JP2006281317A - Method and apparatus for manufacturing amorphous magnetic thin strip with excellent thickness uniformity - Google Patents

Method and apparatus for manufacturing amorphous magnetic thin strip with excellent thickness uniformity Download PDF

Info

Publication number
JP2006281317A
JP2006281317A JP2006065261A JP2006065261A JP2006281317A JP 2006281317 A JP2006281317 A JP 2006281317A JP 2006065261 A JP2006065261 A JP 2006065261A JP 2006065261 A JP2006065261 A JP 2006065261A JP 2006281317 A JP2006281317 A JP 2006281317A
Authority
JP
Japan
Prior art keywords
cooling roll
amorphous magnetic
index
magnetic ribbon
thickness uniformity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006065261A
Other languages
Japanese (ja)
Other versions
JP4681477B2 (en
Inventor
Shigekatsu Ozaki
茂克 尾崎
Yuji Hiramoto
祐二 平本
Takeshi Imai
武 今井
Yusuke Noda
雄祐 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006065261A priority Critical patent/JP4681477B2/en
Publication of JP2006281317A publication Critical patent/JP2006281317A/en
Application granted granted Critical
Publication of JP4681477B2 publication Critical patent/JP4681477B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture an amorphous magnetic thin strip that has uniform thickness distribution in both width direction and casting direction, excellent space factor and magnetic properties, based on an index which is a newly found index representing a contact area between a cooling roll and molten metal. <P>SOLUTION: The method for manufacturing an amorphous magnetic thin strip with the excellent thickness uniformity by rapidly solidifying iron-based molten metal on a surface of cooling roll rotated at a high velocity includes: (a) evaluating and controlling the surface of cooling roll using a surface unevenness index Z defined in the formula below; and (b) controlling the surface unevenness index Z within a designated range. The formula is Z=Ra<SP>k</SP>×(W/Sm), where Ra is an arithmetical mean roughness (μm) on the cooling roll surface; W/Sm is the number of roughness peaks existing in a surface roughness measuring distance W (μm) in an axial direction of the cooling roll (Sm is an average distance (μm) of roughness peaks existing on the cooling roll surface); and k is an index. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、幅方向及び鋳造方向の厚さが均一な非晶質磁性薄帯を製造する製造方法と製造装置に関するものである。   The present invention relates to a manufacturing method and a manufacturing apparatus for manufacturing an amorphous magnetic ribbon having a uniform thickness in the width direction and the casting direction.

従来から、Fe−B−Si系の非晶質合金磁性薄帯は、単ロール法、即ち、Fe−B−Si系の溶融金属を、スリット状のノズルから、高速回転している冷却ロールの表面に噴出して急冷凝固させる方法で製造されている。   Conventionally, the Fe-B-Si-based amorphous alloy magnetic ribbon has been manufactured by using a single roll method, that is, a Fe-B-Si-based molten metal of a cooling roll rotating at high speed from a slit-like nozzle. It is manufactured by a method of jetting to the surface and rapidly solidifying.

Fe−B−Si系の非晶質合金磁性薄帯(以下、単に「非晶質磁性薄帯」ということがある。)は、主として、電力トランスやモーターコアの鉄心材料として、積層されて使用されているが、該材料の占積率を高めて機器性能を高めたいというユーザー側の要求に応えるには、非晶質磁性薄帯の表面の平滑度を高めることは勿論のこと、非晶質磁性薄帯の幅方向及び鋳造方向における板厚分布を均一化すること(均厚性の向上)が必要となる。   Fe-B-Si-based amorphous alloy magnetic ribbons (hereinafter sometimes simply referred to as “amorphous magnetic ribbons”) are mainly used as a core material for power transformers and motor cores. However, in order to meet the user's request to improve the device performance by increasing the space factor of the material, it is not only to increase the smoothness of the surface of the amorphous magnetic ribbon, but also to amorphous. It is necessary to make the thickness distribution in the width direction and the casting direction of the magnetic thin ribbon uniform (improve thickness uniformity).

非晶質磁性薄帯の表面の平滑度を高めるためには、溶融金属と直接接する冷却ロールの表面状態を、常に最適状態に保つことが必要となるが、冷却ロールの表面状態は、鋳造量と強い相関がある。即ち、鋳造量が増加するにしたがって、冷却ロールの表面における疵(表面疵)の数が増加するとともに、表面疵の深さも深くなる。   In order to increase the smoothness of the surface of the amorphous magnetic ribbon, it is necessary to always keep the surface state of the cooling roll in direct contact with the molten metal in an optimum state. There is a strong correlation. That is, as the casting amount increases, the number of wrinkles (surface wrinkles) on the surface of the cooling roll increases and the depth of the surface wrinkles also increases.

そして、冷却ロールの表面に噴出された溶融金属は、表面疵の形状に沿っても付着して急冷凝固するので、非晶質磁性薄帯の表面には、冷却ロールの表面疵(例えば凹凸)を転写したような起伏(凸凹)が形成される。さらに、鋳造が進行するにしたがい、冷却ロールの表面疵(凹凸)は大きくなるから、非晶質磁性薄帯の表面に転写される起伏(凸凹)も大きくなる。   The molten metal ejected onto the surface of the cooling roll adheres and solidifies rapidly along the shape of the surface defects, so that the surface of the amorphous magnetic ribbon has surface defects (for example, irregularities). As a result, undulations (unevenness) are formed. Furthermore, as casting progresses, the surface wrinkles (unevenness) of the cooling roll increases, so that the undulations (irregularities) transferred to the surface of the amorphous magnetic ribbon also increase.

非晶質磁性薄帯の表面に、冷却ロールの表面疵に起因して形成される起伏が、占積率の低下を招くことは当然のことである。   It is natural that the undulations formed on the surface of the amorphous magnetic ribbon due to the surface defects of the cooling roll cause a decrease in the space factor.

そこで、鋳造の進行に伴う表面疵の増加を抑制する対策として、鋳造中の冷却ロールの表面を研磨する方法が提案された(特許文献1〜3、参照)。これらの方法により、非晶質薄帯の表面の平滑度は向上するが、非晶質磁性薄帯の均厚性は向上しない。   Therefore, as a measure for suppressing an increase in surface flaws accompanying the progress of casting, a method of polishing the surface of the cooling roll during casting has been proposed (see Patent Documents 1 to 3). By these methods, the smoothness of the surface of the amorphous ribbon is improved, but the thickness uniformity of the amorphous magnetic ribbon is not improved.

一方、前述したように、非晶質磁性薄帯は、電力トランスやモーターコアの鉄心材料が主な用途であるので、優れた磁気特性を有していることが必要である。   On the other hand, as described above, since the amorphous magnetic ribbon is mainly used for a power transformer and a core material of a motor core, it needs to have excellent magnetic properties.

非晶質薄帯において、優れた磁気特性を確保するには、溶融金属を急冷し、凝固組織を完全な非晶質組織とする必要があるが、この急冷速度(冷却速度)は、冷却ロールの熱伝導率や肉厚、急冷凝固後の非晶質磁性薄帯の厚み等によって変化する。   In order to secure excellent magnetic properties in an amorphous ribbon, it is necessary to rapidly cool the molten metal and make the solidified structure completely amorphous. This rapid cooling rate (cooling rate) It varies depending on the thermal conductivity, thickness, and thickness of the amorphous magnetic ribbon after rapid solidification.

即ち、所定の熱伝導率を有し、ロール肉厚が一定の冷却ロールを用いて、溶融金属を急冷凝固させる場合、完全な非晶質組織を確保し、優れた磁気特性を得るには、非晶質磁性薄帯の幅方向及び鋳造方向における板厚分布を均一化する必要がある。   That is, when a molten metal is rapidly solidified by using a cooling roll having a predetermined thermal conductivity and a constant roll thickness, to secure a complete amorphous structure and obtain excellent magnetic properties, It is necessary to make the plate thickness distribution uniform in the width direction and casting direction of the amorphous magnetic ribbon.

特許文献4には、磁気特性のばらつきを低減するため、薄帯ロール面側の粗度Raにおいて上限値を規定することが開示されているが、非晶質磁性薄帯の均厚性を高めるものではない。   Patent Document 4 discloses that an upper limit value is defined in the roughness Ra on the ribbon roll surface side in order to reduce variation in magnetic properties, but it improves the thickness uniformity of the amorphous magnetic ribbon. It is not a thing.

非晶質磁性薄帯の厚みは、これまでの研究により、溶融金属の凝固速度に大きく影響を受け、凝固速度は、冷却ロールとパドル部溶融金属との接触面積に影響されることが判っている。したがって、この接触面積を評価し、管理することが、薄帯厚さ分布の均一化制御(均厚性の向上)において重要である。   The thickness of the amorphous magnetic ribbon has been greatly influenced by the solidification rate of the molten metal, and it has been found that the solidification rate is affected by the contact area between the cooling roll and the paddle molten metal. Yes. Therefore, it is important to evaluate and manage the contact area in the uniform control (improvement of thickness uniformity) of the ribbon thickness distribution.

冷却ロールの表面については、この他、Crメッキロールとの組み合わせで粗度を規定した技術(特許文献5)、梨地状表面を規定した技術(特許文献6)、砥粒番手で規定した技術(特許文献8)、ロール粗度をオンライン計測して製造条件を判定する技術(特許文献7)などが開示されているが、いずれも表面品位の改善を目的としたもので、板厚を制御することについては何ら示唆されていない。   Regarding the surface of the cooling roll, in addition to this, a technique (Patent Document 5) that defines the roughness in combination with a Cr plating roll, a technique (Patent Document 6) that defines a satin-like surface, and a technique that is defined by the grain number ( Patent Document 8), a technique for determining the manufacturing conditions by measuring roll roughness online (Patent Document 7) and the like have been disclosed, both of which are for the purpose of improving the surface quality and controlling the plate thickness. There is no suggestion about that.

このように、非晶質磁性薄帯において、占積率の向上、及び、優れた磁気特性の確保の両面から、薄帯厚さ分布の均一化制御(均厚性の向上)は重要な課題であるが、ロールの表面管理により、この課題を解決する方法は、いまのところ提案されていない。   As described above, in the amorphous magnetic ribbon, uniform control of the ribbon thickness distribution (improving thickness uniformity) is an important issue in terms of both improving the space factor and ensuring excellent magnetic properties. However, a method for solving this problem by controlling the surface of the roll has not been proposed so far.

特開昭61−209755号公報JP-A-61-209755 特開平3−161149号公報JP-A-3-161149 特開平3−165955号公報JP-A-3-165955 特開平2003−340554号公報Japanese Patent Laid-Open No. 2003-340554 特開昭56−30061号公報JP-A-56-30061 特開昭56−117868号公報JP-A-56-117868 特開平3−221245号公報JP-A-3-221245 特開2000−328206号公報JP 2000-328206 A

本発明は、上記現状に鑑み、冷却ロールと溶融金属の接触面積を代表する新規な指標を見いだし、この指標に基づいて、冷却ロールの表面を適確に評価・管理し、さらに調整することにより、幅方向及び鋳造方向における板厚分布が均一で、占積率及び磁気特性に優れたな非晶質磁性薄帯を製造することを課題とする。   In view of the present situation, the present invention has found a new index representing the contact area between the cooling roll and the molten metal, and based on this index, the surface of the cooling roll is accurately evaluated and managed, and further adjusted. An object of the present invention is to produce an amorphous magnetic ribbon having a uniform thickness distribution in the width direction and the casting direction and excellent in space factor and magnetic properties.

本発明者は、まず、冷却ロールと溶融金属との接触面積を代表する指標について、鋭意検討した。その結果、本発明者は、
(x)下記式で定義する表面凹凸指数Zを用いると、冷却ロールの表面を適確に評価・管理できること、
Z=Rak・(W/Sm)
ここで、Ra:冷却ロール表面の中心線平均粗さ(μm)
W/Sm:冷却ロール軸方向における表面粗度測定長W(μm)にわた
って存在する凹凸個数(Sm:冷却ロール表面に存在する凹凸
の平均間隔(μm))
k:指数
(y)上記表面凹凸指数Zを、上記接触面積(率)を定量的に代表する指標として使用できること、及び、
(z)上記表面凹凸指数Zを所定の範囲に制御し、冷却ロールの表面状態を調整すれば、均厚性に優れた非晶質磁性薄帯を製造できること、を見いだした。
First, the present inventor has intensively studied an index representing the contact area between the cooling roll and the molten metal. As a result, the present inventor
(X) When the surface roughness index Z defined by the following formula is used, the surface of the cooling roll can be accurately evaluated and managed,
Z = Ra k (W / Sm)
Here, Ra: Centerline average roughness of the surface of the cooling roll (μm)
W / Sm: Over the surface roughness measurement length W (μm) in the cooling roll axis direction
The number of irregularities present (Sm: irregularities present on the surface of the cooling roll
Mean interval (μm))
k: index (y) The surface roughness index Z can be used as an index that quantitatively represents the contact area (rate), and
(Z) It has been found that if the surface roughness index Z is controlled within a predetermined range and the surface state of the cooling roll is adjusted, an amorphous magnetic ribbon having excellent thickness uniformity can be produced.

本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。   This invention was made | formed based on the said knowledge, and the summary is as follows.

(1)鉄系溶融金属を高速回転中の冷却ロールの表面で急冷凝固させて非晶質磁性薄帯を製造する方法において、
(a)冷却ロールの表面状態を、下記式で定義する表面凹凸指数Zを用いて評価・管理し、
(b)上記表面凹凸指数を、所定の範囲に制御する
ことを特徴とする均厚性に優れた非晶質磁性薄帯の製造方法。
Z=Rak・(W/Sm)
ここで、Ra:冷却ロール表面の中心線平均粗さ(μm)
W/Sm:冷却ロール軸方向における表面粗度測定長W(μm)にわた
って存在する凹凸個数(Sm:冷却ロール表面に存在する凹凸
の平均間隔(μm))
k:指数
(1) In a method for producing an amorphous magnetic ribbon by rapidly solidifying an iron-based molten metal on the surface of a cooling roll rotating at high speed,
(A) The surface state of the cooling roll is evaluated and managed using the surface roughness index Z defined by the following formula,
(B) A method for producing an amorphous magnetic ribbon having excellent thickness uniformity, wherein the surface roughness index is controlled within a predetermined range.
Z = Ra k (W / Sm)
Here, Ra: Centerline average roughness of the surface of the cooling roll (μm)
W / Sm: Over the surface roughness measurement length W (μm) in the cooling roll axis direction
The number of irregularities present (Sm: irregularities present on the surface of the cooling roll
Mean interval (μm))
k: exponent

(2)前記表面凹凸指数Zにおいて、k=0.5であることを特徴とする(1)に記載の均厚性に優れた非晶質磁性薄帯の製造方法。   (2) The method for producing an amorphous magnetic ribbon having excellent thickness uniformity according to (1), wherein k = 0.5 in the surface roughness index Z.

(3)前記表面凹凸指数Zにおいて、板幅方向及び鋳造方向のZのバラツキを40以下に制御することを特徴とする(2)に記載の均厚性に優れた非晶質磁性薄帯の製造方法。   (3) In the surface unevenness index Z, the variation in Z in the plate width direction and the casting direction is controlled to 40 or less. The amorphous magnetic ribbon excellent in thickness uniformity according to (2), Production method.

(4)鉄系溶融金属を高速回転中の冷却ロールの表面で急冷凝固させて非晶質磁性薄帯を製造する装置であって、
(a)冷却ロールの表面状態を、下記式で定義する表面凹凸指数Zを用いて評価・管理する評価・管理装置、及び、
(b)上記表面凹凸指数を、所定の範囲に制御する制御装置
を備えることを特徴とする均厚性に優れた非晶質磁性薄帯の製造装置。
Z=Rak・(W/Sm)
ここで、Ra:冷却ロール表面の中心線平均粗さ(μm)
W/Sm:冷却ロール軸方向における表面粗度測定長W(μm)にわた
って存在する凹凸個数(Sm:冷却ロール表面に存在する凹凸
の平均間隔(μm))
k:指数
(4) An apparatus for producing an amorphous magnetic ribbon by rapidly solidifying an iron-based molten metal on the surface of a cooling roll rotating at high speed,
(A) An evaluation / management device that evaluates and manages the surface state of the cooling roll using the surface unevenness index Z defined by the following formula, and
(B) An apparatus for producing an amorphous magnetic ribbon excellent in thickness uniformity, comprising a controller for controlling the surface roughness index within a predetermined range.
Z = Ra k (W / Sm)
Here, Ra: Centerline average roughness of the surface of the cooling roll (μm)
W / Sm: Over the surface roughness measurement length W (μm) in the cooling roll axis direction
The number of irregularities present (Sm: irregularities present on the surface of the cooling roll
Mean interval (μm))
k: exponent

(5)前記表面凹凸指数Zにおいて、k=0.5であることを特徴とする(4)に記載の均厚性に優れた非晶質磁性薄帯の製造装置。   (5) The apparatus for producing an amorphous magnetic ribbon having excellent thickness uniformity according to (4), wherein k = 0.5 in the surface roughness index Z.

(6)前記表面凹凸指数Zにおいて、板幅方向及び鋳造方向のZのバラツキが40以下であることを特徴とする(5)に記載の均厚性に優れた非晶質磁性薄帯の製造装置。   (6) Production of an amorphous magnetic ribbon having excellent thickness uniformity according to (5), wherein in the surface roughness index Z, variation in Z in the sheet width direction and casting direction is 40 or less. apparatus.

本発明によれば、冷却ロールの表面を表面凹凸指数Zに基づいて適確に評価・管理し、さらに、この表面凹凸指数Zを適正範囲に調整することにより、幅方向及び鋳造方向における板厚分布が均一で、占積率及び磁気特性に優れる非晶質磁性薄帯を製造することができる。   According to the present invention, the surface of the cooling roll is accurately evaluated and managed based on the surface unevenness index Z, and further, by adjusting the surface unevenness index Z to an appropriate range, the plate thickness in the width direction and the casting direction is determined. An amorphous magnetic ribbon having a uniform distribution and excellent space factor and magnetic properties can be produced.

本発明者は、冷却ロールと溶融金属との接触面積を代表する指標について検討するに際し、まず、薄帯厚みと接触面積との関係を調査した。その結果を、図1に示す。   When examining the index representing the contact area between the cooling roll and the molten metal, the inventor first investigated the relationship between the ribbon thickness and the contact area. The result is shown in FIG.

ここで製造条件は、at%で、Fe:80.5%、Si:6.5%、B:12%、C:1%からなる合金を、溶融温度1320〜1340℃として、図3に示す単ロール鋳造装置で鋳造した。鋳造装置の冷却ロールは、直径1200mm、幅250mm、材質がCu−2%Bで、肉厚20mm、熱伝導率105W/(m・k)のものを用いた。また、ノズルの開口形状は0.7mm×100mmのスリット形状のものを用いた。鋳造時の冷却ロール−ノズル間ギャップは250μmとした。   Here, the production conditions are at%, Fe: 80.5%, Si: 6.5%, B: 12%, C: 1%, and an alloy having a melting temperature of 1320 to 1340 ° C. is shown in FIG. Cast with a single roll casting machine. As the cooling roll of the casting apparatus, a roll having a diameter of 1200 mm, a width of 250 mm, a material of Cu-2% B, a thickness of 20 mm, and a thermal conductivity of 105 W / (m · k) was used. The nozzle opening shape was 0.7 mm × 100 mm slit shape. The gap between the cooling roll and the nozzle during casting was 250 μm.

鋳造後の非晶質磁性薄帯の板厚とロール接触面積率を、薄帯1000mおきに測定した。ここで、ロール接触面積率は、薄帯のロール面をマイクロスコープで観察して、薄帯表面の凸部で、ロールとの摩擦により生じる細かな疵の観察された部位を接触部として特定し、画像処理により2値化して計算した。   The thickness of the amorphous magnetic ribbon after casting and the roll contact area ratio were measured every 1000 m of ribbon. Here, the roll contact area ratio is determined by observing the roll surface of the ribbon with a microscope, and identifying the portion of the projection on the ribbon surface where fine wrinkles caused by friction with the roll are observed as the contact portion. , And binarized by image processing.

図1の黒四角及び黒丸は、同一鋳造条件ではあるが、ロットの異なる非晶質磁性薄帯を調査した結果を示している。図1から、非晶質磁性薄帯厚みと接触面積の間に良好な相関関係があることが解かる。図1では、鋳造条件が同一にもかかわらず、接触面積が大きくなることを示している。即ち、冷却ロールの表面に存在する凹凸の態様が、非晶質磁性薄板の厚みに大きく影響する。したがって、この凹凸態様を何らかの指標で定量化できれば、この指標と非晶質磁性薄帯厚みとの相関関係に基づいて、非晶質磁性薄帯厚みを制御することができる。   Black squares and black circles in FIG. 1 indicate the results of investigating amorphous magnetic ribbons of different lots under the same casting conditions. It can be seen from FIG. 1 that there is a good correlation between the amorphous magnetic ribbon thickness and the contact area. FIG. 1 shows that the contact area increases despite the same casting conditions. That is, the aspect of the unevenness existing on the surface of the cooling roll greatly affects the thickness of the amorphous magnetic thin plate. Therefore, if this unevenness can be quantified by some index, the amorphous magnetic ribbon thickness can be controlled based on the correlation between this index and the amorphous magnetic ribbon thickness.

冷却ロールの表面に存在する多数の凹凸の形状要素を把握し定量化することは不可能であるので、本発明者は、これに替わるものとして凹凸の個数に着目した。   Since it is impossible to grasp and quantify a number of irregularities on the surface of the cooling roll, the present inventor has focused on the number of irregularities as an alternative.

凹凸の平均間隔を示す指標として、下記式で示す指標が知られているが、その逆数“1/Sm”は、単位長さ当たりの凹凸個数を表すことになる。したがって、このSmが大きいほど表面の凹凸が多いことを意味する。   An index represented by the following formula is known as an index indicating the average interval of the unevenness, and its reciprocal number “1 / Sm” represents the number of unevenness per unit length. Therefore, it means that there are many surface irregularities, so that this Sm is large.

Figure 2006281317
Figure 2006281317

そこで、本発明者は、表面粗さを測定曲線に従って正確に評価する“Ra”と“1/Sm”を何らかの形式で組み合せれば、冷却ロールの表面において、凹凸状態に係る粗さ評価に、表面に存在する凹凸個数が加味されることになるので、冷却ロールの表面状態をより適正に評価できるのではないかとの発想に至り、表面凹凸指数(新指標)として、
Z=Rak・(W/Sm)
ここで、Ra:冷却ロール表面の中心線平均粗さ(μm)
W/Sm:冷却ロール軸方向における表面粗度測定長W(μm)にわた
って存在する凹凸個数(Sm:冷却ロール表面に存在する凹凸
の平均間隔(μm))
k:指数
を定義した。
Therefore, the present inventor can accurately evaluate the roughness of the surface according to the measurement curve by combining “Ra” and “1 / Sm” in some form to evaluate the roughness of the surface of the cooling roll according to the unevenness state. Since the number of irregularities present on the surface is taken into account, the idea that the surface state of the cooling roll can be evaluated more appropriately is reached, and as the surface irregularity index (new index),
Z = Ra k (W / Sm)
Here, Ra: Centerline average roughness of the surface of the cooling roll (μm)
W / Sm: Over the surface roughness measurement length W (μm) in the cooling roll axis direction
The number of irregularities present (Sm: irregularities present on the surface of the cooling roll
Mean interval (μm))
k: An index was defined.

上記指数Zは、ロール表面の凹凸状態を、凹凸の量的評価を含めて総合的に評価する指数である。物理的には、冷却ロール表面と溶融金属との接触面積を意味し、Zが大きくなることは、即ち、冷却ロールと溶融金属との接触面積が大きくなることを意味する。   The index Z is an index for comprehensively evaluating the uneven state of the roll surface, including quantitative evaluation of the unevenness. Physically, it means the contact area between the surface of the cooling roll and the molten metal, and increasing Z means that the contact area between the cooling roll and the molten metal is increased.

kは、Zにおける粗さRaの重みを適宜変えるべき指数であり、設備条件、例えば、冷却ロールの材質や直径等から決まる値で、予め予備実験にて決定するものである。Wは、粗度の測定長で、板幅方向で評価する長さを表すため、任意に決定する値であり、非晶質磁性薄帯の板幅まで設定できる。   k is an index for appropriately changing the weight of the roughness Ra in Z, and is a value determined from equipment conditions, for example, the material and diameter of the cooling roll, and is determined in advance through preliminary experiments. W is a measurement length of roughness, and represents a length to be evaluated in the plate width direction. Therefore, W is an arbitrarily determined value and can be set up to the plate width of the amorphous magnetic ribbon.

したがって、Wを大きくすればマクロ的な評価となり、小さければミクロ的な評価となるが、実際には、幅方向の板厚分布を均一とするためにWを板幅とするのは意味を持たず、また、測定装置や測定精度の制約からもWは大きくできず、板幅の1/4以下、好ましくは10mm以下とする。   Therefore, if W is increased, it becomes a macro evaluation, and if it is small, it becomes a micro evaluation. However, in order to make the thickness distribution in the width direction uniform, it is actually meaningful to set W as the plate width. In addition, W cannot be increased due to limitations of the measurement apparatus and measurement accuracy, and is set to 1/4 or less, preferably 10 mm or less of the plate width.

本発明者らは、直径1200mm、幅250mmの冷却ロール(図3に示す装置)を用いて非晶質磁性薄帯を鋳造し、鋳造最尾端の非晶質磁性薄帯の板厚と、鋳造後の冷却ロールのRaとSmを、W=2500μmとして測定した。非晶質磁性薄帯の最尾端を測定サンプルとしたことは、冷却ロールの状態を評価するためには、鋳造が終了した後でしか評価できないためであり、鋳造後の冷却ロール状態と対にして評価できる非晶質磁性薄帯の部位が最尾端となるからである。   The inventors of the present invention cast an amorphous magnetic ribbon using a cooling roll having a diameter of 1200 mm and a width of 250 mm (apparatus shown in FIG. 3), and the thickness of the amorphous magnetic ribbon at the end of casting, The Ra and Sm of the cooling roll after casting were measured as W = 2500 μm. The fact that the end of the amorphous magnetic ribbon was used as the measurement sample was because the evaluation of the state of the cooling roll could only be performed after the casting was completed. This is because the portion of the amorphous magnetic ribbon that can be evaluated in this way is the tail end.

非晶質磁性薄帯の鋳造は、溶融合金の供給量変化による絶対的な板厚の変化と、冷却ロールと溶融金属の接触面積による相対的な板厚の変化との関係を調査するため、溶融金属のノズル開口形状と噴出圧力を変えて行い、また、Ra、Smの値を変化させるため、非晶質磁性薄帯を鋳造する前の冷却ロールの表面粗度を変更して行った。   In the casting of amorphous magnetic ribbon, in order to investigate the relationship between the change in the absolute plate thickness due to the change in the amount of molten alloy supplied and the change in the relative plate thickness due to the contact area between the cooling roll and the molten metal This was carried out by changing the nozzle opening shape and the jet pressure of the molten metal, and changing the surface roughness of the cooling roll before casting the amorphous magnetic ribbon in order to change the values of Ra and Sm.

これら一連の鋳造により、板厚22〜70μmの非晶質磁性薄帯を製造した。非晶質磁性薄帯の板厚が70μmを超えた場合、部分的な結晶化が生じ、良好な磁気特性を示さなかったため、評価は、板厚70μm以下の非晶質磁性薄帯を対象とした。測定したRaとSmからkを変えて、非晶質磁性薄帯の板厚と指数Zの相関を調査した。図2に、各鋳造条件にて、Z=20を基準値(ゼロ)とした場合の指数Zの変化に対する板厚の変化を示す。   By this series of castings, an amorphous magnetic ribbon having a thickness of 22 to 70 μm was produced. When the thickness of the amorphous magnetic ribbon exceeded 70 μm, partial crystallization occurred and did not show good magnetic properties. Therefore, the evaluation was conducted on an amorphous magnetic ribbon with a thickness of 70 μm or less. did. The correlation between the thickness of the amorphous magnetic ribbon and the index Z was investigated by changing k from the measured Ra and Sm. FIG. 2 shows changes in the plate thickness with respect to changes in the index Z when Z = 20 is set as a reference value (zero) under each casting condition.

図2において、△は、Z=20近傍で板厚が約25μmとなる鋳造条件にて冷却ロール表面粗度を変化させた場合の板厚の変化を、□は、Z=20近傍で板厚が約35μmとなる鋳造条件にて冷却ロール表面粗度を変化させた場合の板厚の変化を、◇は、Z=20近傍で板厚が約45μmとなる鋳造条件にて冷却ロール表面粗度を変化させた場合の板厚の変化を、○は、Z=20近傍で板厚が約55μmとなる鋳造条件にて冷却ロール表面粗度を変化させた場合の板厚の変化を示す。   In FIG. 2, Δ is a change in the plate thickness when the surface roughness of the cooling roll is changed under casting conditions in which the plate thickness is about 25 μm in the vicinity of Z = 20, and □ is a plate thickness in the vicinity of Z = 20. The change in sheet thickness when the surface roughness of the chill roll is changed under casting conditions with a thickness of about 35 μm. ◇ indicates the surface roughness of the chill roll under the casting conditions where the sheet thickness is about 45 μm near Z = 20. The change in the plate thickness when the thickness is changed, and the circle indicates the change in the plate thickness when the surface roughness of the cooling roll is changed under casting conditions in which the plate thickness is about 55 μm near Z = 20.

なお、図2において、k=0.5としたのは、本発明者らが図3に示す装置を用いて実験から解析した結果、k=0.5とした場合に、最も相関がよいことを見いだしたからである。なお、設備条件、例えば、冷却ロールの材質や直径等の違いから、kが0.5からずれることも考えられるので、設備が変わった場合は、予め、予備実験にて、kの値を決定する必要がある。   In FIG. 2, k = 0.5 is the result of the present inventors analyzing from the experiment using the apparatus shown in FIG. 3, and the best correlation is obtained when k = 0.5. Because they found out. Note that k may deviate from 0.5 due to differences in equipment conditions, for example, the material and diameter of the cooling roll, etc. If the equipment changes, the value of k is determined in advance in a preliminary experiment. There is a need to.

図2から、板厚の変化と指数Zの間には良好な相関関係があることが解かる。即ち、同じ鋳造条件(例えば、Z=20近傍で、板厚が約25μmとなる鋳造条件:図2中の△)においては、指数Zが大きくなることで板厚が厚くなることが判明し、さらに、絶対的な板厚が厚くなっても(例えば、Z=20近傍で、板厚が約45μmとなる鋳造条件で鋳造した場合:図2中の◇)、Zに対する板厚の変化量が変わらないことが判明した。   It can be seen from FIG. 2 that there is a good correlation between the change in sheet thickness and the index Z. That is, under the same casting conditions (for example, casting conditions where the plate thickness is about 25 μm in the vicinity of Z = 20: Δ in FIG. 2), it is found that the plate thickness increases as the index Z increases. Furthermore, even when the absolute plate thickness is increased (for example, when casting is performed in the vicinity of Z = 20 and the plate thickness is about 45 μm: ◇ in FIG. 2), the amount of change in the plate thickness with respect to Z is It turned out not to change.

また、この相関は、直線関係にあることから、板厚の変化は、Zの絶対値ではなく、変化量に依存することが判明した(例えば、Zが20から60まで、40変化すると、板厚は10μm変化する)。   Further, since this correlation is a linear relationship, it has been found that the change in the plate thickness depends not on the absolute value of Z but on the amount of change (for example, if Z is changed from 20 to 60 and 40, The thickness varies by 10 μm).

前記実験及び解析から、本発明者らは、指数Zのバラツキを所定の範囲内に制御すれば、幅方向及び鋳造方向における均厚性が優れた非晶質磁性薄帯を製造できることを見いだした。   From the experiment and analysis, the present inventors have found that an amorphous magnetic ribbon having excellent thickness uniformity in the width direction and the casting direction can be produced by controlling the variation of the index Z within a predetermined range. .

実際に、非晶質磁性薄帯を電力トランスやモーターコア等の鉄心材料として、積層して使用する場合、優れた占積率及び磁気特性を発揮させるためには、非晶質磁性薄帯の幅方向及び鋳造方向の板厚バラツキをあるレベル以下に抑制する必要がある。   Actually, when an amorphous magnetic ribbon is used as a core material for power transformers, motor cores, etc., in order to exhibit excellent space factor and magnetic properties, It is necessary to suppress the thickness variation in the width direction and the casting direction to a certain level or less.

本発明者らが調査した結果、積層して使用する場合、幅方向及び鋳造方向の板厚バラツキは、10μm以下であれば許容でき、さらに好ましくは5μm以下であることが判明した。図2から板厚バラツキが10μm以下となる指数Zのバラツキを求めた結果、Zのバラツキを40以下に制御する必要があることを見いだした。   As a result of investigations by the present inventors, it was found that the thickness variation in the width direction and the casting direction is acceptable if it is 10 μm or less, and more preferably 5 μm or less when used in a laminated state. As a result of obtaining the variation of the index Z with the plate thickness variation of 10 μm or less from FIG. 2, it was found that the Z variation needs to be controlled to 40 or less.

したがって、幅方向及び鋳造方向で均厚性に優れ、占積率及び磁気特性に優れる非晶質磁性薄帯を製造するためには、表面凹凸指数Zのバラツキを40以下に制御する必要がある。   Therefore, in order to produce an amorphous magnetic ribbon having excellent thickness uniformity in the width direction and casting direction, and excellent space factor and magnetic properties, it is necessary to control the variation of the surface unevenness index Z to 40 or less. .

次に、本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions of the examples are one example of conditions adopted for confirming the feasibility and effects of the present invention, and the present invention is limited to this one example of conditions. Is not to be done. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例)
at%で、Fe:80.5%、Si:6.5%、B:12%、C:1%からなる合金を、溶融温度1320〜1340℃として、図3に示す単ロール鋳造装置で鋳造した。鋳造装置の冷却ロールは、直径1200mm、幅250mm、材質がCu−2%Beで、肉厚20mm、熱伝導率105W/(m・k)のものを用いた。また、ノズルの開口形状は0.7mm×100mmのスリット形状のものを用いた。鋳造時の冷却ロール−ノズル間ギャップは250μmとした。また、板厚は、30μmとなるように溶融合金の噴出圧を調整した。
(Example)
At%, cast an alloy consisting of Fe: 80.5%, Si: 6.5%, B: 12%, C: 1% at a melting temperature of 1320 to 1340 ° C. with a single roll casting apparatus shown in FIG. did. As the cooling roll of the casting apparatus, a roll having a diameter of 1200 mm, a width of 250 mm, a material of Cu-2% Be, a thickness of 20 mm, and a thermal conductivity of 105 W / (m · k) was used. The nozzle opening shape was 0.7 mm × 100 mm slit shape. The gap between the cooling roll and the nozzle during casting was 250 μm. Moreover, the jet pressure of the molten alloy was adjusted so that the plate thickness was 30 μm.

この時、本発明例では、図3に示すオンライン研磨装置を用いて、冷却ロールの表面凹凸指数Z=Ra0.5・(2500/Sm)のバラツキが40以下となるように制御した。従来法では、オンライン研磨装置を用いずに操業を行った。鋳造前は、本発明例、従来法ともに、幅方向で均一にZ=20に調整した。 At this time, in the example of the present invention, the variation of the surface unevenness index Z = Ra 0.5 · (2500 / Sm) of the cooling roll was controlled to 40 or less using the online polishing apparatus shown in FIG. In the conventional method, the operation was performed without using an online polishing apparatus. Before casting, both the inventive example and the conventional method were adjusted to Z = 20 uniformly in the width direction.

本発明例では、鋳造後の薄帯幅方向でのZの値が23〜38で、バラツキが40以下となり、また、鋳造前後で比較しても、Zの値が、最大で20から38に変化したのみで、鋳造方向でもバラツキが40以下となった。一方、従来法では、オンライン研磨を用いないため、鋳造が進むにつれ、冷却ロール表面疵の数が増加し、Zの値が徐々に大きくなり、鋳造後の薄帯幅方向でのZの値が32〜83となり、Zのバラツキが40を超え、また、鋳造前後で比較しても、Zの値が、最大で83まで達した。   In the present invention example, the Z value in the strip width direction after casting is 23 to 38, the variation is 40 or less, and the Z value is 20 to 38 at the maximum even before and after casting. The variation was only 40 and less in the casting direction. On the other hand, in the conventional method, since online polishing is not used, the number of cooling roll surface flaws increases as the casting progresses, the value of Z gradually increases, and the value of Z in the strip width direction after casting increases. The variation of Z exceeded 40, and the variation of Z exceeded 40, and even when compared before and after casting, the value of Z reached 83 at the maximum.

その結果、本発明例では、板厚分布が、非晶質磁性薄帯の幅方向で30〜34μm、鋳造方向でも30〜33μmに収まり、均厚性に優れた非晶質磁性薄帯を製造することができた。一方、従来法では、板厚分布が、幅方向で30〜46μm、鋳造方向でも30〜41μmとなり、板厚バラツキを目標の10μm以下とすることができなかった。   As a result, in the example of the present invention, the thickness distribution is within a range of 30 to 34 μm in the width direction of the amorphous magnetic ribbon and 30 to 33 μm in the casting direction, and an amorphous magnetic ribbon having excellent thickness uniformity is manufactured. We were able to. On the other hand, in the conventional method, the plate thickness distribution is 30 to 46 μm in the width direction and 30 to 41 μm in the casting direction, and the plate thickness variation cannot be set to a target of 10 μm or less.

この薄帯の磁気特性と占積率を、表1に示す。表1から、本発明による非晶質磁性薄帯は、磁気特性及び占積率についても優れていることが解かる。   Table 1 shows the magnetic properties and space factor of the ribbon. From Table 1, it can be seen that the amorphous magnetic ribbon according to the present invention is excellent in magnetic properties and space factor.

Figure 2006281317
Figure 2006281317

前述したように、本発明によれば、冷却ロールの表面を、表面凹凸指数Zに基づいて、適確に評価・管理し、さらに、この表面凹凸指数Zを適正範囲に調整することにより、幅方向及び鋳造方向における板厚分布が均一で、占積率及び磁気特性に優れる非晶質磁性薄帯を製造することができる。このように、本発明は、占積率及び磁気特性に優れる非晶質磁性薄帯を提供するものであるから、産業上の利用可能性の高いものである。   As described above, according to the present invention, the surface of the cooling roll is accurately evaluated and managed based on the surface unevenness index Z, and further, the surface unevenness index Z is adjusted to an appropriate range. It is possible to produce an amorphous magnetic ribbon having a uniform plate thickness distribution in the direction and casting direction and excellent in space factor and magnetic properties. As described above, the present invention provides an amorphous magnetic ribbon having an excellent space factor and magnetic properties, and thus has high industrial applicability.

冷却ロールと溶融金属との接触面積と薄帯厚みとの相関を示す図である。It is a figure which shows the correlation with the contact area of a cooling roll and a molten metal, and ribbon thickness. Z(=Ra0.5・(2500/Sm))と板厚変化(μm)の相関を示す図である。It is a figure which shows the correlation of Z (= Ra 0.5 * (2500 / Sm)) and plate | board thickness change (micrometer). 本発明法を実施するための単ロール法の例を示す断面図である。It is sectional drawing which shows the example of the single roll method for implementing this invention method.

符号の説明Explanation of symbols

1 薄帯
2 巻取りロール
3 冷却ロール
4 溶融合金
5 タンディッシュ
6 ノズル
7 ストッパー
8 研磨装置
DESCRIPTION OF SYMBOLS 1 Thin strip 2 Winding roll 3 Cooling roll 4 Molten alloy 5 Tundish 6 Nozzle 7 Stopper 8 Polishing apparatus

Claims (6)

鉄系溶融金属を高速回転中の冷却ロールの表面で急冷凝固させて非晶質磁性薄帯を製造する方法において、
(a)冷却ロールの表面状態を、下記式で定義する表面凹凸指数Zを用いて評価・管理し、
(b)上記表面凹凸指数を、所定の範囲に制御する
ことを特徴とする均厚性に優れた非晶質磁性薄帯の製造方法。
Z=Rak・(W/Sm)
ここで、Ra:冷却ロール表面の中心線平均粗さ(μm)
W/Sm:冷却ロール軸方向における表面粗度測定長W(μm)にわた
って存在する凹凸個数(Sm:冷却ロール表面に存在する凹凸
の平均間隔(μm))
k:指数
In a method for producing an amorphous magnetic ribbon by rapidly solidifying an iron-based molten metal on the surface of a cooling roll rotating at high speed,
(A) The surface state of the cooling roll is evaluated and managed using the surface roughness index Z defined by the following formula,
(B) A method for producing an amorphous magnetic ribbon having excellent thickness uniformity, wherein the surface roughness index is controlled within a predetermined range.
Z = Ra k (W / Sm)
Here, Ra: Centerline average roughness of the surface of the cooling roll (μm)
W / Sm: Over the surface roughness measurement length W (μm) in the cooling roll axis direction
The number of irregularities present (Sm: irregularities present on the surface of the cooling roll
Mean interval (μm))
k: exponent
前記表面凹凸指数Zにおいて、k=0.5であることを特徴とする請求項1に記載の均厚性に優れた非晶質磁性薄帯の製造方法。   2. The method for producing an amorphous magnetic ribbon having excellent thickness uniformity according to claim 1, wherein k = 0.5 in the surface roughness index Z. 3. 前記表面凹凸指数Zにおいて、板幅方向及び鋳造方向のZのバラツキを40以下に制御することを特徴とする請求項2に記載の均厚性に優れた非晶質磁性薄帯の製造方法。   3. The method for producing an amorphous magnetic ribbon having excellent thickness uniformity according to claim 2, wherein in the surface unevenness index Z, variation in Z in the plate width direction and casting direction is controlled to 40 or less. 鉄系溶融金属を高速回転中の冷却ロールの表面で急冷凝固させて非晶質磁性薄帯を製造する装置であって、
(a)冷却ロールの表面状態を、下記式で定義する表面凹凸指数Zを用いて評価・管理する評価・管理装置、及び、
(b)上記表面凹凸指数を、所定の範囲に制御する制御装置
を備えることを特徴とする均厚性に優れた非晶質磁性薄帯の製造装置。
Z=Rak・(W/Sm)
ここで、Ra:冷却ロール表面の中心線平均粗さ(μm)
W/Sm:冷却ロール軸方向における表面粗度測定長W(μm)にわた
って存在する凹凸個数(Sm:冷却ロール表面に存在する凹凸
の平均間隔(μm))
k:指数
An apparatus for producing an amorphous magnetic ribbon by rapidly solidifying an iron-based molten metal on the surface of a cooling roll rotating at high speed,
(A) An evaluation / management device that evaluates and manages the surface state of the cooling roll using the surface unevenness index Z defined by the following formula, and
(B) A device for producing an amorphous magnetic ribbon excellent in thickness uniformity, comprising a control device for controlling the surface roughness index within a predetermined range.
Z = Ra k (W / Sm)
Here, Ra: Centerline average roughness of the surface of the cooling roll (μm)
W / Sm: Over the surface roughness measurement length W (μm) in the cooling roll axis direction
The number of irregularities present (Sm: irregularities present on the surface of the cooling roll
Mean interval (μm))
k: exponent
前記表面凹凸指数Zにおいて、k=0.5であることを特徴とする請求項4に記載の均厚性に優れた非晶質磁性薄帯の製造装置。   5. The apparatus for producing an amorphous magnetic ribbon having excellent thickness uniformity according to claim 4, wherein k is 0.5 in the surface roughness index Z. 前記表面凹凸指数Zにおいて、板幅方向及び鋳造方向のZのバラツキが40以下であることを特徴とする請求項5に記載の均厚性に優れた非晶質磁性薄帯の製造装置。   6. The apparatus for producing an amorphous magnetic ribbon excellent in thickness uniformity according to claim 5, wherein in the surface roughness index Z, the variation in Z in the plate width direction and the casting direction is 40 or less.
JP2006065261A 2005-03-11 2006-03-10 Method and apparatus for producing amorphous magnetic ribbon having excellent thickness uniformity Active JP4681477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006065261A JP4681477B2 (en) 2005-03-11 2006-03-10 Method and apparatus for producing amorphous magnetic ribbon having excellent thickness uniformity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005069731 2005-03-11
JP2006065261A JP4681477B2 (en) 2005-03-11 2006-03-10 Method and apparatus for producing amorphous magnetic ribbon having excellent thickness uniformity

Publications (2)

Publication Number Publication Date
JP2006281317A true JP2006281317A (en) 2006-10-19
JP4681477B2 JP4681477B2 (en) 2011-05-11

Family

ID=37403752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006065261A Active JP4681477B2 (en) 2005-03-11 2006-03-10 Method and apparatus for producing amorphous magnetic ribbon having excellent thickness uniformity

Country Status (1)

Country Link
JP (1) JP4681477B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008264875A (en) * 2007-04-16 2008-11-06 Grirem Advanced Materials Co Ltd Rare earth alloy cast sheet and method for producing the same
JP2008279459A (en) * 2007-05-08 2008-11-20 Nippon Steel Corp Method for producing amorphous alloy thin strip, and production device therefor
WO2008139858A1 (en) * 2007-05-08 2008-11-20 Nippon Steel Corporation Process for producing amorphous alloy ribbon and apparatus therefor
JP2008279457A (en) * 2007-05-08 2008-11-20 Nippon Steel Corp Method for producing amorphous alloy thin strip, and production device therefor
JP2013150996A (en) * 2012-01-24 2013-08-08 Chuden Rare Earth Co Ltd Method for manufacturing rare earth alloy piece
WO2020066989A1 (en) * 2018-09-26 2020-04-02 日立金属株式会社 METHOD FOR MANUFACTURING FE-BASED NANOCRYSTALLINE ALLOY STRIP, METHOD FOR MANUFACTURING MAGNETIC CORE, Fe-BASED NANOCRYSTALLINE ALLOY STRIP, AND MAGNETIC CORE
WO2023022002A1 (en) * 2021-08-17 2023-02-23 Hilltop株式会社 Method for producing fe-si-b-based thick rapidly solidified alloy thin strip

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08150442A (en) * 1994-11-28 1996-06-11 Sumitomo Metal Ind Ltd Roll for continuously casting metallic strip
JP2001522723A (en) * 1997-11-12 2001-11-20 アキアイ スペシアリ テルニ ソシエタ ペル アチオニ Cooling roll for continuous casting machine
JP2003225742A (en) * 2002-02-05 2003-08-12 Nippon Steel Corp Method for casting austenitic stainless steel excellent in surface characteristic and its cast slab

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08150442A (en) * 1994-11-28 1996-06-11 Sumitomo Metal Ind Ltd Roll for continuously casting metallic strip
JP2001522723A (en) * 1997-11-12 2001-11-20 アキアイ スペシアリ テルニ ソシエタ ペル アチオニ Cooling roll for continuous casting machine
JP2003225742A (en) * 2002-02-05 2003-08-12 Nippon Steel Corp Method for casting austenitic stainless steel excellent in surface characteristic and its cast slab

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008264875A (en) * 2007-04-16 2008-11-06 Grirem Advanced Materials Co Ltd Rare earth alloy cast sheet and method for producing the same
JP2008279459A (en) * 2007-05-08 2008-11-20 Nippon Steel Corp Method for producing amorphous alloy thin strip, and production device therefor
WO2008139858A1 (en) * 2007-05-08 2008-11-20 Nippon Steel Corporation Process for producing amorphous alloy ribbon and apparatus therefor
JP2008279457A (en) * 2007-05-08 2008-11-20 Nippon Steel Corp Method for producing amorphous alloy thin strip, and production device therefor
US8096345B2 (en) 2007-05-08 2012-01-17 Nippon Steel Corporation Method and apparatus for producing amorphous ribbon
JP2013150996A (en) * 2012-01-24 2013-08-08 Chuden Rare Earth Co Ltd Method for manufacturing rare earth alloy piece
WO2020066989A1 (en) * 2018-09-26 2020-04-02 日立金属株式会社 METHOD FOR MANUFACTURING FE-BASED NANOCRYSTALLINE ALLOY STRIP, METHOD FOR MANUFACTURING MAGNETIC CORE, Fe-BASED NANOCRYSTALLINE ALLOY STRIP, AND MAGNETIC CORE
JPWO2020066989A1 (en) * 2018-09-26 2021-09-24 日立金属株式会社 Method for manufacturing Fe-based nanocrystal alloy strip, method for manufacturing magnetic core, Fe-based nanocrystal alloy strip, and magnetic core
JP7434164B2 (en) 2018-09-26 2024-02-20 株式会社プロテリアル Method for manufacturing Fe-based nanocrystalline alloy ribbon, method for manufacturing magnetic core, Fe-based nanocrystalline alloy ribbon, and magnetic core
WO2023022002A1 (en) * 2021-08-17 2023-02-23 Hilltop株式会社 Method for producing fe-si-b-based thick rapidly solidified alloy thin strip

Also Published As

Publication number Publication date
JP4681477B2 (en) 2011-05-11

Similar Documents

Publication Publication Date Title
JP4681477B2 (en) Method and apparatus for producing amorphous magnetic ribbon having excellent thickness uniformity
JP6358178B2 (en) Continuous casting method and mold cooling water control device
JP6439762B2 (en) Steel continuous casting method
CN110709188B (en) Method for manufacturing austenitic stainless steel slab
JPH08505811A (en) Steel strip casting
JP6123549B2 (en) Manufacturing method of continuous cast slab
TWI655979B (en) Steel continuous casting method
JP2017173100A (en) Determination method of hic resistance performance in slab
CN115229149B (en) Continuous casting billet shell/liquid core thickness and solidification end point determining method based on crystallizer liquid level fluctuation in pressing process
TWI642796B (en) Amorphous alloy ribbon
JP6402750B2 (en) Steel continuous casting method
WO2018056322A1 (en) Continuous steel casting method
JP5962630B2 (en) Method for producing amorphous alloy ribbon
TWI787589B (en) Continuous casting method of steel billet
KR20170068645A (en) Method for manufacturing steel plate
RU2733525C1 (en) Crystallizer for continuous casting and continuous casting method
JP5831118B2 (en) Method and apparatus for continuous casting of steel
Jeong et al. In-depth study of mold heat transfer for the high speed continuous casting process
JP2020171932A (en) Continuous casting method
JP2991220B2 (en) Twin roll type continuous casting method for FeNi alloy
JP2006231400A (en) Mold powder for continuous casting of medium carbon steel, and continuous casting method
JP5020687B2 (en) Continuous casting method of slab steel with little center segregation
JP4846441B2 (en) Manufacturing method of high clean steel
JP5226548B2 (en) Continuous casting method of medium carbon steel with changing casting speed and level
JP2007030029A (en) Nozzle for casting amorphous alloy thin strip and casting method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110204

R151 Written notification of patent or utility model registration

Ref document number: 4681477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350