JP2006278192A - Induction heating cooker - Google Patents

Induction heating cooker Download PDF

Info

Publication number
JP2006278192A
JP2006278192A JP2005097007A JP2005097007A JP2006278192A JP 2006278192 A JP2006278192 A JP 2006278192A JP 2005097007 A JP2005097007 A JP 2005097007A JP 2005097007 A JP2005097007 A JP 2005097007A JP 2006278192 A JP2006278192 A JP 2006278192A
Authority
JP
Japan
Prior art keywords
power
induction heating
battery
circuit
heating unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005097007A
Other languages
Japanese (ja)
Other versions
JP4650057B2 (en
Inventor
Kazuyuki Kobayashi
和幸 小林
Koji Utsunomiya
幸司 宇都宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2005097007A priority Critical patent/JP4650057B2/en
Publication of JP2006278192A publication Critical patent/JP2006278192A/en
Application granted granted Critical
Publication of JP4650057B2 publication Critical patent/JP4650057B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Induction Heating Cooking Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an induction heating cooker capable of preventing overload of indoor wiring and capable of outputting desired calories even if it is used in single-phase 100 V. <P>SOLUTION: An induction heating part driving device 12 acquires a direct current electric power by rectifying an alternate current electric power from a commercial alternate current power supply 16, and converts that direct current electric power to a high frequency electric power and supplies it to an induction heating part 11. Moreover, an arithmetic control circuit 15 controls switching elements S1, S2, S3 of the induction heating part driving device, and when electric power consumption at the induction heating part 11 is zero or less, it stores the electric power from the alternate current power supply in a battery 13, and when the electric power consumption at the induction heating part 11 is deficient only by the alternate current power supply, it controls to supply the shortfall to the induction heating part 11 within a range not exceeding a battery supply limit electric power. Moreover, the arithmetic control circuit 15 calculates driving operable time of the battery 13, and displays it on an operation display part 14. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、商用交流電源であっても所望の熱量を出力できる誘導加熱調理器に関するものである。   The present invention relates to an induction heating cooker that can output a desired amount of heat even with a commercial AC power supply.

ハイパワー家電の一つであるIH(Induction Heating)クッキングヒータ(誘導加熱調理器)は、交流電源からの交流電力を整流して直流電力を求め、その直流電力を高周波電力に変換して誘導加熱部に供給して誘導加熱(IH)により熱を発生するようにしている。このような誘導加熱調理器の電源は、一般に単相200Vの交流電源を必要としている。一方、一般家庭においては、電力の引き込み線は単相3線で引き込まれているが、屋内、特に台所には単相200Vのコンセントが用意されていない。そのため、誘導加熱調理器を導入しようとした場合には、新たに屋内配線の工事が必要となり、これが誘導加熱調理器の導入促進の障害の一つになっている。   IH (Induction Heating) cooking heater (induction heating cooker), one of the high power home appliances, obtains DC power by rectifying AC power from AC power supply, converts the DC power to high frequency power, induction heating unit To generate heat by induction heating (IH). Such an induction heating cooker generally requires a single-phase 200V AC power supply. On the other hand, in a general household, the power lead-in wire is drawn in by single-phase three-wire, but a single-phase 200V outlet is not prepared indoors, particularly in the kitchen. Therefore, when an induction heating cooker is to be introduced, a new construction work for indoor wiring is required, which is one of the obstacles to the introduction of the induction heating cooker.

また、単相100Vの交流電源で使用可能とした誘導加熱調理器もある。例えば、単相200V用と単相100V用とを兼用できるようにしたものがある。このような誘導加熱調理器では、単相100Vの場合はその単相100Vを倍電圧整流回路や力率改善昇圧型整流回路で昇圧して整流し、直流部の電圧Vdcは、単相200V及び単相100Vのいずれの場合であっても約280Vとするようにしている。これにより、出力回路を共用化している。   There is also an induction heating cooker that can be used with a single-phase 100V AC power supply. For example, there is one that can be used for both single-phase 200V and single-phase 100V. In such an induction heating cooker, in the case of a single-phase 100V, the single-phase 100V is boosted and rectified by a voltage doubler rectifier circuit or a power factor improving step-up rectifier circuit, and the voltage Vdc of the DC part is 200V In either case of single phase 100V, it is set to about 280V. Thereby, the output circuit is shared.

被調理物加熱用の加熱手段に商用交流電源からの交流信号と蓄電池からの直流信号の大きい方を選択して入力し、商用交流電源であっても、十分な調理加熱を行えるようにしたハイパワー調理器がある(例えば、特許文献1参照)。すなわち、商用交流電源から供給される交流電圧の少なくとも最小瞬時値よりも大きい直流電圧を供給する蓄電池を設け、交流電圧の瞬時値が蓄電池からの直流電圧値よりも小さい範囲では、蓄電池からヒータ又は誘導加熱コイルに直流電圧を供給し、商用交流電源であっても十分な調理加熱を行うことができるようにしている。
特開平7−235372号公報
A high AC power source that can be used to heat the food to be cooked, with the AC signal from the commercial AC power supply and the DC signal from the storage battery selected to be larger. There is a power cooker (see, for example, Patent Document 1). That is, a storage battery that supplies a DC voltage that is greater than at least the minimum instantaneous value of the AC voltage supplied from the commercial AC power supply is provided, and in a range where the instantaneous value of the AC voltage is smaller than the DC voltage value from the storage battery, A DC voltage is supplied to the induction heating coil so that sufficient cooking and heating can be performed even with a commercial AC power source.
JP 7-235372 A

しかし、単相200Vと単相100Vとを兼用できるようにした誘導加熱調理器では、出力回路が共用化されているので単相200Vと同等の能力を発揮する。そのために、単相100Vで使用した場合、入力電圧が1/2であるため、従来の最大出力を得るのに入力電流が2倍必要となる。従って、既設の100V用の屋内配線器具の容量を超過する場合がある。そこで、その対策として、単相100V用の誘導加熱調理器では最大出力が単相200V用より小さく抑えられており、所望の熱量を出力することができないことが多い。   However, the induction heating cooker that can be used for both single-phase 200V and single-phase 100V exhibits the same capability as single-phase 200V because the output circuit is shared. For this reason, when used at a single phase of 100 V, the input voltage is ½, so that twice the input current is required to obtain the conventional maximum output. Therefore, the capacity of the existing indoor wiring appliance for 100V may be exceeded. Therefore, as a countermeasure, the maximum output of the induction heating cooker for single phase 100V is suppressed to be smaller than that for single phase 200V, and it is often impossible to output a desired amount of heat.

一方、特許文献1のものでは蓄電池を設け、蓄電池からヒータ又は誘導加熱コイルに直流電圧を供給するようにしているが、蓄電池からの直流電圧の供給は、交流電圧の瞬時値が蓄電池からの直流電圧値よりも小さい範囲に対してだけであるので、所望の熱量を出力することができない場合がある。   On the other hand, in Patent Document 1, a storage battery is provided, and a DC voltage is supplied from the storage battery to a heater or an induction heating coil. However, when a DC voltage is supplied from the storage battery, an instantaneous value of the AC voltage is a direct current from the storage battery. Since it is only for a range smaller than the voltage value, a desired amount of heat may not be output.

使用者から見た場合に誘導加熱調理器の購買意欲を低下させている原因の一つは、所望の熱量を得にくいことが上げられる。また、家庭内において誘導加熱調理器を使用する場合には、他の調理器具と併用していることが多く、他の調理器具が電力消費の大きい家電製品であって誘導加熱調理器と同時に使用される場合には、一時的に高負荷になり屋内配線が過負荷になりブレーカが開することがある。   One of the causes of reducing the willingness to purchase induction heating cookers when viewed from the user is that it is difficult to obtain a desired amount of heat. In addition, when using an induction heating cooker in the home, it is often used in combination with other cooking utensils. In such a case, the load may be temporarily increased, the indoor wiring may be overloaded, and the breaker may be opened.

本発明の目的は、屋内配線の過負荷を防止でき、しかも単相100Vであっても所望の熱量を出力することができる誘導加熱調理器を提供することである。   An object of the present invention is to provide an induction heating cooker that can prevent overloading of indoor wiring and that can output a desired amount of heat even with a single-phase 100V.

請求項1の発明に係わる誘導加熱調理器は、商用交流電源からの交流電力を整流して直流電力を求めその直流電力を高周波電力に変換して誘導加熱部に供給する誘導加熱部駆動装置と、誘導加熱部での消費電力が零または少ないときに交流電源からの電力を蓄積するバッテリと、誘導加熱部での消費電力が交流電源だけでは不足するときは前記バッテリからバッテリ供給限界電力を超えない範囲内で不足分を前記誘導加熱部に供給するように制御するとともに前記バッテリの運転稼働可能時間を演算し表示する演算制御回路とを備えたことを特徴とする。   An induction heating cooker according to the invention of claim 1 includes an induction heating unit driving device that rectifies AC power from a commercial AC power source to obtain DC power, converts the DC power to high frequency power, and supplies the DC power to the induction heating unit; A battery that accumulates power from an AC power source when the power consumption in the induction heating unit is zero or low, and exceeds the battery supply limit power from the battery when the power consumption in the induction heating unit is insufficient with only the AC power source An arithmetic control circuit is provided that controls to supply the shortage to the induction heating unit within a range that is not present, and calculates and displays the operation possible time of the battery.

請求項2の発明に係わる誘導加熱調理器は、請求項1の発明において、前記誘導加熱部駆動装置は、商用交流電源からの交流電力を整流する整流器と、前記整流器の入力電力の力率を改善しつつ前記整流器からの直流を降圧し得られた直流電圧に応じて前記バッテリに電力の充放電を行う力率改善降圧回路と、前記力率改善降圧回路で得られた直流電源を昇圧する昇圧チョッパ回路と、前記昇圧チョッパ回路で昇圧された直流電源を高周波制御し前記誘導加熱部に供給する高周波電力を発生する高周波電力発生回路とを備えたことを特徴とする。   An induction heating cooker according to a second aspect of the present invention is the induction heating cooker according to the first aspect of the present invention, wherein the induction heating unit driving device has a rectifier that rectifies AC power from a commercial AC power source, and a power factor of input power of the rectifier. A power factor correction step-down circuit that charges and discharges power to and from the battery according to a DC voltage obtained by stepping down the direct current from the rectifier while improving, and boosts the direct-current power source obtained by the power factor improvement step-down circuit A step-up chopper circuit and a high-frequency power generation circuit that generates a high-frequency power to be supplied to the induction heating unit by controlling the DC power source boosted by the step-up chopper circuit at a high frequency.

請求項3の発明に係わる誘導加熱調理器は、請求項1の発明において、前記誘導加熱部駆動装置は、商用交流電源からの交流電力を整流する整流器と、前記整流器の入力電力の力率を改善しつつ前記整流器からの直流を昇圧する力率改善回路と、前記力率改善回路で得られた直流電源を降圧して前記バッテリに充電するとともにバッテリ電圧を昇圧して前記バッテリに蓄積された電力を前記力率改善回路の出力部に放電する昇降圧チョッパ回路と、前記力率改善回路の出力部の直流電源を高周波制御し前記誘導加熱部に供給する高周波電力を発生する高周波電力発生回路とを備えたことを特徴とする。   An induction heating cooker according to a third aspect of the present invention is the induction heating cooker according to the first aspect of the present invention, wherein the induction heating unit driving device includes a rectifier that rectifies AC power from a commercial AC power supply, and a power factor of input power of the rectifier. The power factor improving circuit that boosts the direct current from the rectifier while improving, the DC power source obtained by the power factor improving circuit is stepped down to charge the battery, and the battery voltage is stepped up and stored in the battery A step-up / step-down chopper circuit that discharges electric power to the output part of the power factor correction circuit, and a high frequency power generation circuit that generates high frequency power to be supplied to the induction heating part by controlling the direct current power source of the output part of the power factor improvement circuit. It is characterized by comprising.

本発明によれば、誘導加熱部での消費電力が零または少ないときに交流電源からの電力を蓄積するバッテリを設け、誘導加熱部での消費電力が交流電源だけでは不足するときはバッテリからバッテリ供給限界電力を超えない範囲内で不足分を誘導加熱部に供給するので、商用交流電源であっても、家庭内の一時的な高負荷時においても使用が可能となる。また、バッテリの運転稼働可能時間を演算し表示するので、家庭内で一時的な高負荷が発生するかどうかを予め判断することができる。   According to the present invention, there is provided a battery for accumulating power from an AC power source when the power consumption in the induction heating unit is zero or small, and when the power consumption in the induction heating unit is insufficient with only the AC power source, the battery is switched to the battery. Since the shortage is supplied to the induction heating unit within a range that does not exceed the supply limit power, even a commercial AC power supply can be used even at a temporary high load in the home. In addition, since the battery operable time is calculated and displayed, it can be determined in advance whether a temporary high load occurs in the home.

(第1の実施の形態)
図1は本発明の第1の実施の形態に係わる誘導加熱調理器の構成図である。誘導加熱調理器は、熱を発生する誘導加熱部11と、誘導加熱部11に電力を供給する誘導加熱部駆動装置12と、電力を蓄積するバッテリ13と、調理操作や各種情報の表示を行う操作表示部14と、操作表示部14の操作に基づき誘導加熱部駆動装置12を制御するとともに各種情報を操作表示部14に表示する演算制御回路15とから構成される。
(First embodiment)
FIG. 1 is a configuration diagram of the induction heating cooker according to the first embodiment of the present invention. The induction heating cooker displays an induction heating unit 11 that generates heat, an induction heating unit driving device 12 that supplies electric power to the induction heating unit 11, a battery 13 that stores electric power, a cooking operation, and various types of information. The operation display unit 14 includes an operation control circuit 15 that controls the induction heating unit driving device 12 based on the operation of the operation display unit 14 and displays various information on the operation display unit 14.

誘導加熱部11はリアクトルL1とコンデンサC1との並列回路から構成され、この誘導加熱部11のリアクトルL1に電流が流れると、リアクトルの回りに渦電流が発生し、この渦電流が発生しているところに金属を近づけると、金属に電流が流れ、この電流と金属の抵抗により熱が発生し調理用の熱源となる。   The induction heating unit 11 is composed of a parallel circuit of a reactor L1 and a capacitor C1, and when a current flows through the reactor L1 of the induction heating unit 11, an eddy current is generated around the reactor, and this eddy current is generated. However, when a metal is brought close to it, a current flows through the metal, and heat is generated by the current and the resistance of the metal to become a heat source for cooking.

誘導加熱部駆動装置12は、商用交流電源16からの交流電力を整流して直流電力を求め、その直流電力を高周波電力に変換して誘導加熱部11に供給するものである。商用交流電源16からの交流電圧はフィルタコンデンサC2を介して整流器17に入力され、この整流器17により直流に変換される。整流器17で整流された直流電圧は平滑リアクトルL2を介して力率改善降圧回路18に入力される。   The induction heating unit driving device 12 rectifies AC power from the commercial AC power supply 16 to obtain DC power, converts the DC power into high frequency power, and supplies the DC power to the induction heating unit 11. The AC voltage from the commercial AC power supply 16 is input to the rectifier 17 through the filter capacitor C2, and is converted into DC by the rectifier 17. The DC voltage rectified by the rectifier 17 is input to the power factor correction step-down circuit 18 through the smoothing reactor L2.

力率改善降圧回路18は、スイッチング素子S1、ダイオードD1、リアクトルL3、コンデンサC3から構成され、スイッチング素子S1は演算制御回路15からの指令に基づき駆動回路19によりスイッチング制御される。すなわち、演算制御回路15は、電流検出器CT1で検出された力率改善降圧回路18への入力電流I1、電圧検出器PT1で検出された力率改善降圧回路18の出力電圧V1、電流検出器CTbで検出されたバッテリ電流Ibに基づいて、整流器17の入力電力の力率を改善しつつ整流器17からの直流を降圧するとともに、得られた直流電圧に応じてバッテリ13に充放電を行う。   The power factor correction step-down circuit 18 includes a switching element S1, a diode D1, a reactor L3, and a capacitor C3. The switching element S1 is controlled by the drive circuit 19 based on a command from the arithmetic control circuit 15. That is, the arithmetic control circuit 15 has the input current I1 to the power factor correction step-down circuit 18 detected by the current detector CT1, the output voltage V1 of the power factor correction step-down circuit 18 detected by the voltage detector PT1, and the current detector. Based on the battery current Ib detected by CTb, the direct current from the rectifier 17 is stepped down while improving the power factor of the input power of the rectifier 17, and the battery 13 is charged and discharged according to the obtained direct current voltage.

力率改善降圧回路18で得られた直流電圧は、バッテリ13及びコンデンサC3に印加される。バッテリ13では、力率改善降圧回路18で得られた直流電圧がバッテリ電圧より高いときは充電し、バッテリ電圧より低いときは放電する。また、コンデンサC3は、力率改善降圧回路18で得られた直流電圧により直流電力を充電する。バッテリ13やコンデンサC3に充電された直流電力が力率改善降圧回路18で得られた直流電源となる。   The DC voltage obtained by the power factor correction step-down circuit 18 is applied to the battery 13 and the capacitor C3. The battery 13 is charged when the DC voltage obtained by the power factor correction step-down circuit 18 is higher than the battery voltage, and discharged when it is lower than the battery voltage. Further, the capacitor C3 charges DC power with the DC voltage obtained by the power factor correction step-down circuit 18. The DC power charged in the battery 13 and the capacitor C3 becomes the DC power source obtained by the power factor correction step-down circuit 18.

力率改善降圧回路18で得られた直流電源は昇圧チョッパ回路20に入力される。昇圧チョッパ回路20は、リアクトルL4、スイッチング素子S2、ダイオードD2、コンデンサC4から構成され、スイッチング素子S2は演算制御回路15からの指令に基づき駆動回路21によりスイッチング制御される。すなわち、演算制御回路15は、電圧検出器PT1で検出された力率改善降圧回路18の出力電圧V1、電圧検出器PT2で検出された昇圧チョッパ回路20の出力電圧V2に基づいて、力率改善降圧回路18で得られた直流電源を昇圧する。   The DC power obtained by the power factor correction step-down circuit 18 is input to the step-up chopper circuit 20. The step-up chopper circuit 20 includes a reactor L 4, a switching element S 2, a diode D 2, and a capacitor C 4, and the switching element S 2 is controlled by the drive circuit 21 based on a command from the arithmetic control circuit 15. That is, the arithmetic control circuit 15 improves the power factor based on the output voltage V1 of the power factor correction step-down circuit 18 detected by the voltage detector PT1 and the output voltage V2 of the boost chopper circuit 20 detected by the voltage detector PT2. The DC power source obtained by the step-down circuit 18 is boosted.

昇圧チョッパ回路20で昇圧された直流電源は高周波電力発生回路22に入力される。高周波電力発生回路22はスイッチング素子S3で構成され、スイッチング素子S3は演算制御回路15からの指令に基づき駆動回路23によりスイッチング制御される。すなわち、演算制御回路15は、電圧検出器PT3で検出された誘導加熱部11の両端電圧V3に基づいて高周波制御し、誘導加熱部11に高周波電力を供給する。   The DC power source boosted by the boost chopper circuit 20 is input to the high frequency power generation circuit 22. The high-frequency power generation circuit 22 includes a switching element S3, and the switching element S3 is switching-controlled by the drive circuit 23 based on a command from the arithmetic control circuit 15. That is, the arithmetic control circuit 15 performs high frequency control based on the voltage V3 across the induction heating unit 11 detected by the voltage detector PT3, and supplies high frequency power to the induction heating unit 11.

図2は、第1の実施の形態における演算制御回路15のブロック構成図である。演算制御回路15は、力率改善降圧回路18のスイッチング素子S1をPWM制御する力率改善制御手段24、昇圧チョッパ回路20のスイッチング素子S2をPWM制御する昇圧制御手段25、高周波電力発生回路22のスイッチング素子S3をPWM制御するIH制御手段26を有し、また、バッテリ13の運転稼働可能時間を演算し操作表示部14に表示する残存容量演算手段27、バッテリ13への充電が満充電であるか否かを判定しその判定結果を操作表示部14に表示する充電末判定手段28を有している。   FIG. 2 is a block configuration diagram of the arithmetic control circuit 15 in the first embodiment. The arithmetic control circuit 15 includes a power factor correction control unit 24 that performs PWM control of the switching element S 1 of the power factor correction step-down circuit 18, a boost control unit 25 that performs PWM control of the switching element S 2 of the boost chopper circuit 20, and a high-frequency power generation circuit 22. There is an IH control means 26 that performs PWM control of the switching element S3, a remaining capacity calculation means 27 that calculates the operation possible time of the battery 13 and displays it on the operation display unit 14, and the battery 13 is fully charged. Whether or not, and the determination result is displayed on the operation display unit 14.

まず、力率改善制御手段24について説明する。電流検出器CTbで検出されたバッテリ電流Ibは比較手段29に入力され、充電電流制限値と比較される。充電電流制限値はバッテリ13に充電する際の電流制限値であり、その差分が減算演算手段30に入力される。減算演算手段30では力率改善降圧回路18の出力電圧目標値V1rから比較手段29で得られた差分を減算し、修正された出力電圧目標値V1r0として差分演算手段31に出力する。これにより、バッテリ13への充電電流Ibが充電電流制限値を超えたときは出力電圧目標値V1r0が小さくなる。   First, the power factor improvement control means 24 will be described. The battery current Ib detected by the current detector CTb is input to the comparison means 29 and compared with the charging current limit value. The charging current limit value is a current limit value for charging the battery 13, and the difference is input to the subtraction operation means 30. The subtraction calculation means 30 subtracts the difference obtained by the comparison means 29 from the output voltage target value V1r of the power factor correction step-down circuit 18 and outputs it to the difference calculation means 31 as a corrected output voltage target value V1r0. Thereby, when the charging current Ib to the battery 13 exceeds the charging current limit value, the output voltage target value V1r0 becomes small.

差分演算手段31は、電圧検出器PT1で検出された力率改善降圧回路18の出力電圧V1を入力し、出力電圧V1と出力電圧目標値V1r0との差分ΔV1を演算して力率改善制御手段24に出力する。力率改善制御手段24は出力電圧V1と出力電圧目標値V1r0との差分ΔV1が零となるように、駆動回路19を介してスイッチング素子S1をPWM制御する。その際に、電流検出器CT1で検出された力率改善降圧回路18への入力電流I1が正弦波になるようにスイッチング素子S1のオンオフのタイミングを取りつつ制御する。   The difference calculation means 31 receives the output voltage V1 of the power factor correction step-down circuit 18 detected by the voltage detector PT1, calculates the difference ΔV1 between the output voltage V1 and the output voltage target value V1r0, and calculates the power factor improvement control means. 24. The power factor correction control means 24 performs PWM control of the switching element S1 via the drive circuit 19 so that the difference ΔV1 between the output voltage V1 and the output voltage target value V1r0 becomes zero. At that time, the switching element S1 is controlled to be on and off so that the input current I1 to the power factor correction step-down circuit 18 detected by the current detector CT1 becomes a sine wave.

一方、電流検出器CT1で検出された力率改善降圧回路18への入力電流I1は比較手段32に入力され、電源電流制限値と比較される。電源電流制限値は商用交流電源16から電力供給を受ける際の電流制限値であり、その差分が減算演算手段30に入力される。減算演算手段30では力率改善降圧回路18の出力電圧目標値V1rから比較手段29で得られた差分を減算し、修正された出力電圧目標値V1r0として差分演算手段31に出力する。これにより、力率改善降圧回路18への入力電流I1が電源電流制限値を超えたときは出力電圧目標値V1r0が小さくなる。   On the other hand, the input current I1 to the power factor correction step-down circuit 18 detected by the current detector CT1 is input to the comparison means 32 and compared with the power supply current limit value. The power supply current limit value is a current limit value when receiving power supply from the commercial AC power supply 16, and the difference is input to the subtraction operation means 30. The subtraction calculation means 30 subtracts the difference obtained by the comparison means 29 from the output voltage target value V1r of the power factor correction step-down circuit 18 and outputs it to the difference calculation means 31 as a corrected output voltage target value V1r0. Thereby, when the input current I1 to the power factor correction step-down circuit 18 exceeds the power supply current limit value, the output voltage target value V1r0 becomes small.

バッテリ13への充電電流が充電電流制限値を超えたとき、あるいは力率改善降圧回路18への入力電流I1が電源電流制限値を超えたときは出力電圧目標値V1r0が小さくなるので、力率改善制御手段24は出力電圧V1を下げる方向に制御する。従って、バッテリ電圧Vbの方が高くなり、バッテリ13への充電は停止しバッテリ13から放電を開始することになる。   When the charging current to the battery 13 exceeds the charging current limit value or when the input current I1 to the power factor correction step-down circuit 18 exceeds the power supply current limit value, the output voltage target value V1r0 becomes small. The improvement control means 24 controls the output voltage V1 to decrease. Accordingly, the battery voltage Vb becomes higher, and the charging of the battery 13 is stopped and the discharging from the battery 13 is started.

一方、バッテリ13への充電電流が零または負(放電状態)のとき、あるいは力率改善降圧回路18への入力電流I1が電源電流制限値未満で零または小さいときは、出力電圧目標値V1r0が大きくなるので、力率改善制御手段24は出力電圧V1を上げる方向に制御する。従って、バッテリ電圧Vbの方が低くなり、バッテリ13の放電は停止しバッテリ13への充電を開始することになる。   On the other hand, when the charging current to the battery 13 is zero or negative (discharge state), or when the input current I1 to the power factor correction step-down circuit 18 is less than the power supply current limit value or zero or small, the output voltage target value V1r0 is Therefore, the power factor correction control means 24 controls the output voltage V1 to increase. Accordingly, the battery voltage Vb becomes lower, the discharge of the battery 13 is stopped, and the charging of the battery 13 is started.

次に、昇圧制御手段25について説明する。電圧検出器PT2で検出された昇圧チョッパ回路20の出力電圧V2は差分演算手段33に入力され、昇圧チョッパ回路20の出力電圧目標値V2rとの差分ΔV2が演算される。差分演算手段33で演算された差分ΔV2は昇圧制御手段25に入力され、その差分ΔV2が零となるように、駆動回路21を介してスイッチング素子S2をPWM制御する。これにより、昇圧チョッパ回路20の出力電圧V2はその目標値V2rに制御される。   Next, the boost control means 25 will be described. The output voltage V2 of the boost chopper circuit 20 detected by the voltage detector PT2 is input to the difference calculation means 33, and a difference ΔV2 with respect to the output voltage target value V2r of the boost chopper circuit 20 is calculated. The difference ΔV2 calculated by the difference calculation means 33 is input to the boost control means 25, and the switching element S2 is PWM controlled via the drive circuit 21 so that the difference ΔV2 becomes zero. Thereby, the output voltage V2 of the step-up chopper circuit 20 is controlled to the target value V2r.

一方、力率改善降圧回路18の出力電圧V1は比較手段34に入力され、バッテリ13の放電終止電圧と比較される。放電終止電圧はバッテリ13が放電継続できる放電制限値である。力率改善降圧回路18の出力電圧V1が放電終止電圧未満となったときはバッテリ13からの放電は継続できないので昇圧制御手段25の動作を停止させる。このように、昇圧制御手段25は力率改善降圧回路18の出力電圧V1(昇圧チョッパ回路の入力電圧)が放電終止電圧以上である限りは昇圧制御を行い、負荷である誘導加熱部11に電力を供給するように動作する。   On the other hand, the output voltage V 1 of the power factor correction step-down circuit 18 is input to the comparison means 34 and compared with the discharge end voltage of the battery 13. The end-of-discharge voltage is a discharge limit value that allows the battery 13 to continue discharging. When the output voltage V1 of the power factor correction step-down circuit 18 becomes less than the discharge end voltage, the discharge from the battery 13 cannot be continued, so the operation of the step-up control means 25 is stopped. As described above, the boost control means 25 performs the boost control as long as the output voltage V1 of the power factor correction step-down circuit 18 (the input voltage of the boost chopper circuit) is equal to or higher than the discharge end voltage, and supplies power to the induction heating unit 11 that is a load. Operate to supply.

次に、IH制御手段26について説明する。IH制御手段26は、誘導加熱調理器の操作表示部14からの指令信号R、電圧検出器PT3で検出された誘導加熱部11の両端電圧V3、さらに、必要に応じて誘導加熱部11の温度Tを入力する。なお、図1では誘導加熱部11の温度Tを検出する温度検出器の図示は省略している。   Next, the IH control means 26 will be described. The IH control means 26 receives the command signal R from the operation display unit 14 of the induction heating cooker, the voltage V3 across the induction heating unit 11 detected by the voltage detector PT3, and the temperature of the induction heating unit 11 as necessary. Enter T. In FIG. 1, illustration of a temperature detector that detects the temperature T of the induction heating unit 11 is omitted.

IH制御手段26は操作表示部14からの指令信号Rを入力すると、その指令信号Rの内容を判別する。例えば、誘導加熱調理器の誘導加熱器がオンオフのいずれの状態であるか、誘導加熱調理器の誘導加熱器がオンしたときに、どの程度の熱源を要求しているのか等を判断する。例えば、出力調整つまみが通常の「煮物」を行う位置に調整されている場合、その熱源要求は通常であるので、特に温度制御は必要としない。その場合には、誘導加熱部11の温度Tの検出は省略する。一方、「揚げ物」のように高温を必要とする熱源要求の場合には温度検出器から誘導加熱部11の温度Tを検出し所定温度になるように自動調節することになる。すなわち、IH制御手段26は指令信号Rで要求された熱を出力できるように、駆動回路23を介してスイッチング素子S3をPWM制御する。   When the command signal R from the operation display unit 14 is input, the IH control means 26 determines the content of the command signal R. For example, it is determined whether the induction heater of the induction heating cooker is on or off, how much heat source is required when the induction heater of the induction heating cooker is turned on, and the like. For example, when the output adjustment knob is adjusted to a position where normal “boiled food” is performed, the heat source requirement is normal, and thus temperature control is not particularly required. In that case, detection of the temperature T of the induction heating unit 11 is omitted. On the other hand, in the case of a heat source request that requires a high temperature such as “fried food”, the temperature T of the induction heating unit 11 is detected from the temperature detector and automatically adjusted to a predetermined temperature. That is, the IH control means 26 performs PWM control of the switching element S3 via the drive circuit 23 so that the heat requested by the command signal R can be output.

次に、残存容量演算手段27及び充電末判定手段28について説明する。残存容量演算手段27は、時々刻々変化する電流検出器CTbで検出されたバッテリ電流Ib、及び電圧検出器PT1で検出された力率改善降圧回路18の出力電圧V1に基づいて、現時点でのバッテリ13の蓄電量Bを演算するとともに、現時点でのバッテリ13からの放電量を演算する。そして、現在の放電を継続した場合のバッテリ13の運転稼働可能時間を演算し操作表示部14に表示する。   Next, the remaining capacity calculation means 27 and the end of charge determination means 28 will be described. The remaining capacity calculating means 27 is based on the battery current Ib detected by the current detector CTb that changes every moment and the output voltage V1 of the power factor correction step-down circuit 18 detected by the voltage detector PT1. 13 is calculated, and the current discharge amount from the battery 13 is calculated. Then, the operation possible time of the battery 13 when the current discharge is continued is calculated and displayed on the operation display unit 14.

また、充電末判定手段28はバッテリ13の蓄電量Bが満充電となったか否かを判定するものであり、バッテリ電圧Vbが力率改善降圧回路18の出力電圧V1より低い状態で、電流検出器CTbで検出されたバッテリ電流Ibが満充電電流制限値より小さいときは満充電状態であると判定する。その判定結果は操作表示部14に表示される。   Further, the end-of-charge determining means 28 determines whether or not the charged amount B of the battery 13 is fully charged, and current detection is performed in a state where the battery voltage Vb is lower than the output voltage V1 of the power factor correction step-down circuit 18. When the battery current Ib detected by the device CTb is smaller than the full charge current limit value, it is determined that the battery is fully charged. The determination result is displayed on the operation display unit 14.

図3は、第1の実施の形態における演算制御回路15の動作を示すフローチャートである。まず、演算制御回路15は誘導加熱調理器が使用中(誘導加熱器がオン)であるか否かを判定する(S1)。誘導加熱調理器がオンでないときは商用交流電源16が印加されているか否かを判定する(S2)。商用交流電源16が印加されているときは、バッテリ13の蓄電量Bは所定値B0以下か否かを判定する(S3)。この所定値B0としては、例えば満充電状態での蓄電量を設定する。バッテリ13の蓄電量Bが所定値B0以下であるときはバッテリ13に充電する(S4)。   FIG. 3 is a flowchart showing the operation of the arithmetic control circuit 15 in the first embodiment. First, the arithmetic control circuit 15 determines whether or not the induction heating cooker is in use (the induction heater is on) (S1). When the induction heating cooker is not on, it is determined whether the commercial AC power supply 16 is applied (S2). When the commercial AC power supply 16 is applied, it is determined whether or not the charged amount B of the battery 13 is equal to or less than a predetermined value B0 (S3). As this predetermined value B0, for example, the charged amount in a fully charged state is set. When the charged amount B of the battery 13 is less than or equal to the predetermined value B0, the battery 13 is charged (S4).

すなわち、誘導加熱調理器がオフ(非使用中)のときは力率改善降圧回路18への入力電流I1は零であるので、前述したように、差分演算手段31に入力される出力電圧目標値V1r0は大きくなる。このことから、力率改善制御手段24は出力電圧V1を上げる方向に動作し、これにより、バッテリ電圧Vbの方が低くなりバッテリ13への充電となる。   That is, since the input current I1 to the power factor correction step-down circuit 18 is zero when the induction heating cooker is off (not in use), as described above, the output voltage target value input to the difference calculation means 31 V1r0 increases. From this, the power factor correction control means 24 operates in the direction of increasing the output voltage V1, so that the battery voltage Vb becomes lower and the battery 13 is charged.

一方、ステップS1の判定で、操作表示部14のスイッチがオンされた状態であるときは、商用交流電源16が印加されているか否かを判定し(S5)、商用交流電源16が印加されているときは、指令信号Rで要求されている熱源量(誘導加熱部要求出力電力Pr)が商用交流電源16の供給限界電力Pa0を超えているか否かを判定する(S6)。誘導加熱部要求出力電力Prが商用交流電源16の供給限界電力Pa0を超えていないときは、バッテリ13の蓄電量Bは所定値B0以下か否かを判定し(S7)、バッテリ13の蓄電量Bが所定値B0以下であるときは、バッテリ13に充電しつつ商用交流電源16から誘導加熱部11に電力を供給する(S8)。バッテリ13の蓄電量Bが所定値B0以下でないときは、バッテリ13への充電は必要ないので、商用交流電源16から誘導加熱部11に電力を供給する(S9)。   On the other hand, if it is determined in step S1 that the switch of the operation display unit 14 is turned on, it is determined whether or not the commercial AC power supply 16 is applied (S5), and the commercial AC power supply 16 is applied. If it is, it is determined whether or not the heat source amount (induction heating unit required output power Pr) requested by the command signal R exceeds the supply limit power Pa0 of the commercial AC power supply 16 (S6). When the induction heating unit required output power Pr does not exceed the supply limit power Pa0 of the commercial AC power supply 16, it is determined whether or not the charged amount B of the battery 13 is equal to or less than a predetermined value B0 (S7). When B is less than or equal to the predetermined value B0, electric power is supplied from the commercial AC power supply 16 to the induction heating unit 11 while charging the battery 13 (S8). When the charged amount B of the battery 13 is not less than or equal to the predetermined value B0, the battery 13 does not need to be charged, so power is supplied from the commercial AC power supply 16 to the induction heating unit 11 (S9).

次に、ステップS6の判定で、誘導加熱部要求出力電力Prが商用交流電源16の供給限界電力Pa0を超えているときは、商用交流電源16及びバッテリ13の双方から誘導加熱部11に電力を供給する(S10)。誘導加熱部要求出力電力Prと商用交流電源16の供給限界電力Pa0との差分(Pr−Pa0)がバッテリ供給限界電力Pb0より小さいか否かを判定し(S11)、差分(Pr−Pa0)がバッテリ供給限界電力Pb0より小さいときは、バッテリ13の蓄電量B及び現時点の誘導加熱部出力電力Pを確認する(S12)。そして、バッテリ13の蓄電量B及び現時点の誘導加熱部出力電力Pに基づいてバッテリ13の運転稼働可能時間Hを算出し(S13)、算出したバッテリ13の運転稼働可能時間Hを操作表示部14に表示する(S14)。ステップS11の判定で、差分(Pr−Pa0)がバッテリ供給限界電力Pb0を超えるときは、誘導加熱部出力電力Pを、商用交流電源16の供給限界電力Pa0とバッテリ供給限界電力Pb0との和(Pa0+Pb0)以下に制限し(S15)、ステップS12〜S14の処理に移り、バッテリ13の運転稼働可能時間Hを算出し、算出したバッテリ13の運転稼働可能時間Hを操作表示部14に表示する。   Next, when it is determined in step S6 that the induction heating unit required output power Pr exceeds the supply limit power Pa0 of the commercial AC power source 16, power is supplied to the induction heating unit 11 from both the commercial AC power source 16 and the battery 13. Supply (S10). It is determined whether the difference (Pr-Pa0) between the induction heating unit required output power Pr and the supply limit power Pa0 of the commercial AC power supply 16 is smaller than the battery supply limit power Pb0 (S11), and the difference (Pr-Pa0) is determined. When it is smaller than the battery supply limit power Pb0, the storage amount B of the battery 13 and the current induction heating unit output power P are confirmed (S12). Then, based on the charged amount B of the battery 13 and the current induction heating unit output power P, the operation available time H of the battery 13 is calculated (S13), and the calculated operation available time H of the battery 13 is calculated as the operation display unit 14. (S14). When the difference (Pr−Pa0) exceeds the battery supply limit power Pb0 in the determination in step S11, the induction heating unit output power P is set to the sum of the supply limit power Pa0 of the commercial AC power supply 16 and the battery supply limit power Pb0 ( (Pa0 + Pb0) or less (S15), the process proceeds to steps S12 to S14, the operation available time H of the battery 13 is calculated, and the calculated operation available time H of the battery 13 is displayed on the operation display unit 14.

また、ステップS5の判定で、商用交流電源16が印加されていないときは、バッテリ13から誘導加熱部11に電力を供給する(S16)。そして、指令信号Rで要求されている誘導加熱部要求出力電力Prがバッテリ13の供給限界電力Pb0を超えているか否かを判定し(S17)、超えていないときは、ステップS12〜S14の処理に移り、バッテリ13の運転稼働可能時間Hを算出し、算出したバッテリ13の運転稼働可能時間Hを操作表示部14に表示する。ステップS17の判定で、指令信号Rで要求されている誘導加熱部要求出力電力Prがバッテリ13の供給限界電力Pb0を超えているときは、誘導加熱部出力電力Pをバッテリ供給限界電力Pb0以下に制限し(S18)、ステップS12〜S14の処理に移り、バッテリ13の運転稼働可能時間Hを算出し、算出したバッテリ13の運転稼働可能時間Hを操作表示部14に表示する。   Moreover, when the commercial alternating current power supply 16 is not applied by determination of step S5, electric power is supplied from the battery 13 to the induction heating part 11 (S16). And it is determined whether the induction heating part request | requirement output electric power Pr requested | required by the command signal R exceeds the supply limit electric power Pb0 of the battery 13 (S17), and when not exceeded, the process of step S12-S14 Then, the operation available time H of the battery 13 is calculated, and the calculated operation available time H of the battery 13 is displayed on the operation display unit 14. If it is determined in step S17 that the induction heating unit required output power Pr requested by the command signal R exceeds the supply limit power Pb0 of the battery 13, the induction heating unit output power P is set to be equal to or less than the battery supply limit power Pb0. The operation is limited (S18), the process proceeds to steps S12 to S14, the operation available time H of the battery 13 is calculated, and the calculated operation available time H of the battery 13 is displayed on the operation display unit 14.

このように、第1の実施の形態では、力率改善降圧回路18と昇圧チョッパ回路20とを組み合わせることにより2個のスイッチング素子S1、S2とし、また、力率改善降圧回路18の出力を調整することにより、バッテリ13及び商用交流電源16からの直流電力の分担を可能としている。すなわち、バッテリ13を充電できる直流電圧を力率改善降圧回路18で調整し、バッテリ13に充電を行いながら、後段にある昇圧チョッパ回路20により誘導加熱部11が必要とする直流電圧(例えば、DC280V)へ昇圧して電力を供給する。バッテリ13からの電力供給の分担が必要となったときは、力率改善降圧回路18の出力電圧V1を低下させ、バッテリ13から電力を取り出す。   As described above, in the first embodiment, the power factor correction step-down circuit 18 and the step-up chopper circuit 20 are combined to form two switching elements S1 and S2, and the output of the power factor correction step-down circuit 18 is adjusted. By doing so, the DC power from the battery 13 and the commercial AC power supply 16 can be shared. That is, the DC voltage that can charge the battery 13 is adjusted by the power factor correction step-down circuit 18, and while charging the battery 13, the DC voltage required by the induction heating unit 11 by the boost chopper circuit 20 in the subsequent stage (for example, DC 280 V ) To supply power. When it is necessary to share power supply from the battery 13, the output voltage V 1 of the power factor correction step-down circuit 18 is lowered and electric power is taken out from the battery 13.

第1の実施の形態によれば、誘導加熱部11での消費電力が零または少ないときに商用交流電源16からの電力をバッテリ13に蓄積し、誘導加熱部11での消費電力が交流電源だけでは不足するときは、バッテリ13からバッテリ供給限界電力を超えない範囲内で不足分を誘導加熱部11に供給するので、商用交流電源であっても、家庭内の一時的な高負荷時においても使用が可能となる。また、バッテリ13の使用中にはバッテリ13の運転稼働可能時間を演算し表示するので、使用できる負荷量を予め判断することができる。   According to the first embodiment, when the power consumption in the induction heating unit 11 is zero or small, the power from the commercial AC power supply 16 is accumulated in the battery 13, and the power consumption in the induction heating unit 11 is only the AC power supply. In the case of shortage, since the shortage is supplied from the battery 13 to the induction heating unit 11 within a range not exceeding the battery supply limit power, even if it is a commercial AC power source or at a temporary high load in the home Can be used. Moreover, since the operation possible time of the battery 13 is calculated and displayed while the battery 13 is in use, the usable load amount can be determined in advance.

(第2の実施の形態)
図4は本発明の第2の実施の形態に係わる誘導加熱調理器の構成図である。この第2の実施の形態は、図1に示した第1の実施の形態に対し、誘導加熱部駆動装置12の力率改善降圧回路18及び昇圧チョッパ回路20に代えて、力率改善回路35及び昇降圧チョッパ回路36を設けたものである。図1と同一要素には同一符号を付し重複する説明は省略する。
(Second Embodiment)
FIG. 4 is a block diagram of an induction heating cooker according to the second embodiment of the present invention. This second embodiment is different from the first embodiment shown in FIG. 1 in that a power factor correction circuit 35 is used instead of the power factor correction step-down circuit 18 and the step-up chopper circuit 20 of the induction heating unit driving device 12. And a step-up / down chopper circuit 36 is provided. The same elements as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

商用交流電源16からの交流電圧は、誘導加熱部駆動装置12のフィルタコンデンサC2を介して整流器17に入力され、この整流器17により直流に変換される。整流器17で整流された直流電圧は力率改善回路35に入力される。   The AC voltage from the commercial AC power supply 16 is input to the rectifier 17 via the filter capacitor C2 of the induction heating unit driving device 12, and is converted into DC by the rectifier 17. The DC voltage rectified by the rectifier 17 is input to the power factor correction circuit 35.

力率改善回路35は、リアクトルL4、スイッチング素子S2、ダイオードD2、コンデンサC4から構成され、スイッチング素子S2は演算制御回路15からの指令に基づき駆動回路21によりスイッチング制御される。すなわち、演算制御回路15は、電流検出器CT1で検出された力率改善回路35への入力電流I1、電圧検出器PT11で検出された力率改善回路35の入力電圧V11、電圧検出器PT2で検出された力率改善回路35の出力電圧V2に基づいて、整流器17の入力電力の力率を改善しつつ整流器17からの直流を昇圧する。   The power factor correction circuit 35 includes a reactor L 4, a switching element S 2, a diode D 2, and a capacitor C 4, and the switching element S 2 is controlled by the drive circuit 21 based on a command from the arithmetic control circuit 15. That is, the arithmetic control circuit 15 uses the input current I1 to the power factor correction circuit 35 detected by the current detector CT1, the input voltage V11 of the power factor improvement circuit 35 detected by the voltage detector PT11, and the voltage detector PT2. Based on the detected output voltage V2 of the power factor correction circuit 35, the direct current from the rectifier 17 is boosted while improving the power factor of the input power of the rectifier 17.

昇降圧チョッパ回路36は、コンデンサC3、リアクトルL11、スイッチング素子S11、スイッチング素子S12から構成される。スイッチング素子S11は演算制御回路15からの指令に基づき駆動回路37によりスイッチング制御され、スイッチング素子S12は演算制御回路15からの指令に基づき駆動回路38によりスイッチング制御される。   The step-up / step-down chopper circuit 36 includes a capacitor C3, a reactor L11, a switching element S11, and a switching element S12. The switching element S11 is switching-controlled by a drive circuit 37 based on a command from the arithmetic control circuit 15, and the switching element S12 is controlled to be switched by a drive circuit 38 based on a command from the arithmetic control circuit 15.

すなわち、演算制御回路15は、電流検出器CT2で検出された力率改善回路35の出力電流I2、電圧検出器PT2で検出された力率改善回路35の出力電圧V2、電圧検出器PT12で検出された昇降圧チョッパ回路36のバッテリ両端電圧V12に基づいて、バッテリ電圧Vbを昇圧してバッテリ13に蓄積された電力を力率改善回路35の出力部(コンデンサC4)に放電する。また、演算制御回路15は、電圧検出器PT2で検出された力率改善回路35の出力電圧V2、電流検出器CTbで検出されたバッテリ電流Ibに基づいて、力率改善回路35で得られた直流電圧を降圧してバッテリ13に充電する。   That is, the arithmetic control circuit 15 detects the output current I2 of the power factor correction circuit 35 detected by the current detector CT2, the output voltage V2 of the power factor improvement circuit 35 detected by the voltage detector PT2, and the voltage detector PT12. Based on the voltage V12 across the battery of the step-up / step-down chopper circuit 36, the battery voltage Vb is boosted and the electric power stored in the battery 13 is discharged to the output part (capacitor C4) of the power factor correction circuit 35. The arithmetic control circuit 15 is obtained by the power factor correction circuit 35 based on the output voltage V2 of the power factor improvement circuit 35 detected by the voltage detector PT2 and the battery current Ib detected by the current detector CTb. The DC voltage is stepped down to charge the battery 13.

力率改善回路35で昇圧された直流電圧及び昇降圧チョッパ回路36で昇圧された直流電圧は高周波電力発生回路22に入力される。高周波電力発生回路22はスイッチング素子S3で構成され、スイッチング素子S3は演算制御回路15からの指令に基づき駆動回路23によりスイッチング制御される。すなわち、演算制御回路15は、電圧検出器PT3で検出された誘導加熱部11の両端電圧V3に基づいて高周波制御し、誘導加熱部11に高周波電力を供給する。   The DC voltage boosted by the power factor correction circuit 35 and the DC voltage boosted by the buck-boost chopper circuit 36 are input to the high frequency power generation circuit 22. The high-frequency power generation circuit 22 includes a switching element S3, and the switching element S3 is switching-controlled by the drive circuit 23 based on a command from the arithmetic control circuit 15. That is, the arithmetic control circuit 15 performs high frequency control based on the voltage V3 across the induction heating unit 11 detected by the voltage detector PT3, and supplies high frequency power to the induction heating unit 11.

図5は、第2の実施の形態における演算制御回路15のブロック構成図である。演算制御回路15は、力率改善回路35のスイッチング素子S2をPWM制御する力率改善制御手段39、昇降圧チョッパ回路36のスイッチング素子S11をPWM制御する昇圧制御手段40、昇降圧チョッパ回路36のスイッチング素子S12をPWM制御する降圧制御手段41、高周波電力発生回路22のスイッチング素子S3をPWM制御するIH制御手段26を有し、また、バッテリ13の運転稼働可能時間を演算し操作表示部14に表示する残存容量演算手段27、バッテリ13への充電が満充電であるか否かを判定しその判定結果を操作表示部14に表示する充電末判定手段28を有している。   FIG. 5 is a block diagram of the arithmetic control circuit 15 in the second embodiment. The arithmetic control circuit 15 includes a power factor correction control means 39 for PWM-controlling the switching element S2 of the power factor improvement circuit 35, a boost control means 40 for PWM-controlling the switching element S11 of the step-up / down chopper circuit 36, and a step-up / step-down chopper circuit 36. Step-down control means 41 for PWM-controlling the switching element S12 and IH control means 26 for PWM-controlling the switching element S3 of the high-frequency power generation circuit 22 are provided. It has a remaining capacity calculating means 27 for displaying, and a charging end determining means 28 for determining whether or not the battery 13 is fully charged and displaying the determination result on the operation display unit 14.

まず、力率改善制御手段39について説明する。電圧検出器PT2で検出された力率改善回路35の出力電圧V2は差分演算手段42に入力され、力率改善回路35の出力電圧目標値V2rとの差分ΔV2が演算される。差分演算手段42で演算された差分ΔV2は力率改善制御手段39に入力され、その差分ΔV2が零となるように、駆動回路21を介してスイッチング素子S2をPWM制御する。その際に、力率改善制御手段39は、電流検出器CT1で検出された力率改善回路35への入力電流I1及び電圧検出器PT11で検出された力率改善回路35の入力電圧V11を入力し、その力率改善回路35への入力電流I1が正弦波になるようにスイッチング素子S2のオンオフのタイミングを取りつつ制御する。   First, the power factor improvement control means 39 will be described. The output voltage V2 of the power factor correction circuit 35 detected by the voltage detector PT2 is input to the difference calculation means 42, and a difference ΔV2 with the output voltage target value V2r of the power factor improvement circuit 35 is calculated. The difference ΔV2 calculated by the difference calculation means 42 is input to the power factor correction control means 39, and the switching element S2 is PWM controlled via the drive circuit 21 so that the difference ΔV2 becomes zero. At that time, the power factor improvement control means 39 inputs the input current I1 to the power factor improvement circuit 35 detected by the current detector CT1 and the input voltage V11 of the power factor improvement circuit 35 detected by the voltage detector PT11. Then, the switching is performed while the switching element S2 is turned on and off so that the input current I1 to the power factor correction circuit 35 becomes a sine wave.

次に、昇圧制御手段40について説明する。電流検出器CT2で検出された力率改善回路35の出力電流I2は比較手段43に入力され、電源電流制限値と比較される。電源電流制限値は商用交流電源16から電力供給を受ける際の電流制限値であり、その差分が加算演算手段44に入力される。加算演算手段44では力率改善回路35の出力電圧目標値V2rから比較手段43で得られた差分を減算し、修正された出力電圧目標値V2r0として差分演算手段45に出力する。これにより、力率改善回路35への出力電流I2が電源電流制限値を超えたときは出力電圧目標値V2r0が大きくなる。   Next, the boost control means 40 will be described. The output current I2 of the power factor correction circuit 35 detected by the current detector CT2 is input to the comparison means 43 and compared with the power supply current limit value. The power supply current limit value is a current limit value when power is supplied from the commercial AC power supply 16, and the difference is input to the addition calculation means 44. The addition calculation means 44 subtracts the difference obtained by the comparison means 43 from the output voltage target value V2r of the power factor correction circuit 35, and outputs it to the difference calculation means 45 as a corrected output voltage target value V2r0. As a result, when the output current I2 to the power factor correction circuit 35 exceeds the power supply current limit value, the output voltage target value V2r0 increases.

差分演算手段45は、電圧検出器PT2で検出された力率改善回路35の出力電圧V2を入力し、出力電圧V2と出力電圧目標値V2r0との差分ΔV2を演算して昇圧制御手段40に出力する。昇圧制御手段40は出力電圧V2と出力電圧目標値V2r0との差分ΔV2が零となるように、昇降圧チョッパ回路36の駆動回路37を介してスイッチング素子S11をPWM制御する。これにより、バッテリ電圧Vbが昇圧されバッテリ13から力率改善回路の出力部に電力が供給される。このように、力率改善回路35の出力電流I2が電源電流制限値を超えたときはバッテリ13から力率改善回路の出力部に電力が供給される。   The difference calculation means 45 receives the output voltage V2 of the power factor correction circuit 35 detected by the voltage detector PT2, calculates the difference ΔV2 between the output voltage V2 and the output voltage target value V2r0, and outputs it to the boost control means 40. To do. The step-up control means 40 performs PWM control of the switching element S11 via the drive circuit 37 of the step-up / step-down chopper circuit 36 so that the difference ΔV2 between the output voltage V2 and the output voltage target value V2r0 becomes zero. As a result, the battery voltage Vb is boosted, and power is supplied from the battery 13 to the output unit of the power factor correction circuit. As described above, when the output current I2 of the power factor correction circuit 35 exceeds the power supply current limit value, power is supplied from the battery 13 to the output unit of the power factor correction circuit.

一方、昇降圧チョッパ回路36のバッテリ両端電圧V12は比較手段46に入力され、バッテリ13の放電終止電圧と比較される。放電終止電圧はバッテリ13が放電継続できる放電制限値である。力率改善回路35の出力電圧V1が放電終止電圧未満となったときはバッテリ13からの放電は継続できないので昇圧制御手段40の動作を停止させる。このように、昇圧制御手段40は昇降圧チョッパ回路36のバッテリ両端電圧V12が放電終止電圧以上である限りは昇圧制御を行い、負荷である誘導加熱部11に電力を供給するように動作する。   On the other hand, the voltage V12 across the battery of the step-up / step-down chopper circuit 36 is input to the comparison means 46 and compared with the discharge end voltage of the battery 13. The end-of-discharge voltage is a discharge limit value that allows the battery 13 to continue discharging. When the output voltage V1 of the power factor correction circuit 35 becomes less than the discharge end voltage, the discharge from the battery 13 cannot be continued, so the operation of the boost control means 40 is stopped. As described above, the boost control means 40 performs the boost control as long as the voltage V12 across the battery of the step-up / step-down chopper circuit 36 is equal to or higher than the discharge end voltage, and operates to supply power to the induction heating unit 11 that is a load.

次に、降圧制御手段41について説明する。操作表示部14からの指令信号Rは判定手段50に入力され、その指令信号Rの内容が誘導加熱調理器がオフであるかどうかを判定する。そして、誘導加熱調理器がオフであるときに降圧制御手段41を起動しバッテリ13への充電を行う。   Next, the step-down control means 41 will be described. The command signal R from the operation display unit 14 is input to the determination means 50, and the content of the command signal R determines whether the induction heating cooker is off. Then, when the induction heating cooker is off, the step-down control means 41 is activated to charge the battery 13.

電流検出器CTbで検出されたバッテリ電流Ibは比較手段47に入力され、充電電流制限値と比較される。充電電流制限値はバッテリ13に充電する際の電流制限値であり、その差分が減算演算手段48に入力される。減算演算手段48では力率改善回路35の出力電圧目標値V2rから比較手段47で得られた差分を減算し、修正された出力電圧目標値V2r0として差分演算手段49に出力する。これにより、バッテリ13への充電電流Ibが充電電流制限値を超えたときは出力電圧目標値V2r0が小さくなる。   The battery current Ib detected by the current detector CTb is input to the comparison means 47 and compared with the charging current limit value. The charging current limit value is a current limit value for charging the battery 13, and the difference is input to the subtraction operation means 48. The subtraction calculation means 48 subtracts the difference obtained by the comparison means 47 from the output voltage target value V2r of the power factor correction circuit 35 and outputs it to the difference calculation means 49 as a corrected output voltage target value V2r0. Thereby, when the charging current Ib to the battery 13 exceeds the charging current limit value, the output voltage target value V2r0 becomes small.

差分演算手段49は、電圧検出器PT2で検出された力率改善回路35の出力電圧V2を入力し、出力電圧V2と出力電圧目標値V2r0との差分ΔV2を演算して降圧制御手段41に出力する。降圧制御手段41は出力電圧V2と出力電圧目標値V2r0との差分ΔV2が零となるように、駆動回路38を介してスイッチング素子S12をPWM制御する。   The difference calculation means 49 receives the output voltage V2 of the power factor correction circuit 35 detected by the voltage detector PT2, calculates the difference ΔV2 between the output voltage V2 and the output voltage target value V2r0, and outputs it to the step-down control means 41. To do. The step-down control means 41 performs PWM control of the switching element S12 via the drive circuit 38 so that the difference ΔV2 between the output voltage V2 and the output voltage target value V2r0 becomes zero.

これにより、降圧制御手段41によりバッテリ13への充電が行われ、充電電流Ibが充電電流制限値を超えたときは出力電圧目標値V2r0が小さくなり、力率改善回路35の出力電圧V2を下げるように制御する。従って、バッテリ電圧Vbが上がりバッテリ13への充電が停止する。   As a result, the battery 13 is charged by the step-down control means 41, and when the charging current Ib exceeds the charging current limit value, the output voltage target value V2r0 becomes small and the output voltage V2 of the power factor correction circuit 35 decreases. To control. Therefore, the battery voltage Vb increases and the charging of the battery 13 is stopped.

次に、IH制御手段26について説明する。IH制御手段26は、第1の実施の形態の場合と同様に、誘導加熱調理器の操作表示部14からの指令信号R、電圧検出器PT3で検出された誘導加熱部11の両端電圧V3、さらに、必要に応じて誘導加熱部11の温度Tを入力する。なお、図4では誘導加熱部11の温度Tを検出する温度検出器の図示は省略している。   Next, the IH control means 26 will be described. As in the case of the first embodiment, the IH control means 26 includes a command signal R from the operation display unit 14 of the induction heating cooker, a voltage V3 across the induction heating unit 11 detected by the voltage detector PT3, Furthermore, the temperature T of the induction heating unit 11 is input as necessary. In FIG. 4, a temperature detector that detects the temperature T of the induction heating unit 11 is not shown.

IH制御手段26は操作表示部14からの指令信号Rを入力すると、その指令信号Rの内容を判別する。例えば、誘導加熱調理器の誘導加熱器がオンオフのいずれであるか、誘導加熱調理器がオンしたときに、どの程度の熱源を要求しているのか等を判断する。そして、高温を必要とする熱源要求の場合には温度検出器から誘導加熱部11の温度Tを検出し所定温度になるように、駆動回路23を介してスイッチング素子S3をPWM制御する。   When the command signal R from the operation display unit 14 is input, the IH control means 26 determines the content of the command signal R. For example, it is determined whether the induction heater of the induction heating cooker is on or off, how much heat source is required when the induction heating cooker is turned on, and the like. In the case of a heat source request that requires a high temperature, the temperature T of the induction heating unit 11 is detected from the temperature detector, and the switching element S3 is PWM controlled via the drive circuit 23 so as to reach a predetermined temperature.

次に、残存容量演算手段27及び充電末判定手段28について説明する。残存容量演算手段27は、第1の実施の形態の場合と同様に、時々刻々変化する電流検出器CTbで検出されたバッテリ電流Ib、及び電圧検出器PT12で検出された昇降圧チョッパ回路36のバッテリ両端電圧V12に基づいて、現時点でのバッテリ13の蓄電量Bを演算するとともに、現時点でのバッテリ13からの放電量を演算する。そして、現在の放電を継続した場合のバッテリ13の運転稼働可能時間を演算し操作表示部14に表示する。   Next, the remaining capacity calculation means 27 and the end of charge determination means 28 will be described. As in the case of the first embodiment, the remaining capacity calculating means 27 includes the battery current Ib detected by the current detector CTb that changes every moment, and the step-up / step-down chopper circuit 36 detected by the voltage detector PT12. Based on the battery both-ends voltage V12, the current storage amount B of the battery 13 is calculated, and the current discharge amount from the battery 13 is calculated. Then, the operation possible time of the battery 13 when the current discharge is continued is calculated and displayed on the operation display unit 14.

また、充電末判定手段28はバッテリ13の蓄電量Bが満充電となったか否かを判定するものであり、バッテリ電圧Vbが昇降圧チョッパ回路36のバッテリ両端電圧V12より低い状態で、電流検出器CTbで検出されたバッテリ電流Ibが満充電電流制限値より小さいときは満充電状態であると判定する。その判定結果は操作表示部14に表示される。   The end-of-charge determination means 28 determines whether or not the charged amount B of the battery 13 is fully charged. In the state where the battery voltage Vb is lower than the voltage V12 across the battery of the step-up / down chopper circuit 36, current detection is performed. When the battery current Ib detected by the device CTb is smaller than the full charge current limit value, it is determined that the battery is fully charged. The determination result is displayed on the operation display unit 14.

図6は、第2の実施の形態における演算制御回路15の動作を示すフローチャートである。図3に示した第1の実施の形態に対し、ステップS7及びステップS8が省略されている。前述したように、降圧制御手段41は誘導加熱調理器がオフであるときに起動されるので、誘導加熱調理器がオフの状態で商用交流電源が印加されているときに充電が行われ(S1〜S4)、誘導加熱調理器が使用中であるときにはバッテリ13には充電されない。また、誘導加熱調理器がオンの状態で商用交流電源16が印加されており、誘導加熱部要求出力電力Prが商用交流電源16の供給限界電力Pa0より小さいときは、商用交流電源16で誘導加熱調理器の消費電力を賄えるので、商用交流電源16から誘導加熱部11に電力を供給する(S5、S6、S9)。   FIG. 6 is a flowchart showing the operation of the arithmetic control circuit 15 in the second embodiment. Steps S7 and S8 are omitted from the first embodiment shown in FIG. As described above, the step-down control means 41 is activated when the induction heating cooker is off, so that charging is performed when commercial AC power is applied with the induction heating cooker off (S1). To S4), the battery 13 is not charged when the induction cooking device is in use. Further, when the commercial AC power supply 16 is applied with the induction heating cooker turned on and the induction heating unit required output power Pr is smaller than the supply limit power Pa0 of the commercial AC power supply 16, the commercial AC power supply 16 performs induction heating. Since the power consumption of the cooking device can be covered, power is supplied from the commercial AC power supply 16 to the induction heating unit 11 (S5, S6, S9).

誘導加熱調理器がオンの状態で商用交流電源16が印加されているが、誘導加熱部要求出力電力Prが商用交流電源16の供給限界電力Pa0より大きいときは、商用交流電源16で誘導加熱調理器の消費電力を賄えないので、商用交流電源16及びバッテリ13の双方からバッテリ13の供給限界電力Pb0を超えない範囲で誘導加熱部11に電力を供給し、バッテリ13の運転稼働可能時間を表示する(S10〜S14)。一方、誘導加熱調理器がオフの状態で商用交流電源16が印加されていないときは、バッテリ13の供給限界電力Pb0を超えない範囲でバッテリ13から誘導加熱部11に電力を供給し(S16〜S18)、バッテリ13の運転稼働可能時間を表示する(S12〜S14)。   Although the commercial AC power supply 16 is applied with the induction heating cooker turned on, when the induction heating unit required output power Pr is larger than the supply limit power Pa0 of the commercial AC power supply 16, the commercial AC power supply 16 performs induction heating cooking. Since the power consumption of the battery cannot be covered, power is supplied from both the commercial AC power supply 16 and the battery 13 to the induction heating unit 11 within a range that does not exceed the supply limit power Pb0 of the battery 13, and the operation and operation time of the battery 13 is increased. Display (S10 to S14). On the other hand, when the commercial AC power supply 16 is not applied with the induction heating cooker turned off, power is supplied from the battery 13 to the induction heating unit 11 within a range not exceeding the supply limit power Pb0 of the battery 13 (S16 to S16). S18) The operation possible time of the battery 13 is displayed (S12 to S14).

第2の実施の形態によれば、昇降圧チョッパ回路36を力率改善回路35の出力部(誘導加熱部11への直流電源部)に接続し、操作表示部14の出力調整つまみからの出力指令信号Rにより、昇降圧チョッパ回路36で発生させる直流電圧を調整し、商用交流電源16から供給される電力の調整を行うので、誘導加熱部11での消費電力は商用交流電源16と昇降圧チョッパ回路36を介したバッテリ13との双方に分担される。従って、商用交流電源であっても、家庭内の一時的な高負荷時においても使用が可能となる。   According to the second embodiment, the step-up / step-down chopper circuit 36 is connected to the output part of the power factor correction circuit 35 (DC power supply part to the induction heating part 11), and the output from the output adjustment knob of the operation display part 14 Since the DC voltage generated by the step-up / step-down chopper circuit 36 is adjusted by the command signal R and the power supplied from the commercial AC power supply 16 is adjusted, the power consumption in the induction heating unit 11 is the same as that of the commercial AC power supply 16 and the step-up / step-down pressure. The battery 13 is shared with the battery 13 via the chopper circuit 36. Therefore, even a commercial AC power supply can be used even during a temporary high load in the home.

また、誘導加熱調理器の非使用時には商用交流電源16から得られた直流電力を昇降圧チョッパ回路36からバッテリ13に充電を行うので、長時間の連続使用でない限りはバッテリ13の蓄電量を確保できる。また、バッテリ13から電力を供給するときにはバッテリ13の運転稼働可能時間を演算し表示するので、使用できる負荷量を予め判断することができる。   In addition, since the DC power obtained from the commercial AC power supply 16 is charged to the battery 13 from the step-up / step-down chopper circuit 36 when the induction heating cooker is not used, the charged amount of the battery 13 is ensured unless the battery is continuously used for a long time. it can. In addition, when power is supplied from the battery 13, the available operation time of the battery 13 is calculated and displayed, so that a usable load amount can be determined in advance.

本発明の第1の実施の形態に係わる誘導加熱調理器の構成図。The block diagram of the induction heating cooking appliance concerning the 1st Embodiment of this invention. 本発明の第1の実施の形態における演算制御回路のブロック構成図。The block block diagram of the arithmetic control circuit in the 1st Embodiment of this invention. 本発明の第1の実施の形態における演算制御回路の動作を示すフローチャート。3 is a flowchart showing the operation of the arithmetic control circuit according to the first embodiment of the present invention. 本発明の第2の実施の形態に係わる誘導加熱調理器の構成図。The block diagram of the induction heating cooking appliance concerning the 2nd Embodiment of this invention. 本発明の第2の実施の形態における演算制御回路のブロック構成図。The block block diagram of the arithmetic control circuit in the 2nd Embodiment of this invention. 本発明の第2の実施の形態における演算制御回路の動作を示すフローチャート。The flowchart which shows the operation | movement of the arithmetic control circuit in the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

11…誘導加熱部、12…誘導加熱部駆動装置、13…バッテリ、14…操作表示部、15…演算制御回路、16…商用交流電源、17…整流器、18…力率改善降圧回路、19…駆動回路、20…昇圧チョッパ回路、21…駆動回路、22…高周波電力発生回路、23…駆動回路、24…力率改善制御手段、25…昇圧制御手段、26…IH制御手段、27…残存容量演算手段、28…充電末判定手段、29…比較手段、30…減算演算手段、31…差分演算手段、32…比較手段、33…差分演算手段、34…比較手段、35…力率改善回路、36…昇降圧チョッパ回路、37…駆動回路、38…駆動回路、39…力率改善制御手段、40…PWM制御する昇圧制御手段、41…降圧制御手段、42…差分演算手段、43…比較手段、44…加算演算手段、45…差分演算手段、46…比較手段、47…比較手段、48…減算演算手段、49…差分演算手段、50…判定手段

DESCRIPTION OF SYMBOLS 11 ... Induction heating part, 12 ... Induction heating part drive device, 13 ... Battery, 14 ... Operation display part, 15 ... Operation control circuit, 16 ... Commercial AC power supply, 17 ... Rectifier, 18 ... Power factor improvement step-down circuit, 19 ... Drive circuit, 20 ... boost chopper circuit, 21 ... drive circuit, 22 ... high frequency power generation circuit, 23 ... drive circuit, 24 ... power factor improvement control means, 25 ... boost control means, 26 ... IH control means, 27 ... remaining capacity Arithmetic means 28 ... end-of-charge determination means 29 ... comparison means 30 ... subtraction calculation means 31 ... difference calculation means 32 ... comparison means 33 ... difference calculation means 34 ... comparison means 35 ... power factor improvement circuit, 36: Buck-boost chopper circuit, 37: Drive circuit, 38: Drive circuit, 39: Power factor improvement control means, 40: Boost control means for PWM control, 41 ... Step-down control means, 42 ... Difference calculation means, 43 ... Comparison means 4 ... addition operation unit, 45 ... differential computing means, 46 ... comparator, 47 ... comparison means, 48 ... subtraction means, 49 ... differential computing means, 50 ... judging means

Claims (3)

商用交流電源からの交流電力を整流して直流電力を求めその直流電力を高周波電力に変換して誘導加熱部に供給する誘導加熱部駆動装置と、誘導加熱部での消費電力が零または少ないときに交流電源からの電力を蓄積するバッテリと、誘導加熱部での消費電力が交流電源だけでは不足するときは前記バッテリからバッテリ供給限界電力を超えない範囲内で不足分を前記誘導加熱部に供給するように制御するとともに前記バッテリの運転稼働可能時間を演算し表示する演算制御回路とを備えたことを特徴とする誘導加熱調理器。   Induction heating unit drive unit that rectifies AC power from commercial AC power source to obtain DC power, converts the DC power to high frequency power and supplies it to induction heating unit, and when power consumption in induction heating unit is zero or low If the AC power supply is insufficient for the battery that stores the power from the AC power source and the AC power source alone, supply the shortage to the induction heating unit within the range that does not exceed the battery supply limit power from the battery. An induction heating cooker comprising: an arithmetic control circuit that controls and displays the operation possible time of the battery. 前記誘導加熱部駆動装置は、商用交流電源からの交流電力を整流する整流器と、前記整流器の入力電力の力率を改善しつつ前記整流器からの直流を降圧し得られた直流電圧に応じて前記バッテリに電力の充放電を行う力率改善降圧回路と、前記力率改善降圧回路で得られた直流電源を昇圧する昇圧チョッパ回路と、前記昇圧チョッパ回路で昇圧された直流電源を高周波制御し前記誘導加熱部に供給する高周波電力を発生する高周波電力発生回路とを備えたことを特徴とする請求項1記載の誘導加熱調理器。   The induction heating unit driving device includes a rectifier that rectifies AC power from a commercial AC power supply, and a DC voltage obtained by stepping down DC from the rectifier while improving a power factor of input power of the rectifier. A power factor improving step-down circuit for charging and discharging power to a battery; a step-up chopper circuit for stepping up a DC power source obtained by the power factor improving step-down circuit; and a direct-current power source boosted by the step-up chopper circuit for high-frequency control. The induction heating cooker according to claim 1, further comprising a high frequency power generation circuit that generates high frequency power to be supplied to the induction heating unit. 前記誘導加熱部駆動装置は、商用交流電源からの交流電力を整流する整流器と、前記整流器の入力電力の力率を改善しつつ前記整流器からの直流を昇圧する力率改善回路と、前記力率改善回路で得られた直流電源を降圧して前記バッテリに充電するとともにバッテリ電圧を昇圧して前記バッテリに蓄積された電力を前記力率改善回路の出力部に放電する昇降圧チョッパ回路と、前記力率改善回路の出力部の直流電源を高周波制御し前記誘導加熱部に供給する高周波電力を発生する高周波電力発生回路とを備えたことを特徴とする請求項1記載の誘導加熱調理器。

The induction heating unit driving device includes a rectifier that rectifies AC power from a commercial AC power source, a power factor improvement circuit that boosts DC from the rectifier while improving a power factor of input power of the rectifier, and the power factor. A step-up / step-down chopper circuit for stepping down a DC power source obtained by an improvement circuit and charging the battery and boosting a battery voltage to discharge the electric power stored in the battery to an output unit of the power factor improvement circuit; The induction heating cooker according to claim 1, further comprising: a high frequency power generation circuit that generates a high frequency power to be supplied to the induction heating unit by performing high frequency control on a direct current power source of an output unit of the power factor correction circuit.

JP2005097007A 2005-03-30 2005-03-30 Induction heating cooker Expired - Fee Related JP4650057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005097007A JP4650057B2 (en) 2005-03-30 2005-03-30 Induction heating cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005097007A JP4650057B2 (en) 2005-03-30 2005-03-30 Induction heating cooker

Publications (2)

Publication Number Publication Date
JP2006278192A true JP2006278192A (en) 2006-10-12
JP4650057B2 JP4650057B2 (en) 2011-03-16

Family

ID=37212734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005097007A Expired - Fee Related JP4650057B2 (en) 2005-03-30 2005-03-30 Induction heating cooker

Country Status (1)

Country Link
JP (1) JP4650057B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256251A (en) * 2007-04-04 2008-10-23 Toshiba Corp Cooker
JP2009021027A (en) * 2007-07-10 2009-01-29 Central Res Inst Of Electric Power Ind Power supply control device and power supply control program
JP2011086477A (en) * 2009-10-15 2011-04-28 Mitsubishi Electric Corp Induction heating cooker
JP2012003915A (en) * 2010-06-16 2012-01-05 Panasonic Corp Induction heating cooker
JP2014002840A (en) * 2012-06-15 2014-01-09 Panasonic Corp Induction heating cooker
JP2014099253A (en) * 2012-11-13 2014-05-29 Panasonic Corp Heating cooker
JP2014116124A (en) * 2012-12-07 2014-06-26 Panasonic Corp Induction heating cooker
EP3337294B1 (en) 2016-12-15 2019-07-24 Lg Electronics Inc. Induction heat cooking apparatus and method for operating the same
JP2020194651A (en) * 2019-05-27 2020-12-03 日立グローバルライフソリューションズ株式会社 Electromagnetic induction heating device
KR102297659B1 (en) * 2020-05-19 2021-09-06 울산과학기술원 Induced heating device to comprise energy storage unit and method to control power of induced heating device
WO2022054227A1 (en) * 2020-09-11 2022-03-17 三菱電機株式会社 Heat cooker and heat cooker system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111442A (en) * 1997-10-06 1999-04-23 Matsushita Electric Ind Co Ltd Induction heating device
JPH11260542A (en) * 1998-03-11 1999-09-24 Toshiba Corp Induction heating cooking device
JP2001178016A (en) * 1999-12-22 2001-06-29 Mitsubishi Electric Corp Power converter
JP2002218653A (en) * 2001-01-18 2002-08-02 Toshiba It & Control Systems Corp Power converter with electric double layer capacitor applied
JP2004016416A (en) * 2002-06-14 2004-01-22 Toshiba Corp Rice cooker

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111442A (en) * 1997-10-06 1999-04-23 Matsushita Electric Ind Co Ltd Induction heating device
JPH11260542A (en) * 1998-03-11 1999-09-24 Toshiba Corp Induction heating cooking device
JP2001178016A (en) * 1999-12-22 2001-06-29 Mitsubishi Electric Corp Power converter
JP2002218653A (en) * 2001-01-18 2002-08-02 Toshiba It & Control Systems Corp Power converter with electric double layer capacitor applied
JP2004016416A (en) * 2002-06-14 2004-01-22 Toshiba Corp Rice cooker

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256251A (en) * 2007-04-04 2008-10-23 Toshiba Corp Cooker
JP2009021027A (en) * 2007-07-10 2009-01-29 Central Res Inst Of Electric Power Ind Power supply control device and power supply control program
JP2011086477A (en) * 2009-10-15 2011-04-28 Mitsubishi Electric Corp Induction heating cooker
JP2012003915A (en) * 2010-06-16 2012-01-05 Panasonic Corp Induction heating cooker
JP2014002840A (en) * 2012-06-15 2014-01-09 Panasonic Corp Induction heating cooker
JP2014099253A (en) * 2012-11-13 2014-05-29 Panasonic Corp Heating cooker
JP2014116124A (en) * 2012-12-07 2014-06-26 Panasonic Corp Induction heating cooker
EP3567986B1 (en) 2016-12-15 2020-08-19 Lg Electronics Inc. Induction heat cooking apparatus and method for operating the same
EP3337294B1 (en) 2016-12-15 2019-07-24 Lg Electronics Inc. Induction heat cooking apparatus and method for operating the same
US10917947B2 (en) 2016-12-15 2021-02-09 Lg Electronics Inc. Induction heat cooking apparatus and method for operating the same
EP3337294B2 (en) 2016-12-15 2022-05-11 Lg Electronics Inc. Induction heat cooking apparatus and method for operating the same
JP2020194651A (en) * 2019-05-27 2020-12-03 日立グローバルライフソリューションズ株式会社 Electromagnetic induction heating device
JP7215962B2 (en) 2019-05-27 2023-01-31 日立グローバルライフソリューションズ株式会社 Electromagnetic induction heating device
KR102297659B1 (en) * 2020-05-19 2021-09-06 울산과학기술원 Induced heating device to comprise energy storage unit and method to control power of induced heating device
WO2022054227A1 (en) * 2020-09-11 2022-03-17 三菱電機株式会社 Heat cooker and heat cooker system
JP7337282B2 (en) 2020-09-11 2023-09-01 三菱電機株式会社 Heat cooker and heat cooker system

Also Published As

Publication number Publication date
JP4650057B2 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
JP4650057B2 (en) Induction heating cooker
EP2755310B1 (en) Control device for switching power supply circuit, and heat pump unit
US7613018B2 (en) Apparatus and method for supplying DC power source
US6380715B1 (en) Electric power system
US7616455B2 (en) Power factor correction using current sensing on an output
JP2005333793A (en) Power factor compensating controller and method of inverter control circuit
KR102422899B1 (en) Power converting apparatus and air conditioner including the same
JP4258737B2 (en) Induction heating cooker and induction heating cooking method
JP2011176927A (en) System power leveling device and image diagnosing system
JPS5926198B2 (en) Control device
JP2017169349A (en) Power supply system
JP5734062B2 (en) Power factor correction equipment
JP2008067439A (en) Power supply method and system
JP2017085781A (en) Power supply system
JP5452162B2 (en) Induction heating cooker
JP2018174642A (en) Voltage doubler rectifier circuit and motor drive device
JP4799523B2 (en) Induction heating cooker
JP2008253094A (en) Power supply circuit and its pam control method
JP5109784B2 (en) Voltage compensator
JP2017184314A (en) Power supply circuit
JP2003309927A (en) Storage system and operation method therefor
JP2007089348A (en) Uninterruptible power supply device
JP2005137070A (en) System linkage inverter and power source system
JP2004253313A (en) Electromagnetic induction heating cooker
JP2013172504A (en) Household electrical appliance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees