JP2006278740A - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
JP2006278740A
JP2006278740A JP2005095851A JP2005095851A JP2006278740A JP 2006278740 A JP2006278740 A JP 2006278740A JP 2005095851 A JP2005095851 A JP 2005095851A JP 2005095851 A JP2005095851 A JP 2005095851A JP 2006278740 A JP2006278740 A JP 2006278740A
Authority
JP
Japan
Prior art keywords
filler
solar cell
softening point
cell module
surface side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005095851A
Other languages
Japanese (ja)
Other versions
JP4667098B2 (en
Inventor
Shinsuke Uchida
眞輔 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005095851A priority Critical patent/JP4667098B2/en
Publication of JP2006278740A publication Critical patent/JP2006278740A/en
Application granted granted Critical
Publication of JP4667098B2 publication Critical patent/JP4667098B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that, when a convex portion comes up at a connection tab or soldered location, in the solar cell module wherein an area between a translucent substrate and a backside material is sealed with a filler and solar cell elements are allocated, the filler on the optical receiving surface side of the gap between a protrusion of the connection tab and the translucent substrate, and the gap between a protrusion built up by soldering and the translucent substrate, gets thinner, which could cause deterioration in the electrical insulation performance of the solar cell module. <P>SOLUTION: For the fillers attached on the optical receiving surface side and/or those attached on the backside of the solar cell module, the configuration is utilized in which a filler with high softening point is inserted between fillers with low softening points. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は太陽電池モジュールに関し、特に電気絶縁性を高めた太陽電池モジュールに関する。   The present invention relates to a solar cell module, and more particularly to a solar cell module with improved electrical insulation.

太陽電池素子は、単結晶シリコン基板や多結晶シリコン基板を用いて作製することが多い。このため太陽電池素子は物理的衝撃に弱く、また野外に太陽電池を取り付けた場合、雨などからこれを保護する必要がある。また太陽電池素子1枚では発生する電気出力が小さいため、複数の太陽電池素子を直並列に接続して、実用的な電気出力が取り出せるようにする必要がある。このためインナーリード線としての接続タブを用いて複数の太陽電池素子を接続し、透光性部材とエチレンビニルアセテート共重合体(EVA)などを主成分とする充填材で封入して、太陽電池モジュールを作成することが通常行われている。   Solar cell elements are often manufactured using a single crystal silicon substrate or a polycrystalline silicon substrate. For this reason, the solar cell element is vulnerable to physical impact, and when a solar cell is attached outdoors, it is necessary to protect it from rain. Moreover, since the electric output generated by one solar cell element is small, it is necessary to connect a plurality of solar cell elements in series and parallel so that a practical electric output can be taken out. For this purpose, a plurality of solar cell elements are connected using connection tabs as inner lead wires, sealed with a filler mainly composed of a translucent member and ethylene vinyl acetate copolymer (EVA), and the like. It is normal to create a module.

図4は、従来の太陽電池モジュールのパネル部の構造の一例を示す図である。   FIG. 4 is a diagram illustrating an example of a structure of a panel portion of a conventional solar cell module.

図4において、1は透光性基板、2は受光面側充填材、3は太陽電池素子、4は裏面側充填材、5は裏面材、6は接続タブ、7は出力配線を示す。   In FIG. 4, 1 is a translucent substrate, 2 is a light receiving surface side filler, 3 is a solar cell element, 4 is a back surface side filler, 5 is a back surface material, 6 is a connection tab, and 7 is an output wiring.

透光性基板1としては、ガラスやポリカーボネート樹脂などからなる基板が用いられる。一般的にはその耐候性や光透過性から、厚さ3mm〜5mm程度の白板強化ガラスが使用されることが多い。   As the translucent substrate 1, a substrate made of glass, polycarbonate resin or the like is used. Generally, white plate tempered glass having a thickness of about 3 mm to 5 mm is often used because of its weather resistance and light transmittance.

受光面側充填材2及び裏面側充填材4は、エチレン−酢酸ビニル共重合体(以下EVAと略す)やポリビニルブチラール(以下PVBと略す)の厚さ0.4〜1mm程度のシート状に成形されたものが用いられる。これらはラミネート装置により減圧下にて加熱加圧を行うことで、軟化、融着して他の部材と一体化する。   The light-receiving surface side filler 2 and the back surface side filler 4 are formed into a sheet of about 0.4 to 1 mm in thickness of an ethylene-vinyl acetate copolymer (hereinafter abbreviated as EVA) or polyvinyl butyral (hereinafter abbreviated as PVB). Is used. These are heated and pressed under reduced pressure by a laminating apparatus, so that they are softened and fused to be integrated with other members.

このように太陽電池モジュール製造工程において、減圧下で部材を加熱加圧し、充填材を軟化、融着させて他の部材と一体化することをラミネートと呼んでいる。   In this way, in the solar cell module manufacturing process, heating and pressurizing a member under reduced pressure, softening and fusing the filler, and integrating with other members is called lamination.

さらに太陽電池素子3は、上述のように厚み0.3〜0.4mm程度の単結晶シリコンや多結晶シリコン基板などからなる。   Furthermore, the solar cell element 3 is made of single crystal silicon or a polycrystalline silicon substrate having a thickness of about 0.3 to 0.4 mm as described above.

接続タブ6は、太陽電池素子3を電気的に接続するもので、太陽電池素子3の受光面側電極と裏面側電極にハンダ付けで付けられる。   The connection tab 6 electrically connects the solar cell elements 3 and is attached to the light receiving surface side electrode and the back surface side electrode of the solar cell element 3 by soldering.

出力配線7は、太陽電池素子3で発生した電気出力を外部に導出するためのもので、端部の配置された太陽電池素子3の接続タブにハンダ付けなどで接続される。   The output wiring 7 is for leading the electrical output generated in the solar cell element 3 to the outside, and is connected to the connection tab of the solar cell element 3 arranged at the end by soldering or the like.

裏面材5は水分を透過しないシートなどが用いられる。またこの裏面材5の所定の位置にはスリットが設けられ、このスリットから出力配線7が予めピンセットなどを用いて裏面材5の表面に引き出されている。   The back material 5 is a sheet that does not transmit moisture. In addition, a slit is provided at a predetermined position of the back material 5, and the output wiring 7 is previously drawn out from the slit to the surface of the back material 5 using tweezers or the like.

次に従来の太陽電池パネル部の作製方法について述べる。   Next, a method for manufacturing a conventional solar cell panel portion will be described.

太陽電池モジュールのパネル部を作製するにあたっては、透光性基板1上に受光面側充填材2、接続タブ6や出力配線7を接続した太陽電池素子3、さらにその上に裏面側充填材4、裏面材5を順次積層する。このような状態にして、ラミネーターにセットし、減圧下にて加圧しながら加熱することにより、受光面側充填材2と裏面側充填材4が溶融架橋し、これらが一体化する。(特許文献1の従来技術参照)
特開2000−332284号公報
In producing the panel portion of the solar cell module, the light receiving surface side filler 2, the solar cell element 3 connected to the connection tab 6 and the output wiring 7 on the translucent substrate 1, and the back surface side filler 4 thereon. The back material 5 is sequentially laminated. In such a state, it is set in a laminator and heated while being pressurized under reduced pressure, whereby the light-receiving surface side filler 2 and the back surface side filler 4 are melt-crosslinked and integrated. (Refer to the prior art of Patent Document 1)
JP 2000-332284 A

上述の様に接続タブ6や出力配線7を接続した太陽電池素子3は、受光面側充填材2と裏面側充填材4により電気的に絶縁されている。しかし直線状に接続した太陽電池素子3に歪みなどが生じた時などでは、太陽電池素子3と太陽電池素子3の間の接続タブに凸部が生じることがある。また太陽電池素子3に接続タブ6や出力配線7をハンダ付けで接続した場合に、ハンダによる凸部ができることがある。   The solar cell element 3 to which the connection tab 6 and the output wiring 7 are connected as described above is electrically insulated by the light receiving surface side filler 2 and the back surface side filler 4. However, when the solar cell element 3 connected in a straight line is distorted or the like, a convex portion may be formed on the connection tab between the solar cell element 3 and the solar cell element 3. Further, when the connection tab 6 and the output wiring 7 are connected to the solar cell element 3 by soldering, a convex portion by solder may be formed.

図5はこの接続タブやハンダ付け部分に凸部が生じた状態を模式的に示すラミネート後の断面図である。   FIG. 5 is a cross-sectional view after lamination schematically showing a state in which convex portions are formed on the connection tab and the soldered portion.

図5において、1は透光性基板、2は受光面側充填材、3a、3bは太陽電池素子、4は裏面側充填材、5は裏面材、6は接続タブ、10はハンダによる凸部、11は接続タブの凸部と透光性基板との間隙、12はハンダによる凸部と裏面材との間隙を示す。   In FIG. 5, 1 is a translucent substrate, 2 is a light receiving surface side filler, 3a and 3b are solar cell elements, 4 is a back surface side filler, 5 is a back surface material, 6 is a connection tab, and 10 is a convex portion by solder. , 11 is a gap between the convex portion of the connection tab and the translucent substrate, and 12 is a gap between the convex portion by solder and the back surface material.

これにおいて接続タブやハンダ付け部分に凸部が生じた場合、接続タブの凸部と透光性基板の間隙11やハンダによる凸部10と透光性基板の間隙の受光面側充填材2はその厚みが薄くなり、その太陽電池モジュールの電気絶縁性能が低下してしまう。   In this case, when a convex portion is formed in the connection tab or the soldered portion, the gap 11 between the convex portion of the connection tab and the translucent substrate, or the light receiving surface side filler 2 between the convex portion 10 of the solder and the gap between the translucent substrate is The thickness is reduced, and the electrical insulation performance of the solar cell module is degraded.

本発明はこの様な問題に鑑みなされたものであり、その目的は接続タブやハンダ付け部分に凸部が生じた場合でも電気絶縁性能が低下することが無い太陽電池モジュールを提供することである。   The present invention has been made in view of such problems, and an object of the present invention is to provide a solar cell module in which the electrical insulation performance does not deteriorate even when a convex portion is generated in a connection tab or a soldered portion. .

上記目的を達成するために本発明においては、透光性基板と裏面材の間に充填材で封止した太陽電池素子を配置した太陽電池モジュールにおいて、前記太陽電池素子の受光面側に配置する充填材及びまたは前記太陽電池素子の裏面側に配置する充填材は、軟化点の異なる少なくとも2種類の充填材から構成されていることを特徴とする。   In order to achieve the above object, in the present invention, in a solar cell module in which a solar cell element sealed with a filler is disposed between a translucent substrate and a back material, the solar cell element is disposed on the light receiving surface side of the solar cell element. The filler and / or the filler disposed on the back side of the solar cell element is composed of at least two kinds of fillers having different softening points.

また、前記充填材は、軟化点が45〜55℃の充填材と、軟化点が80〜90℃の充填材を含んでいることを特徴とする。   In addition, the filler includes a filler having a softening point of 45 to 55 ° C and a filler having a softening point of 80 to 90 ° C.

また、前記充填材は、軟化点が45〜55℃の充填材シートと、軟化点が80〜90℃の充填材シートを加熱して形成されるとともに、太陽電池素子に接する側の充填材は、軟化点が低い充填材で形成されている。   The filler is formed by heating a filler sheet having a softening point of 45 to 55 ° C. and a filler sheet having a softening point of 80 to 90 ° C., and the filler on the side in contact with the solar cell element is It is formed of a filler having a low softening point.

また、前記軟化点の低い充填材及び前記軟化点の高い充填材が、全てエチレンビニルアセテート共重合体(EVA)であり、かつ前記軟化点の高い充填材の厚みが0.03mm以上、0.3mm以下であることを特徴とする。   Also, the filler having a low softening point and the filler having a high softening point are all ethylene vinyl acetate copolymer (EVA), and the thickness of the filler having a high softening point is 0.03 mm or more, and 0.0. It is 3 mm or less.

以上のように、透光性基板と裏面材の間に充填材で封止した太陽電池素子を配置した太陽電池モジュールにおいて、前記太陽電池素子の受光面側に配置する充填材及び/または前記太陽電池素子の裏面側に配置する充填材が軟化点の低い充填材の間に軟化点の高い充填材を含む軟化点が異なる充填材が配置されている。これにより、たとえば、接続タブやハンダ付け部分などに凸部が生じた場合でもこの軟化点の高い充填材部分は、その厚みが確保されることとなり、該太陽電池モジュールの絶縁性能が低下することが無い。   As described above, in the solar cell module in which the solar cell element sealed with the filler is disposed between the translucent substrate and the back surface material, the filler and / or the sun disposed on the light receiving surface side of the solar cell element. Fillers with different softening points including a filler with a high softening point are arranged between fillers with a low softening point between the fillers arranged on the back side of the battery element. As a result, for example, even when a convex portion is formed on a connection tab or a soldered portion, the thickness of the filler portion having a high softening point is ensured, and the insulation performance of the solar cell module is reduced. There is no.

また前記軟化点の低い充填材の軟化点が45〜55℃であり、前記軟化点の高い充填材の軟化点を80〜90℃としたことにより、上記の軟化点の高い充填材部分の厚みの確保が確実にできるようになり、該太陽電池モジュールの絶縁性能が低下することが無い効果を確実なものとすることができる。また、軟化点が低い充填材が、太陽電池素子側に位置するため、ラミネート加工で、加熱温度が低い状態から軟化するため、接続タブやハンダ付け部分などの凸部に加わる応力を、加熱の早い段階で吸収することかできる。   Further, the softening point of the filler having a low softening point is 45 to 55 ° C, and the softening point of the filler having a high softening point is 80 to 90 ° C, whereby the thickness of the filler portion having the high softening point is set. Can be reliably ensured, and the effect that the insulation performance of the solar cell module does not deteriorate can be ensured. In addition, since the filler with a low softening point is located on the solar cell element side, the laminating process softens from a low heating temperature, so the stress applied to the convex portions such as the connection tab and the soldered portion is not heated. Can be absorbed early.

また前記軟化点の低い充填材及び前記軟化点の高い充填材が、全てエチレンビニルアセテート共重合体(EVA)であり、かつ前記軟化点の高い充填材の厚みが0.03mm以上、0.3mm以下としたことにより、該太陽電池モジュールの電気絶縁性能の他に耐候性能などの確保も確実なものとすることができる。   Further, the filler having a low softening point and the filler having a high softening point are all ethylene vinyl acetate copolymer (EVA), and the thickness of the filler having a high softening point is 0.03 mm or more and 0.3 mm. By making it below, it is possible to ensure the weather resistance and the like in addition to the electrical insulation performance of the solar cell module.

以下、本発明の太陽電池モジュールを添付図面に基づき詳細に説明する。   Hereinafter, the solar cell module of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の太陽電池モジュールに用いる受光面側充填材または裏面側充填材を示す。   FIG. 1 shows a light-receiving surface side filler or a back surface side filler used in the solar cell module of the present invention.

図1において20は軟化点の低い充填材、21は軟化点の高い充填材、22は軟化点の低い充填材を示す。すなわち本発明に係る受光面側充填材及び/または裏面側充填材は3層から成っている。   In FIG. 1, 20 is a filler with a low softening point, 21 is a filler with a high softening point, and 22 is a filler with a low softening point. That is, the light-receiving surface side filler and / or the back surface side filler according to the present invention consists of three layers.

第一層目の軟化点の低い充填材20は太陽電池素子と接する層であり、EVAやPVBなどで作製され、その厚みは太陽電池モジュールの信頼性を考慮して、0.2〜0.8mm程度にするのが望ましい。さらにその軟化点は45℃以上、55℃以下にする。   The filler 20 having a low softening point in the first layer is a layer in contact with the solar cell element, and is made of EVA, PVB or the like, and its thickness is 0.2 to 0.00 in consideration of the reliability of the solar cell module. It is desirable to be about 8 mm. Furthermore, the softening point is set to 45 ° C. or higher and 55 ° C. or lower.

第二層目の軟化点の高い充填材21は、3層の内の中間層であり、EVAやPVBなどで作製され、その厚みは0.03〜0.3mm程度にするのが望ましい。またさらにその軟化点は80℃以上、90℃以下にする。   The filler 21 having a high softening point of the second layer is an intermediate layer of the three layers, and is made of EVA, PVB, or the like, and the thickness is preferably about 0.03 to 0.3 mm. Furthermore, the softening point is 80 ° C. or higher and 90 ° C. or lower.

すなわち発明者らが繰り返し行ったテストによると、この第二層目の軟化点の高い充填材21の厚みが0.03mm未満になると、電気絶縁性能が3000V以下に低下する場合があり、太陽電池モジュール製造工程における電気絶縁テストでの歩留りが低下してしまう。またこの第二層目の軟化点の高い充填材21の厚みが、0.3mmを越すと充填材による太陽電池素子の封止が不十分になり、太陽電池素子の電極の酸化などが発生して、その太陽電池モジュールの出力が低下してしまう場合がある。   That is, according to tests repeatedly conducted by the inventors, when the thickness of the filler 21 having a high softening point of the second layer is less than 0.03 mm, the electrical insulation performance may be reduced to 3000 V or less. The yield in the electrical insulation test in the module manufacturing process is reduced. If the thickness of the filler 21 having a high softening point in the second layer exceeds 0.3 mm, sealing of the solar cell element with the filler becomes insufficient, and oxidation of the electrode of the solar cell element occurs. As a result, the output of the solar cell module may decrease.

第三層目の軟化点の低い充填材22は、透光性基板や裏面材に接する層であり、EVAやPVBなどで作製され、その厚みは透光性基板や裏面材との接着を確実して太陽電池モジュールの信頼性を確保するために、0.1〜0.2mm程度にするのが望ましい。さらにその軟化点は45℃以上、55℃以下にする。   The filling material 22 having a low softening point in the third layer is a layer in contact with the translucent substrate or the back surface material, and is made of EVA, PVB or the like, and its thickness ensures adhesion to the translucent substrate or the back surface material. And in order to ensure the reliability of a solar cell module, it is desirable to set it as about 0.1-0.2 mm. Furthermore, the softening point is set to 45 ° C. or higher and 55 ° C. or lower.

またこの第三層目の軟化点の低い充填材22は、第一層目の軟化点の低い充填材20と同じ組成の材料であることが、そのラミネート時の温度などの条件を簡単なものにできるため望ましい。   Further, the filler 22 having a low softening point in the third layer is a material having the same composition as that of the filler 20 having a low softening point in the first layer. This is desirable because

またこの軟化点の低い充填材と軟化点の高い充填材の軟化点の差は、ラミネーターの温度分布や温度のふらつきを考慮すると20℃以上あることが望ましい。さらに前記軟化点の低い充填材の軟化点が45℃以上、55℃以下とし、軟化点の高い充填材の軟化点が80℃以上、90℃以下としたことにより、太陽電池モジュール製造工程の生産性を現状のものと比べて低下させること無く、該太陽電池モジュールの電気絶縁性能の向上を図ることが可能となる。   Further, the difference between the softening points of the filler having a low softening point and the filler having a high softening point is preferably 20 ° C. or higher in consideration of the temperature distribution of the laminator and the temperature fluctuation. Furthermore, the softening point of the filler having a low softening point is set to 45 ° C. or more and 55 ° C. or less, and the softening point of the filler having a high softening point is set to 80 ° C. or more and 90 ° C. or less. It is possible to improve the electrical insulation performance of the solar cell module without lowering the performance compared to the current one.

この様な軟化点を変更した充填材は、その組成を変更することにより作製可能である。例えばEVAでは、エチレンと酢酸ビニルの共重合体に架橋剤などを添加したものであるが、この酢酸ビニルの含有量の比率を多くすることにより軟化点を任意の温度に下げることが可能となり、また酢酸ビニルの含有量の比率を下げることにより、その軟化点を任意の温度に上げることが可能となる。   Such a filler having a changed softening point can be produced by changing its composition. For example, in EVA, a cross-linking agent is added to a copolymer of ethylene and vinyl acetate. By increasing the ratio of the vinyl acetate content, the softening point can be lowered to an arbitrary temperature. Further, by lowering the ratio of vinyl acetate content, the softening point can be raised to an arbitrary temperature.

また本発明に係る充填材では、その耐候性や電気的絶縁性能を考慮して特にEVAであることが望ましい。   In addition, the filler according to the present invention is particularly preferably EVA in consideration of its weather resistance and electrical insulation performance.

さらに軟化点の低い充填材20、軟化点の高い充填材21、軟化点の低い充填材22の大きさは、ラミネート時の各部材の接着や太陽電池素子の封止と本発明に係る電気絶縁性向上の効果を確実にするため、作製される太陽電池パネルに使用される透光性基板の大きさと同じか1〜3mm程度大きめに作製されることが望ましい。   Further, the size of the filler 20 having a low softening point, the filler 21 having a high softening point, and the filler 22 having a low softening point is determined by the adhesion of each member at the time of lamination, the sealing of solar cell elements, and the electrical insulation according to the present invention. In order to ensure the effect of improving the property, it is desirable to produce the same size as the translucent substrate used for the produced solar cell panel or about 1 to 3 mm larger.

図2は本発明に係る太陽電池パネルの構造の一例を示す断面図である。   FIG. 2 is a cross-sectional view showing an example of the structure of the solar cell panel according to the present invention.

図2において20a、20bは軟化点の低い充填材、21a、21bは軟化点の高い充填材、22a、22bは軟化点の低い充填材、23は透光性基板、24は太陽電池素子、25は裏面材、26は接続タブ、27は出力配線を示す。   2, 20a and 20b are fillers having a low softening point, 21a and 21b are fillers having a high softening point, 22a and 22b are fillers having a low softening point, 23 is a translucent substrate, 24 is a solar cell element, 25 Is a back material, 26 is a connection tab, and 27 is an output wiring.

以下、各部材を述べる。   Each member will be described below.

透光性基板23としては、ガラスやポリカーボネート樹脂などからなる光透過率の良い基板が用いられる。   As the translucent substrate 23, a substrate having good light transmittance made of glass, polycarbonate resin or the like is used.

ガラス板については、白板ガラス、強化ガラス、倍強化ガラス、熱線反射ガラスなどが用いられるが、一般的には厚さ3mm〜5mm程度の白板強化ガラスが使用される。   As the glass plate, white plate glass, tempered glass, double tempered glass, heat ray reflective glass and the like are used, but generally white plate tempered glass having a thickness of about 3 mm to 5 mm is used.

他方、ポリカーボネート樹脂などの合成樹脂からなる基板を用いた場合には、厚みが5mm程度のものが多く使用される。   On the other hand, when a substrate made of a synthetic resin such as polycarbonate resin is used, a substrate having a thickness of about 5 mm is often used.

透光性基板23上に受光面側の軟化点の低い充填材22aを配置し、さらにその上に受光面側の軟化点の高い充填材21aを配置し、さらにその上に受光面側の軟化点の低い充填材20aを配置する。この軟化点の低い充填材22a、軟化点の高い充填材21a、軟化点の低い充填材20aは上述のような物性、寸法を持ったものである。   A filler 22a having a low softening point on the light-receiving surface side is disposed on the light-transmitting substrate 23, a filler 21a having a high softening point on the light-receiving surface side is further disposed thereon, and a softening on the light-receiving surface side is further disposed thereon. A low-point filler 20a is placed. The filler 22a having a low softening point, the filler 21a having a high softening point, and the filler 20a having a low softening point have the above-described physical properties and dimensions.

さらにこの軟化点の低い充填材22a、軟化点の高い充填材21a、軟化点の低い充填材20aは、上記のようにそれぞれ別個に用意し、一枚ずつ重ねても良いが、そのおのおのを超音波溶着などで予め一体化しておいた方が、太陽電池モジュールの製造工程において、その工数を削減できるため望ましい。   Furthermore, the filler 22a having a low softening point, the filler 21a having a high softening point, and the filler 20a having a low softening point may be prepared separately as described above, and may be stacked one by one. It is desirable to integrate in advance by sonic welding or the like because the number of steps can be reduced in the manufacturing process of the solar cell module.

またEVAなどの充填材は酸化チタンや顔料等を含有させ白色等に着色させることが可能であるが、本発明に係る受光面側の充填材20a、21a、22aは、着色させると太陽電池素子24に入射する光量が減少し、発電効率が低下してしまうため、透明材にすると良い。   Further, the filler such as EVA can contain titanium oxide, pigment or the like and can be colored white, but the light-receiving surface-side fillers 20a, 21a, and 22a according to the present invention are solar cell elements when colored. Since the amount of light incident on 24 is reduced and the power generation efficiency is lowered, it is preferable to use a transparent material.

太陽電池素子24は、例えば厚み0.3〜0.4mm程度、大きさ150mm角程度の単結晶や多結晶のシリコン基板で作られている。また太陽電池素子24は、そのシリコン基板内部にボロンなどのP型不純物を多く含んだP層とリンなどのN型不純物を多く含んだN層が接しているPN接合(不図示)が形成されている。さらに太陽電池素子24の受光面側及び裏面側の一部分には、銀ペーストをスクリーンプリント法などで塗布することにより電極が形成され、又これらの電極表面は、その保護と接続タブ26を取り付けやすくするために、そのほぼ全面にわたりハンダコートされる場合がある。   The solar cell element 24 is made of, for example, a single crystal or polycrystalline silicon substrate having a thickness of about 0.3 to 0.4 mm and a size of about 150 mm square. The solar cell element 24 has a PN junction (not shown) in which a P layer containing a large amount of P-type impurities such as boron and an N layer containing a large amount of N-type impurities such as phosphorus are in contact with each other inside the silicon substrate. ing. Furthermore, an electrode is formed on a part of the light receiving surface side and the back surface side of the solar cell element 24 by applying silver paste by a screen printing method or the like, and these electrode surfaces are easily attached with protection and connection tabs 26. In order to achieve this, solder coating may be applied over almost the entire surface.

また通常の太陽電池モジュールにおいては、複数の太陽電池素子24を良導電性金属などで作られた接続タブ26を用いて電気的に接続している。このような接続タブ26は、通常厚さ0.1〜1.0mm程度、幅2〜8mm程度の銅箔等の全面をハンダコートしたものを所定の長さに切断して用いている。   In a normal solar cell module, a plurality of solar cell elements 24 are electrically connected using connection tabs 26 made of a highly conductive metal or the like. Such a connection tab 26 is usually used by cutting the entire surface of a copper foil or the like having a thickness of about 0.1 to 1.0 mm and a width of about 2 to 8 mm into a predetermined length.

例えば太陽電池素子24を直列に接続する場合は、一方の太陽電池素子の受光面側電極に接続タブ26の一端をハンダ付けなどで接続し、その接続タブ26の他端を隣接する太陽電池素子の裏面側電極にハンダ付けなどで接続することにより行う。   For example, when the solar cell elements 24 are connected in series, one end of the connection tab 26 is connected to the light-receiving surface side electrode of one solar cell element by soldering or the like, and the other end of the connection tab 26 is adjacent to the solar cell element. This is done by connecting to the back side electrode of the soldering by soldering or the like.

出力配線27は、太陽電池素子24の電気出力を太陽電池モジュールの外部の導出するためのものであり、通常厚さ0.1〜1.0mm程度、幅2〜8mm程度の銅箔の全面をハンダコートしたものを所定の長さに切断して用いている。この出力配線27の一端部は、太陽電池素子24にハンダ付けなどで接続され、他端部は外部回路と接続するための端子箱(不図示)などに接続される。   The output wiring 27 is for leading out the electrical output of the solar cell element 24 to the outside of the solar cell module. Usually, the entire surface of the copper foil having a thickness of about 0.1 to 1.0 mm and a width of about 2 to 8 mm is formed. A solder-coated one is cut into a predetermined length and used. One end of the output wiring 27 is connected to the solar cell element 24 by soldering or the like, and the other end is connected to a terminal box (not shown) for connecting to an external circuit.

このように接続タブ26や出力配線27を接続した太陽電池素子24を上述の受光面側の軟化点の低い充填材20aのほぼ中央部上に置く。   The solar cell element 24 to which the connection tab 26 and the output wiring 27 are thus connected is placed on the substantially central portion of the filler 20a having a low softening point on the light receiving surface side.

太陽電池素子24を載置した受光面側の軟化点の低い充填材20a上に裏面側の軟化点の低い充填材20bを配置し、さらにその上に裏面側の軟化点の高い充填材21bを配置し、さらにその上に裏面側の軟化点の低い充填材22bを配置する。この軟化点の低い充填材20b、軟化点の高い充填材21b、軟化点の低い充填材22bは上述のような物性、寸法を持ったものである。   A filler 20b having a low softening point on the back side is disposed on the filler 20a having a low softening point on the light receiving surface on which the solar cell element 24 is placed, and a filler 21b having a high softening point on the back side is further disposed thereon. The filler 22b having a low softening point on the back surface side is further disposed thereon. The filler 20b having a low softening point, the filler 21b having a high softening point, and the filler 22b having a low softening point have the above-described physical properties and dimensions.

さらにこの軟化点の低い充填材20b、軟化点の高い充填材21b、軟化点の低い充填材22bは、上記のようにそれぞれ別個に用意し、1枚ずつ重ねても良いが、そのおのおのを超音波溶着などで予め一体化しておいた方が、太陽電池モジュールの製造工程においてその工数を削減できるため望ましい。   Furthermore, the filler 20b having a low softening point, the filler 21b having a high softening point, and the filler 22b having a low softening point may be prepared separately as described above, and may be stacked one by one. It is desirable to integrate in advance by sonic welding or the like because the number of steps can be reduced in the manufacturing process of the solar cell module.

また本発明に係る裏面側の充填材20b、21b、22bは、透明材でも構わないが、太陽電池モジュールの周囲の設置環境に合わせて酸化チタンや顔料等を含有させ、白色等に着色させてもよい。   Further, the back side fillers 20b, 21b, and 22b according to the present invention may be transparent materials, but may contain titanium oxide, pigments, etc. according to the installation environment around the solar cell module, and may be colored white. Also good.

裏面材25は、水分を透過しないようにアルミ箔を挟持した耐候性を有するフッ素系樹脂シートやアルミナまたはシリカを蒸着したポリエチレンテレフタレ−ト(PET)シートなどが用いられる。またこの裏面材25の所定の位置にはスリットや開口が設けられ、そのスリットや開口から出力配線27がピンセットなどを用いて裏面材25の表面(太陽電池モジュールの外部側)に引き出されている。   As the back material 25, a weather-resistant fluorine-based resin sheet in which an aluminum foil is sandwiched so as not to transmit moisture, a polyethylene terephthalate (PET) sheet on which alumina or silica is deposited, and the like are used. Further, a slit or opening is provided at a predetermined position of the back material 25, and the output wiring 27 is drawn out from the slit or opening to the surface of the back material 25 (external side of the solar cell module) using tweezers or the like. .

次にこれらのラミネート方法について説明する。   Next, these laminating methods will be described.

上記のように各部材を重畳したものをラミネーターと呼ばれる装置にセットし、減圧下で加熱しながら加圧する。   As described above, a superposition of each member is set in a device called a laminator, and pressurized while heating under reduced pressure.

このときまず軟化点の低い充填材の軟化点の近傍に加熱する。例えば軟化点の低い充填材の軟化点が50℃であるなら、ラミネーター内の温度分布や温度変化などを考慮して47〜53℃の温度範囲に被ラミネート体の全体が入るように温度を制御しながら、50〜150Pa程度の減圧下で加熱しながら被ラミネート体の全体をできるだけ均一に10〜100KPa程度の圧力で1〜15分程度加圧する。   At this time, heating is first performed near the softening point of the filler having a low softening point. For example, if the softening point of a filler with a low softening point is 50 ° C., the temperature is controlled so that the entire laminate is within the temperature range of 47 to 53 ° C. in consideration of the temperature distribution and temperature change in the laminator. While heating under a reduced pressure of about 50 to 150 Pa, the entire laminate is pressurized as uniformly as possible at a pressure of about 10 to 100 KPa for about 1 to 15 minutes.

その後この加圧を止め、被ラミネート体の温度が軟化点の高い充填材の軟化点の近傍になるようにラミネーターの設定温度を変更する。例えば軟化点の高い充填材の軟化点が85℃であるなら、ラミネーター内の温度分布や温度変化などを考慮して82〜88℃の温度範囲に被ラミネート体の全体が入るように温度を制御しながら、1〜15分間放置する。その後減圧と加熱を止め、出来上がった太陽電池パネルをラミネーターより取り出す。   Thereafter, the pressurization is stopped, and the set temperature of the laminator is changed so that the temperature of the laminate is near the softening point of the filler having a high softening point. For example, if the softening point of a filler with a high softening point is 85 ° C, the temperature is controlled so that the entire laminate is within the temperature range of 82 to 88 ° C, taking into account the temperature distribution and temperature change in the laminator. Leave for 1-15 minutes. Thereafter, the decompression and heating are stopped, and the completed solar cell panel is taken out from the laminator.

図3は本発明に係る太陽電池パネルの内部の状態を模式的に示す断面図である。   FIG. 3 is a sectional view schematically showing an internal state of the solar cell panel according to the present invention.

図3において符号は図2と同様に、20a、20bは軟化点の低い充填材、21a、21bは軟化点の高い充填材、22a、22bは軟化点の低い充填材、23は透光性基板、24は太陽電池素子、25は裏面材、26は接続タブを示し、さらに31はハンダによる凸部、30は接続タブの凸部と透光性基板の間隙、33はハンダによる凸部と裏面材の間隙を示す。   3, reference numerals 20a and 20b are fillers having a low softening point, fillers 21a and 21b are fillers having a high softening point, 22a and 22b are fillers having a low softening point, and 23 is a translucent substrate. , 24 is a solar cell element, 25 is a back material, 26 is a connection tab, 31 is a convex portion by solder, 30 is a gap between the convex portion of the connection tab and the translucent substrate, and 33 is a convex portion and back surface by the solder. The gap of the material is shown.

このように最初にまず軟化点の低い充填材の軟化点の近傍に加熱しながら、加圧することにより軟化点の低い充填材が軟化、溶融して太陽電池素子を完全に封止する。このとき上述のような接続タブの凸部やハンダによる凸部31があった場合でも、図5に示すように軟化点の高い充填材が軟化していないため、これを突き抜けることが無く、透光性基板23や裏面材25との間隙30、33には電気絶縁性を確保するために必要な間隔が維持される。   In this way, first, the filler having a low softening point is softened and melted by pressurizing while heating in the vicinity of the softening point of the filler having a low softening point, thereby completely sealing the solar cell element. At this time, even when there is a convex portion of the connection tab as described above or a convex portion 31 by solder, the filler having a high softening point is not softened as shown in FIG. The gaps 30 and 33 between the optical substrate 23 and the back material 25 are maintained at intervals necessary for ensuring electrical insulation.

さらにその後加圧を止め、被ラミネート体の温度が軟化点の高い充填材の軟化点の近傍で保持したことで、各充填材が一体化し、内部に気泡などが残ることが無く、信頼性の高い太陽電池モジュールとすることができる。   Furthermore, the pressurization is stopped after that, and the temperature of the laminate is kept near the softening point of the filler having a high softening point, so that the fillers are integrated, and there is no air bubbles remaining inside. It can be set as a high solar cell module.

このようにして作製された太陽電池パネルの裏面に、外部回路接続用のケーブルを具備した端子ボックス(不図示)を接着剤などで取り付ける。さらに太陽電池モジュールとしての必要な強度や太陽電池モジュールを建物等に設置に必要なモジュール枠(不図示)を太陽電池パネル部の外周に嵌め込み、そのコーナー部をネジ止めして太陽電池モジュールが完成する。   A terminal box (not shown) provided with a cable for connecting an external circuit is attached to the back surface of the solar cell panel thus manufactured with an adhesive or the like. Furthermore, the required strength as a solar cell module and a module frame (not shown) required for installing the solar cell module in a building or the like are fitted on the outer periphery of the solar cell panel, and the corner is screwed to complete the solar cell module. To do.

また本発明に係る軟化点の低い充填材の間に軟化点の高い充填材が配置されている構造の充填材は、使用する太陽電池素子や太陽電池モジュールの製造方法により、太陽電池素子の受光面側や裏面側にのみ使用しても良く、また受光面側と裏面側の両方に使用しても良い。   Further, a filler having a structure in which a filler having a high softening point is disposed between fillers having a low softening point according to the present invention is a method for receiving solar cell elements by using the solar cell element or solar cell module manufacturing method used. It may be used only on the surface side or the back surface side, or may be used on both the light receiving surface side and the back surface side.

例えば、電極が受光面側や裏面側にのみ配置されたようなアモルファスシリコン太陽電池では、太陽電池素子の受光面側や裏面側にのみ使用しても良い。また上述の結晶系シリコン基板を使用した太陽電池素子では、電極が受光面側と裏面側の両方にあるため、本発明にかかる充填材を両面に使用することが望ましい。   For example, in an amorphous silicon solar cell in which an electrode is disposed only on the light receiving surface side or the back surface side, it may be used only on the light receiving surface side or the back surface side of the solar cell element. Moreover, in the solar cell element using the above crystalline silicon substrate, since the electrodes are on both the light receiving surface side and the back surface side, it is desirable to use the filler according to the present invention on both surfaces.

なお、本発明は上記実施形態に限定されるものではなく、本発明の範囲内で多くの修正および変更を加えることができる。例えば太陽電池素子は単結晶や多結晶シリコンなどの結晶系太陽電池に限定されるものではなく、薄膜系太陽電池などでも適用可能である。また結晶系の太陽電池素子でも接続タブや太陽電池素子の電極をコートしているハンダは鉛を含有した共晶ハンダなどの他に鉛フリーのハンダでも応用可能であり、さらに太陽電池素子の電極にハンダコート行わないものでも応用可能である。   In addition, this invention is not limited to the said embodiment, Many corrections and changes can be added within the range of this invention. For example, the solar cell element is not limited to a crystalline solar cell such as a single crystal or polycrystalline silicon, and can be applied to a thin film solar cell. In addition, in the case of crystalline solar cell elements, the solder that coats the connection tab and the electrode of the solar cell element can also be applied to lead-free solder in addition to eutectic solder containing lead, and further, the electrode of the solar cell element Even those that are not solder coated can be applied.

本発明に係る充填材を示す図である。It is a figure which shows the filler which concerns on this invention. 本発明に係る太陽電池パネルの構造の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the solar cell panel which concerns on this invention. 本発明に係る太陽電池パネルの内部の状態を模式的に示す断面図である。It is sectional drawing which shows typically the state inside the solar cell panel which concerns on this invention. 従来の太陽電池モジュールのパネルの構造の一例を示す図である。It is a figure which shows an example of the structure of the panel of the conventional solar cell module. 接続タブやハンダ付け部分に凸部が生じた状態を模式的に示すラミネート後の断面図である。It is sectional drawing after the lamination which shows typically the state which the convex part produced in the connection tab or the soldering part.

符号の説明Explanation of symbols

1、23:透光性基板
2:受光面側充填材
3、3a、3b、24:太陽電池素子
4:裏面側充填材
5、25:裏面材
6、26:接続タブ
7、27:出力配線
10、31:ハンダによる凸部
11、30:接続タブの凸部と透光性基板との間隙
12、33:ハンダによる凸部と裏面材との間隙
20、22、20a、20b、22a、22b:軟化点の低い充填材
21、21a、21b:軟化点の高い充填材
DESCRIPTION OF SYMBOLS 1, 23: Translucent board | substrate 2: Light-receiving surface side filler 3, 3a, 3b, 24: Solar cell element 4: Back surface side filler 5, 25: Back surface material 6, 26: Connection tab 7, 27: Output wiring 10, 31: convex portion 11 by solder, 30: gap 12 between the convex portion of connection tab and translucent substrate, 33: gap between convex portion by solder and back material 20, 22, 20a, 20b, 22a, 22b : Fillers with low softening point 21, 21a, 21b: Fillers with high softening point

Claims (4)

透光性基板と裏面材の間に充填材で封止した太陽電池素子を配置した太陽電池モジュールにおいて、
前記太陽電池素子の受光面側に配置する充填材及びまたは前記太陽電池素子の裏面側に配置する充填材は、軟化点の異なる少なくとも2種類の充填材から構成されていることを特徴とする太陽電池モジュール。
In a solar cell module in which a solar cell element sealed with a filler is disposed between a translucent substrate and a back surface material,
The filler disposed on the light receiving surface side of the solar cell element and / or the filler disposed on the back surface side of the solar cell element is composed of at least two types of fillers having different softening points. Battery module.
前記充填材は、軟化点が45〜55℃の充填材と、軟化点が80〜90℃の充填材を含んでいることを特徴とする請求項1記載の太陽電池モジュール。 The solar cell module according to claim 1, wherein the filler includes a filler having a softening point of 45 to 55 ° C and a filler having a softening point of 80 to 90 ° C. 前記充填材は、軟化点が45〜55℃の充填材シートと、軟化点が80〜90℃の充填材シートを加熱して形成されるとともに、太陽電池素子に接する側の充填材は、軟化点が低い充填材で形成されていることを特徴とする請求項1または2に記載の太陽電池モジュール。 The filler is formed by heating a filler sheet having a softening point of 45 to 55 ° C. and a filler sheet having a softening point of 80 to 90 ° C., and the filler on the side in contact with the solar cell element is softened. The solar cell module according to claim 1, wherein the solar cell module is formed of a filler having a low point. 前記軟化点の低い充填材及び前記軟化点の高い充填材が、全てエチレンビニルアセテート共重合体(EVA)であり、かつ前記軟化点の高い充填材の厚みが0.03mm以上、0.3mm以下であることを特徴とする請求項1または2に記載の太陽電池モジュール。 The filler having a low softening point and the filler having a high softening point are all ethylene vinyl acetate copolymer (EVA), and the thickness of the filler having a high softening point is 0.03 mm or more and 0.3 mm or less. The solar cell module according to claim 1, wherein the solar cell module is a solar cell module.
JP2005095851A 2005-03-29 2005-03-29 Solar cell module Expired - Fee Related JP4667098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005095851A JP4667098B2 (en) 2005-03-29 2005-03-29 Solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005095851A JP4667098B2 (en) 2005-03-29 2005-03-29 Solar cell module

Publications (2)

Publication Number Publication Date
JP2006278740A true JP2006278740A (en) 2006-10-12
JP4667098B2 JP4667098B2 (en) 2011-04-06

Family

ID=37213183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005095851A Expired - Fee Related JP4667098B2 (en) 2005-03-29 2005-03-29 Solar cell module

Country Status (1)

Country Link
JP (1) JP4667098B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044696A1 (en) * 2006-10-13 2008-04-17 Hitachi Chemical Company, Ltd. Solar battery cell connection method and solar battery module
EP1973171A2 (en) 2007-03-20 2008-09-24 Sanyo Electric Co., Ltd. Solar cell module
EP2043163A2 (en) 2007-09-25 2009-04-01 Sanyo Electric Co., Ltd. Method of manufacturing solar cell module and solar cell module thus manufactured
JP2011091327A (en) * 2009-10-26 2011-05-06 Sharp Corp Solar cell module and method of manufacturing solar cell module
WO2015001951A1 (en) * 2013-07-05 2015-01-08 東レ株式会社 Reverse-side protective substrate, solar cell module, and method for producing solar cell module
US20150179849A1 (en) * 2012-08-28 2015-06-25 Sanyo Electric Co., Ltd. Solar cell module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243996A (en) * 1999-02-18 2000-09-08 Canon Inc Solar-cell module and manufacture thereof
JP2001094135A (en) * 1999-09-21 2001-04-06 Canon Inc Solar cell module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243996A (en) * 1999-02-18 2000-09-08 Canon Inc Solar-cell module and manufacture thereof
JP2001094135A (en) * 1999-09-21 2001-04-06 Canon Inc Solar cell module

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044696A1 (en) * 2006-10-13 2008-04-17 Hitachi Chemical Company, Ltd. Solar battery cell connection method and solar battery module
JP2008294383A (en) * 2006-10-13 2008-12-04 Hitachi Chem Co Ltd Solar battery cell connection method, and solar battery module
JP4697194B2 (en) * 2006-10-13 2011-06-08 日立化成工業株式会社 Solar cell connection method and solar cell module
TWI383513B (en) * 2006-10-13 2013-01-21 Hitachi Chemical Co Ltd Method of connection of solar cell
TWI384632B (en) * 2006-10-13 2013-02-01 Hitachi Chemical Co Ltd Solar module
EP1973171A2 (en) 2007-03-20 2008-09-24 Sanyo Electric Co., Ltd. Solar cell module
EP2043163A2 (en) 2007-09-25 2009-04-01 Sanyo Electric Co., Ltd. Method of manufacturing solar cell module and solar cell module thus manufactured
US7932184B2 (en) 2007-09-25 2011-04-26 Sanyo Electric Co., Ltd. Method of manufacturing solar cell module and solar cell module thus manufactured
JP2011091327A (en) * 2009-10-26 2011-05-06 Sharp Corp Solar cell module and method of manufacturing solar cell module
US20150179849A1 (en) * 2012-08-28 2015-06-25 Sanyo Electric Co., Ltd. Solar cell module
WO2015001951A1 (en) * 2013-07-05 2015-01-08 東レ株式会社 Reverse-side protective substrate, solar cell module, and method for producing solar cell module

Also Published As

Publication number Publication date
JP4667098B2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
JP4860652B2 (en) Solar cell module and manufacturing method thereof
JP2006278710A (en) Solar battery module and manufacturing method thereof
TW201349529A (en) Back contact solar cell module
US20120325315A1 (en) Photoelectric converter device and method for its manufacture
JP2008258269A (en) Solar cell module and manufacturing process of the same
WO2012015031A1 (en) Solar cell module
JP4667098B2 (en) Solar cell module
JP2007123792A (en) Solar battery module
JP2004356349A (en) Method of manufacturing solar cell module
JP2008010857A (en) Solar cell module
JP4738147B2 (en) Solar cell module and manufacturing method thereof
JP2005191125A (en) Connection tab for connecting solar battery element and solar battery module, and method of manufacturing solar battery module
JP2005159173A (en) Wiring material for connecting solar cell element and solar cell module
JP2011077103A (en) Solar cell module
JP2007201291A (en) Solar battery module and method of reproducing same
JP4703231B2 (en) Solar cell module and manufacturing method thereof
JP4340132B2 (en) Manufacturing method of solar cell module
JP4454322B2 (en) Solar cell module
JP2006278695A (en) Solar cell module
JP4883891B2 (en) Solar cell module
JP2008160049A (en) Solar cell module and manufacturing method thereof
JP5496413B2 (en) Method for manufacturing solar cell device
JP5153361B2 (en) Repair method of solar cell module
JP2005236217A (en) Sealing material for solar cell module, and manufacturing method for solar cell module using the same
JP2005072511A (en) Solar battery module and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4667098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees