed at the tip of the tube 8a, and the inner wall 61 of the gas flow path 9d and the stagnation portion 62 are coated with gold for preventing a combustion reaction. A covering process w is performed. Even in this way, flame formation and propagation in the front chamber 9 can be prevented. This process is called a combustion reaction induction suppression process.
(6) In the embodiment described so far, the autothermal reaction is an example in which steam is added to a hydrocarbon-based fuel, and after undergoing a partial oxidation reaction, a steam reforming reaction is caused. Although shown, a so-called carbon dioxide reforming reaction may be caused. This carbon dioxide reforming reaction is also an endothermic reaction, and the reaction form follows the chemical formula 3 shown below.

Figure 2006282454
Figure 2006282454

図8に、化2に従った水蒸気改質及び化3に従った二酸化炭素改質を行わせるGTL製造プロセスの構成例を図1に対応して示した。設備構成は、図1に示すものと同様であるが、図1に示す例では、炭化水素系燃料fに水蒸気sのみを添加して原料ガスf1を得ていたのに対して、この例では、水蒸気s及び二酸化炭素COも添加して原料ガスf1を得ている。このGTL製造プロセスでは、水蒸気改質反応と二酸化炭素改質反応との両者の反応を進行させることができる。
このような反応形態にあっても、本願に係る水素含有ガスの製造方法及び装置では、前室、それに続く触媒反応室での状態を所望の良好なものとできる。
FIG. 8 shows a configuration example of a GTL manufacturing process for performing steam reforming according to Chemical Formula 2 and carbon dioxide reforming according to Chemical Formula 3 in correspondence with FIG. Although the equipment configuration is the same as that shown in FIG. 1, in the example shown in FIG. 1, only the steam s is added to the hydrocarbon fuel f to obtain the raw material gas f1, whereas in this example, Water vapor s and carbon dioxide CO 2 are also added to obtain a raw material gas f1. In this GTL manufacturing process, both the steam reforming reaction and the carbon dioxide reforming reaction can proceed.
Even in such a reaction mode, in the method and apparatus for producing a hydrogen-containing gas according to the present application, the state in the front chamber and the subsequent catalytic reaction chamber can be made as desired.

本発明に係る水素含有ガスの製造装置を備えたGTL製造プロセスの構成を示す図The figure which shows the structure of the GTL manufacturing process provided with the manufacturing apparatus of the hydrogen containing gas which concerns on this invention. 改質ユニットの上部構成を示す図Diagram showing the upper structure of the reforming unit 改質ユニットの前室の詳細を示す図Diagram showing details of the front chamber of the reforming unit 触媒反応室における入口温度を触媒反応室内温度との関係を示す図Diagram showing the relationship between the inlet temperature in the catalytic reaction chamber and the temperature in the catalytic reaction chamber 混合ガス温度と着火遅れ時間との関係を示す図Diagram showing the relationship between the mixed gas temperature and the ignition delay time 前室の別構成例を示す図Diagram showing another configuration example of the front chamber 図2に対応する前室構成において火炎伝播抑制処理を行った例を示す図The figure which shows the example which performed the flame propagation suppression process in the front chamber structure corresponding to FIG. 水蒸気改質と二酸化炭素改質とを共に行う例を示す図1に対応する構成例を示す図The figure which shows the structural example corresponding to FIG. 1 which shows the example which performs both steam reforming and carbon dioxide reforming

符号の説明Explanation of symbols

1 水素含有ガスの製造装置(合成ガスの製造装置)
2 GTL反応器
5 触媒反応室
7 原料ガス室
8 混合室
8a チューブ
8b 酸素室
9 前室
11 改質ユニット
13 制御装置
13a 温度設定手段
13b 温度維持手段
13c 記憶手段
c1 改質触媒
c2 脱硫触媒
f 炭化水素系燃料
f1 原料ガス
f2 混合ガス
h 水素リッチガス
o 酸素
p パージガス
s 水蒸気
1 Hydrogen-containing gas production equipment (synthesis gas production equipment)
2 GTL reactor 5 Catalytic reaction chamber 7 Raw material gas chamber 8 Mixing chamber 8a Tube 8b Oxygen chamber 9 Front chamber 11 Reforming unit 13 Controller 13a Temperature setting means 13b Temperature maintaining means 13c Storage means c1 Reforming catalyst c2 Desulfurization catalyst f Carbonization Hydrogen fuel f1 Raw gas f2 Mixed gas h Hydrogen rich gas o Oxygen p Purge gas s Water vapor

Claims (17)

酸素との共存状態で燃焼反応を起こす原料ガスを、酸素との共存状態で前室より触媒反応室に導き、前記触媒反応室で触媒と接触させて少なくとも酸化反応を起こさせ、前記原料ガスから合成ガスを得る合成ガスの製造方法であって、
前記前室内での原料ガスの滞留を抑制する滞留抑制ガスを前記前室に吹き込み、酸素との共存状態にある前記原料ガスを前記触媒反応室に導き前記合成ガスを得る合成ガスの製造方法。
A raw material gas that undergoes a combustion reaction in the coexistence state with oxygen is led from the front chamber to the catalytic reaction chamber in a coexistence state with oxygen, and is brought into contact with the catalyst in the catalytic reaction chamber to cause at least an oxidation reaction. A method for producing synthesis gas to obtain synthesis gas,
A method for producing a synthesis gas, wherein a residence suppression gas for suppressing residence of a source gas in the front chamber is blown into the front chamber, and the source gas in a coexistence state with oxygen is introduced into the catalytic reaction chamber to obtain the synthesis gas.
前記前室における前記酸素との共存状態にある前記原料ガスの流れに対して、流路壁側に前記滞留抑制ガスを流し、前記燃焼反応の発生を抑制する請求項1記載の合成ガスの製造方法。   2. The synthesis gas production according to claim 1, wherein, with respect to the flow of the raw material gas in the coexistence state with the oxygen in the front chamber, the residence suppression gas is caused to flow toward the flow path wall side to suppress the occurrence of the combustion reaction. Method. 前記前室における前記酸素との共存状態にある前記原料ガスの流れのよどみ部に、前記滞留抑制ガスを流し、前記燃焼反応の発生を抑制する請求項1又は2記載の合成ガスの製造方法。   The method for producing a synthesis gas according to claim 1 or 2, wherein the stagnation suppressing gas is caused to flow through a stagnation part of the flow of the raw material gas in the coexistence state with the oxygen in the front chamber to suppress the occurrence of the combustion reaction. 前記酸素との共存状態にある原料ガスの流れが前室入口から触媒反応室入口に到達するまでの移流時間で自着火する自着火温度未満の温度で、前記酸化反応が起こる下限温度以上の温度に、前記前室の温度を設定する請求項1〜3のいずれか1項記載の合成ガスの製造方法。   A temperature that is lower than the self-ignition temperature at which the flow of the raw material gas coexisting with oxygen auto-ignites in the advection time from the front chamber inlet to the catalyst reaction chamber inlet and is equal to or higher than the lower limit temperature at which the oxidation reaction occurs. The method for producing a synthesis gas according to any one of claims 1 to 3, wherein the temperature of the anterior chamber is set. 前記滞留抑制ガスが、不活性ガス若しくは前記原料ガスあるいはその成分ガスである請求項1〜4のいずれか1項記載の合成ガスの製造方法。   The method for producing a synthesis gas according to any one of claims 1 to 4, wherein the retention suppression gas is an inert gas, the raw material gas, or a component gas thereof. 前記前室内の圧力を常圧より高く設定する請求項1〜5のいずれか1項記載の合成ガスの製造方法。   The method for producing synthesis gas according to any one of claims 1 to 5, wherein the pressure in the front chamber is set higher than normal pressure. 前記原料ガスが水蒸気と炭化水素系燃料が混合したガスであり、前記触媒反応室で、部分酸化反応及び水蒸気改質反応を実行して、前記合成ガスとしての水素含有ガスを得る請求項1〜6のいずれか1項記載の合成ガスの製造方法。   The raw material gas is a gas in which steam and hydrocarbon fuel are mixed, and a partial oxidation reaction and a steam reforming reaction are performed in the catalytic reaction chamber to obtain a hydrogen-containing gas as the synthesis gas. The method for producing a synthesis gas according to any one of 6. 酸素との共存状態で燃焼反応を起こす原料ガスを、酸素との共存状態で前室より触媒反応室に導き、前記触媒反応室で触媒と接触させて少なくとも酸化反応を起こさせ、前記原料ガスから合成ガスを得る合成ガスの製造装置であって、
前記前室に、前記前室内での原料ガスの滞留を抑制する滞留抑制ガスを吹き込む滞留抑制ガス吹き込み手段を設け、前記滞留抑制ガス吹き込み手段を作動させた前記滞留抑制ガスの吹き込み状態で、酸素との共存状態にある前記原料ガスを前記触媒反応室に導き前記合成ガスを得る合成ガスの製造装置。
A raw material gas that undergoes a combustion reaction in the coexistence state with oxygen is led from the front chamber to the catalytic reaction chamber in a coexistence state with oxygen, and is brought into contact with the catalyst in the catalytic reaction chamber to cause at least an oxidation reaction. A synthesis gas production apparatus for obtaining synthesis gas,
The front chamber is provided with a retention suppression gas blowing means for blowing a retention suppression gas that suppresses the retention of the raw material gas in the front chamber, and in the state of blowing the retention suppression gas in which the retention suppression gas blowing means is operated, oxygen The syngas production apparatus for obtaining the synthesis gas by introducing the source gas in a coexisting state to the catalytic reaction chamber.
前記滞留抑制ガス吹き込み手段が、前記前室における前記酸素との共存状態にある前記原料ガスの流れに対して、流路壁側に前記滞留抑制ガスを流す請求項8記載の合成ガスの製造装置。   The syngas production apparatus according to claim 8, wherein the staying suppression gas blowing means causes the staying suppression gas to flow toward a flow path wall with respect to the flow of the raw material gas in a coexistence state with the oxygen in the front chamber. . 前記滞留抑制ガス吹き込み手段が、前記前室における前記酸素との共存状態にある前記原料ガスの流れのよどみ部に、前記滞留抑制ガスを流す請求項8又は9記載の合成ガスの製造装置。   The synthetic gas production apparatus according to claim 8 or 9, wherein the retention suppression gas blowing means causes the retention suppression gas to flow through a stagnation portion of the flow of the raw material gas in a coexistence state with the oxygen in the front chamber. 前記酸素との共存状態にある原料ガスの流れが前室入口から触媒反応室入口に到達するまでの移流時間で自着火する自着火温度未満の温度で、前記酸化反応が起こる下限温度以上の温度に、前記前室の温度を設定する前室温度維持手段を備えた請求項8〜10のいずれか1項記載の合成ガスの製造装置。   A temperature that is lower than the self-ignition temperature at which the flow of the raw material gas coexisting with oxygen auto-ignites in the advection time from the front chamber inlet to the catalyst reaction chamber inlet and is equal to or higher than the lower limit temperature at which the oxidation reaction occurs. The syngas production apparatus according to any one of claims 8 to 10, further comprising an anterior chamber temperature maintaining means for setting the temperature of the anterior chamber. 前記酸素との共存状態にある前記原料ガスの流れの流路壁表面あるいはよどみ部に対する前室壁表面に燃焼反応の誘起抑制処理が施されている請求項8〜11のいずれか1項記載の合成ガスの製造装置。   The combustion reaction induction suppression process is performed on the flow path wall surface or the front chamber wall surface with respect to the stagnation part of the flow of the raw material gas in the coexistence state with the oxygen. Syngas production equipment. 前記滞留抑制ガスが、不活性ガス若しくは前記原料ガスあるいはその成分ガスである請求項8〜12のいずれか1項記載の合成ガスの製造装置。   The synthetic gas production apparatus according to any one of claims 8 to 12, wherein the retention suppression gas is an inert gas, the raw material gas, or a component gas thereof. 前記前室内の圧力が常圧より高く設定される請求項8〜13のいずれか1項記載の合成ガスの製造装置。   The apparatus for producing synthesis gas according to any one of claims 8 to 13, wherein the pressure in the front chamber is set higher than normal pressure. 前記酸素との共存状態にある原料ガスが、前記前室と前記触媒反応室とに渡って直線状の主流を形成して移流可能であり、
前記主流に直交する横断面に関して、前記前室の横断面の流路断面積が前記触媒反応室の横断面の流路断面積より小さい請求項8〜14のいずれか1項記載の合成ガスの製造装置。
The source gas in the coexistence state with the oxygen is capable of advancing by forming a linear main flow across the front chamber and the catalytic reaction chamber,
The cross-sectional area of the cross section of the said front chamber is smaller than the cross-sectional area of the cross section of the said catalytic reaction chamber regarding the cross section orthogonal to the said main flow, The synthesis gas of any one of Claims 8-14 Manufacturing equipment.
前記前室と前記触媒反応室とが単一の直線筒状の反応筒形成体内に連続形成され、前記主流に直交する断面積に関して、前記前室の横断面の流路断面積が、前記前室内に収納される中実の流路確定部材で確定してある請求項8〜15記載の合成ガスの製造装置。   The front chamber and the catalytic reaction chamber are continuously formed in a single straight cylindrical reaction cylinder forming body, and the cross-sectional area of the cross section of the front chamber with respect to the cross-sectional area orthogonal to the main flow is the front cross section. The synthetic gas production apparatus according to claim 8, which is determined by a solid flow path determining member housed in a room. 前記原料ガスが水蒸気と炭化水素系燃料が混合したガスであり、前記触媒反応室で、部分酸化反応及び水蒸気改質反応を実行して、前記合成ガスとしての水素含有ガスを得る請求項8〜16のいずれか1項記載の合成ガスの製造装置。   The raw material gas is a gas in which steam and hydrocarbon fuel are mixed, and a partial oxidation reaction and a steam reforming reaction are performed in the catalytic reaction chamber to obtain a hydrogen-containing gas as the synthesis gas. The synthetic gas production apparatus according to any one of 16.
JP2005104660A 2005-03-31 2005-03-31 Syngas production method and apparatus Expired - Fee Related JP4838526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005104660A JP4838526B2 (en) 2005-03-31 2005-03-31 Syngas production method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005104660A JP4838526B2 (en) 2005-03-31 2005-03-31 Syngas production method and apparatus

Publications (2)

Publication Number Publication Date
JP2006282454A true JP2006282454A (en) 2006-10-19
JP4838526B2 JP4838526B2 (en) 2011-12-14

Family

ID=37404752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005104660A Expired - Fee Related JP4838526B2 (en) 2005-03-31 2005-03-31 Syngas production method and apparatus

Country Status (1)

Country Link
JP (1) JP4838526B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5534265A (en) * 1978-09-04 1980-03-10 Mitsui Toatsu Chem Inc Method of gasification
JPS60248230A (en) * 1984-05-25 1985-12-07 Babcock Hitachi Kk Catalytic combustion type reactor
JPS62210047A (en) * 1986-03-10 1987-09-16 Toyo Eng Corp Apparatus for reaction
JPH01145301A (en) * 1987-08-14 1989-06-07 Davy Mckee Corp Preparation of synthetic gas from hydrocarbon material
JPH0271834A (en) * 1987-08-27 1990-03-12 Toyo Eng Corp Steam reforming device
JP2000508286A (en) * 1996-04-04 2000-07-04 ビージー ピーエルシー Production of synthesis gas from hydrocarbon feedstocks
JP2001050537A (en) * 1999-08-06 2001-02-23 Hitachi Ltd Combustion device
JP2003201103A (en) * 2001-10-15 2003-07-15 General Motors Corp <Gm> Reactor system having auto ignition and carbon suppression foam
JP2003306310A (en) * 2002-04-09 2003-10-28 Nippon Oil Corp Autothermal reforming device and method of autothermal reforming using the same
JP2004018275A (en) * 2002-06-12 2004-01-22 Nissan Motor Co Ltd Fuel mixer for reformer
US20040194383A1 (en) * 2003-04-04 2004-10-07 Wheat W. Spencer Autothermal reforming in a fuel processor utilizing non-pyrophoric shift catalyst

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5534265A (en) * 1978-09-04 1980-03-10 Mitsui Toatsu Chem Inc Method of gasification
JPS60248230A (en) * 1984-05-25 1985-12-07 Babcock Hitachi Kk Catalytic combustion type reactor
JPS62210047A (en) * 1986-03-10 1987-09-16 Toyo Eng Corp Apparatus for reaction
JPH01145301A (en) * 1987-08-14 1989-06-07 Davy Mckee Corp Preparation of synthetic gas from hydrocarbon material
JPH0271834A (en) * 1987-08-27 1990-03-12 Toyo Eng Corp Steam reforming device
JP2000508286A (en) * 1996-04-04 2000-07-04 ビージー ピーエルシー Production of synthesis gas from hydrocarbon feedstocks
JP2001050537A (en) * 1999-08-06 2001-02-23 Hitachi Ltd Combustion device
JP2003201103A (en) * 2001-10-15 2003-07-15 General Motors Corp <Gm> Reactor system having auto ignition and carbon suppression foam
JP2003306310A (en) * 2002-04-09 2003-10-28 Nippon Oil Corp Autothermal reforming device and method of autothermal reforming using the same
JP2004018275A (en) * 2002-06-12 2004-01-22 Nissan Motor Co Ltd Fuel mixer for reformer
US20040194383A1 (en) * 2003-04-04 2004-10-07 Wheat W. Spencer Autothermal reforming in a fuel processor utilizing non-pyrophoric shift catalyst

Also Published As

Publication number Publication date
JP4838526B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP5017112B2 (en) Method and apparatus for producing hydrogen-containing gas
US20080028680A1 (en) Process to Prepare Synthesis Gas
JP5400269B2 (en) Reformed gas production method and reformed gas production apparatus
EP2419375B1 (en) Process for producing a hydrogen-containing product gas
AU2011229428B2 (en) Reforming catalyst
JP4541484B2 (en) Autothermal steam reforming process under catalysis.
US7867411B2 (en) Method for producing synthesis gas and apparatus for producing synthesis gas
WO2017211885A1 (en) Co rich synthesis gas production
JP4781704B2 (en) Method and apparatus for producing hydrogen-containing gas
JP4838526B2 (en) Syngas production method and apparatus
JP2006240916A (en) Reformer
TW201202406A (en) Methods for production of synthesis gas
AU7626600A (en) Process for producing syngas in a short contact time reactor using catalytic partial oxidation of hydrogen sulfide
JP4377699B2 (en) Synthesis gas production catalyst and synthesis gas production method using the same
JP4209625B2 (en) Autothermal reforming reformer and autothermal reforming method using the same
JP5823341B2 (en) Self-heating reformer and steam reforming method using the same
JP4837384B2 (en) Syngas production reactor integrated with waste heat recovery unit
KR101796071B1 (en) Multistage catalyst reactor for the selective oxidation using precious metal catalyst and mixed metal oxide catalyst
JP4827557B2 (en) Reactor using specially shaped refractory material
JP2006045049A (en) Method for producing synthesis gas
JP2005193111A (en) Synthetic gas producing catalyst and method for producing synthetic gas by using the same
JP5133570B2 (en) Insulation method of reformer
JP2007117798A (en) Reforming catalyst, reforming method, operation method and structure of reforming catalyst
JP2006265007A (en) Fuel reformer
JP2005247645A (en) Synthetic gas production furnace

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070329

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees