JP4781704B2 - Method and apparatus for producing hydrogen-containing gas - Google Patents

Method and apparatus for producing hydrogen-containing gas Download PDF

Info

Publication number
JP4781704B2
JP4781704B2 JP2005104659A JP2005104659A JP4781704B2 JP 4781704 B2 JP4781704 B2 JP 4781704B2 JP 2005104659 A JP2005104659 A JP 2005104659A JP 2005104659 A JP2005104659 A JP 2005104659A JP 4781704 B2 JP4781704 B2 JP 4781704B2
Authority
JP
Japan
Prior art keywords
temperature
chamber
gas
hydrogen
front chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005104659A
Other languages
Japanese (ja)
Other versions
JP2006282453A (en
Inventor
冬樹 野口
直樹 井上
晃太 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Osaka Gas Co Ltd
Original Assignee
JGC Corp
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp, Osaka Gas Co Ltd filed Critical JGC Corp
Priority to JP2005104659A priority Critical patent/JP4781704B2/en
Publication of JP2006282453A publication Critical patent/JP2006282453A/en
Application granted granted Critical
Publication of JP4781704B2 publication Critical patent/JP4781704B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、水蒸気と炭化水素系燃料とが混合された原料ガスに対して酸素含有ガスを混合する混合工程と、この混合工程において得られた混合ガスを触媒反応室の上流側に設けた前室を介して前記触媒反応室に導き、混合ガスを改質触媒に接触させて、部分酸化反応及び水蒸気改質反応により水素含有ガスを得る改質工程とを実行する水素含有ガスの製造方法に関するとともに、この種の水素含有ガスの製造方法を採用する製造装置に関する。   The present invention provides a mixing step of mixing an oxygen-containing gas with a raw material gas in which water vapor and a hydrocarbon-based fuel are mixed, and before the mixed gas obtained in this mixing step is provided upstream of the catalytic reaction chamber. The present invention relates to a method for producing a hydrogen-containing gas, wherein the reforming step is performed through a chamber to the catalytic reaction chamber, and a mixed gas is brought into contact with the reforming catalyst to obtain a hydrogen-containing gas by a partial oxidation reaction and a steam reforming reaction. In addition, the present invention relates to a production apparatus that employs this type of method for producing a hydrogen-containing gas.

例えば、FT(Fischer Tropsch)合成、メタノール合成又はアンモニア合成の原ガスとして、炭化水素系燃料を触媒反応を利用して改質して水素リッチなガスを得ることが提案されている。
この種の炭化水素系燃料の触媒改質反応としては、部分酸化反応と水蒸気改質反応が知られている。
前記部分酸化反応は、下記化1に示す化学式に従ったものであり、所謂、発熱反応である。
For example, as a raw gas for FT (Fischer Tropsch) synthesis, methanol synthesis, or ammonia synthesis, it has been proposed to obtain a hydrogen-rich gas by reforming a hydrocarbon fuel using a catalytic reaction.
As a catalytic reforming reaction of this type of hydrocarbon fuel, a partial oxidation reaction and a steam reforming reaction are known.
The partial oxidation reaction is in accordance with the chemical formula shown in the following chemical formula 1, and is a so-called exothermic reaction.

Figure 0004781704
Figure 0004781704

前記水蒸気改質反応は、下記化2に示す化学式に従ったものであり、所謂、吸熱反応である。   The steam reforming reaction is a so-called endothermic reaction according to the chemical formula shown in Chemical Formula 2 below.

Figure 0004781704
Figure 0004781704

ある種の改質触媒(例えばルテニウム触媒)にあっては、上記の水蒸気改質反応と部分酸化反応とが共に発生する。さらに、触媒反応室に収納する改質触媒としては、部分酸化に適した触媒を前段側に、水蒸気改質に適した触媒を後段側に配設することも考えられる。   In a certain reforming catalyst (for example, ruthenium catalyst), both the steam reforming reaction and the partial oxidation reaction occur. Further, as the reforming catalyst housed in the catalytic reaction chamber, it is conceivable to arrange a catalyst suitable for partial oxidation on the front side and a catalyst suitable for steam reforming on the rear side.

そこで、水蒸気と炭化水素系燃料とが混合された原料ガスに対して、この原料ガスに酸素含有ガス(例えば純酸素)を混合し、得られた混合ガスにおいて、部分酸化反応を触媒層の前段側で発生させ、反応ガスの温度を水蒸気改質反応の必要な温度にまで昇温し、触媒層の後段側で両反応(水蒸気改質反応・部分酸化反応)を起こさせて水素リッチなガスを得ることが提案されている。
この改質技術はオートサーマル改質とも呼ばれ、この改質では、化1と化2に示された反応が同時に起こる。
Therefore, an oxygen-containing gas (for example, pure oxygen) is mixed with the raw material gas in which water vapor and hydrocarbon-based fuel are mixed. In the obtained mixed gas, a partial oxidation reaction is performed before the catalyst layer. The hydrogen-rich gas is generated by raising the temperature of the reaction gas to the temperature required for the steam reforming reaction and causing both reactions (steam reforming reaction and partial oxidation reaction) on the rear side of the catalyst layer. It has been proposed to get
This reforming technique is also called autothermal reforming, and in this reforming, the reactions shown in Chemical Formula 1 and Chemical Formula 2 occur simultaneously.

この改質形態では、改質触媒を充填した触媒反応室を単一の反応室とした場合、図3に実線で示すように、触媒反応室5の入口付近から昇温が始まり、下流側に行くに従って温度が上昇し、ピーク温度に到達する。その後、入口温度、入口ガス組成、反応圧力によって決る平衡温度に収束する。   In this reforming mode, when the catalytic reaction chamber filled with the reforming catalyst is a single reaction chamber, as shown by the solid line in FIG. As it goes, the temperature rises and reaches the peak temperature. After that, it converges to an equilibrium temperature determined by the inlet temperature, the inlet gas composition, and the reaction pressure.

さて、この種のオートサーマル技術として、特許文献1に開示される技術が知られている。   As this type of autothermal technique, a technique disclosed in Patent Document 1 is known.

特許文献1に開示される技術では、当該明細書の図2に示すように、水蒸気改質反応を行う本触媒ゾーンの上流側に、部分酸化反応を行う前段無触媒反応室を設けた例と、当該明細書の図3、4、5に示すように、各反応を改質触媒で行わせるのに改質触媒層の前に無触媒室を設け、各反応を行わせる例とが示されている。   In the technique disclosed in Patent Document 1, as shown in FIG. 2 of the specification, an upstream non-catalytic reaction chamber for performing a partial oxidation reaction is provided on the upstream side of the catalyst zone for performing a steam reforming reaction; As shown in FIGS. 3, 4, and 5 of this specification, an example is shown in which a non-catalyst chamber is provided in front of the reforming catalyst layer to perform each reaction with a reforming catalyst, and each reaction is performed. ing.

特開2000−84410号公報(図1〜5)JP 2000-84410 A (FIGS. 1 to 5)

しかし、以下のような問題がある。
1 特許文献1に開示の図2に示す構成の問題点
この構成にあっては、部分酸化反応を前段無触媒反応室で行うが、触媒反応を利用しないために、部分酸化を確実に得ることが難しく、制御性がよくない。
2 特許文献1に開示の図3〜5に示す構成の問題点
これらの構成にあっては、触媒反応室が独立の2室に分割されているため、部分酸化反応で発生した熱を充分に水蒸気改質に利用できない。さらに、改質触媒層の前側に触媒を配設しない前室が設けられているが、この前室にあっては、触媒層の温度状態によっては、この前室において部分酸化が始まるとともに触媒層内でのガス温度が上昇しすぎて、反応に有害なカーボンの発生が起こる等の問題が発生する場合もある。
However, there are the following problems.
1 Problems of the configuration shown in FIG. 2 disclosed in Patent Document 1 In this configuration, a partial oxidation reaction is performed in a non-catalytic reaction chamber in the previous stage. Is difficult and controllability is not good.
2 Problems of configurations shown in FIGS. 3 to 5 disclosed in Patent Document 1 In these configurations, since the catalytic reaction chamber is divided into two independent chambers, the heat generated by the partial oxidation reaction is sufficiently obtained. It cannot be used for steam reforming. Further, a front chamber in which no catalyst is disposed is provided in front of the reforming catalyst layer. In this front chamber, depending on the temperature state of the catalyst layer, partial oxidation starts in this front chamber and the catalyst layer In some cases, the gas temperature in the chamber rises too much, causing problems such as the generation of carbon harmful to the reaction.

本発明は、上記実情に鑑みてなされたものであり、改質反応を触媒反応室の入口部位から確実に安定して起こさせ、触媒反応室における反応の制御性が高く維持されるとともに、良好な改質効率を実現しながら、カーボン析出による触媒活性の低下等の問題を防止して長期に亘って安定した改質性能を維持することが可能となる水素含有ガスの製造技術を得ることである。   The present invention has been made in view of the above circumstances, and allows the reforming reaction to occur stably and stably from the inlet portion of the catalytic reaction chamber, and the controllability of the reaction in the catalytic reaction chamber is maintained high and good. By obtaining a hydrogen-containing gas production technology that can maintain stable reforming performance over a long period of time by preventing problems such as a decrease in catalyst activity due to carbon deposition while realizing a high reforming efficiency. is there.

上記目的を達成するための、水蒸気と炭化水素系燃料とが混合された原料ガスに対して酸素含有ガスを混合室で混合する混合工程と、
前記混合室で得られた混合ガスを触媒反応室の上流側に設けた前室を介して前記触媒反応室に導き、前記混合ガスを改質触媒に接触させて、部分酸化反応及び水蒸気改質反応により水素含有ガスを得る改質工程とを実行する水素含有ガスの製造方法の特徴手段は、
前記改質触媒が前記部分酸化反応を起こす下限温度を部分酸化下限温度、前記水蒸気改質反応を起こす下限温度を水蒸気改質下限温度として、前記部分酸化下限温度以上、前記水蒸気改質下限温度未満の温度で、
前記混合室から前記触媒反応室に前記混合ガスが到達するのに要する移流時間で前記混合ガスが自着火する温度である自着火温度に対して、当該自着火温度未満の温度に、
前記混合室及び前記前室の温度を設定して前記混合ガスを前記触媒反応室に導入して、水素含有ガスを製造することにある。
In order to achieve the above object, a mixing step of mixing an oxygen-containing gas in a mixing chamber with a raw material gas in which water vapor and hydrocarbon fuel are mixed;
The mixed gas obtained in the mixing chamber is led to the catalytic reaction chamber through a front chamber provided upstream of the catalytic reaction chamber, and the mixed gas is brought into contact with the reforming catalyst to perform partial oxidation reaction and steam reforming. The characteristic means of the method for producing a hydrogen-containing gas, wherein the reforming step of obtaining a hydrogen-containing gas by reaction is performed,
The lower limit temperature at which the reforming catalyst causes the partial oxidation reaction is defined as a partial oxidation lower limit temperature, and the lower limit temperature at which the reforming catalyst undergoes the steam reforming reaction is defined as a steam reforming lower limit temperature. At a temperature of
With respect to the self-ignition temperature that is the temperature at which the mixed gas self-ignites in the advection time required for the mixed gas to reach the catalytic reaction chamber from the mixing chamber, the temperature is lower than the self-ignition temperature.
The temperature of the mixing chamber and the front chamber is set and the mixed gas is introduced into the catalytic reaction chamber to produce a hydrogen-containing gas.

この手法にあっては、改質触媒として部分酸化と水蒸気改質能と共に有する触媒を使用する。この種の触媒としては、代表的にはルテニウム触媒がこれに当たる。さらに部分酸化及び水蒸気改質に適した触媒を組み合わせて使用してもよい。
さて、触媒が特定されると、その部分酸化下限温度及び水蒸気改質下限温度は、ともに触媒固有の特性温度として決まる。一方、混合室から触媒反応室に至るまでに、反応系の物理的構成によって混合ガスの移流時間が決まる。
In this method, a catalyst having both partial oxidation and steam reforming ability is used as a reforming catalyst. A typical example of this type of catalyst is a ruthenium catalyst. Further, a catalyst suitable for partial oxidation and steam reforming may be used in combination.
When the catalyst is specified, the partial oxidation lower limit temperature and the steam reforming lower limit temperature are both determined as characteristic temperatures unique to the catalyst. On the other hand, from the mixing chamber to the catalytic reaction chamber, the mixed gas advection time is determined by the physical configuration of the reaction system.

そこで、本願方法にあっては、混合室及び前室の温度を、下限に関しては部分酸化反応が起こせる下限温度以上として、触媒反応室入口での部分酸化反応の発生を確保する。
一方、上限温度に関しては、水蒸気改質下限温度及び自着火温度未満の温度にして、混合ガスの着火が混合室あるいは前室で発生するのを防止して系を安定させる。
Therefore, in the method of the present application, the temperature of the mixing chamber and the front chamber is set to be equal to or higher than the lower limit temperature at which the partial oxidation reaction can occur with respect to the lower limit, thereby ensuring the occurrence of the partial oxidation reaction at the catalyst reaction chamber inlet.
On the other hand, the upper limit temperature is set to a temperature lower than the steam reforming lower limit temperature and the auto-ignition temperature, so that ignition of the mixed gas is prevented from occurring in the mixing chamber or the front chamber and the system is stabilized.

このようにすることにより、部分酸化を触媒反応室内での反応として発生させ、触媒反応室入口の温度に依存させた状態で良好に制御できる。さらに、触媒反応室の入口温度を適正化できるため、結果的に触媒反応室内での温度分布を適正化でき、過剰な温度上昇に伴うカーボンの発生、触媒の劣化等の問題を確実に回避できる。   By doing so, partial oxidation is generated as a reaction in the catalytic reaction chamber, and can be controlled well in a state depending on the temperature of the inlet of the catalytic reaction chamber. Furthermore, since the inlet temperature of the catalytic reaction chamber can be optimized, the temperature distribution in the catalytic reaction chamber can be optimized as a result, and problems such as generation of carbon and catalyst deterioration due to excessive temperature rise can be reliably avoided. .

この方法を使用する水素含有ガスの製造装置としては、これを、
水蒸気と炭化水素系燃料とが混合された原料ガスに対して酸素含有ガスを混合する混合室と、
前記混合室で得られた混合ガスを触媒反応室の上流側に設けた前室を介して前記触媒反応室に導き、前記混合ガスを改質触媒に接触させて、部分酸化反応及び水蒸気改質反応により水素含有ガスを得る水素含有ガスの製造装置であって、
前記改質触媒が前記部分酸化反応を起こす下限温度を部分酸化下限温度、前記水蒸気改質反応を起こす下限温度を水蒸気改質下限温度として、前記部分酸化下限温度以上、前記水蒸気改質下限温度未満の温度で、
前記混合室から前記触媒反応室に前記混合ガスが到達するのに要する移流時間で前記混合ガスが自着火する温度である自着火温度に対して、当該自着火温度未満の温度に、
前記混合室及び前記前室の温度を設定する温度設定手段を備えた水素含有ガスの製造装置とできる。
As an apparatus for producing a hydrogen-containing gas using this method,
A mixing chamber for mixing an oxygen-containing gas with a raw material gas in which water vapor and hydrocarbon fuel are mixed;
The mixed gas obtained in the mixing chamber is led to the catalytic reaction chamber through a front chamber provided upstream of the catalytic reaction chamber, and the mixed gas is brought into contact with the reforming catalyst to perform partial oxidation reaction and steam reforming. A hydrogen-containing gas production apparatus for obtaining a hydrogen-containing gas by a reaction,
The lower limit temperature at which the reforming catalyst causes the partial oxidation reaction is defined as a partial oxidation lower limit temperature, and the lower limit temperature at which the reforming catalyst undergoes the steam reforming reaction is defined as a steam reforming lower limit temperature. At a temperature of
With respect to the self-ignition temperature that is the temperature at which the mixed gas self-ignites in the advection time required for the mixed gas to reach the catalytic reaction chamber from the mixing chamber, the temperature is lower than the self-ignition temperature.
It can be set as the manufacturing apparatus of the hydrogen containing gas provided with the temperature setting means which sets the temperature of the said mixing chamber and the said front chamber.

上記方法において、さらに、前記部分酸化下限温度と前記混合ガスの露点温度とに関して高い側の温度を前室下限温度とし、前記自着火温度を前室上限温度として、
前記前室を流れる前記混合ガスの温度を、前記前室上限温度未満、前記前室下限温度より高い温度に維持することが好ましい。
この方法を使用する水素含有ガスの製造装置としては、
前記部分酸化下限温度と前記混合ガスの露点温度とに関して高い側の温度を前室下限温度とし、前記自着火温度を前室上限温度として、
前記前室を流れる前記混合ガスの温度を、前記前室上限温度未満、前記前室下限温度より高い温度に維持する前室混合ガス温度維持手段を備えた水素含有ガスの製造装置とすることとできる。
In the above method, the temperature on the higher side with respect to the partial oxidation lower limit temperature and the dew point temperature of the mixed gas is set as the front chamber lower limit temperature, and the self-ignition temperature is set as the front chamber upper limit temperature.
It is preferable to maintain the temperature of the mixed gas flowing through the front chamber at a temperature lower than the front chamber upper limit temperature and higher than the front chamber lower limit temperature.
As an apparatus for producing a hydrogen-containing gas using this method,
The higher temperature with respect to the partial oxidation lower limit temperature and the dew point temperature of the mixed gas is set as the front chamber lower limit temperature, and the self-ignition temperature is set as the front chamber upper limit temperature.
An apparatus for producing a hydrogen-containing gas comprising a front chamber mixed gas temperature maintaining means for maintaining the temperature of the mixed gas flowing through the front chamber at a temperature lower than the upper limit temperature of the front chamber and higher than the lower limit temperature of the front chamber; it can.

本願に係る水素含有ガスの製造方法で使用する混合ガスには水蒸気が混合されており、結露(水)の発生が問題となる。ここで、本願にいう混合ガスの露点温度とは、その部位における水蒸気の分圧が飽和水蒸気圧となる温度であり、その環境下で温度のみが低下した場合に結露が生じる温度である。改質反応において部分酸化を起こすことができる下限温度に反応系の温度を近づけると、混合ガスの状態によっては結露が発生する場合がある。結露が発生すると触媒反応に対する阻害要因となるとともに良好なガス流れを確保できない。そこで、混合ガスの状態に関して、露点温度をも考慮して、混合ガスのガス状態を前室において確保することで、良好な運転状態が維持できる。   Water vapor is mixed in the mixed gas used in the method for producing a hydrogen-containing gas according to the present application, and generation of condensation (water) becomes a problem. Here, the dew point temperature of the mixed gas referred to in the present application is a temperature at which the partial pressure of water vapor at that portion becomes a saturated water vapor pressure, and is a temperature at which dew condensation occurs when only the temperature decreases in that environment. When the temperature of the reaction system is brought close to the lower limit temperature at which partial oxidation can occur in the reforming reaction, condensation may occur depending on the state of the mixed gas. When condensation occurs, it becomes an impediment to the catalytic reaction and a good gas flow cannot be secured. Therefore, regarding the state of the mixed gas, taking into consideration the dew point temperature as well, ensuring the gas state of the mixed gas in the front chamber can maintain a good operating state.

さらに、上記構成において、前記前室の温度を、前記前室下限温度側に導くことが好ましい。この構成を採用する水素含有ガスの製造装置としては、前記前室の温度を、前記前室下限温度側に導くこととなる。   Furthermore, in the above configuration, it is preferable that the temperature of the anterior chamber is led to the anterior chamber lower limit temperature side. As an apparatus for producing a hydrogen-containing gas that employs this configuration, the temperature of the front chamber is led to the lower limit temperature side of the front chamber.

本願のように部分酸化を行う反応系にあっては、触媒反応室内での反応が進み過ぎ、そのピーク温度(触媒反応室内での最高温度)が、良好な反応状態を維持する上での重要な要素である。即ち、このピーク温度が混合ガス(特に炭化水素系燃料)の熱分解温度付近に到達するとカーボンが発生し、触媒活性に影響がでる。そして、このピーク温度は、触媒反応室の入口温度に支配されるため、本願のように、この入口温度(実質的には前室の温度)に下限を設けるとともに、それに近づくように制御することにより、安定した運転を維持できる。   In the reaction system in which partial oxidation is performed as in the present application, the reaction in the catalytic reaction chamber proceeds excessively, and its peak temperature (the highest temperature in the catalytic reaction chamber) is important for maintaining a good reaction state. Element. That is, when this peak temperature reaches the vicinity of the thermal decomposition temperature of the mixed gas (especially hydrocarbon fuel), carbon is generated and the catalytic activity is affected. Since this peak temperature is governed by the inlet temperature of the catalytic reaction chamber, a lower limit is set for this inlet temperature (substantially the temperature of the front chamber) as in the present application, and control is performed so as to approach it. Thus, stable operation can be maintained.

一方、触媒反応室の代表温度、例えばピーク温度に従って、前記混合室又は前記前室あるいはそれらの両方の温度を調整することとしてもよい。この場合、水素含有ガスの製造装置としては、触媒反応室の代表温度に従って、前記混合室又は前室あるいはそれらの両方の温度を調整する。
先にも示したように、触媒反応室の反応状態は、その上流側の状態に従う。よって、この部位の温度を触媒反応室の代表温度に従って制御することで、触媒反応室内の状態を所望の状態にもって行ける。
On the other hand, it is good also as adjusting the temperature of the said mixing chamber, the said front chamber, or both according to the typical temperature of a catalyst reaction chamber, for example, peak temperature. In this case, the hydrogen-containing gas production apparatus adjusts the temperature of the mixing chamber and / or the front chamber according to the representative temperature of the catalytic reaction chamber.
As previously indicated, the reaction state of the catalytic reaction chamber follows the upstream state. Therefore, by controlling the temperature of this part according to the representative temperature of the catalytic reaction chamber, the state in the catalytic reaction chamber can be brought to a desired state.

さて、これまで説明してきた方法において、
原料ガスが導入される原料ガス室の下流側に前記混合室を備えて、前記混合室において前記混合工程を実行し、
前記混合室から前記前室を介して前記混合ガスを前記触媒反応室に導入して水素含有ガスを製造するに、
前記原料ガス室に於ける前記原料ガスの最低流速より、前記混合室及び前記前室における前記混合ガスの流速を高くすることが好ましい。
水素含有ガスの製造装置としては、
原料ガスが導入される原料ガス室の下流側に前記混合室を備え、
前記原料ガス室に於ける前記原料ガスの最低流速より、前記混合室及び前記前室における前記混合ガスの流速を高くすることとなる。
Now, in the method described so far,
The mixing chamber is provided downstream of the source gas chamber into which the source gas is introduced, and the mixing step is performed in the mixing chamber.
In order to produce a hydrogen-containing gas by introducing the mixed gas from the mixing chamber through the front chamber into the catalytic reaction chamber,
It is preferable that the flow rate of the mixed gas in the mixing chamber and the front chamber be higher than the minimum flow rate of the raw material gas in the raw material gas chamber.
As a device for producing hydrogen-containing gas,
The mixing chamber is provided on the downstream side of the source gas chamber into which the source gas is introduced,
The flow rate of the mixed gas in the mixing chamber and the front chamber is made higher than the minimum flow rate of the raw material gas in the raw material gas chamber.

原料ガスに酸素含有ガスが混合された状態において、触媒反応室への移流が遅れると混合ガスの自着火が起こる。そこで、混合室及び前室での流速をできる限り上げることで、自着火を抑制することができる。   In the state where the oxygen-containing gas is mixed with the raw material gas, if the advection to the catalytic reaction chamber is delayed, the mixed gas is self-ignited. Therefore, self-ignition can be suppressed by increasing the flow velocity in the mixing chamber and the front chamber as much as possible.

さらに、前記前室内に、前記触媒反応室から上流側への火炎伝播を抑制する火炎伝播抑制手段を配設することも好ましい。
火炎伝播抑制手段を配設することで、前室で極局部的な自着火が発生しても、その伝播を抑え、反応系を安定化できる。
Furthermore, it is also preferable to dispose flame propagation suppressing means for suppressing flame propagation from the catalytic reaction chamber to the upstream side in the front chamber.
By disposing the flame propagation suppressing means, even if extreme local self-ignition occurs in the front chamber, the propagation can be suppressed and the reaction system can be stabilized.

さらに、前記前室の前記触媒反応室との境界側部位に、断熱材料層を配設することが好ましい。
このようにすることで、触媒反応室からの熱が前室に伝わるのを防止でき、両室を熱的に独立したものとすることで、触媒反応室入口近傍での状態を安定化できる。
Furthermore, it is preferable to dispose a heat insulating material layer at a boundary side portion of the front chamber with the catalytic reaction chamber.
By doing in this way, it can prevent that the heat | fever from a catalyst reaction chamber is transmitted to an anterior chamber, and the state in the catalyst reaction chamber entrance vicinity can be stabilized by making both chambers thermally independent.

さて、これまで説明してきた水素含有ガスの製造方法において、前記触媒反応室に導入される混合ガスの硫黄化合物濃度を1ppb以下にすることが好ましい。
触媒反応室に供給する混合ガスの硫黄化合物濃度が上がるに従って、触媒反応室内で発生する反応のピーク温度は上昇する傾向を有する。そして、改質触媒がルテニウムの場合、硫黄化合物濃度を1ppb以下とすることにより、触媒反応室内のピーク温度を安定した反応が得られる温度とできる。ここで、1ppb以下であればよく、その下限を問うものではない。この濃度が低下することで改質触媒の劣化も避けられる。
In the method for producing a hydrogen-containing gas described so far, it is preferable that the concentration of the sulfur compound in the mixed gas introduced into the catalytic reaction chamber is 1 ppb or less.
As the sulfur compound concentration of the mixed gas supplied to the catalytic reaction chamber increases, the peak temperature of the reaction occurring in the catalytic reaction chamber tends to increase. When the reforming catalyst is ruthenium, the peak temperature in the catalytic reaction chamber can be set to a temperature at which a stable reaction can be obtained by setting the sulfur compound concentration to 1 ppb or less. Here, it may be 1 ppb or less, and the lower limit thereof is not questioned. By reducing this concentration, deterioration of the reforming catalyst can be avoided.

以下、図面に基づいて本願に係る水素含有ガス製造装置1を説明する。
〔GTL製造プロセス〕
図1は、本願に係る水素含有ガス製造装置1を、水素含有ガスを原ガスとするGTL反応器2の上流側に備えたGTL(Gas To Liquids)製造プロセス3の構成を示したものである。同図に示すように、このシステム3は、本願の水素含有ガス製造装置1をGTL反応器2の上流側に備えて構成されており、水素含有ガス製造装置1には、天然ガス等の炭化水素系燃料f、水蒸気s及び酸素含有ガスである酸素Oが供給され、改質の後、水素リッチガスhがGTL反応器2に送られる。
炭化水素系燃料としては、前記天然ガスの他、ガス状態にあるアルコール、エーテル、LPG、ナフサ、ガソリン、灯油、軽油、重油、アスファルテン油、オイルサンド油、石炭液化油、シェールオイル、GTL(Gas To Liquidsで製造された液体燃料)、廃プラスチック油及びバイオフューエル等を採用できる。
Hereinafter, the hydrogen containing gas manufacturing apparatus 1 which concerns on this application is demonstrated based on drawing.
[GTL manufacturing process]
FIG. 1 shows the configuration of a GTL (Gas To Liquids) production process 3 provided with a hydrogen-containing gas production apparatus 1 according to the present application on the upstream side of a GTL reactor 2 using a hydrogen-containing gas as a raw gas. . As shown in the figure, this system 3 is configured to include the hydrogen-containing gas production apparatus 1 of the present application on the upstream side of the GTL reactor 2, and the hydrogen-containing gas production apparatus 1 includes carbonization of natural gas or the like. Hydrogen-based fuel f, water vapor s and oxygen-containing gas O are supplied, and after reforming, hydrogen-rich gas h is sent to the GTL reactor 2.
In addition to the natural gas, hydrocarbon fuels include gas, alcohol, ether, LPG, naphtha, gasoline, kerosene, light oil, heavy oil, asphaltene oil, oil sand oil, coal liquefied oil, shale oil, GTL (Gas Liquid fuel manufactured by To Liquids), waste plastic oil, biofuel, etc. can be used.

炭化水素系燃料fに対する処理系統を説明すると、炭化水素系燃料fは脱硫装置4により1ppb以下まで脱硫された後、水蒸気sが添加され本願にいう原料ガスf1とされる。この原料ガスf1に対して、同図に示すように酸素Oがさらに混合されて、単一の触媒反応室5に導入される。この触媒反応室5には、前記炭化水素系燃料f、水蒸気s及び酸素Oが混合された混合ガスf2に対して、オートサーマル改質反応を発生可能な改質触媒c1が配置されている。この触媒反応室5にあっては、その入口側部位で主に部分酸化反応が発生し、その下流側において主に水蒸気改質反応が起こる。
この種の改質触媒としては、具体的には、ロジウム、イリジウム、白金、パラジウム、ルテニウムなどの貴金属系触媒が好ましく用いられ、その他、ニッケル系、コバルト系などの触媒も適用することができる。また、金属は1種類のみを用いてもよく、また、必要に応じて2種類以上を併用することもできる。これらの触媒はどのような形状でもよく、担体の制限も特にないが、望ましくはアルミナ、ジルコニア、シリカ、チタニア、マグネシア、カルシアから選ばれる1種を主成分とする担体が好ましく、この担体に担持して、タブレット状、球状、リング状の成型品の形で使用するか、ハニカム状に成型して使用するのが好ましい。
この種の触媒の製造に関して代表例を、アルミナ担体にルテニウムを担持させる場合に関して説明すると、例えば、球状のアルミナ担体(直径4〜6mm)を塩化ルテニウム(RuCl・3HO)水溶液に浸漬し、空気中80℃で2時間乾燥した後、固定化(NaOH水溶液による処理)、水素還元することにより調製できる。
The processing system for the hydrocarbon fuel f will be described. The hydrocarbon fuel f is desulfurized to 1 ppb or less by the desulfurization device 4, and then steam s is added to form the raw material gas f1 referred to in the present application. Oxygen O is further mixed with the raw material gas f1 as shown in the figure and introduced into the single catalytic reaction chamber 5. In the catalytic reaction chamber 5, a reforming catalyst c1 capable of generating an autothermal reforming reaction with respect to the mixed gas f2 in which the hydrocarbon fuel f, the steam s, and the oxygen O are mixed is disposed. In the catalytic reaction chamber 5, a partial oxidation reaction mainly occurs at the inlet side portion, and a steam reforming reaction mainly occurs at the downstream side.
Specifically, noble metal catalysts such as rhodium, iridium, platinum, palladium, and ruthenium are preferably used as this type of reforming catalyst, and nickel-based and cobalt-based catalysts can also be applied. Moreover, only 1 type may be used for a metal and it can also use 2 or more types together as needed. These catalysts may have any shape, and there is no particular limitation on the carrier. Desirably, a carrier mainly composed of one kind selected from alumina, zirconia, silica, titania, magnesia, and calcia is preferable. Then, it is preferably used in the form of a tablet-shaped, spherical, ring-shaped molded product, or molded into a honeycomb shape.
A typical example of the production of this type of catalyst will be described in the case where ruthenium is supported on an alumina support. For example, a spherical alumina support (diameter 4 to 6 mm) is immersed in an aqueous ruthenium chloride (RuCl 3 .3H 2 O) solution. It can be prepared by drying in air at 80 ° C. for 2 hours, followed by immobilization (treatment with aqueous NaOH) and hydrogen reduction.

本願にあっては、この触媒反応室5への混合ガスf2の導入形態を良好なものとして、触媒反応室5において、オートサーマル改質反応が良好に発生するようにしている。ここで、反応の良好な発生とは、入口5a近傍で始めて部分酸化反応が発生すること、触媒反応室5内においてカーボンの発生がないことが重要な要件となり、さらに、触媒反応室5の入口5aにおける混合ガスf2の状態(特に温度状態)が適切に制御されることで、反応室内の状態が、部分酸化単独状態から水蒸気改質を含む部分酸化状態に適切に遷移することを意味する。   In the present application, the introduction mode of the mixed gas f2 into the catalytic reaction chamber 5 is assumed to be favorable so that the autothermal reforming reaction is favorably generated in the catalytic reaction chamber 5. Here, the favorable generation of reaction means that a partial oxidation reaction occurs only in the vicinity of the inlet 5a, and that there is no generation of carbon in the catalytic reaction chamber 5 is an important requirement. By appropriately controlling the state (particularly the temperature state) of the mixed gas f2 in 5a, it means that the state in the reaction chamber appropriately changes from the partial oxidation single state to the partial oxidation state including steam reforming.

図1に示すように、前記触媒反応室5は鉛直上下方向に配設されており、上部側から原料ガスf1(炭化水素系燃料fに水蒸気sを混ぜられたガス)が供給され、酸素Oが混合された混合ガスf2が、触媒反応室5の上側に設けられた入口5aから導入され、改質反応を終えて、触媒反応室5の下方からGTL反応器2側へ水素リッチガスhが送られる。以下、本願に係る水素含有ガス製造装置1の具体的構成を、図1、2を参照しながら説明する。   As shown in FIG. 1, the catalytic reaction chamber 5 is arranged in a vertical vertical direction, and a raw material gas f <b> 1 (a gas obtained by mixing water vapor s with a hydrocarbon fuel f) is supplied from the upper side. Is introduced from an inlet 5a provided on the upper side of the catalytic reaction chamber 5, finishes the reforming reaction, and the hydrogen rich gas h is sent from the lower side of the catalytic reaction chamber 5 to the GTL reactor 2 side. It is done. Hereinafter, a specific configuration of the hydrogen-containing gas production apparatus 1 according to the present application will be described with reference to FIGS.

〔水素含有ガス製造装置〕
この水素含有ガス製造装置1は、先に説明した炭化水素系燃料fに対する、脱硫、水蒸気添加、酸素混合及び改質までの工程を受持つように構成されている。
前記脱硫は脱硫室6において実行され、脱硫室6から送出される炭化水素系燃料fに水蒸気sを混合した原料ガスf1が生成される。図2は、この装置1における、原料ガス室7、混合室8、前室9及び触媒反応室5の具体的構成を示したものである。本願は、前室9の構成及びその使用形態に特徴があるため、同図には触媒反応室5の上部側のみを示している。触媒反応室5の下部側に設けられる出側は、出口5bを介して接続管5cでGTL反応器2の水素導入口2aに接続されている。
[Hydrogen-containing gas production equipment]
The hydrogen-containing gas production apparatus 1 is configured to take steps up to desulfurization, steam addition, oxygen mixing and reforming for the hydrocarbon fuel f described above.
The desulfurization is performed in the desulfurization chamber 6, and a raw material gas f <b> 1 in which water vapor s is mixed with the hydrocarbon fuel f delivered from the desulfurization chamber 6 is generated. FIG. 2 shows a specific configuration of the source gas chamber 7, the mixing chamber 8, the front chamber 9, and the catalytic reaction chamber 5 in this apparatus 1. Since the present application is characterized by the configuration of the front chamber 9 and its usage, only the upper side of the catalytic reaction chamber 5 is shown in FIG. The outlet provided on the lower side of the catalytic reaction chamber 5 is connected to the hydrogen inlet 2a of the GTL reactor 2 through the outlet 5b through a connecting pipe 5c.

脱硫
前記脱硫室6には酸化銅、酸化亜鉛等を混合した銅亜鉛系高次脱硫触媒等の脱硫触媒c2が配設され、この室6で、硫黄化合物濃度を1ppb以下にする。この濃度に脱硫することで、触媒反応室5に導かれる混合ガスの硫黄化合物濃度も1ppb以下となる。
上記した銅亜鉛系高次脱硫触媒の他、銀系触媒、さらには、ニッケル、クロム、マンガン、鉄、コバルト、パラジウム、イリジウム、白金、ルテニウム、ロジウム、金等を含む脱硫触媒も採用可能である。
Desulfurization The desulfurization chamber 6 is provided with a desulfurization catalyst c2 such as a copper-zinc high-order desulfurization catalyst mixed with copper oxide, zinc oxide or the like. In this chamber 6, the sulfur compound concentration is set to 1 ppb or less. By desulfurizing to this concentration, the concentration of sulfur compound in the mixed gas introduced into the catalytic reaction chamber 5 is also 1 ppb or less.
In addition to the above-described copper zinc-based high-order desulfurization catalyst, silver-based catalysts, and desulfurization catalysts containing nickel, chromium, manganese, iron, cobalt, palladium, iridium, platinum, ruthenium, rhodium, gold, etc. can also be employed. .

水蒸気混合
脱硫を経た炭化水素系燃料fは、別途水蒸気供給管10を経て供給される水蒸気sを添加される。ここで、炭化水素系燃料fに対する水蒸気s量は、燃料中に含まれる炭素Cに対する水蒸気HOの割合をモル比で〔HO/C〕として、0.1〜3.0(好ましくは0.1〜1.0)とされる。また、この部位での温度は200〜400℃(好ましくは200〜300℃)程度である。このようにして得られるガスを本願にあっては、原料ガスf1と呼ぶ。
The hydrocarbon-based fuel f that has undergone steam mixing and desulfurization is added with steam s that is separately supplied through the steam supply pipe 10. Here, the amount of water vapor s with respect to the hydrocarbon-based fuel f is 0.1 to 3.0 (preferably with the ratio of water vapor H 2 O to carbon C contained in the fuel as a molar ratio [H 2 O / C]. 0.1 to 1.0). Moreover, the temperature in this part is about 200-400 degreeC (preferably 200-300 degreeC). The gas thus obtained is referred to as a raw material gas f1 in the present application.

一方、本願の水素含有ガスの製造装置1には、図1、2に示すように、炭化水素系燃料fあるいは水蒸気s、あるいは原料ガスf1あるいは不活性ガス等であるパージガスpが供給されるとともに、これまで説明してきたように、酸素Oも供給される。そして、これらのガスが、下記に詳述する改質ユニット11で適切に反応処理される。   On the other hand, as shown in FIGS. 1 and 2, the hydrogen-containing gas production apparatus 1 of the present application is supplied with a hydrocarbon-based fuel f or water vapor s, or a purge gas p such as a raw material gas f1 or an inert gas. As described so far, oxygen O is also supplied. These gases are appropriately reacted in the reforming unit 11 described in detail below.

改質ユニット11
図2に示すように、改質ユニット11は、ユニットの上部側に、原料ガス室7、混合室8及び前室9を備えて構成されており、その下側に触媒反応室5を備えている。
改質ユニット11の上部側は、概略二重管構造とされており、その内管11a内を介して前記パージガスpが前記前室9の下部域に供給できるように構成されている。さらに、図2に示すように、この内管11a内には温度計測用の熱電対t1が前室概中間部位まで延出して配設されており、前室9の代表温度(入口温度)を計測可能に構成されている。
Reforming unit 11
As shown in FIG. 2, the reforming unit 11 includes a source gas chamber 7, a mixing chamber 8, and a front chamber 9 on the upper side of the unit, and a catalytic reaction chamber 5 on the lower side. Yes.
The upper side of the reforming unit 11 has a substantially double-pipe structure, and is configured such that the purge gas p can be supplied to the lower region of the front chamber 9 through the inner pipe 11a. Further, as shown in FIG. 2, a thermocouple t1 for temperature measurement is disposed in the inner tube 11a so as to extend to the middle part of the front chamber, and the representative temperature (inlet temperature) of the front chamber 9 is set. It is configured to be measurable.

原料ガス室7
図2に示すように、原料ガス室7は水蒸気sが混合された原料ガスf1が導入される導入口7aと、この導入口7aが開口する中間路部7bと、この中間路部7bより流路断面が大きな流路拡大部7cを備えて構成されている。この流路拡大部7cの下手側に、混合室8が設けられている。
Source gas chamber 7
As shown in FIG. 2, the source gas chamber 7 has an introduction port 7a into which the source gas f1 mixed with water vapor s is introduced, an intermediate passage portion 7b in which the introduction port 7a is opened, and a flow from the intermediate passage portion 7b. The passage section 7c is configured to have a large passage section. A mixing chamber 8 is provided on the lower side of the flow path expanding portion 7c.

混合室8
混合室8は、所謂、シェルアンドチューブ型の混合構造が採用されており、前記流路拡大部7cから原料ガスf1が流入するチューブ8a内の流路に、その外側に設けられる酸素室8bから、酸素Oが流入するように構成されている。従って、原料ガスf1に対して酸素Oが流入することで、このチューブ8a内で原料ガスf1と酸素Oとが混合した混合ガスf2を形成できる。
同図に示すように、前記チューブ8aは、混合室8を区画する仕切り板8c,8cの離間距離を越えて下部側の延出されており、この流路を流下することで、充分な混合状態が得られるように構成されている。
ここで、炭化水素系燃料fに対する酸素O量は、燃料中に含まれる炭素Cに対する酸素Oの割合をモル比で〔O/C〕として、0.05〜1.0(好ましくは0.3〜0.7)とされる。また、この部位での温度は200〜400℃(好ましくは200〜300℃)程度である。このようにして得られるガスを本願にあっては、混合ガスf2と呼ぶ。
Mixing chamber 8
The mixing chamber 8 employs a so-called shell-and-tube type mixing structure. From the oxygen chamber 8b provided outside the channel 8a into which the raw material gas f1 flows from the channel expanding portion 7c. , Oxygen O flows in. Therefore, when oxygen O flows into the source gas f1, a mixed gas f2 in which the source gas f1 and oxygen O are mixed can be formed in the tube 8a.
As shown in the figure, the tube 8a is extended on the lower side beyond the separation distance between the partition plates 8c and 8c that divide the mixing chamber 8. By flowing down this flow path, sufficient mixing can be achieved. It is configured to obtain a state.
Here, the amount of oxygen O relative to the hydrocarbon-based fuel f is 0.05 to 1.0 (preferably 0), where the ratio of oxygen O 2 to carbon C contained in the fuel is [O 2 / C] in molar ratio. .3 to 0.7). Moreover, the temperature in this part is about 200-400 degreeC (preferably 200-300 degreeC). The gas thus obtained is referred to as a mixed gas f2 in the present application.

前室9
前室9は、触媒反応室5に対する調整室としての役割を果たすように設けられており、先に説明したチューブ8aが延出される導入部9aと、この導入部9aと触媒反応室5との間に設けられる調整部9bとを備えて構成されている。
前記導入部9aには、図示するようにチューブ8aが下方に侵入・延出されており、これらチューブ8aの先端から混合ガスf2が放出される。前記チューブ8aの外周部位9cは中実とされており、ガスが滞留することはない。さらに、前記内管11aを介して先に説明したパージガスpが導入部9aの先端に供給される構造が採用されており、上記パージガスpの供給及びチューブ8a外側の中実構造により、混合ガスf2の上側への上昇及び滞留は起こらない。
Front room 9
The front chamber 9 is provided so as to serve as an adjustment chamber for the catalyst reaction chamber 5, and the introduction portion 9 a from which the tube 8 a described above is extended, and the introduction portion 9 a and the catalyst reaction chamber 5 And an adjusting portion 9b provided therebetween.
As shown in the drawing, tubes 8a penetrate and extend downward from the introduction portion 9a, and the mixed gas f2 is discharged from the tips of these tubes 8a. The outer peripheral portion 9c of the tube 8a is solid, and gas does not stay. Further, the structure in which the purge gas p described above is supplied to the tip of the introduction portion 9a through the inner pipe 11a is adopted, and the mixed gas f2 is provided by the supply of the purge gas p and the solid structure outside the tube 8a. Ascending to the upper side and stagnation do not occur.

前記調整部9bは、この部位において前室9の温度を適切に調整するとともに、比較的細い流路であるチューブ8a内を流れてきた混合ガスf2を、僅かに流路拡大しつつさらに混合し、触媒反応室5への導入をスムーズに行う。従って、図2に示すように、調整部9bにおいて混合ガスf2が流れるガス流路9dでは、その断面積が僅かに増加されて、ガス流速が低下する。
さて、これまで説明してきた構成において、混合室8及び前室9における混合ガスf2の流速は、原料ガス室7に於ける前記原料ガスf1の最低流速より高くなるように流路断面積が設定されており、混合ガスf2のこの室内での滞留時間をできるだけ短くする構成が採用されている。
The adjusting portion 9b appropriately adjusts the temperature of the front chamber 9 at this portion, and further mixes the mixed gas f2 flowing through the tube 8a, which is a relatively narrow flow path, while slightly expanding the flow path. Introducing into the catalytic reaction chamber 5 is performed smoothly. Therefore, as shown in FIG. 2, in the gas flow path 9d through which the mixed gas f2 flows in the adjusting portion 9b, the cross-sectional area is slightly increased and the gas flow velocity is decreased.
In the configuration described so far, the flow path cross-sectional area is set so that the flow velocity of the mixed gas f2 in the mixing chamber 8 and the front chamber 9 is higher than the minimum flow velocity of the raw material gas f1 in the raw material gas chamber 7. Therefore, a configuration is adopted in which the residence time of the mixed gas f2 in this chamber is made as short as possible.

同図に示すように調整部9bの上部側及び下部側には、前記調整部9bのガス流路9dを形成する状態で、それぞれアルミナブロック9e及び窒化珪素からなる多孔性のブロック9fが設けられている。これら材料を設ける理由は、触媒反応室5からの熱が上流側へ伝播するのを防止し断熱を良好に行うことを目的とする。同図において、前記ブロック9fの外径側部位にはセラミックロープ9gを設置し、ブロック9と耐火材のすき間にガスが流れないようにしている。
さらに図2に示す例では、前記調整部9bのガス流路9d内に通気性を有する断熱材料9hが配設され、触媒反応室5と前室9との境界における断熱と混合未反応ガスの対流防止が確保されている。
As shown in the figure, an alumina block 9e and a porous block 9f made of silicon nitride are provided on the upper side and the lower side of the adjustment unit 9b, respectively, in a state where the gas flow path 9d of the adjustment unit 9b is formed. ing. The reason for providing these materials is to prevent heat from the catalytic reaction chamber 5 from propagating to the upstream side and to perform heat insulation well. In the figure, a ceramic rope 9g is installed on the outer diameter side portion of the block 9f so that gas does not flow between the block 9 and the refractory material.
Further, in the example shown in FIG. 2, a heat insulating material 9 h having air permeability is disposed in the gas flow path 9 d of the adjusting portion 9 b, and the heat insulating and mixed unreacted gas at the boundary between the catalytic reaction chamber 5 and the front chamber 9 is disposed. Convection prevention is ensured.

触媒反応室5
触媒反応室5は、本願に係る水素含有ガス製造装置1の主要部となる部位であり、これまでも示したように改質触媒c1が配設される部位である。
また、触媒反応室5に供給する総ガス流量を時間あたりの気体空間速度(但し、標準状態換算の値)で750h−1〜300000h−1(好ましくは10000h−1〜300000h−1、より好ましくは50000h−1〜300000h−1)の範囲としている。
Catalytic reaction chamber 5
The catalytic reaction chamber 5 is a main part of the hydrogen-containing gas production apparatus 1 according to the present application, and is a part where the reforming catalyst c1 is disposed as described above.
Further, the gas space velocity per a total gas flow rate supplied to the catalytic reaction chamber 5 times (however, the standard values of the state conversion) 750h -1 ~300000h -1 (preferably 10000h -1 ~300000h -1 in, more preferably 50,000 h −1 to 300,000 h −1 ).

反応時の圧力についての制限は特にはない。用途により、反応圧力を変更することが可能である。実施例に示すように、GTLなどの液体燃料合成用途に用いる場合は、2〜7MPa程度で使用することとなる。一方、燃料電池用の水素製造用途に用いる場合は、常圧付近(例えば、1MPa以下)で使用する。   There is no particular limitation on the pressure during the reaction. The reaction pressure can be changed depending on the application. As shown in the examples, when used for synthesizing liquid fuel such as GTL, it is used at about 2 to 7 MPa. On the other hand, when used for hydrogen production for fuel cells, it is used near normal pressure (for example, 1 MPa or less).

以上が、本願に係る水素含有ガス製造装置1のハード側の構成であるが、この装置構成に対して、本願装置にあっては、前室9及び触媒反応室5における反応状態を適正なものとすべく構成されている。
即ち、本願装置1では、触媒反応室5への混合ガスf2の入口温度を適正化すべく工夫が成されている。例えば、これまで説明してきた構成において、混合ガスf2のガス流路9dを比較的小として、この流路9dにおける流速を上げることで、混合ガスf2の前室9内での滞留時間を一定時間以下としている。また、触媒反応室5と前室9との境界における断熱を高いものとして、触媒反応室5の温度が前室9に影響しないようにしている、さらには、パージガスpを前室9に導入して混合ガスf2の逆流及び滞留を防止している等が、本願におけるハード側の工夫点である。
The above is the configuration of the hardware side of the hydrogen-containing gas production apparatus 1 according to the present application. However, in this apparatus configuration, the reaction state in the front chamber 9 and the catalytic reaction chamber 5 is appropriate for the apparatus of the present application. It is configured to
That is, the device 1 of the present application is devised to optimize the inlet temperature of the mixed gas f2 to the catalytic reaction chamber 5. For example, in the configuration described so far, the gas flow path 9d of the mixed gas f2 is made relatively small, and the flow rate in the flow path 9d is increased, whereby the residence time of the mixed gas f2 in the front chamber 9 is set to a fixed time. It is as follows. Further, the heat insulation at the boundary between the catalytic reaction chamber 5 and the front chamber 9 is made high so that the temperature of the catalytic reaction chamber 5 does not affect the front chamber 9. Further, a purge gas p is introduced into the front chamber 9. Thus, the hardware side in the present application is to prevent the mixed gas f2 from flowing back and staying.

本願の水素含有ガス製造装置1にあっては、図1に示すように、その反応状態を制御するための制御装置13が備えられており、炭化水素系燃料fの種類、系内への投入量及び温度、水蒸気sの系内への投入量及び温度さらには、酸素の系内への投入量及び温度が、この制御装置13でモニター可能に構成されている。
一方、図2に示すように、先に説明した改質ユニット11の上部及び下部側からユニット11内に挿入される熱電対t1,t2により、前室9の調整部9bの入口及び出口(触媒反応室の入口5a)における温度、及び触媒反応室5内の流れ方向における温度もモニター可能に構成されている。
そして、制御装置13からの制御指令に従って、水素含有ガス製造装置1内への炭化水素系燃料投入量、水蒸気投入量、酸素投入量を調整可能とされている。
In the hydrogen-containing gas production apparatus 1 of the present application, as shown in FIG. 1, a control device 13 for controlling the reaction state is provided, and the type of hydrocarbon-based fuel f and input into the system are provided. The control device 13 can monitor the amount and temperature, the amount and temperature of steam s input into the system, and the amount and temperature of oxygen input into the system.
On the other hand, as shown in FIG. 2, the inlets and outlets (catalysts) of the adjusting portion 9b of the front chamber 9 are formed by the thermocouples t1 and t2 inserted into the unit 11 from the upper and lower sides of the reforming unit 11 described above. The temperature at the inlet 5a) of the reaction chamber and the temperature in the flow direction in the catalyst reaction chamber 5 can also be monitored.
And according to the control command from the control apparatus 13, the hydrocarbon fuel injection amount, the water vapor input amount, and the oxygen input amount into the hydrogen-containing gas production device 1 can be adjusted.

さて、制御装置13の構成に関して説明すると、図1,3に示すように、この制御装置13には、改質触媒c1が部分酸化反応を起こす下限温度を部分酸化下限温度T1、水蒸気改質反応を起こす下限温度を水蒸気改質下限温度T2として、部分酸化下限温度T1以上、水蒸気改質下限温度T2未満の温度で、混合室8から触媒反応室5に混合ガスf2が到達するのに要する移流時間で混合ガスf2が自着火する温度である自着火温度T3に対して、当該自着火温度未満の温度に、混合室8及び前室9の温度を設定する温度設定手段13aが備えられている。
さらに、この温度設定手段13aに対して、部分酸化下限温度と混合ガスf2の露点温度T4とに関して高い側の温度を前室下限温度とし、混合ガスf2の自着火温度を前室上限温度として、前室9を流れる混合ガスf2の温度を、前室上限温度未満、前室下限温度より高い温度に維持する前室混合ガス温度維持手段(図1には単に温度維持手段と記載)13bが備えられている。
Now, the configuration of the control device 13 will be described. As shown in FIGS. 1 and 3, the control device 13 has a lower limit temperature at which the reforming catalyst c1 causes a partial oxidation reaction as a partial oxidation lower limit temperature T1, a steam reforming reaction. The lower limit temperature that causes the steam reforming lower limit temperature T2 is the advection required for the mixed gas f2 to reach the catalytic reaction chamber 5 from the mixing chamber 8 at a temperature not lower than the partial oxidation lower limit temperature T1 and lower than the steam reforming lower limit temperature T2. A temperature setting means 13a for setting the temperatures of the mixing chamber 8 and the front chamber 9 to a temperature lower than the self-ignition temperature with respect to the self-ignition temperature T3, which is a temperature at which the mixed gas f2 self-ignites with time, is provided. .
Further, with respect to this temperature setting means 13a, the higher temperature with respect to the partial oxidation lower limit temperature and the dew point temperature T4 of the mixed gas f2 is set as the front chamber lower limit temperature, and the self-ignition temperature of the mixed gas f2 is set as the front chamber upper limit temperature. A front chamber mixed gas temperature maintaining means (simply referred to as temperature maintaining means in FIG. 1) 13b for maintaining the temperature of the mixed gas f2 flowing through the front chamber 9 at a temperature lower than the upper limit temperature of the front chamber and higher than the lower limit temperature of the front chamber is provided. It has been.

以下、制御装置13内における下限温度と上限温度とに関して説明する。
下限温度
部分酸化下限温度は混合ガスf2が改質触媒c1に接触して部分酸化反応を起こす下限温度T1であり、触媒反応室5に収納される改質触媒c1によって、この下限温度T1は決まる。例えば、改質触媒c1が上述のようなルテニウム系触媒である場合は200℃程度であり、改質触媒c1がロジウム系触媒である場合は300℃程度である。従って、制御装置13に設けられる記憶手段13c内には、この部分酸化下限温度が記憶格納されており、制御装置13側でこの部分酸化下限温度T1を適宜読み出し利用可能に構成されている。
Hereinafter, the lower limit temperature and the upper limit temperature in the control device 13 will be described.
Lower limit temperature The partial oxidation lower limit temperature is the lower limit temperature T1 at which the mixed gas f2 comes into contact with the reforming catalyst c1 to cause a partial oxidation reaction. The lower limit temperature T1 is determined by the reforming catalyst c1 accommodated in the catalyst reaction chamber 5. . For example, when the reforming catalyst c1 is a ruthenium-based catalyst as described above, the temperature is about 200 ° C., and when the reforming catalyst c1 is a rhodium-based catalyst, the temperature is about 300 ° C. Therefore, the partial oxidation lower limit temperature is stored and stored in the storage unit 13c provided in the control device 13, and the partial oxidation lower limit temperature T1 can be appropriately read and used on the control device 13 side.

一方、混合ガスf2に関しては、前記炭化水素系燃料f、水蒸気s及び酸素Oの混合比及び圧力に従った混合ガスの露点温度T4が決まる。そこで、前記記憶手段13cには各ガスの混合比に従った露点データが記憶されており、このデータを利用して現状で前記前室9内に存在する混合ガスf2の露点温度T4を、各ガスの投入量から推定可能としている。   On the other hand, for the mixed gas f2, the dew point temperature T4 of the mixed gas is determined according to the mixing ratio and pressure of the hydrocarbon fuel f, water vapor s and oxygen O. Therefore, dew point data according to the mixing ratio of each gas is stored in the storage means 13c, and by using this data, the dew point temperature T4 of the mixed gas f2 present in the front chamber 9 at present is calculated. It can be estimated from the amount of gas input.

従って、制御装置13にあっては、改質触媒c1の種類に基づく部分酸化下限温度T1及び前室内に存在すると推定される混合ガスf2の組成から推定される混合ガスf2の露点温度T4に従って、両者の高い側の温度として下限温度(前室下限温度)を求める。   Therefore, in the control device 13, according to the partial oxidation lower limit temperature T1 based on the type of the reforming catalyst c1 and the dew point temperature T4 of the mixed gas f2 estimated from the composition of the mixed gas f2 estimated to exist in the front chamber, A lower limit temperature (anterior chamber lower limit temperature) is obtained as the higher temperature of both.

上限温度
水蒸気改質下限温度は混合ガスf2が改質触媒c1に接触して水蒸気改質反応を起こす下限温度T2であり、触媒反応室5に収納される改質触媒c1によって、この水蒸気改質下限温度T2は決まる。例えば、改質触媒c1が上述のようなルテニウム系触媒である場合は400℃程度であり、改質触媒c1がニッケル系触媒である場合は400℃程度である。従って、制御装置13に設けられる記憶手段13c内には、この水蒸気改質下限温度T2が記憶格納されており、制御装置13側でこの水蒸気改質下限温度T2を適宜読み出し利用可能に構成されている。
The upper limit temperature steam reforming lower limit temperature is the lower limit temperature T2 at which the mixed gas f2 comes into contact with the reforming catalyst c1 to cause the steam reforming reaction, and the steam reforming is performed by the reforming catalyst c1 stored in the catalyst reaction chamber 5. The lower limit temperature T2 is determined. For example, when the reforming catalyst c1 is a ruthenium-based catalyst as described above, the temperature is about 400 ° C., and when the reforming catalyst c1 is a nickel-based catalyst, the temperature is about 400 ° C. Therefore, the steam reforming lower limit temperature T2 is stored and stored in the storage means 13c provided in the control device 13, and the steam reforming lower limit temperature T2 can be appropriately read and used on the control device 13 side. Yes.

この水蒸気改質下限温度T2に対して、前室9内に存在する混合ガスf2の自着火温度T3も考慮される。即ち、自着火温度T3は、前室9内の混合ガスf2の組成及びその前室9内における滞留時間(この滞留時間とは、混合室8において酸素Oを混合された後、混合室8を出てから触媒反応室5の入口5aに至るまでの時間であり、本願の場合、混合室8出側のチューブ8a内を経て触媒反応室5の入口5aに至るまでの混合ガスf2の最大所要時間を意味する)に依存する。
そこで、記憶手段13cに、前記最大の移流所要時間(滞留時間)で、初めて着火する混合ガスf2の組成状態に従った自着火温度T3が記憶されており、この温度と、上記水蒸気改質下限温度T2との関係で上限温度を得ることが可能とされている。このような、滞留時間(図上「着火遅れ時間」と表示)と自着火温度T3(図上「混合ガス温度」と表示)との関係を混合ガスf2に関して示したのが図4である。同図は、混合ガスf2が、炭化水素系燃料が天然ガスで、〔N/C〕、〔O/C〕が、それぞれ(0.6〜1.0)と、(0.1あるいは0.4)である場合を示している。この状態における混合ガスの圧力は4MPaである。
The autoignition temperature T3 of the mixed gas f2 present in the front chamber 9 is also taken into consideration for the steam reforming lower limit temperature T2. That is, the self-ignition temperature T3 is determined by the composition of the mixed gas f2 in the front chamber 9 and the residence time in the front chamber 9 (this residence time refers to the mixing chamber 8 after the oxygen O is mixed in the mixing chamber 8). It is the time from the exit to the inlet 5a of the catalytic reaction chamber 5, and in the case of the present application, the maximum required amount of the mixed gas f2 from the inside of the tube 8a on the outlet side of the mixing chamber 8 to the inlet 5a of the catalytic reaction chamber 5 Depends on time).
Accordingly, the storage means 13c stores a self-ignition temperature T3 according to the composition state of the mixed gas f2 that is ignited for the first time in the maximum required advection time (residence time). It is possible to obtain the upper limit temperature in relation to the temperature T2. FIG. 4 shows the relationship between the residence time (indicated as “ignition delay time” in the figure) and the self-ignition temperature T3 (indicated as “mixed gas temperature” in the figure) with respect to the mixed gas f2. In the figure, the mixed gas f2 is a hydrocarbon-based fuel natural gas, and [N 2 / C] and [O 2 / C] are (0.6 to 1.0) and (0.1 or 0.4). The pressure of the mixed gas in this state is 4 MPa.

制御装置13にあっては、前記温度設定手段13a、前記前室混合ガス温度維持手段13bが、先に説明した手法に従って、炭化水素系燃料投入量、水蒸気投入量、酸素投入量等を調整して良好な運転状態を確保する。   In the control device 13, the temperature setting means 13a and the front chamber mixed gas temperature maintaining means 13b adjust the hydrocarbon fuel input amount, the steam input amount, the oxygen input amount, etc. according to the method described above. Ensure good driving conditions.

さて、上記前室混合ガスf2の温度を、前室上限温度と下限温度との間に維持することは、結局、触媒反応室5の入口5aでの混合ガス温度を適切に調整することを意味する。そして、この温度は、触媒反応室5内での反応温度を適切に制御することに繋がる。
そこで、前記温度設定手段13a,前記前室混合ガス温度維持手段13bが、上記前室上限温度及び下限温度に関する要件を満たした状態で触媒反応室5の代表温度に従って、前室9における混合ガスf2の温度を調整する構成が採用されている。例えば、触媒反応室5内に収納されている触媒c1の劣化に伴い、部分酸化反応が遅れ、触媒反応室5の温度が水蒸気改質反応を起こすのに遅れが生じる(結果的には触媒反応室5におけるピーク温度位置が下流側へ移動したり、ピーク温度が上がったりする)。そこで、前記前室の温度を調整可能に構成されているのである。
この種の温度調整に関しては、炭化水素系燃料に対する水蒸気量あるいは酸素量の調整によりこれを実行することができる。
Now, maintaining the temperature of the front chamber mixed gas f2 between the upper limit temperature and the lower limit temperature of the front chamber means that the temperature of the mixed gas at the inlet 5a of the catalytic reaction chamber 5 is adjusted appropriately. To do. This temperature leads to appropriate control of the reaction temperature in the catalytic reaction chamber 5.
Therefore, the temperature setting means 13a and the front chamber mixed gas temperature maintaining means 13b satisfy the requirements related to the front chamber upper limit temperature and the lower limit temperature, and the mixed gas f2 in the front chamber 9 according to the representative temperature of the catalytic reaction chamber 5. The structure which adjusts the temperature of is adopted. For example, with the deterioration of the catalyst c1 accommodated in the catalytic reaction chamber 5, the partial oxidation reaction is delayed, and the temperature of the catalytic reaction chamber 5 is delayed to cause the steam reforming reaction (resulting in the catalytic reaction). The peak temperature position in the chamber 5 moves downstream or the peak temperature rises). Therefore, the temperature of the front chamber can be adjusted.
This type of temperature adjustment can be performed by adjusting the amount of water vapor or oxygen with respect to the hydrocarbon fuel.

以下、制御装置13による本願に係る水素含有ガス製造装置1の運転状態に関して説明する。
1 前室9内の混合ガス温度が前室上限温度(自着火下限温度)及び前室下限温度(部分酸化下限温度と露点温度の高い方)内にある場合
この場合は、触媒反応室5における反応は一応適切な状態にあると推定される。但し、このような適正な状態にあっても、触媒反応室5の状態を安定した状態に保つため、前室9に於ける混合ガスf2の温度を、前記前室上限温度及び前室下限温度との範囲内で、前記触媒反応室5の温度(例えばピーク温度)に従って制御する。このようにすることで、安定且つ適正な作動状態を維持できる。
Hereinafter, the operation state of the hydrogen-containing gas production device 1 according to the present application by the control device 13 will be described.
1 When the mixed gas temperature in the front chamber 9 is within the front chamber upper limit temperature (autoignition lower limit temperature) and the front chamber lower limit temperature (the higher of the partial oxidation lower limit temperature and the dew point temperature) In this case, in the catalytic reaction chamber 5 The reaction is presumed to be in an appropriate state. However, in order to keep the state of the catalytic reaction chamber 5 stable even in such an appropriate state, the temperature of the mixed gas f2 in the front chamber 9 is set to the front chamber upper limit temperature and the front chamber lower limit temperature. In this range, the temperature is controlled according to the temperature (for example, peak temperature) of the catalytic reaction chamber 5. By doing so, a stable and proper operating state can be maintained.

〔別実施の形態〕
本願の別実施の形態に関して説明する。
(1) 上記の実施の形態にあっては、混合室から延出されるチューブとほぼ同径のガス流路を前室の調整部内に設け、チューブ、ガス流路を介して混合ガスの流速を比較的高く維持して滞留時間を短くし、触媒反応室に混合ガスを導く例を示したが、図5に示すように、チューブ8aの出口より下流側に合流路90を設け、この合流路90を介して触媒反応室5に混合ガスf2を流入させるようにしてもよい。但し、この合流路90の断面積は、この部位の温度条件下の自着火おくれ時間に満たない時間で触媒反応室に到達する流速を実現できるものとする。このようにすると、混合ガスf2の性状を均一化し、触媒反応室5の入口近傍における混合ガスf2の触媒反応室断面方向への拡散を良好なものとできる。
(2) 上記の実施の形態にあっては、水素含有ガス製造装置に、前記温度設定手段13a,前室混合ガス温度維持手段13bを設け、積極的に炭化水素系燃料に対する水蒸気、酸素の投入量を制御して、触媒反応部の反応を適正な状態に維持したが、通常運転状態がほぼ確定している場合は、先に説明した改質ユニット11における各室7,8,9での流速がほぼ決定することから、前室9における混合ガスの温度が適切となるようにその流路断面構成を構成してもよい。
即ち、改質触媒c1によって部分酸化下限温度が決り、混合ガスf2のガス組成が決まると、その露点温度は決まることから、本願にいう前室下限温度は決まる。
一方、前室上限温度に関しては、改質触媒c1によって水蒸気改質下限温度が決り、混合ガスf2が流れるチューブ8a内および、その下流側の調整部9bのガス流路9dの形状により、混合ガスf2が混合室8から触媒反応室5に到達するまでの最大の時間が決まる。そこで、先に説明したような図4に示す混合ガスの温度と滞留時間との関係を予め求めておき、上記滞留時間分だけ混合ガスf2が前室に留まった場合にも、混合ガスf2が自着火しない温度を、前室上限温度とすることで、本願の目的を達成することができる。
(3) 上記の実施の形態にあっては、前室における混合ガスの温度を、触媒反応室の代表温度に従って制御する例を示したが、基本的には、触媒反応部の入口で部分酸化反応を発生できればよいため、先に説明した,温度設定手段13a,前室混合ガスの温度維持手段13bの制御を構成するに、前室における混合ガスの温度を、前室下限温度側に導くように構成することもできる。
この場合、改質に必要となる部分酸化反応の発生を確保しながら、触媒反応部で問題となり易いカーボンの発生を回避する方向に反応を制御できる。
(4) 上記の実施の形態にあっては、前室における混合ガスの滞留時間と、その滞留時間分だけ混合ガスが前室に留まった場合に、混合ガスが自着火を起こさない温度に前室を設定して改質を行う例を示したが、前室内に積極的に火炎伝播を阻止する手段を設けてもよい。
図6は、このような例を示したものであり、チューブ8aの先端にフレームアレスタ60を配設するとともに、ガス流路9dの内壁61及びよどみを発生する部位62に火炎伝播防止用に金塗覆処理wを施している。このようにしても、前室9での火炎形成・伝播を防止することができる。このように、前室9内に、触媒反応室5から上流側への火炎伝播を抑制する構成を火炎伝播抑制手段と呼ぶ。
(5) これまで説明してきた実施の形態にあっては、炭化水素系燃料に対して水蒸気を添加し、部分酸化反応を経た後、水蒸気改質反応を起こさせる例を示したが、所謂、二酸化炭素改質反応を起こさせてもよい。この二酸化炭素改質反応も吸熱反応であり、反応形態は以下に示す化3に従うものとなる。
[Another embodiment]
Another embodiment of the present application will be described.
(1) In the above-described embodiment, a gas flow path having substantially the same diameter as the tube extending from the mixing chamber is provided in the adjustment section of the front chamber, and the flow rate of the mixed gas is controlled via the tube and the gas flow path. Although an example in which the residence time is shortened while maintaining a relatively high level and the mixed gas is guided to the catalytic reaction chamber has been shown, as shown in FIG. 5, a combined flow path 90 is provided downstream from the outlet of the tube 8a. The mixed gas f <b> 2 may be caused to flow into the catalytic reaction chamber 5 through 90. However, the cross-sectional area of this combined flow path 90 can realize a flow velocity that reaches the catalytic reaction chamber in a time that is less than the self-ignition time under the temperature condition of this part. In this way, the properties of the mixed gas f2 can be made uniform, and the diffusion of the mixed gas f2 in the cross section direction of the catalytic reaction chamber in the vicinity of the inlet of the catalytic reaction chamber 5 can be improved.
(2) In the above embodiment, the hydrogen-containing gas production apparatus is provided with the temperature setting means 13a and the front chamber mixed gas temperature maintaining means 13b, and positively inputs water vapor and oxygen to the hydrocarbon fuel. The amount was controlled and the reaction in the catalytic reaction section was maintained in an appropriate state. However, when the normal operation state was almost fixed, the reforming unit 11 described above in each chamber 7, 8, 9 Since the flow velocity is substantially determined, the flow path cross-sectional configuration may be configured so that the temperature of the mixed gas in the front chamber 9 is appropriate.
That is, when the partial oxidation lower limit temperature is determined by the reforming catalyst c1 and the gas composition of the mixed gas f2 is determined, the dew point temperature is determined, and thus the anterior chamber lower limit temperature referred to in the present application is determined.
On the other hand, with respect to the front chamber upper limit temperature, the steam reforming lower limit temperature is determined by the reforming catalyst c1, and the mixed gas depends on the shape of the gas flow path 9d in the tube 8a through which the mixed gas f2 flows and the adjusting section 9b on the downstream side. The maximum time until f2 reaches the catalytic reaction chamber 5 from the mixing chamber 8 is determined. Therefore, the relationship between the temperature and the residence time of the mixed gas shown in FIG. 4 as described above is obtained in advance, and even when the mixed gas f2 stays in the front chamber for the residence time, the mixed gas f2 The object of the present application can be achieved by setting the temperature at which the self-ignition does not occur to the upper limit temperature of the front chamber.
(3) In the above embodiment, an example is shown in which the temperature of the mixed gas in the front chamber is controlled according to the representative temperature of the catalytic reaction chamber. Basically, partial oxidation is performed at the inlet of the catalytic reaction section. Since it is sufficient if the reaction can be generated, the temperature of the mixed gas in the front chamber is led to the front chamber lower limit temperature side in order to configure the control of the temperature setting unit 13a and the temperature maintaining unit 13b of the front chamber mixed gas described above. It can also be configured.
In this case, the reaction can be controlled in such a direction as to avoid the generation of carbon that is likely to be a problem in the catalytic reaction portion while ensuring the occurrence of the partial oxidation reaction necessary for the reforming.
(4) In the above embodiment, when the mixed gas stays in the front chamber and the mixed gas stays in the front chamber for the residence time, the mixed gas is heated to a temperature at which self-ignition does not occur. Although an example of performing reforming by setting a chamber has been shown, a means for actively preventing flame propagation may be provided in the front chamber.
FIG. 6 shows such an example. A frame arrester 60 is disposed at the tip of the tube 8a, and the inner wall 61 of the gas flow path 9d and the stagnation portion 62 are coated with gold for preventing flame propagation. A covering process w is performed. Even in this way, flame formation and propagation in the front chamber 9 can be prevented. In this way, a configuration that suppresses the flame propagation from the catalytic reaction chamber 5 to the upstream side in the front chamber 9 is referred to as flame propagation suppression means.
(5) In the embodiment described so far, an example in which a steam reforming reaction is caused after adding a steam to a hydrocarbon-based fuel and undergoing a partial oxidation reaction has been shown. A carbon dioxide reforming reaction may be caused. This carbon dioxide reforming reaction is also an endothermic reaction, and the reaction form follows the chemical formula 3 shown below.

Figure 0004781704
Figure 0004781704

図7に、化2に従った水蒸気改質及び化3に従った二酸化炭素改質を行わせるGTL製造プロセスの構成例を図1に対応して示した。設備構成は、図1に示すものと同様であるが、図1に示す例では、炭化水素系燃料fに水蒸気sのみを添加して原料ガスf1を得ていたのに対して、この例では、水蒸気s及び二酸化炭素COも添加して原料ガスf1を得ている。このGTL製造プロセスでは、水蒸気改質反応と二酸化炭素改質反応との両者の反応を進行させることができる。
このような反応形態にあっても、本願に係る水素含有ガスの製造方法及び装置では、前室、それに続く触媒反応室での状態を所望の良好なものとできる。
FIG. 7 shows a configuration example of a GTL manufacturing process for performing steam reforming according to Chemical Formula 2 and carbon dioxide reforming according to Chemical Formula 3 in correspondence with FIG. Although the equipment configuration is the same as that shown in FIG. 1, in the example shown in FIG. 1, only the steam s is added to the hydrocarbon fuel f to obtain the raw material gas f1, whereas in this example, Water vapor s and carbon dioxide CO 2 are also added to obtain a raw material gas f1. In this GTL manufacturing process, both the steam reforming reaction and the carbon dioxide reforming reaction can proceed.
Even in such a reaction mode, in the method and apparatus for producing a hydrogen-containing gas according to the present application, the state in the front chamber and the subsequent catalytic reaction chamber can be made as desired.

本発明に係る水素含有ガスの製造装置を備えたGTL製造プロセスの構成を示す図The figure which shows the structure of the GTL manufacturing process provided with the manufacturing apparatus of the hydrogen containing gas which concerns on this invention. 改質ユニットの上部構成を示す図Diagram showing the upper structure of the reforming unit 触媒反応室における入口温度を触媒反応室内温度との関係を示す図Diagram showing the relationship between the inlet temperature in the catalytic reaction chamber and the temperature in the catalytic reaction chamber 混合ガス温度と着火遅れ時間との関係を示す図Diagram showing the relationship between the mixed gas temperature and the ignition delay time 前室の別構成例を示す図Diagram showing another configuration example of the front chamber 図2に対応する前室構成において火炎伝播抑制手段を設けた例を示す図The figure which shows the example which provided the flame propagation suppression means in the front chamber structure corresponding to FIG. 図1に対応する二酸化炭素を添加する別実施の構成例を示す図The figure which shows the structural example of another implementation which adds the carbon dioxide corresponding to FIG.

符号の説明Explanation of symbols

1 水素含有ガスの製造装置
2 GTL反応器
5 触媒反応室
7 原料ガス室
8 混合室
8a チューブ
8b 酸素室
9 前室
11 改質ユニット
13 制御装置
13a 温度設定手段
13b 温度維持手段
13c 記憶手段
c1 改質触媒
c2 脱硫触媒
f 炭化水素系燃料
f1 原料ガス
f2 混合ガス
h 水素リッチガス
O 酸素
p パージガス
s 水蒸気
DESCRIPTION OF SYMBOLS 1 Hydrogen-containing gas production apparatus 2 GTL reactor 5 Catalytic reaction chamber 7 Raw material gas chamber 8 Mixing chamber 8a Tube 8b Oxygen chamber 9 Front chamber 11 Reforming unit 13 Controller 13a Temperature setting means 13b Temperature maintaining means 13c Storage means c1 Catalyst c2 desulfurization catalyst f hydrocarbon fuel f1 raw material gas f2 mixed gas h hydrogen rich gas O oxygen p purge gas s water vapor

Claims (15)

水蒸気と炭化水素系燃料とが混合された原料ガスに対して酸素含有ガスを混合室で混合する混合工程と、
前記混合室で得られた混合ガスを触媒反応室の上流側に設けた前室を介して前記触媒反応室に導き、前記混合ガスを改質触媒に接触させて、部分酸化反応及び水蒸気改質反応により水素含有ガスを得る改質工程とを実行する水素含有ガスの製造方法であって、
前記改質触媒が前記部分酸化反応を起こす下限温度を部分酸化下限温度、前記水蒸気改質反応を起こす下限温度を水蒸気改質下限温度として、前記部分酸化下限温度以上、前記水蒸気改質下限温度未満の温度で、
前記混合室から前記触媒反応室に前記混合ガスが到達するのに要する移流時間で前記混合ガスが自着火する温度である自着火温度に対して、前記自着火温度未満の温度に、
前記混合室及び前記前室の温度を設定して前記混合ガスを前記触媒反応室に導入する水素含有ガスの製造方法。
A mixing step of mixing an oxygen-containing gas in a mixing chamber with a raw material gas in which water vapor and hydrocarbon fuel are mixed;
The mixed gas obtained in the mixing chamber is led to the catalytic reaction chamber through a front chamber provided upstream of the catalytic reaction chamber, and the mixed gas is brought into contact with the reforming catalyst to perform partial oxidation reaction and steam reforming. A method for producing a hydrogen-containing gas, comprising performing a reforming step of obtaining a hydrogen-containing gas by a reaction,
The lower limit temperature at which the reforming catalyst causes the partial oxidation reaction is defined as a partial oxidation lower limit temperature, and the lower limit temperature at which the reforming catalyst undergoes the steam reforming reaction is defined as a steam reforming lower limit temperature. At a temperature of
With respect to the self-ignition temperature that is the temperature at which the mixed gas self-ignites in the advection time required for the mixed gas to reach the catalytic reaction chamber from the mixing chamber, the temperature is lower than the self-ignition temperature.
A method for producing a hydrogen-containing gas, wherein the temperature of the mixing chamber and the front chamber is set and the mixed gas is introduced into the catalytic reaction chamber.
前記部分酸化下限温度と前記混合ガスの露点温度とに関して高い側の温度を前室下限温度とし、前記自着火温度を前室上限温度として、
前記前室を流れる前記混合ガスの温度を、前記前室上限温度未満、前記前室下限温度より高い温度に維持する請求項1記載の水素含有ガスの製造方法。
The higher temperature with respect to the partial oxidation lower limit temperature and the dew point temperature of the mixed gas is set as the front chamber lower limit temperature, and the self-ignition temperature is set as the front chamber upper limit temperature.
The method for producing a hydrogen-containing gas according to claim 1, wherein the temperature of the mixed gas flowing through the front chamber is maintained at a temperature lower than the upper limit temperature of the front chamber and higher than the lower limit temperature of the front chamber.
前記前室の温度を、前記前室下限温度側に導く請求項2記載の水素含有ガスの製造方法。 The method for producing a hydrogen-containing gas according to claim 2, wherein the temperature of the front chamber is led to the lower limit temperature side of the front chamber. 前記触媒反応室における代表温度に従って、前記混合室又は前記前室あるいはそれらの両方の温度を調整する請求項1又は2記載の水素含有ガスの製造方法。 The method for producing a hydrogen-containing gas according to claim 1 or 2, wherein the temperature of the mixing chamber or the front chamber or both of them is adjusted according to a representative temperature in the catalytic reaction chamber . 前記原料ガスが導入される原料ガス室の下流側に前記混合室を備えて、前記混合室において前記混合工程を実行し、
前記混合室から前記前室を介して前記混合ガスを前記触媒反応室に導入して水素含有ガスを製造するに、
前記原料ガス室に於ける前記原料ガスの最低流速より、前記混合室及び前記前室における前記混合ガスの流速を高くする請求項1〜4のいずれか1項記載の水素含有ガスの製造方法。
The mixing chamber is provided on the downstream side of the source gas chamber into which the source gas is introduced, and the mixing step is performed in the mixing chamber.
In order to produce a hydrogen-containing gas by introducing the mixed gas from the mixing chamber through the front chamber into the catalytic reaction chamber,
The method for producing a hydrogen-containing gas according to any one of claims 1 to 4, wherein a flow rate of the mixed gas in the mixing chamber and the front chamber is set higher than a minimum flow rate of the raw material gas in the raw material gas chamber.
前記前室の前記触媒反応室との境界側部位に、断熱材料層を配設する請求項1〜5のいずれか1項記載の水素含有ガスの製造方法。 The method for producing a hydrogen-containing gas according to any one of claims 1 to 5, wherein a heat insulating material layer is disposed at a boundary side portion of the front chamber with the catalytic reaction chamber. 前記前室内に、前記触媒反応室から上流側への火炎伝播を抑制する火炎伝播抑制手段を配設する請求項1〜6のいずれか1項記載の水素含有ガスの製造方法。 The method for producing a hydrogen-containing gas according to any one of claims 1 to 6, wherein flame propagation suppression means for suppressing flame propagation from the catalytic reaction chamber to the upstream side is disposed in the front chamber. 前記触媒反応室に導入される混合ガスの硫黄化合物濃度を1ppb以下にする請求項1〜7のいずれか1項記載の水素含有ガスの製造方法。 The method for producing a hydrogen-containing gas according to any one of claims 1 to 7, wherein the concentration of the sulfur compound in the mixed gas introduced into the catalytic reaction chamber is 1 ppb or less. 水蒸気と炭化水素系燃料とが混合された原料ガスに対して酸素含有ガスを混合する混合室と、
前記混合室で得られた混合ガスを触媒反応室の上流側に設けた前室を介して前記触媒反応室に導き、前記混合ガスを改質触媒に接触させて、部分酸化反応及び水蒸気改質反応により水素含有ガスを得る水素含有ガスの製造装置であって、
前記改質触媒が前記部分酸化反応を起こす下限温度を部分酸化下限温度、前記水蒸気改質反応を起こす下限温度を水蒸気改質下限温度として、前記部分酸化下限温度以上、前記水蒸気改質下限温度未満の温度で、
前記混合室から前記触媒反応室に前記混合ガスが到達するのに要する移流時間で前記混合ガスが自着火する温度である自着火温度に対して、当該自着火温度未満の温度に、
前記混合室及び前記前室の温度を設定する温度設定手段を備えた水素含有ガスの製造装置。
A mixing chamber for mixing an oxygen-containing gas with a raw material gas in which water vapor and hydrocarbon fuel are mixed;
The mixed gas obtained in the mixing chamber is led to the catalytic reaction chamber through a front chamber provided upstream of the catalytic reaction chamber, and the mixed gas is brought into contact with the reforming catalyst to perform partial oxidation reaction and steam reforming. A hydrogen-containing gas production apparatus for obtaining a hydrogen-containing gas by a reaction,
The lower limit temperature at which the reforming catalyst causes the partial oxidation reaction is defined as a partial oxidation lower limit temperature, and the lower limit temperature at which the reforming catalyst undergoes the steam reforming reaction is defined as a steam reforming lower limit temperature. At a temperature of
With respect to the self-ignition temperature that is the temperature at which the mixed gas self-ignites in the advection time required for the mixed gas to reach the catalytic reaction chamber from the mixing chamber, the temperature is lower than the self-ignition temperature.
An apparatus for producing a hydrogen-containing gas, comprising temperature setting means for setting the temperature of the mixing chamber and the front chamber.
前記部分酸化下限温度と前記混合ガスの露点温度とに関して高い側の温度を前室下限温度とし、前記自着火温度を前室上限温度として、
前記前室を流れる前記混合ガスの温度を、前記前室上限温度未満、前記前室下限温度より高い温度に維持する前室混合ガス温度維持手段を備えた請求項9記載の水素含有ガスの製造装置。
The higher temperature with respect to the partial oxidation lower limit temperature and the dew point temperature of the mixed gas is set as the front chamber lower limit temperature, and the self-ignition temperature is set as the front chamber upper limit temperature.
The production of a hydrogen-containing gas according to claim 9, further comprising a front chamber mixed gas temperature maintaining means for maintaining the temperature of the mixed gas flowing through the front chamber at a temperature lower than the front chamber upper limit temperature and higher than the front chamber lower limit temperature. apparatus.
前記前室の温度を、前記前室下限温度側に導く請求項10記載の水素含有ガスの製造装置。 The apparatus for producing a hydrogen-containing gas according to claim 10, wherein the temperature of the front chamber is led to the lower limit temperature side of the front chamber. 前記触媒反応室における代表温度に従って、前記混合室又は前記前室あるいはそれらの両方の温度を調整する請求項9又10記載の水素含有ガスの製造装置。 The apparatus for producing a hydrogen-containing gas according to claim 9 or 10, wherein the temperature of the mixing chamber and / or the front chamber is adjusted according to a representative temperature in the catalytic reaction chamber . 前記原料ガスが導入される原料ガス室の下流側に前記混合室を備え、
前記原料ガス室に於ける前記原料ガスの最低流速より、前記混合室及び前記前室における前記混合ガスの流速を高くする請求項9〜12のいずれか1項記載の水素含有ガスの製造装置。
The mixing chamber is provided downstream of the source gas chamber into which the source gas is introduced,
The apparatus for producing a hydrogen-containing gas according to any one of claims 9 to 12, wherein a flow rate of the mixed gas in the mixing chamber and the front chamber is set higher than a minimum flow rate of the raw material gas in the raw material gas chamber.
前記前室の前記触媒反応室との境界側部位に、通気性を有する断熱材料層を備えた請求項9〜13のいずれか1項記載の水素含有ガスの製造装置。 The apparatus for producing a hydrogen-containing gas according to any one of claims 9 to 13, further comprising a heat insulating material layer having air permeability at a boundary side portion of the front chamber with the catalytic reaction chamber. 前記前室内に、前記触媒反応室から上流側への火炎伝播を抑制する火炎伝播抑制手段を備えた請求項9〜14のいずれか1項記載の水素含有ガスの製造装置。 The apparatus for producing a hydrogen-containing gas according to any one of claims 9 to 14, further comprising flame propagation suppressing means for suppressing flame propagation from the catalytic reaction chamber to the upstream side in the front chamber.
JP2005104659A 2005-03-31 2005-03-31 Method and apparatus for producing hydrogen-containing gas Expired - Fee Related JP4781704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005104659A JP4781704B2 (en) 2005-03-31 2005-03-31 Method and apparatus for producing hydrogen-containing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005104659A JP4781704B2 (en) 2005-03-31 2005-03-31 Method and apparatus for producing hydrogen-containing gas

Publications (2)

Publication Number Publication Date
JP2006282453A JP2006282453A (en) 2006-10-19
JP4781704B2 true JP4781704B2 (en) 2011-09-28

Family

ID=37404751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005104659A Expired - Fee Related JP4781704B2 (en) 2005-03-31 2005-03-31 Method and apparatus for producing hydrogen-containing gas

Country Status (1)

Country Link
JP (1) JP4781704B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246179A (en) * 2011-05-27 2012-12-13 Panasonic Corp Hydrogen generation apparatus and fuel cell system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0303438A3 (en) * 1987-08-14 1989-12-27 DAVY McKEE CORPORATION Production of synthesis gas from hydrocarbonaceous feedstock
GB2311790A (en) * 1996-04-04 1997-10-08 British Gas Plc Production of synthesis gas from hydrocarbonaceous feedstock
JP4887572B2 (en) * 2001-06-12 2012-02-29 パナソニック株式会社 Hydrogen generator
US6921516B2 (en) * 2001-10-15 2005-07-26 General Motors Corporation Reactor system including auto ignition and carbon suppression foam
JP4147521B2 (en) * 2002-05-17 2008-09-10 株式会社日本ケミカル・プラント・コンサルタント Self-oxidation internal heating type reforming method and apparatus
JP2004103358A (en) * 2002-09-09 2004-04-02 Honda Motor Co Ltd Hydrogen-supply system for fuel cell

Also Published As

Publication number Publication date
JP2006282453A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP5017112B2 (en) Method and apparatus for producing hydrogen-containing gas
EP2419375B1 (en) Process for producing a hydrogen-containing product gas
JP5400269B2 (en) Reformed gas production method and reformed gas production apparatus
US6254807B1 (en) Control of H2 and CO produced in partial oxidation process
US20080028680A1 (en) Process to Prepare Synthesis Gas
Dias et al. Autothermal reforming of methane over Ni/γ-Al2O3 promoted with Pd: The effect of the Pd source in activity, temperature profile of reactor and in ignition
AU2005292828B2 (en) Method and apparatus for producing synthesis gas
EP3468706B1 (en) Co rich synthesis gas production
Specchia et al. Fuel processor based on syngas production via short contact time catalytic partial oxidation reactors
Iaquaniello et al. Catalytic partial oxidation coupled with membrane purification to improve resource and energy efficiency in syngas production
JP2006240916A (en) Reformer
JP4781704B2 (en) Method and apparatus for producing hydrogen-containing gas
JP4838526B2 (en) Syngas production method and apparatus
TW201202406A (en) Methods for production of synthesis gas
Dehkordi et al. Compartment model for steam reforming of methane in a membrane-assisted bubbling fluidized-bed reactor
AU7626600A (en) Process for producing syngas in a short contact time reactor using catalytic partial oxidation of hydrogen sulfide
JP2005193110A (en) Synthetic gas producing catalyst and method for producing synthetic gas by using the same
JP2010138007A (en) Hydrogen generator
KR101796071B1 (en) Multistage catalyst reactor for the selective oxidation using precious metal catalyst and mixed metal oxide catalyst
JP4837384B2 (en) Syngas production reactor integrated with waste heat recovery unit
JP5823341B2 (en) Self-heating reformer and steam reforming method using the same
Jardim Tri-reforming of CO2-rich natural gas: equilibrium analysis and reactor technology evaluation.
JP5133570B2 (en) Insulation method of reformer
JP2007117798A (en) Reforming catalyst, reforming method, operation method and structure of reforming catalyst
TW201350433A (en) Method and apparatus for producing hydrogen

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070329

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees