JP2006281263A - Method for rolling gear - Google Patents

Method for rolling gear Download PDF

Info

Publication number
JP2006281263A
JP2006281263A JP2005103984A JP2005103984A JP2006281263A JP 2006281263 A JP2006281263 A JP 2006281263A JP 2005103984 A JP2005103984 A JP 2005103984A JP 2005103984 A JP2005103984 A JP 2005103984A JP 2006281263 A JP2006281263 A JP 2006281263A
Authority
JP
Japan
Prior art keywords
gear
tooth
rolling
pitch point
dimension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005103984A
Other languages
Japanese (ja)
Inventor
Toshinaka Shinbutsu
利仲 新仏
Mitsuie Takemasu
光家 竹増
Shuichi Amano
秀一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Co Ltd
Original Assignee
Nissei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Co Ltd filed Critical Nissei Co Ltd
Priority to JP2005103984A priority Critical patent/JP2006281263A/en
Publication of JP2006281263A publication Critical patent/JP2006281263A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gears, Cams (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolling technique for a gear material, by which rolling technique, a gear product with an accurate tooth shape can be obtained. <P>SOLUTION: The gear material before rolling has such a tooth shape that when the whole depth is represented by hf, the dedendum from its pitch point toward its root side is represented by ht, and the addendum from its pitch point toward its outside diameter side is represented by hk, an approximately triangular projection is provided on the respective tooth flanks over the dedendum side and the addendum side so as to place its apex on the pitch point with its straight sides tilted. The gear material is rolled so as to satisfy the following expressions, 0.25ht≤b≤0.85ht, 0.25hk≤c≤0.85hk, 0.25ht≤d≤0.25hk, where "a" shows the full length of the projection including the pitch point, "b" shows the length of the projection on the dedendum side, "c" shows the length of the projection on the addendum side, and "d" shows the difference between the pitch point and the apex of the projection. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、歯車を仕上げ転造する技術に関する。更に詳しくは、焼結等で製造される素材歯車を仕上げ転造して製品歯車を製造するための歯車の転造技術に関する。   The present invention relates to a technique for finish rolling a gear. More specifically, the present invention relates to a gear rolling technique for producing a product gear by finish rolling a material gear manufactured by sintering or the like.

従来から歯元から歯先まで一様に転造代を設けた歯車の転造においては、製品歯車のピッチ点近傍が凹む傾向にあり、一様に転造されない現象があった。特に、焼結歯車の場合は、転造時に歯形の歯面を緻密化することも合せて行われることもあって、転造代を多くとる傾向があった。この焼結歯車自体の転造は、コスト面で他の成形歯車に比べ優れていることもあり、有効な成形方法の開発が望まれている。   Conventionally, in the rolling of a gear having a uniform rolling allowance from the tooth root to the tooth tip, there is a tendency that the vicinity of the pitch point of the product gear tends to be recessed, and the rolling is not uniformly performed. In particular, in the case of a sintered gear, the tooth surface of the tooth profile is sometimes densified at the time of rolling, and there is a tendency to increase the rolling allowance. The rolling of the sintered gear itself is superior in cost to other molded gears, and the development of an effective molding method is desired.

特に、焼結金属からなる歯車転造加工は、従来から種々の転造方法が試みられ、その転造技術も数多く知られている。例えば、ピッチ点付近に20〜70μの範囲を盛り上げて転造代とする転造方法(例えば、特許文献1参照)。又、仮歯面と歯底面をもつ焼結歯車を仮歯面が歯底面より外側に位置させて仮歯面と歯底面との境界部に転造で発生する余肉を吸収するための段差部をもたせる転造技術(例えば、特許文献2参照)、あるいは、予備成形歯形のダイスで、円板状素材の外周部に予備歯形を成形した後、目標歯形の歯先形状に対応する歯元形状に成形された仕上げ成形歯形のダイスで予備歯形を目標歯形に成形する転造技術(例えば、特許文献3参照)等が知られている。   In particular, various rolling methods have been tried for gear rolling made of sintered metal, and many rolling techniques are known. For example, a rolling method in which a range of 20 to 70 μ is raised near the pitch point to form a rolling allowance (for example, see Patent Document 1). Also, a step for absorbing a surplus generated by rolling at the boundary between the temporary tooth surface and the tooth bottom surface by positioning the sintered gear having the temporary tooth surface and the tooth bottom surface outside the tooth bottom surface. After forming a pre-tooth shape on the outer periphery of the disk-shaped material with a rolling technique (see, for example, Patent Document 2) or a pre-formed tooth shape die, the tooth base corresponding to the tooth shape of the target tooth shape A rolling technique (for example, refer to Patent Document 3) in which a preliminary tooth shape is formed into a target tooth shape by using a die of a finish forming tooth shape formed into a shape is known.

特公昭54−23670号公報Japanese Patent Publication No.54-23670 特許第3401164号公報Japanese Patent No. 3401164 特開2000−42673号公報JP 2000-42673 A

前述したように、従来からも歯車転造における問題点を解決してそれなりの対策は施されている。しかしながら、最近は様々な分野で高精度化が要求されており、歯車の転造技術においても例外ではない。従来の転造技術では限界があるものの、さらに高精度化を求められている。転造加工はダイスにより行われるが、必ずしも転造代に沿って一様に成形されるわけではない。   As described above, conventional measures have been taken to solve the problems in gear rolling. However, recently, high precision is required in various fields, and the gear rolling technology is no exception. Although there is a limit in the conventional rolling technology, higher accuracy is required. Although the rolling process is performed by a die, it is not necessarily formed uniformly along the rolling allowance.

転造に際しては、素材歯車の歯面には波状等複雑な力が生じる。この分析はそれなりに理論的に行なわれているが、実際面に適用すると異なる場合が多く、最適な条件を把握するために実験的な数値も必要とする。このようなことから、転造した後の目標歯形(製品歯形)になるように転造前の素材段階の歯車形状が大きな意味をもつ。   During rolling, a complex force such as a wave is generated on the tooth surface of the material gear. Although this analysis is theoretically performed as it is, it is often different when applied in practice, and experimental values are also required to grasp the optimum conditions. For this reason, the gear shape at the material stage before rolling has a great meaning so as to obtain the target tooth profile (product tooth profile) after rolling.

この素材段階における転造代の設定は転造に対する種々の条件、例えば、転造代の大きさ、形状、位置等で左右される。転造後の目標歯車の歯形はこれら諸条件によって微妙に異なってくる。このため、実際の転造加工は、適正条件を見出しながら繰り返し最適な加工方法を設定しているのが現状である。又、特に焼結歯車においては、その歯面の緻密性も要求される。   The setting of the rolling allowance at the material stage depends on various conditions for rolling, for example, the size, shape, and position of the rolling allowance. The tooth profile of the target gear after rolling varies slightly depending on these conditions. For this reason, in actual rolling, the optimum processing method is repeatedly set while finding appropriate conditions. In particular, in the case of sintered gears, the denseness of the tooth surfaces is also required.

従来も焼結歯車であることでの押し込み量を想定しながら設定は行なわれているが、転造後の形状は必ずしも正確でなく理想的なものにはなっていない。又、転造加工の設定においても能率的とはいえないのが現状である。これらのことは、例えば異なるダイスを使用しての転造を行うとどうしてもコストアップの要因になり、又、素材歯車の歯面に凹み部分を設けるのは強度を弱める要因ともなる。   Conventionally, the setting is performed while assuming the amount of indentation due to the sintered gear, but the shape after rolling is not necessarily accurate and ideal. In addition, the current situation is that it is not efficient in the setting of the rolling process. For example, if rolling is performed using different dies, for example, the cost is inevitably increased, and providing a concave portion on the tooth surface of the material gear also causes a reduction in strength.

このように、従来の方法が全ての歯車に適用できるという保障はない。製品歯車が目標とする歯形になる転造であり、転造代設定に汎用性をもたせ、能率的な転造技術の開発が望まれている。
本発明は以上の技術背景にもとづき、従来の問題点を解決し開発されたもので、次の目的を達成した。
Thus, there is no guarantee that the conventional method can be applied to all gears. The product gears are rolled to achieve the target tooth profile, and the development of efficient rolling technology is desired, with the versatility of setting the rolling allowance.
Based on the above technical background, the present invention has been developed by solving conventional problems and has achieved the following object.

本発明の目的は、ピッチ点近傍に略三角形の凸部を設けた素材歯車を転造することで、正確な歯面形状の製品歯車を成形することができるようにした歯車の転造方法の提供にある。本発明の他の目的は、転造代、即ち凸部の寸法を計算により規定して設定し転造を行えるようにした歯車の転造方法の提供にある。   It is an object of the present invention to provide a method for rolling a gear that enables a product gear having an accurate tooth surface shape to be formed by rolling a material gear provided with a substantially triangular convex portion in the vicinity of the pitch point. On offer. Another object of the present invention is to provide a rolling method of a gear in which a rolling allowance, that is, a dimension of a convex portion is set by calculation, and can be rolled.

本発明は、前記目的を達成するために次の手段をとる。   The present invention takes the following means in order to achieve the object.

本発明1の歯車の転造方法は、製品歯車に類似歯形形状を有し、全歯たけ寸法をhfとし、ピッチ点から歯元側の歯元たけ寸法をhtとし、前記ピッチ点から歯先側の歯先たけ寸法をhkとして定義される素材歯車の転造方法において、
前記ピッチ近傍の歯面に前記各hf、ht、hk以内の寸法で構成し、前記ピッチ点を頂点にして前記歯元側及び前記歯先側の各歯面に直線状に傾斜させ略三角形の凸部を構成して素材歯車を転造することを特徴とする。この略三角形の凸部は近似形状であり、直線形状に限定はされない。
The gear rolling method according to the first aspect of the present invention has a similar tooth profile shape to the product gear, the total tooth depth dimension is hf, the tooth root dimension from the pitch point to the tooth root side is ht, and the tooth tip from the pitch point is the tooth tip. In the rolling method of the material gear, where the side tooth tip dimension is defined as hk,
The tooth surfaces near the pitch are configured with dimensions within the hf, ht, and hk, and the pitch points are apexes, and the tooth surfaces on the tooth base side and the tooth tip side are inclined in a straight line to have a substantially triangular shape. It is characterized by forming a convex part and rolling a material gear. The substantially triangular convex portion is an approximate shape and is not limited to a linear shape.

本発明2の歯車の転造方法は、本発明1において、前記凸部の寸法を、前記ピッチ点を含む全長をaとし、前記ピッチ点から歯元側をbとし、前記ピッチ点から歯先側をcとし、前記ピッチ点と前記凸部の頂点のずれをdとして定義し、式0.25ht≦b≦0.85ht、式0.25hk≦c≦0.85hk、式0.25ht≦d≦0.25hk、を満たすように規定し凸部形状の素材歯車を転造することを特徴とする。   The method for rolling a gear according to a second aspect of the present invention is the method according to the first aspect, wherein in the first aspect, the dimension of the convex portion is a total length including the pitch point, a is the tooth root side from the pitch point, and b is the tooth tip from the pitch point. The side is defined as c, and the shift between the pitch point and the apex of the convex portion is defined as d. Expression 0.25ht ≦ b ≦ 0.85ht, Expression 0.25hk ≦ c ≦ 0.85hk, Expression 0.25ht ≦ d It is characterized by rolling a material gear having a convex shape that satisfies ≦ 0.25 hk.

本発明3の歯車の転造方法は、本発明1において、前記素材歯車のモジュールをmとして定義し、0.25<m<5の範囲の場合、前記凸部の頂点と歯面との歯面高さ寸法をeとして定義し、式0.005mm≦e≦1.000mmを満たすように規定し凸部形状の素材歯車を転造することを特徴とする。   The gear rolling method according to the third aspect of the present invention is the gear 1 according to the first aspect, wherein the material gear module is defined as m, and in the range of 0.25 <m <5, the teeth between the apex of the convex portion and the tooth surface A surface height dimension is defined as e, and a convex-shaped material gear is rolled so as to satisfy the expression 0.005 mm ≦ e ≦ 1.000 mm.

本発明4の歯車の転造方法は、本発明1において、
前記素材歯車は、200℃〜500℃の温度範囲に加熱して転造されることを特徴とする。特に焼結歯車の歯面を緻密化するのに効果的である。
The rolling method of the gear of the present invention 4 is the present invention 1,
The material gear is heated and rolled in a temperature range of 200 ° C to 500 ° C. In particular, it is effective for densifying the tooth surface of the sintered gear.

本発明5の歯車の転造方法は、本発明3において、前記凸部の頂点と歯面との歯面高さ寸法eは、溶製材素材歯車に対しては、0.005mm≦e≦0.200mmと規定され、焼結材素材歯車に対しては、0.010mm≦e≦1.000mmと規定されることを特徴とする。このeの範囲は、溶製材素材歯車においては、0.010mm≦e≦0.100mmが好ましく、焼結材素材歯車においては、0.050mm≦e≦0.500mmが好ましい。   The gear rolling method of the present invention 5 is the same as the present invention 3, in which the tooth surface height dimension e between the apex of the convex portion and the tooth surface is 0.005 mm ≦ e ≦ 0 for the melted material gear. .200 mm, and 0.010 mm ≦ e ≦ 1.000 mm for a sintered material gear. The range of e is preferably 0.010 mm ≦ e ≦ 0.100 mm for the melted material gear, and 0.050 mm ≦ e ≦ 0.500 mm for the sintered material gear.

以上説明したように、本発明は、素材歯車の転造代の設定に当たり、転造代を簡素な構成の凸部を形成するのみであり、その形状設定は計算により容易に規定することができる。このため、転造加工の能率が向上し正確な歯形形状を成形することとなった。またコスト面においても種類の異なるダイスを使用することもなく、コストアップになることのない転造方法となった。   As described above, according to the present invention, in setting the rolling allowance of the material gear, the rolling allowance is only formed by a convex portion having a simple configuration, and the shape setting can be easily defined by calculation. . For this reason, the efficiency of the rolling process is improved, and an accurate tooth profile shape is formed. Also, in terms of cost, there is no need to use different types of dies, and the rolling method does not increase the cost.

以下、本発明に関わる歯車の転造方法について、その詳細を説明する。図1は、素材歯車の歯面の一部を模式的に示した歯形の部分断面図である。本発明の転造方法の対象となる素材歯車の特徴は、その歯形形状にあり、製品歯車の類似歯形形状を有し、ピッチ点3の上部を頂点2にして歯元側及び歯先側の各歯面に直線状に傾斜させ略三角形の凸部1を構成している。ピッチ点3は、歯元と歯先を結ぶ歯面とピッチ円Sとの交差点をいう。   Hereinafter, the details of the rolling method of the gear according to the present invention will be described. FIG. 1 is a partial sectional view of a tooth profile schematically showing a part of a tooth surface of a material gear. The feature of the material gear which is the object of the rolling method of the present invention is its tooth profile shape, which has a similar tooth profile shape of the product gear, with the upper part of the pitch point 3 as the vertex 2 and the tooth base side and the tooth tip side. A substantially triangular convex portion 1 is formed by inclining linearly on each tooth surface. The pitch point 3 refers to an intersection of the tooth surface connecting the tooth root and the tooth tip and the pitch circle S.

即ち、頂点2から歯元側歯面4に直線状に傾斜し交差させた交差点5と、頂点2から歯先側歯面6に直線状に傾斜し交差させた交差点7と、頂点2とで結ばれた線で囲われた略三角形部分が凸部1を構成している。このような歯面形状を有する素材歯車を転造し、転造した後の製品歯車の歯面形状を正規の歯面形状になるようにするものである。前述のように転造の際は、ピッチ点3近傍が凹み傾向になることは知られている。本発明は、このような従来の結果に実験の裏付け結果を加味して構築した技術である。   That is, an intersection 5 that is linearly inclined and intersected from the vertex 2 to the tooth root side tooth surface 4, an intersection 7 that is linearly inclined and intersected from the vertex 2 to the tooth tip side tooth surface 6, and the vertex 2 The substantially triangular portion surrounded by the connected lines constitutes the convex portion 1. The material gear having such a tooth surface shape is rolled, and the tooth surface shape of the product gear after the rolling is made to be a regular tooth surface shape. As described above, it is known that the vicinity of the pitch point 3 tends to be recessed during rolling. The present invention is a technology constructed by taking into consideration the results of the experiment in addition to the conventional results.

次に裏付けの内容について説明する。本発明の転造方法との比較において、従来の歯形による歯車の転造について確認する。即ち、歯形修整を施していない従来の平坦な歯形の素材歯車を、これまた歯形修整を施していない従来の平坦な歯形の工具により転造した場合には、転造後の歯形は両歯面とも図5に示すような中凹形状になっていることを実験により確認した。   Next, the contents of the backing will be described. In comparison with the rolling method of the present invention, the rolling of a gear with a conventional tooth profile will be confirmed. That is, when a conventional flat tooth profile material gear without tooth profile modification is rolled with a conventional flat tooth profile tool without tooth profile modification, the tooth profile after the rolling is both tooth surfaces. In both cases, it was confirmed by an experiment that it has a concave shape as shown in FIG.

この図5は、モジュールm=3の焼結合金平歯車を各半径方向工具押込み量、300μm、450μm、600μm、について、押込み転造した後の標準歯車を標準工具で転造したときの転造後歯形曲線を示している。これは平歯車でもはすば歯車でも同様の結果になる。又、図6は、標準歯車を標準工具で転造したときの転造量分布を示している。   This FIG. 5 shows a sintered alloy spur gear of module m = 3 for each radial tool indentation amount of 300 μm, 450 μm and 600 μm after rolling the standard gear after rolling with the standard tool. The tooth profile curve is shown. This is the same for both spur gears and helical gears. FIG. 6 shows a rolling amount distribution when the standard gear is rolled with a standard tool.

図6に示すように、いずれの工具押込み量においても両歯面とも、即ち、ドリブン側、フォロア側ともピッチ点を中心にその近傍で実転造量が非常に大きくなり、そのため転造歯形は両歯面ともピッチ点付近が大きく凹んだ形状になっていることを示している。この現象の物理的な発生理由は、転造位置がピッチ点付近にあるときは素材歯車が工具の歯溝中央部に挟まれたような噛み合い状態になるためその弾性たわみが小さいが、歯先あるいは歯元に近づくにつれ素材や工具の弾性たわみが大きくなることによる。   As shown in FIG. 6, the actual rolling amount becomes very large in the vicinity of both the tooth surface, that is, the driven side and the follower side around the pitch point as shown in FIG. Both tooth surfaces show that the vicinity of the pitch point is greatly recessed. The physical reason for this phenomenon is that when the rolling position is in the vicinity of the pitch point, the material gear is in an engaged state as if sandwiched in the center of the tooth gap of the tool. Alternatively, the elastic deflection of the material and the tool increases as it approaches the tooth base.

更に、この中凹形状は、図5で明らかのように、頂点付近はやや丸みが付いているがピッチ点付近を頂点として略逆三角形の形状になっている。これを逆に素材歯車にこの逆三角形とほぼ同じ形状の転造代としての凸部を設けて転造すると、転造中にその中凸状態が徐々に解消されて、最適な工具押込み位置では前述の両歯面ともほぼ平坦な歯形が得られることになる。   Further, as is apparent from FIG. 5, this center-recessed shape is slightly rounded in the vicinity of the apex, but has a substantially inverted triangular shape with the apex near the pitch point. On the other hand, if the material gear is rolled with a convex portion as a rolling allowance having the same shape as this inverted triangle, the intermediate convex state is gradually eliminated during rolling, and the optimum tool push-in position is reached. A substantially flat tooth profile is obtained for both tooth surfaces.

従って、このような理由から本発明は、前述のとおり、ピッチ点を頂点にして歯元側及び歯先側の各歯面に直線状に傾斜させ略三角形の凸部を構成するようにした。直線状の傾斜は一直線ではなく、略直線形状である。図5の転造結果からも理解できるように、図の凹部を逆形状歯形としての形状である。   Therefore, as described above, in the present invention, as described above, a substantially triangular convex portion is formed by inclining linearly on each tooth surface on the tooth base side and the tooth tip side with the pitch point as an apex. The linear inclination is not a straight line but a substantially linear shape. As can be understood from the rolling result of FIG. 5, the concave portion of the figure is shaped as an inverted tooth profile.

歯車の基本寸法を次のように定義し、その相関関係から適正な凸部1の寸法を、即ち適正な転造代を規定するものである。素材歯車において、全歯たけ寸法をhfとし、ピッチ点3から歯元側の歯元たけ寸法をhtとし、前記ピッチ点3から歯先側の歯先たけ寸法をhkとして定義する。素材歯車の基本寸法をこのように定義して、前述の凸部1は、この各寸法以内に構築するようにして、歯たけを超えて凸部1が構成されることはない。   The basic dimension of the gear is defined as follows, and the appropriate dimension of the convex portion 1 is defined from the correlation, that is, the proper rolling allowance is defined. In the material gear, the total tooth depth dimension is defined as hf, the tooth root dimension from the pitch point 3 to the tooth root side is defined as ht, and the tooth tip dimension from the pitch point 3 to the tooth tip side is defined as hk. By defining the basic dimensions of the material gear in this way, the convex portion 1 described above is constructed within the respective dimensions so that the convex portion 1 does not exceed the tooth depth.

さらに、凸部1の寸法を次のように定義し、適正な凸部1の形状を次の式で規定するようにした。即ち、前記凸部1の寸法を、前記ピッチ点3を含む全長をaとし、前記ピッチ点3から歯元側をbとし、前記ピッチ点3から歯先側をcとし、前記ピッチ点3と前記凸部1の頂点2とのずれをdとして定義し、式0.25ht≦b≦0.85ht、式0.25hk≦c≦0.85hk、式0.25ht≦d≦0.25hk、を満たすように規定する。この凸部1の寸法と歯面の基本寸法との関係は、次の通りとなる。   Furthermore, the dimension of the convex part 1 was defined as follows, and the shape of the appropriate convex part 1 was prescribed | regulated by the following formula | equation. That is, the dimension of the convex part 1 is a total length including the pitch point 3 is a, a tooth root side is b from the pitch point 3, a tooth tip side is c from the pitch point 3, and the pitch point 3 is The deviation of the convex portion 1 from the apex 2 is defined as d, and the expression 0.25ht ≦ b ≦ 0.85ht, the expression 0.25hk ≦ c ≦ 0.85hk, the expression 0.25ht ≦ d ≦ 0.25hk, It is prescribed to satisfy. The relationship between the dimension of this convex part 1 and the basic dimension of a tooth surface is as follows.

即ち、a≦hf、a=b+c、b≦ht、c≦hkであり、ピッチ点3からのずれ量dは、d≦b、d≦cである。この寸法で規定された凸部1形状の素材歯車を転造するのである。凸部の形状は物理的限界を示していて、これを超える凸部の形状設定は意味をなさない。   That is, a ≦ hf, a = b + c, b ≦ ht, c ≦ hk, and the deviation d from the pitch point 3 is d ≦ b and d ≦ c. The material gear of the convex part 1 shape prescribed | regulated by this dimension is rolled. The shape of the convex portion indicates a physical limit, and setting the shape of the convex portion exceeding this does not make sense.

次に、凸部1の歯面高さであるが、これは歯面から頂点2までの高さ寸法をeとして定義する。この寸法eは、従来の方法であると、歯車の転造条件、即ち、素材歯車の大きさ、素材歯車の材質、転造工具の半径方向あるいは歯面垂直方向押し込み量、加工精度等を考慮して設定されるものである。これは大変煩わしい設定が要求される。本発明はこれを簡素化して、歯車の大きさを規定するモジュールをパラメータとして設定し規定するようにした。   Next, the tooth surface height of the convex portion 1 is defined by defining the height dimension from the tooth surface to the vertex 2 as e. This dimension e takes into account the rolling conditions of the gear, that is, the size of the material gear, the material of the material gear, the amount of pressing of the rolling tool in the radial direction or the tooth surface vertical direction, machining accuracy, etc. Is set. This requires a very cumbersome setting. In the present invention, this is simplified and a module that defines the size of the gear is set and defined as a parameter.

モジュールをm(単位はmm)として定義し、このmの範囲に応じ、eの値を素材歯車の材質に応じて次のように規定した。例えば、自動車産業界で多く使用される範囲で、mが0.25<m<5の場合、0.005mm≦e≦1.000mmと規定する。この規定において、溶製材素材歯車に対しては、0.005mm≦e≦0.200mmと規定し、焼結材素材歯車に対しては、0.010mm≦e≦1.000mmと規定する。好ましくは、溶製材素材歯車に対しては、0.010mm≦e≦0.100mmであり、焼結材素材歯車に対しては、0.050mm≦e≦0.500mmである。   The module was defined as m (unit: mm), and the value of e was defined as follows according to the material of the material gear according to the range of m. For example, when m is 0.25 <m <5 within a range frequently used in the automobile industry, it is defined as 0.005 mm ≦ e ≦ 1.000 mm. In this rule, 0.005 mm ≦ e ≦ 0.200 mm is defined for the melted material gear, and 0.010 mm ≦ e ≦ 1.000 mm for the sintered material gear. Preferably, 0.010 mm ≦ e ≦ 0.100 mm for the melted material gear, and 0.050 mm ≦ e ≦ 0.500 mm for the sintered material gear.

以上説明した素材歯車の転造は、冷間と熱間の中間である温間、言い換えると、再結晶温度以下の約200℃〜500℃の比較的低い温度領域で行われる。この仕上げ転造加工は、この温度においても、焼結歯車は表面層を十分に緻密化でき強度を高めることができる。更に、熱間に比べても加工精度が向上する。   Rolling of the material gear described above is performed in a relatively low temperature range of about 200 ° C. to 500 ° C. below the recrystallization temperature, that is, between the cold and the hot. In this finish rolling process, even at this temperature, the sintered gear can sufficiently densify the surface layer and increase the strength. Furthermore, the machining accuracy is improved even when compared with hot.

次にこの規定に従って設定した素材歯車を転造して製品歯車にした場合の実施例について説明する。この実施例を説明するに当たって、素材歯車と工具との関係において、図2に示す構成で定義する。即ち、工具及び素材歯車の加工進行方向の素材歯車の歯面側をドリブンとし、工具及び素材歯車の加工進行方向の反対の素材歯車の歯面側をフォロアとする。この実施例の結果は、図3、図4に示す。   Next, an embodiment will be described in which a material gear set in accordance with this rule is rolled into a product gear. In the description of this embodiment, the relationship between the material gear and the tool is defined by the configuration shown in FIG. That is, the tooth surface side of the material gear in the processing progress direction of the tool and the material gear is driven, and the tooth surface side of the material gear opposite to the processing progress direction of the tool and material gear is the follower. The results of this example are shown in FIGS.

図3は、モジュールm=3の溶製材修整歯車を転造前と転造後の歯形曲線の比較を示した図である。溶製材歯車は、S45C(炭素鋼)である。なお、これ以外にも溶製材についてはS55C(同じく炭素鋼)及びSCM415(クロムモリブテン鋼)についても行ったが同様の結果になった。工具押し込み量を3段階で、ドリブン側とフォロア側のデータを示しているが、いずれの場合も転造後は平坦で精度の高い歯形形状となっていることを確認した。   FIG. 3 is a diagram showing a comparison of tooth profile curves before and after rolling a molten material modified gear of module m = 3. The melted material gear is S45C (carbon steel). In addition, although it carried out about S55C (similarly carbon steel) and SCM415 (chromium molybdenum steel) about the melting material besides this, the same result was obtained. The data on the driven side and the follower side are shown in three steps for the tool push-in amount, and in both cases, it was confirmed that after rolling, the tooth profile was flat and highly accurate.

図4は、モジュールm=3の焼結材修整歯車を転造したときの歯形曲線を示した図である。この実施例は、圧縮成形圧:686Mpa(7ton/cm),焼結条件:1150℃,20分,窒素ガス雰囲気で組成したものであり、組成はFe(Bal.)+0.06%C+0.55%Ni+1.03%Mo+0.2%Mn、焼結後平均密度:700g/cm(神戸製鋼(株)製の一回圧縮一回焼結して成形した焼結材である1P1S材)を用いた。ドリブン側とフォロア側において、工具押し込み量に応じたデータを示している。いずれの場合も最終転造後は平坦で精度の高い歯形形状となっていることを確認した。 FIG. 4 is a diagram showing a tooth profile curve when a sintered material modified gear of module m = 3 is rolled. In this example, compression molding pressure: 686 Mpa (7 ton / cm 2 ), sintering condition: 1150 ° C., 20 minutes, composition in nitrogen gas atmosphere, the composition is Fe (Bal.) + 0.06% C + 0. 55% Ni + 1.03% Mo + 0.2% Mn, average density after sintering: 700 g / cm 3 (1P1S material, which is a sintered material formed by one-time compression once sintered by Kobe Steel) Using. In the driven side and the follower side, data corresponding to the tool push-in amount is shown. In any case, it was confirmed that the shape was flat and highly accurate after final rolling.

図1は、素材歯車の歯形を模式的に示した部分断面図である。FIG. 1 is a partial cross-sectional view schematically showing the tooth profile of a material gear. 図2は、歯形におけるドリブンとフォロアの位置関係を示す説明図である。FIG. 2 is an explanatory diagram showing the positional relationship between driven and follower in the tooth profile. 図3は、実施例の図であって、溶製材修整歯車における転造前後の歯形形状の変化を示す歯形曲線のデータ図である。FIG. 3 is a diagram of the embodiment, and is a data diagram of a tooth profile curve showing a change in the tooth profile before and after rolling in the molten material modified gear. 図4は、実施例の図であって、焼結材修整歯車における転造の歯形形状の変化を示す歯形曲線のデータ図である。FIG. 4 is a diagram of the embodiment, and is a data diagram of a tooth profile curve showing a change in the tooth profile shape of rolling in the sintered material modified gear. 図5は、標準歯車を標準工具で転造したときの転造後の歯形形状を示す歯形曲線のデータ図である。FIG. 5 is a data diagram of a tooth profile curve showing a tooth profile after rolling when a standard gear is rolled with a standard tool. 図6は、標準歯車を標準工具で転造したときの転造量分布を示すデータ図である。FIG. 6 is a data diagram showing a rolling amount distribution when a standard gear is rolled with a standard tool.

符号の説明Explanation of symbols

1…凸部
2…頂点
3…ピッチ点
4…歯元側歯面
5、7…交差点
6…歯先側歯面
1 ... convex
2 ... apex
3 ... Pitch point
4 ... tooth base side tooth surface 5, 7 ... intersection 6 ... tooth tip side tooth surface

Claims (5)

製品歯車に類似歯形形状を有し、全歯たけ寸法をhfとし、ピッチ点から歯元側の歯元たけ寸法をhtとし、前記ピッチ点から歯先側の歯先たけ寸法をhkとして定義される素材歯車の転造方法において、
前記ピッチ近傍の歯面に前記各hf、ht、hk以内の寸法で構成し、前記ピッチ点を頂点にして前記歯元側及び前記歯先側の各歯面に直線状に傾斜させ略三角形の凸部を構成した素材歯車を転造する
ことを特徴とする歯車の転造方法。
The product gear has a similar tooth profile, the total tooth depth is defined as hf, the tooth root dimension from the pitch point to the tooth root side is defined as ht, and the tooth tip dimension from the pitch point to the tooth tip side is defined as hk. In the rolling method of the material gear
The tooth surfaces near the pitch are configured with dimensions within the hf, ht, and hk, and the pitch points are apexes, and the tooth surfaces on the tooth base side and the tooth tip side are inclined in a straight line to have a substantially triangular shape. A method of rolling a gear, comprising rolling a material gear having a convex portion.
請求項1に記載の歯車の転造方法において、
前記凸部の寸法を、前記ピッチ点を含む全長をaとし、前記ピッチ点から歯元側をbとし、前記ピッチ点から歯先側をcとし、前記ピッチ点と前記凸部の頂点のずれをdとして定義し、式0.25ht≦b≦0.85ht、式0.25hk≦c≦0.85hk、式0.25ht≦d≦0.25hk、を満たすように規定し凸部形状の素材歯車を転造する
ことを特徴とする歯車の転造方法。
In the rolling method of the gear according to claim 1,
The dimension of the convex part is a total length including the pitch point, a is a tooth base side from the pitch point, b is a tooth tip side from the pitch point, and a deviation between the pitch point and the apex of the convex part. Is defined as d and satisfies the formula 0.25ht ≦ b ≦ 0.85ht, formula 0.25hk ≦ c ≦ 0.85hk, formula 0.25ht ≦ d ≦ 0.25hk A method for rolling a gear, comprising rolling the gear.
請求項1に記載の歯車の転造方法において、
前記素材歯車のモジュールをmとして定義し、0.25<m<5の範囲の場合、前記凸部の頂点と歯面との歯面高さ寸法をeとして定義し、式0.005mm≦e≦1.000mmを満たすように規定し凸部形状の素材歯車を転造する
ことを特徴とする歯車の転造方法。
In the rolling method of the gear according to claim 1,
The module of the material gear is defined as m, and when 0.25 <m <5, the tooth surface height dimension between the apex of the convex portion and the tooth surface is defined as e, and the formula 0.005 mm ≦ e A rolling method of a gear characterized by rolling a convex-shaped material gear so as to satisfy ≦ 1.000 mm.
請求項1に記載の歯車の転造方法において、
前記素材歯車は、200℃〜500℃の温度範囲に加熱して転造される
ことを特徴とする歯車の転造方法。
In the rolling method of the gear according to claim 1,
The material gear is rolled while being heated to a temperature range of 200 ° C to 500 ° C.
請求項3に記載の歯車の転造方法において、
前記凸部の頂点と歯面との歯面高さ寸法eは、溶製材素材歯車に対しては、0.005mm≦e≦0.200mmと規定され、焼結材素材歯車に対しては、0.010mm≦e≦1.000mmと規定される
ことを特徴とする歯車の転造方法。
In the rolling method of the gear according to claim 3,
The tooth surface height dimension e between the apex of the convex portion and the tooth surface is defined as 0.005 mm ≦ e ≦ 0.200 mm for the melted material gear, and for the sintered material gear, A rolling method for gears, characterized in that 0.010 mm ≦ e ≦ 1.000 mm.
JP2005103984A 2005-03-31 2005-03-31 Method for rolling gear Pending JP2006281263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005103984A JP2006281263A (en) 2005-03-31 2005-03-31 Method for rolling gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005103984A JP2006281263A (en) 2005-03-31 2005-03-31 Method for rolling gear

Publications (1)

Publication Number Publication Date
JP2006281263A true JP2006281263A (en) 2006-10-19

Family

ID=37403699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005103984A Pending JP2006281263A (en) 2005-03-31 2005-03-31 Method for rolling gear

Country Status (1)

Country Link
JP (1) JP2006281263A (en)

Similar Documents

Publication Publication Date Title
CN102847948B (en) There is the engagement type element be sintered of the surface compact that local is selected
JP4252625B2 (en) High density forming process using ferroalloy and prealloy
CN101193719B (en) The blank geometry of engaging tooth
CN101541452B (en) Surface compression of a toothed section
US20070224075A1 (en) Forged carburized powder metal part and method
JP2005213649A (en) Method of producing parts from powdered metal
US20130145878A1 (en) Scissors gear structure and manufacturing method thereof
JP2005344126A (en) Sintered gear
JP2007262536A (en) Sintered gear and its production method
CN106660106A (en) Method for producing ni-based super heat-resistant alloy
EP2826577A1 (en) Mechanical structural component, sintered gear, and methods for producing same
CN101193717B (en) Hardness and roughness of a toothed section from a surface-densified sintered material
JP2013256688A (en) Sintered gear, and method for producing the same
JP6692339B2 (en) Metal powder material for additive manufacturing
US12013022B2 (en) Method for producing a sintered component with a toothing
CN106270527A (en) Nickel alloy starting motor of automobile planetary gear and manufacture method thereof
JP2006281263A (en) Method for rolling gear
CN107385344A (en) A kind of powder metallurgy high gear synchronizer gear seat Chi Grains material prescriptions and production technology
JP2010537048A (en) Manufacturing method of forged carburized metal powder parts
JP2015151586A (en) Method for producing sintered metal component
JP2007217740A (en) Method for designing sizing die for sintered part
JP6065105B2 (en) Sintered machine parts and manufacturing method thereof
JP4753290B2 (en) Manufacturing method of machine parts
JP3246574B2 (en) Manufacturing method of sintered composite machine parts
JP5276491B2 (en) Surface densification method of sintered body