JP2006274097A - Multicolored luminescent mixture, multicolored luminescent ink composition and image formation product - Google Patents

Multicolored luminescent mixture, multicolored luminescent ink composition and image formation product Download PDF

Info

Publication number
JP2006274097A
JP2006274097A JP2005096854A JP2005096854A JP2006274097A JP 2006274097 A JP2006274097 A JP 2006274097A JP 2005096854 A JP2005096854 A JP 2005096854A JP 2005096854 A JP2005096854 A JP 2005096854A JP 2006274097 A JP2006274097 A JP 2006274097A
Authority
JP
Japan
Prior art keywords
light
ultraviolet
wavelength
region
illuminant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005096854A
Other languages
Japanese (ja)
Other versions
JP4552052B2 (en
Inventor
Tadashi Morinaga
匡 森永
Eiji Kawamura
英司 河村
Shinichi Fujimura
臣一 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Printing Bureau
Original Assignee
National Printing Bureau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Printing Bureau filed Critical National Printing Bureau
Priority to JP2005096854A priority Critical patent/JP4552052B2/en
Publication of JP2006274097A publication Critical patent/JP2006274097A/en
Application granted granted Critical
Publication of JP4552052B2 publication Critical patent/JP4552052B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Luminescent Compositions (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Credit Cards Or The Like (AREA)
  • Printing Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a multicolored luminescent mixture that is obtained by mixing a plurality of ultraviolet excited pigments or visible light luminescent dyes having different excitation properties and luminescent wavelengths corresponding to ultraviolet radiation wavelengths and continuously changes luminescence according to irradiation wavelength of an ultraviolet range, a multicolored luminescent ink composition and an image formation product. <P>SOLUTION: The multicolored luminescent mixture is obtained by mixing at least three illuminants selected from illuminants in which a first illuminant, a second illuminant or a third illuminant which is luminescent by ultraviolet irradiation is selected from illuminants having main wavelengths in any of an R area, a G area or a B area of an RGB color display area and the illuminants luminescent in an R area, a G area and a B area selected from a first luminescent group, a second luminescent group and a third luminescent group in which the first luminescent group is at least one illuminant that is luminescent in an R area, the second luminescent group is at least one illuminant that is luminescent in a G area and the third luminescent group is at least one illuminant that is luminescent in a B area. The image formation product is provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、紫外線の照射波長によって励起特性及び発光波長の異なる複数の紫外線励起顔料あるいは可視光発光染料をインキ用ビヒクルに混合し、紫外線領域の照射波長に応じて発光が連続的に変化する真偽判別性に優れた多色発光混合物及びそれをインキ用ビヒクルに混合した多色発光インキ組成物、並びに多色発光インキ組成物を用いて印刷した画像形成物に関する。   In the present invention, a plurality of UV-excited pigments or visible light-emitting dyes having different excitation characteristics and emission wavelengths depending on the UV irradiation wavelength are mixed in an ink vehicle, and light emission continuously changes according to the UV irradiation wavelength. The present invention relates to a multicolor luminescent mixture excellent in false discrimination, a multicolor luminescent ink composition in which the mixture is mixed with an ink vehicle, and an image formed product printed using the multicolor luminescent ink composition.

銀行券、有価証券、カード及び通行券などの貴重印刷物や、運転免許証、パスポート及び保険証など個人を認証する証明証書は、第三者に偽造及び改ざんされないために常に新たな偽造防止技術を盛り込むことが要求されており、併せて真正品であるかどうかの判断が可能な真偽判別方法が必要とされている。   Precious printed matter such as banknotes, securities, cards and tolls, and certificates that authenticate individuals such as driver's licenses, passports and insurance cards are always equipped with new anti-counterfeiting technology so that they are not counterfeited or tampered with by third parties There is a demand for a true / false discrimination method that can determine whether the product is genuine.

蛍光体に代表される発光体は、それ単独で主たる真偽判定要素として発光色(色相)と発光強度の少なくとも二つの要素を有している。色相は、もともと固有のものであり、一方の発光強度は発光体の量が一定であればそれに従った値となるため、使用する発光体の種類と量を一定に保つことで機械検出において色相と発光強度の二つを用いた真偽判別が可能となる。   A light emitter represented by a phosphor has at least two elements, ie, a light emission color (hue) and a light emission intensity as main authenticity determination elements. The hue is inherently unique, and the emission intensity of one is a value according to the amount of the illuminant. Therefore, by keeping the type and amount of the illuminant used constant, the hue in machine detection And true / false discrimination using the two of emission intensity.

例えば、色相と発光強度は分光測定においてはX軸に発光波長、Y軸に発光強度をとったグラフ上に波形として現せる。この波形の形状がそのまま色相と発光強度を表しており、その波形は発光体それぞれ固有の形状であることから、真偽判別において分光測定を行ったこの波形を単純に比較することでも判定可能である。   For example, the hue and emission intensity can be shown as waveforms on a graph with the emission wavelength on the X axis and the emission intensity on the Y axis in spectroscopic measurement. Since the shape of this waveform directly represents the hue and emission intensity, and the waveform is unique to each illuminant, it can also be determined by simply comparing this waveform obtained by spectroscopic measurement in authenticity determination. is there.

また簡易的な方法としては発光体の代表的な発光ピークが存在する波長域の光のみをフィルタや回折格子を用いて取り出し(色相の選別)、光電変換する(発光強度の取得)ものでも判定は可能である。従来から発光体の機械判定にあたって一般的にはこの色相と発光強度の二つを何らかの真偽判別要素として使用している場合が多い。   In addition, as a simple method, only light in the wavelength region where the typical emission peak of the illuminant exists is extracted using a filter or diffraction grating (selection of hue), and photoelectric conversion (acquisition of luminescence intensity) is also judged. Is possible. Conventionally, in the mechanical determination of a light emitter, generally, there are many cases in which two of the hue and the light emission intensity are used as some authenticity determination element.

ただし、色相と発光強度は発光体を機械検出する場合には優れた真偽判別要素となりえるが、一方の目視による官能検査において発光強度が判定要素として用いられる機会は実際には極めてまれである。これは官能評価が主観評価であって検査人個人の感覚に依存し、ばらつきが生じることに加え、発光の強さはその観察時の環境に大きく影響を受けるためである。   However, hue and light emission intensity can be an excellent authenticity determination element when mechanically detecting a light emitter, but the opportunity to use the light emission intensity as a determination element in one of the visual sensory tests is very rare in practice. . This is because the sensory evaluation is a subjective evaluation and depends on the individual sense of the inspector, causing variations, and the intensity of light emission is greatly influenced by the environment at the time of observation.

発光体に対する機械検査は多くの場合、光電変換素子とフィルタや回折格子の組み合わせで色相と発光強度を評価する装置を用いることが一般的であるが、いずれにしても可視光の影響を避けるために暗箱において外乱光を遮断して測定が行われるのに対し、官能検査は多くの場合、可視光が存在する環境で行なわれる。   In many cases, mechanical inspection of illuminants generally uses a device that evaluates hue and luminescence intensity using a combination of photoelectric conversion elements, filters, and diffraction gratings. In any case, in order to avoid the influence of visible light In contrast, measurement is performed while blocking ambient light in a dark box, whereas sensory inspection is often performed in an environment where visible light is present.

一例として、分光測定器を用いて測定した場合には発光ピークにおける発光強度が3分の1以下の強度に落ちた偽造印刷物に対して可視光がほとんど差し込まない環境で観察した場合においても、目視では極めて微弱な差異としてしか認められず、真性品と判定してしまう場合がある。観察環境に可視光が差し込む場合には発光体の発光はより一層弱く感じられ、発光強度を判定要素とする官能検査の精度はより一層低下することは言うまでもない。   As an example, when measured using a spectrophotometer, even when observed in an environment where almost no visible light is inserted into a counterfeit printed material in which the emission intensity at the emission peak has dropped to an intensity of 1/3 or less, However, it is recognized as an extremely weak difference, and may be determined as an authentic product. It goes without saying that when visible light is inserted into the observation environment, the light emission of the illuminant is felt weaker, and the accuracy of the sensory test using the light emission intensity as a determination factor is further reduced.

このことから、偽造品に使用される発光体が真性品とは異なった発光体であっても、色相のみが同一であれば、太陽光や蛍光灯の光に満たされた明るい環境下で、ブラックライトのみで蛍光発光を確認して真偽判別を行わなければいけないチケット換金所等の官能検査においては真性品と見分けがつかない場合が想定され、観察環境に依存する発光強度は官能検査の判別要素としてはほぼ機能しない可能性が高かった。   From this, even if the illuminant used in the counterfeit product is a illuminant different from the genuine product, if only the hue is the same, in a bright environment filled with sunlight or light from a fluorescent lamp, In sensory inspections such as ticket exchanges where fluorescent light emission must be confirmed only with black light, it may be indistinguishable from authentic products. As a discriminating element, there was a high possibility that it would not function.

このことを鑑みて、一つのインキに二種類の発光体を用い、紫外線照射波長に応じて色相を二種類に変化させる二色性発光インキが使用される場合がある。このインキに用いられる二色性発光体は、長波紫外励起タイプの発光体1と短波紫外線励起タイプの発光体2を組み合わせたものであり、インキ化する際に、一つのインキ用ビヒクルに二色性発光体を分散して作製するものである。特徴としては、紫外線長波を照射した場合には長波紫外励起タイプの発光体1が、ある一定の色相1で発光し、紫外線短波を照射した場合には、長波紫外励起タイプの発光体1と短波紫外線励起タイプの発光体2が同時に発光することで、紫外線長波照射時の発光色とは異なった色相2を発するものである。   In view of this, there are cases where dichroic luminescent inks are used in which two types of light emitters are used for one ink and the hue is changed to two types according to the ultraviolet irradiation wavelength. The dichroic illuminant used in this ink is a combination of the long wave ultraviolet excitation type illuminant 1 and the short wave ultraviolet excitation type illuminant 2, and two colors are applied to one ink vehicle when inking. The light emitting material is dispersed and manufactured. As a feature, the long wave ultraviolet excitation type illuminant 1 emits light with a certain hue 1 when irradiated with ultraviolet long waves, and the long wave ultraviolet excitation type illuminant 1 and short wave when irradiated with ultraviolet short waves. When the ultraviolet-excited type illuminant 2 emits light at the same time, it emits a hue 2 that is different from the emission color at the time of ultraviolet long-wave irradiation.

一般的な蛍光体と発光色及び励起特性を図1に示す。基材にこの二色性発光体が付与された代表的な例としては可視光で無色、紫外線短波で赤色、紫外線長波で緑色を発するフランスの500フラン券が公知であり、インキとしては大日本印刷の無色蛍光発光インキ(例えば、特許文献1参照)、及び国立印刷局が着色顔料を混合して作製した着色二色性発光インキがある。また、二色性発光顔料としてはハネウェル・ジャパンの「LUMILUX CD−R/G I」(紫外線長波で赤発光、紫外線短波で黄発光)、「LUMILUX R/G CD770」(紫外線長波で黄発光、紫外線短波で赤発光)、及び根本特殊化学社製造のDE−RB(紫外線長波で青発光、紫外線短波で赤発光)、DE−RG(紫外線長波で緑発光、紫外線短波で赤発光)、DE−GB(紫外線長波で青発光、紫外線短波で緑発光)、DE−GR(紫外線長波で赤発光、紫外線短波で緑発光)等が知られており、使用者は二つの色相を任意に選択して使用することができる。   A general phosphor, emission color, and excitation characteristics are shown in FIG. As a typical example in which this dichroic luminescent material is applied to a base material, a French 500 franc ticket that emits colorless with visible light, red with ultraviolet shortwave, and green with ultraviolet shortwave is well known. There are printing colorless fluorescent light-emitting inks (see, for example, Patent Document 1) and colored dichroic light-emitting inks produced by the National Printing Bureau by mixing color pigments. In addition, as dichroic luminescent pigments, “LUMILUX CD-R / GI” of Honeywell Japan (red light emission by ultraviolet long wave, yellow light emission by ultraviolet short wave), “LUMILUX R / G CD770” (yellow light emission by ultraviolet long wave, DE-RB produced by Nemoto Special Chemical Co., Ltd. (blue light emission using ultraviolet long wave, red light emission using ultraviolet short wave), DE-RG (green light emission using ultraviolet long wave, red light emission using ultraviolet short wave), DE- GB (blue emission with ultraviolet longwave, green emission with ultraviolet shortwave), DE-GR (red emission with ultraviolet longwave, green emission with ultraviolet shortwave), etc. are known, and the user can select two hues arbitrarily Can be used.

以上のように二色性発光体は目視判定時に有効な判別要素である色相を二つ有しており、これを一つのインキの中に分散させた二色性発光インキは真偽判別性を高めた新しい発光インキであり、紫外線短波と紫外線長波を代表とした二つ紫外線で色相を変化させるため、目視による官能検査における判別性は高まると予想される。   As described above, the dichroic luminescent material has two hues which are effective discrimination elements at the time of visual judgment, and the dichroic luminescent ink dispersed in one ink has authenticity discrimination. It is a new luminescent ink that has been improved, and since the hue is changed by two ultraviolet rays represented by ultraviolet shortwave and ultraviolet longwave, the discriminability in visual sensory inspection is expected to increase.

また、機械検査の場合、従来までは紫外線長波あるいは紫外線短波のいずれか一つの色相と発光強度、それぞれ一つずつ合計二つの判定要素しか備えなかったが、二色性発光体はそれぞれ二つずつ合計四つの判定要素を備えることとなるため、単色発光の発光体と比較して判定適性も当然のことながら高まる。   In addition, in the case of mechanical inspection, until now, only one hue and emission intensity of either ultraviolet long wave or ultraviolet short wave, each having only two judgment elements, a total of two dichroic light emitters were provided. Since a total of four determination elements are provided, the determination suitability is naturally enhanced as compared with a monochromatic light-emitting body.

特開平10−251570号公報JP-A-10-251570

二色性発光体に使用される発光体は二種類の発光体で二つの色相変化を見せるために、主として紫外線短波(254nmを中心とする)で蛍光ピークが最大になる発光体と、主として紫外線長波(365nmを中心とする)で発光ピークが最大になる発光体の二つの発光体を組み合わせで設計されているのが一般的である。   The illuminant used for the dichroic illuminant has two types of illuminants and shows two hue changes. Therefore, the illuminant has a maximum fluorescence peak mainly due to ultraviolet shortwave (centered at 254 nm), and mainly illuminant. In general, the two light emitters are designed in combination of long light waves (centered at 365 nm), the light emitter having the maximum emission peak.

本来、発光体の励起される紫外線波長はこの二つのみではないが、励起に使用する水銀灯の輝線に合わせて紫外線の短波励起タイプと長波励起タイプと大きく区分けしていることと、使用者が所持する紫外線照射判別器具の多くが紫外線長波領域あるいは紫外線短波領域しか照射できないことが多いことにも少なからず関係している。   Originally, there are not only two wavelengths of ultraviolet light that are excited by the illuminant, but it is roughly divided into ultraviolet short-wave excitation type and long-wave excitation type according to the emission line of the mercury lamp used for excitation. This is also related to the fact that many of the UV irradiation discriminating instruments possessed can only irradiate only the ultraviolet long wave region or the ultraviolet short wave region.

紫外線と呼ばれる光領域は200nm〜400nmと広範囲にわたって存在するが、二色性発光体が色相の変化を見せるための一般的な代表波長の二つである紫外線長波と紫外線短波の間は100nm以上のブランクが存在する。多くの使用者が使用する紫外線照射判別器具もほぼこの波長に限ったものである。このことから、二色性発光体がそのブランクの波長においていかなる発光をした場合でもその差異が認識される機会はほとんどないため、現在二色性発光体は紫外線長波照射時と紫外線短波照射時に狙いを絞った設計となっている。   The light region called ultraviolet rays exists over a wide range of 200 nm to 400 nm, but the wavelength between the ultraviolet long wave and the ultraviolet short wave, which are two typical representative wavelengths for the dichroic light emitter to show a change in hue, is 100 nm or more. Blank is present. The ultraviolet irradiation discrimination instrument used by many users is almost limited to this wavelength. Because of this, there is almost no chance of recognizing the difference regardless of what the dichroic illuminant emits at the blank wavelength, so the current dichroic illuminant is aimed at the time of ultraviolet longwave irradiation and ultraviolet shortwave irradiation. Designed to focus on.

このことを考慮すると、二色性発光体に使用する長波紫外線励起タイプの発光体と短波紫外線励起タイプの発光体は、紫外線長波照射時と紫外線短波照射時に限ってその色相を一致させていれば、目視の官能検査では真性であると判定されると考えられる。この場合には、真性品に用いられる長波紫外線励起タイプの発光体と短波紫外線励起タイプの発光体を使用しなくとも、それぞれ紫外線長波中心波長(365nm)及び紫外線短波中心波長(254nm)における色相が一致しさえすれば、励起特性が異なる異種の発光体を用いても偽造可能であることを意味する。   Considering this, the long-wave ultraviolet excitation type illuminant and the short-wave ultraviolet excitation type illuminant used for the dichroic illuminant should have the same hue only at the time of ultraviolet long-wave irradiation and ultraviolet short-wave irradiation. It is considered that it is determined to be authentic by visual sensory inspection. In this case, the hue at the ultraviolet longwave center wavelength (365 nm) and the ultraviolet shortwave center wavelength (254 nm) can be obtained without using the longwave ultraviolet excitation type illuminant and the shortwave ultraviolet excitation type illuminant used in the intrinsic product. If they match, it means that forgery is possible even when different types of light emitters having different excitation characteristics are used.

この二色性発光体に用いられるこれら長波紫外励起タイプの発光体及び短波紫外線励起タイプの発光体は、発光印刷を行う印刷分野においてすでに公知であることに加え、青、赤、緑といったおおまかな色相ごとに数種類の発光体が発光体製造メーカからそれぞれ販売されている。   These long-wave ultraviolet excitation type light emitters and short-wave ultraviolet excitation type light emitters used in this dichroic light emitter are already well known in the printing field where light emission printing is performed, and in addition to rough colors such as blue, red, and green. Several types of light emitters are sold by the light emitter manufacturers for each hue.

それに加えて現在、様々な色相の長波紫外線励起タイプの発光体が一般的な雑貨量販店で容易に入手が可能となってきていることに加え、短波紫外線励起タイプの発光体も入手可能となりつつあるためにある程度の発光体の知見を有する者であれば二色性発光体の偽造は可能であると思われる。当然、発光印刷に関与する同業者にとっては容易に再現可能であることは言うまでもない。   In addition, long-wave ultraviolet-excited phosphors of various hues are now readily available at general merchandise stores, and short-wave ultraviolet-excited phosphors are becoming available. For this reason, a person who has a certain level of knowledge of the luminescent material is considered capable of forging the dichroic luminescent material. Of course, it is needless to say that it is easily reproducible for those skilled in the art involved in luminescent printing.

いずれにしても紫外領域の二つの波長域でのみ真偽の照合を行うこととなる二色性発光体は、単独の真偽判別要素として用いるには問題があると考えられている。   In any case, it is considered that a dichroic illuminant that performs authenticity verification only in two wavelength regions of the ultraviolet region has a problem in using as a single authenticity determination element.

以上のように二色性発光体を偽造し、インキ化することは単一色発光の発光インキと比較すると困難ではあっても、偽造者を含む熟練した同業者にとっては比較的容易であるという問題があった。   Although it is difficult to forge and ink a dichroic illuminant as described above, it is relatively easy for skilled professionals including counterfeiters, even if it is more difficult than luminescent ink that emits single color light. was there.

本発明は、上記課題を解決するものであって、具体的には、紫外線の照射波長により、長波、中波又は短波で高い励起特性を示すべく、これらのいずれかの紫外線を照射して、RGB色表示領域のR領域、G領域又はB領域のいずれかの領域に可視光発光する少なくとも三つの発光顔料又は発光染料をインキ用ビヒクルに混合し、紫外線の照射波長に応じて、これまでに得られなかった混合色やRGB3原色による可視光発光が可能となり、蛍光発光が連続的に変化する真偽判別に優れた多色発光混合物及びそれをインキ用ビヒクルに混合して作製した多色発光インキ組成物、並びに多色発光インキ組成物を用いて印刷した画像形成物を提供することを目的とする。   The present invention solves the above-mentioned problem, and specifically, in order to show high excitation characteristics at a long wave, a medium wave or a short wave, depending on the irradiation wavelength of the ultraviolet ray, any one of these ultraviolet rays is irradiated, At least three luminescent pigments or luminescent dyes that emit visible light in any of the R region, G region, and B region of the RGB color display region are mixed in an ink vehicle, and depending on the irradiation wavelength of ultraviolet rays, Visible light emission is possible with the mixed colors and RGB three primary colors that could not be obtained, and the multicolor light emission mixture excellent in authenticity discrimination in which the fluorescence emission changes continuously and the multicolor light emission produced by mixing it with the ink vehicle An object of the present invention is to provide an ink composition and an image formed by printing using the multicolor luminescent ink composition.

本発明の多色発光混合物は、紫外線による励起特性の異なる少なくとも三つ以上の発光体を混合してなる多色発光混合物であって、紫外線の照射により発光する発光体は、それぞれ単体でRGB表示領域のR領域、G領域又はB領域のいずれかの主波長をもち、R領域の主波長をもつ少なくとも一つの発光体を第1の発光群、G領域の主波長をもつ少なくとも一つの発光体を第2の発光群、B領域の主波長をもつ少なくとも一つの発光体を第3の発光群とし、第1の発光群から選ばれるR領域の主波長をもつ少なくとも一つの発光体、第2の発光群から選ばれるG領域の主波長をもつ少なくとも一つの発光体、第3の発光群から選ばれるB領域の主波長をもつ少なくとも一つの発光体のうち、少なくとも一つの発光体を混合してなり、紫外線領域の第1の波長の光を照射したときに、混合した少なくとも三つ以上の発光体のうち、少なくとも一つの第1の発光体の発光強度が最も強く、紫外線領域の第1の波長とは異なる第2の波長の光を照射したときに、混合した少なくとも三つ以上の発光体のうち、少なくとも一つの第2の発光体の発光強度が最も強く、紫外線領域の第1の波長、第2の波長とは異なる第3の波長の光を照射したときに、混合した少なくとも三つ以上の発光体のうち、少なくとも一つの第3の発光体の発光強度が最も強くなるように混合してなることを特徴とする。   The multicolor light-emitting mixture of the present invention is a multicolor light-emitting mixture formed by mixing at least three or more light emitters having different excitation characteristics by ultraviolet rays. At least one illuminant having a main wavelength of any one of the R region, G region, and B region of the region and having the main wavelength of the R region is a first luminescent group, and at least one luminescent material having the main wavelength of the G region , The second light emitting group, at least one light emitter having the dominant wavelength in the B region is the third light emitting group, and at least one light emitter having the dominant wavelength in the R region selected from the first light emitting group, At least one luminescent material having at least one luminescent material having a dominant wavelength in the G region selected from the luminescent group and at least one luminescent material having a dominant wavelength in the B region selected from the third luminescent group. UV When the light having the first wavelength in the region is irradiated, at least one of the mixed light emitters has the strongest emission intensity, and the first wavelength in the ultraviolet region is When light of different second wavelengths is irradiated, at least one of the mixed three or more light emitters has the strongest emission intensity, the first wavelength in the ultraviolet region, the second When irradiating with light having a third wavelength different from the wavelength of the first light emitter, the light emission intensity of at least one third light emitter is mixed so as to be the strongest among the at least three light emitters mixed. It is characterized by that.

本発明の多色発光混合物は、少なくとも一つの蛍光体又は燐光体から選ばれることを特徴とする。   The multicolor luminescent mixture of the present invention is characterized in that it is selected from at least one phosphor or phosphor.

本発明の多色発光混合物は、少なくとも三つの発光体が、無機系発光体の発光体で構成されるか、もしくは無機系発光体と有機系発光体の組み合わせによって構成されることを特徴とする。   The multicolor light emitting mixture of the present invention is characterized in that at least three light emitters are composed of inorganic light emitters or a combination of inorganic light emitters and organic light emitters. .

本発明の多色発光インキ組成物は、紫外線の励起特性の異なる三つ以上の発光体を混合して作製した多色発光混合物を、インキ用ビヒクルに混合してなる多色発光インキ組成物であって、紫外線の照射により発光する発光体は、それぞれ単体でRGB表示領域のR領域、G領域又はB領域のいずれかの主波長をもち、R領域の主波長をもつ少なくとも一つの発光体を第1の発光群、G領域の主波長をもつ少なくとも一つの発光体を第2の発光群、B領域の主波長をもつ少なくとも一つの発光体を第3の発光群とし、第1の発光群から選ばれるR領域の主波長をもつ少なくとも一つの発光体、第2の発光群から選ばれるG領域の主波長をもつ少なくとも一つの発光体、第3の発光群から選ばれるB領域の主波長をもつ少なくとも一つの発光体のうち、少なくとも一つの発光体を混合してなり、紫外線領域の第1の波長の光を照射したときに、混合した少なくとも三つ以上の発光体のうち、少なくとも一つの第1の発光体の発光強度が最も高く、紫外線領域の第1の波長とは異なる第2の波長の光を照射したときに、混合した少なくとも三つ以上の発光体のうち、少なくとも一つの第2の発光体の発光強度が最も高く、紫外線領域の第1の波長、第2の波長とは異なる第3の波長の光を照射したときに、混合した少なくとも三つ以上の発光体のうち、少なくとも一つの第3の発光体の発光強度が最も高くなるように混合してなる多色発光混合物を、インキ用ビヒクルに混合してなることを特徴とする。   The multicolor luminescent ink composition of the present invention is a multicolor luminescent ink composition obtained by mixing a multicolor luminescent mixture prepared by mixing three or more luminescent materials having different ultraviolet excitation characteristics into an ink vehicle. The light emitters that emit light when irradiated with ultraviolet rays each have at least one light emitter having a main wavelength in the R region, G region, or B region of the RGB display region, and having the main wavelength in the R region. The first light emitting group, at least one light emitter having a dominant wavelength in the G region is defined as a second light emitting group, and at least one light emitter having a dominant wavelength in the B region is defined as a third light emitting group. At least one light emitter having a main wavelength in the R region selected from the above, at least one light emitter having a main wavelength in the G region selected from the second light emitting group, and a main wavelength in the B region selected from the third light emitting group Of at least one illuminant having That is, at least one light emitter is mixed, and when the light having the first wavelength in the ultraviolet region is irradiated, light emission of at least one first light emitter among the mixed at least three light emitters. The emission intensity of at least one second light emitter among the at least three light emitters mixed when irradiated with light having the highest intensity and a second wavelength different from the first wavelength in the ultraviolet region. Is at least one of the mixed three or more light emitters when irradiated with light having a third wavelength different from the first wavelength and the second wavelength in the ultraviolet region. A multicolor luminescent mixture obtained by mixing so that the luminous intensity of the body is the highest is mixed with an ink vehicle.

本発明の画像形成物は、多色発光インキ組成物を用いて印刷層を形成してなるとことを特徴とする。   The image-formed product of the present invention is characterized in that a printed layer is formed using a multicolor luminescent ink composition.

加法混色における色の三要素RGBのすべてを備えるため、二色性発光体では発色が不可能である「白色」発光や、使用する発光体の組み合わせによっては二色性発光体では困難であった中間色を含めた「紫・藍・青・緑・黄・橙・赤」の全色の発光が可能となる。   Because it has all three colors of RGB in additive color mixing, it was difficult for dichroic illuminants, depending on the combination of the “white” luminescence that cannot be developed with dichroic illuminants and the combination of illuminants used All colors including purple, indigo, blue, green, yellow, orange and red can be emitted.

RGBの要素を備えることで長波紫外線照射ランプ、中波紫外線照射ランプ及び短波紫外線照射ランプを同時に用いて複数の発光体を同時に励起させた場合、それぞれのランプの照射光量やランプから発光体までの距離を変化させることによって、色相を虹のごとく連続的に変化させることもできる。   When a plurality of illuminants are excited simultaneously using a long-wave ultraviolet irradiation lamp, a medium-wave ultraviolet irradiation lamp, and a short-wave ultraviolet irradiation lamp by including RGB elements, the irradiation light quantity of each lamp and the lamp to the illuminant By changing the distance, the hue can be changed continuously like a rainbow.

「紫・藍・青・緑・黄・橙・赤」の7色の主色相に加え、「白色」の8色すべてを判別することが可能であることはいうまでもないが、逆に各波長の紫外線照射ランプの照射光量を固定するか、あるいはランプと発光体までの距離を完全に固定することによって、使用者が決定した任意の色相に固定して識別することが可能となることから、迅速性を考慮した簡易的な目視認証においても極めて有効である。   Needless to say, it is possible to distinguish all eight colors of “white” in addition to the seven main hues of “purple, indigo, blue, green, yellow, orange, red”. By fixing the irradiation light quantity of the ultraviolet irradiation lamp of the wavelength, or by fixing the distance between the lamp and the light emitter completely, it becomes possible to fix and identify the arbitrary hue determined by the user. Also, it is extremely effective in simple visual authentication considering rapidity.

簡易的な官能検査(色相評価)しか行わない場合でも、一方の偽造者は従来の紫外線長波領域及び紫外線短波領域といった真偽判定に使用されている波長領域をあらかじめ絞ることが不可能であることから、偽造牽制・抑止力の向上に極めて有効であるといえる(紫外線中波領域を中心波長とした紫外線を照射する中波紫外線照射ランプは医療分野では従来から核酸の発光確認ランプとして使用されており、現在、長波紫外線照射ランプ及び短波紫外線照射ランプとほぼ同一の価格で販売されているため簡易的な紫外線中波確認手段については特に問題となるものではない)。   Even if only a simple sensory test (hue evaluation) is performed, one counterfeiter cannot narrow down in advance the wavelength regions used for authenticity determination, such as the conventional ultraviolet longwave region and ultraviolet shortwave region. Therefore, it can be said that it is extremely effective in improving counterfeiting and deterrence. (Medium-wave ultraviolet irradiation lamps that irradiate ultraviolet light with the central wavelength in the ultraviolet ultraviolet light region have been used as a nucleic acid emission confirmation lamp in the medical field. At present, since it is sold at almost the same price as the long wave ultraviolet irradiation lamp and the short wave ultraviolet irradiation lamp, there is no particular problem with the simple ultraviolet medium wave confirmation means).

一方、機械検査においても従来の単色発光体や二色性発光体は254nmを中心とした紫外線短波領域か、365nmを中心とした紫外線長波領域のどちらかの判別か、といった真偽判別に使用される紫外線波長域が制限される傾向があったが、この多色発光体は紫外線領域のどの波長域においても複雑で特徴的な発光特性を有することから、単色の発光体や二色性発光体では真偽判別対象とし得なかった200nmから400nmの紫外線全領域で連続して発光を取得し、すべての発光を判定要素とすることも可能となった。   On the other hand, in the mechanical inspection, the conventional monochromatic illuminant and dichroic illuminant are used to determine whether the ultraviolet shortwave region centering on 254 nm or the ultraviolet longwave region centering on 365 nm is used. However, since this multicolor illuminant has complex and characteristic luminescent properties in any wavelength region of the ultraviolet region, monochromatic illuminants and dichroic illuminants. Then, it is possible to continuously obtain light emission in the entire ultraviolet region from 200 nm to 400 nm, which could not be a true / false discrimination target, and use all light emission as a determination element.

従来の発光体の認証が254nmあるいは365nmのいずれか一つ、あるいはその両方の多くても二つの波長領域でのみ行なわれていた。つまりX軸に発光波長、Y軸に発光強度に用いたグラフとして認証される、二次元的な形態であったものを、Z軸に紫外線励起波長を加えた三次元的な発光色の色相空間として認証する概念を導入することが可能であることを意味し、機械判別性は従来と比較して著しく高まることは言うまでもない。もちろん、簡易的な判定としても、機械判別の紫外線照射波長領域と受光領域を使用者が任意に設定する限定した方法も可能である。   Conventional illuminant authentication has been performed only in at least two wavelength regions, either 254 nm or 365 nm, or both. In other words, a two-dimensional form that is certified as a graph using the emission wavelength on the X-axis and the emission intensity on the Y-axis, and a three-dimensional hue space for the emission color with the ultraviolet excitation wavelength added to the Z-axis. As a matter of course, it is possible to introduce the concept of authenticating as follows, and it goes without saying that machine discrimination is remarkably enhanced as compared with the conventional case. Of course, as a simple determination, a limited method in which the user arbitrarily sets the ultraviolet irradiation wavelength region and the light receiving region for machine discrimination is possible.

励起特性が異なる複数異種の発光体を使用した本発明はその蛍光体の組み合わせのみならず、蛍光体の混合割合によって、使用者のニーズに応じた様々な色相の組み合わせや発光強度の調整が可能となるとともに、その偽造には従来とは比較にならない技術レベルを要することとなることから偽造防止効果・偽造抑止力が極めて高くなる。また、その目視判定要素や機械判定要素の飛躍的な増大により、真偽判別性がより一層高まる。   In the present invention using a plurality of different types of phosphors having different excitation characteristics, various combinations of hues and emission intensity can be adjusted according to the needs of the user, not only by the combination of the phosphors but also by the mixing ratio of the phosphors. At the same time, the forgery requires a technical level that cannot be compared with the conventional technology, so that the anti-counterfeiting effect and the anti-counterfeiting power are extremely high. In addition, due to the dramatic increase in the visual determination element and the machine determination element, authenticity discrimination is further enhanced.

印刷物製造工程や検査工程においては判定要素の色相数が飛躍的に増大することにともなって、従来印刷工程で必要とされていた一方の判定要素である発光強度の概念の必要性が低くなる。このことは従来の発光体印刷における印刷皮膜厚さの管理を意味し、発光体の色相自体はインキ作製段階でその混合割合を保障することによって、ある一つの色相を確認することで全色相を管理できることから、発光体印刷の品質管理は従来の発光強度の数値化といった方法から、ブラックライトによるインキ付与の確認程度の極めて容易な方法のみで保障可能となる。   In the printed matter manufacturing process and the inspection process, the number of hues of the determination element is drastically increased, and the necessity of the concept of light emission intensity, which is one of the determination elements conventionally required in the printing process, is reduced. This means the management of the thickness of the printed film in conventional phosphor printing, and the hue of the phosphor itself is confirmed by checking a certain hue in the ink preparation stage to ensure the total hue. Since it can be managed, the quality control of the illuminant printing can be ensured only by an extremely easy method of confirming the ink application by the black light from the conventional method of quantifying the light emission intensity.

加えて真性品印刷者にとってもこのように一つの像や画線、文字等が多色に発光する構成の印刷物を従来の技術で構成するためには、印刷ユニット三つを用いたうえで単色の発光インキ3種類をそれぞれ同じ位置に完全に一致させて重ね合わせる必要があり、その画線や画像が微小なサイズであった場合にはその再現は極めて困難なものであったが、単一の混合インキとして多色に発光する画線を作製することでその製造に必要な印刷ユニット数は一つとなり、刷り合わせの問題も同時に解消されることとなる。   In addition, for an authentic printer, in order to construct a print with a structure in which one image, image line, character, etc. emits multiple colors in the conventional technology, a single color is used after using three printing units. It is necessary to superimpose the three types of luminescent inks at the same position and superimpose them. If the image line or image is very small, its reproduction is extremely difficult. By producing an image line that emits multiple colors as a mixed ink, the number of printing units necessary for the production becomes one, and the problem of printing is also solved at the same time.

また、単体の発光体を多層に重ね合わせて紫外線全領域にわたって同一の色相を有する発光像や発光画線、発光像を作製する場合、発光層の上に配する場合と下に配する場合ではワニスや発光体によって発光特性が大きく変化するため、紫外線全領域で意図した色相を得ることは極めて高い技術と労力が必要となる。   In addition, when creating a light-emitting image, a light-emitting image line, or a light-emitting image having the same hue over the entire ultraviolet region by superimposing single light emitters in multiple layers, the case where the light-emitting layer is disposed above or below the light-emitting layer Since the light emission characteristics vary greatly depending on the varnish and the illuminant, obtaining an intended hue in the entire ultraviolet region requires extremely high technology and labor.

本発明の多色発光混合物は、紫外線の励起特性の異なる三つ以上の蛍光体を混合して作製する。   The multicolor luminescent mixture of the present invention is prepared by mixing three or more phosphors having different ultraviolet excitation characteristics.

詳しくは、紫外線の照射により、発光する第1の発光体、第2の発光体又は第3の発光体が、RGB色表示領域のR領域、G領域又はB領域のいずれかの主波長をもち、第1の発光体、第2の発光体又は第3の発光体は、それぞれ少なくとも一つの蛍光体から選ばれ、R領域に発光する少なくとも一つの発光体を第1の発光群、G領域に発光する少なくとも一つの発光体を第2に発光群、B領域に発光する少なくとも一つの発光体を第3の発光群とし、第1の発光群、第2の発光群及び第3の発光群の中から選ばれるR領域、G領域及びB領域に発光する発光体のうち、少なくとも三つの蛍光体を混合して作製する。   Specifically, the first light emitter, the second light emitter, or the third light emitter that emits light when irradiated with ultraviolet rays has a main wavelength in any of the R region, the G region, and the B region of the RGB color display region. The first light emitter, the second light emitter, or the third light emitter is selected from at least one phosphor, and at least one light emitter that emits light in the R region is provided in the first light emitting group and the G region. At least one light emitter that emits light is a second light emission group, and at least one light emitter that emits light to the B region is a third light emission group. The first light emission group, the second light emission group, and the third light emission group The phosphor is produced by mixing at least three phosphors among the phosphors that emit light in the R region, the G region, and the B region selected from the inside.

さらに、紫外線領域の第1の波長で、混合した蛍光体のうち一つの発光体の発光強度が最も強く、紫外線領域の第1と異なる第2の波長で、混合した蛍光体のうち別の一つの発光強度が最も強く、紫外線領域の第1、第2と異なる第3の波長で、混合した蛍光体のうち別の一つの発光体の発光強度が最も強くなるように蛍光体を混合して作製する。   Furthermore, the emission intensity of one of the phosphors mixed at the first wavelength in the ultraviolet region is the strongest, and another one of the phosphors mixed at the second wavelength different from the first in the ultraviolet region. The phosphors are mixed so that the emission intensity of one of the mixed phosphors is the strongest at the third wavelength different from the first and second wavelengths in the ultraviolet region. Make it.

多色発光インキ組成物に使用するそれぞれの発光体は、RGB領域に属する発光群から一つを選定し、選定した3種類の発光体を、目的を成すための最良の混合比によって混合する。   Each light emitter used in the multicolor light emitting ink composition is selected from one of the light emitting groups belonging to the RGB region, and the three selected light emitters are mixed at the best mixing ratio for achieving the purpose.

作製した多色発光インキ組成物の効果確認は、紫外線を照射することによる色相評価とする。その際の紫外線照射手段としては、長波紫外線照射ランプ(中心波長366nm)、中波紫外線照射ランプ(中心波長302nm)、短波紫外線照射ランプ(254nm)を使用する。   Confirmation of the effect of the produced multicolor light-emitting ink composition is a hue evaluation by irradiating ultraviolet rays. As ultraviolet irradiation means at that time, a long wave ultraviolet irradiation lamp (center wavelength 366 nm), a medium wave ultraviolet irradiation lamp (center wavelength 302 nm), and a short wave ultraviolet irradiation lamp (254 nm) are used.

一般的に、発光体は長波紫外励起タイプと短波紫外線励起タイプに二つに大別されがちであるが、実際にはそれぞれの発光体固有の励起特性を持っている。一例として挙げると、短波紫外線励起タイプとして分類される発光体は、紫外線長波領域でほとんど発光せず紫外線短波領域でのみ発光するものであるが、この中には実際には紫外線中波領域ですでに発光しているものや、紫外線中波領域では発光せず紫外線短波領域でのみで急激に発光するものがある。また、長波紫外励起タイプとして単に分類されている発光体は、紫外線長波領域で発光して紫外線中波領域や紫外線短波領域で発光が落ちるものや、ほぼ変わらないもの、より強く光るものがある。   In general, light emitters tend to be broadly divided into two types: a long wave ultraviolet excitation type and a short wave ultraviolet excitation type, but in reality, they have excitation characteristics specific to each light emitter. As an example, a phosphor classified as a short wave ultraviolet excitation type emits little light in the ultraviolet long wave region and emits light only in the ultraviolet short wave region, but this is actually in the ultraviolet medium wave region. Some of them emit light rapidly, and others emit light rapidly only in the ultraviolet short wave region without emitting light in the ultraviolet medium wave region. In addition, light emitters that are simply classified as the long wave ultraviolet excitation type include those that emit light in the ultraviolet long wave region and emit light in the ultraviolet medium wave region and ultraviolet short wave region, those that do not change substantially, and those that emit more intensely.

また、有機系発光体は耐光性に問題がある場合が多いものの、長波紫外励起時には無機系とは比較にならないほどの強度の発光を有し、ピーク前後の適正な紫外線励起波長域が狭く、発光が減衰するものが多い。発光強度の違いを含めた励起特性を厳密に観察すると、励起特性はそれぞれの発光体に独特のものであることがわかる。この励起特性の違いを利用した場合には、一般に短波紫外線励起タイプと分類されている発光体同士の組み合わせであっても、配合量を調整することで紫外線中波領域から紫外線短波領域までの従来の半分の波長の中で顕著な色相変化をもつ二色性発光体を作製することが可能であり、同様に長波紫外線励起タイプ同士の発光体同士の組み合わせであっても、紫外線長波領域から紫外線中波領域までで色相変化をもつ二色性発光体を作製することも可能である。   In addition, although organic light emitters often have problems with light resistance, they have light emission intensity that is not comparable to inorganic ones at the time of long-wave ultraviolet excitation, and the appropriate ultraviolet excitation wavelength region around the peak is narrow, Many of the light emission is attenuated. When the excitation characteristics including the difference in emission intensity are observed closely, it can be seen that the excitation characteristics are unique to each light emitter. When this difference in excitation characteristics is used, even the combination of illuminants that are generally classified as short-wave ultraviolet excitation types can be adjusted from the mid-ultraviolet region to the ultraviolet short-wave region by adjusting the blending amount. It is possible to produce a dichroic illuminant that has a remarkable hue change within half the wavelength of the same, and even in the case of a combination of illuminants of the long-wave ultraviolet excitation type, ultraviolet rays from the ultraviolet long-wave region It is also possible to produce a dichroic light emitter having a hue change up to the middle wave region.

この場合、短波紫外線励起タイプ同士の組み合わせとしては、長波励起発光波長が異なったタイプを組み合わせることで実現可能であるとともに、長波励起発光後の発光の増減を利用することも可能である。長波励起発光波長の異なるタイプの発光体の組み合わせは、紫外線中波領域からゆるやかに発光する励起特性を持つ発光体と、紫外線短波領域で特異的に発光する励起特性の異なった発光体を組み合わせて配合を調整することで、紫外線中波領域では長波励起発光波長の違いから一つの発光体しか発光しえないが、紫外線発光波長が短くなるに従って、もう一つの発光体も急激に励起され徐々に発光色が二色の混色と化す。このように、二つの発光体の混合比を調整することで、最終的な発光色を任意に調整することが可能となる。   In this case, the combination of the short-wave ultraviolet excitation types can be realized by combining types having different long-wave excitation emission wavelengths, and the increase / decrease in the emission after the long-wave excitation emission can be used. The combination of different types of phosphors with different long-wave excitation emission wavelengths is a combination of an emitter with an excitation characteristic that emits light slowly from the ultraviolet midwave region and an emitter with a different excitation characteristic that emits light specifically in the ultraviolet shortwave region. By adjusting the composition, only one illuminant can emit light in the ultraviolet midwave region due to the difference in the long wave excitation emission wavelength, but as the ultraviolet emission wavelength becomes shorter, the other illuminant is also excited rapidly and gradually. The emission color becomes a mixed color of two colors. In this way, the final emission color can be arbitrarily adjusted by adjusting the mixing ratio of the two light emitters.

また、長波紫外励起タイプ同士の組み合わせとしては、紫外線短波タイプと同様に長波励起波長の違いと長波励起発光後の発光の増減を利用することも可能である。一例として、初期発光後の発光の増減を利用した組み合わせとして、発光後に一気に発光強度が低下する有機系発光体と紫外線波長の変化に対して発光強度がほぼ一定である無機系発光体を組み合わせた場合が考えられる。   Further, as a combination of the long wave ultraviolet excitation types, it is also possible to use the difference in the long wave excitation wavelength and the increase / decrease in the light emission after the long wave excitation light emission as in the ultraviolet short wave type. As an example, as a combination using increase / decrease in light emission after the initial light emission, an organic light emitter whose light emission intensity decreases at once after light emission and an inorganic light emitter whose light emission intensity is almost constant with respect to a change in ultraviolet wavelength are combined. There are cases.

二つの発光体はほぼ同時に励起されるため、初期発光が二つの発光体の発する色の混色となるが、両発光体の配合量を調整することで紫外線長波領域のある一定の域では有機系発光体の発光が主体的となる。しかし、それ以降の域では有機系発光体の発光強度が一気に低下するために無機系発光体の発光が主体的となる。このように有機系発光体と無機系発光体にそれぞれ異なった色相の発光体を使用することで同様な色相変化を得ることができる。   Since the two light emitters are excited almost simultaneously, the initial light emission is a color mixture of the colors emitted by the two light emitters. The light emission of the illuminant is dominant. However, since the emission intensity of the organic luminescent material decreases at a stretch in the subsequent region, the luminescence of the inorganic luminescent material becomes dominant. Thus, the same hue change can be obtained by using the light emitters having different hues for the organic light emitter and the inorganic light emitter, respectively.

例として有機系と無機系の組み合わせで説明をしたが、これについては励起特性が大きく異なっていれば無機系の発光体の組み合わせで配合を調整することで実現可能である。これらは発光ブランクが100nm程度存在する従来の二色性発光体と比較しても特徴的な色相変化を50nm以下の極めて限定された範囲の中で成し得る特殊な二色性発光体となる。   As an example, a combination of an organic system and an inorganic system has been described. However, if the excitation characteristics are greatly different, this can be realized by adjusting the blending with a combination of inorganic phosphors. These are special dichroic light emitters that can make a characteristic hue change within a very limited range of 50 nm or less even when compared with a conventional dichroic light emitter having a light emitting blank of about 100 nm. .

本発明は従来の二色性で説明した特殊な二色性にとどまらず、異なる三つ以上の発光体を組み合わせることで、官能検査のための多様な色相表現や機械検査のための複雑で多様な発光変化を得るものであって、従来のように長波紫外励起タイプ及び短波紫外線励起タイプといった大まかな分類で発光混合体を設計するのではなく、これまで考慮されることのなかった広い紫外線波長領域にわたる各発光体独自の細かな励起特性を考慮して複数の発光体の組み合わせを成すものであり、混合した個々の発光体の励起特性が複雑に重なり合い、その結果、当該励起紫外線波長に最も主体的となった発光がその紫外線波長において色相として現れる真偽判別に優れた発光体に関するものである。   The present invention is not limited to the special dichroism described in the conventional dichroism, but by combining three or more different light emitters, various hue expressions for sensory inspection and complicated and diverse for mechanical inspection. A wide range of UV wavelengths that have not been considered so far, rather than designing luminescent mixtures in the broad classification of long-wave ultraviolet excitation types and short-wave ultraviolet excitation types as in the past. A combination of a plurality of light emitters is considered in consideration of the fine excitation characteristics unique to each light emitter over a region, and the excitation characteristics of the individual light emitters mixed in a complicated manner. The present invention relates to a light-emitting body excellent in authenticity determination in which light emission that becomes dominant appears as a hue at the ultraviolet wavelength.

また、鑑別情報のように機械判別性の向上のみを目的とする場合には、同じ色相の発光体を選定することで目視確認できる発光色はあえて変化させず、分光測定時の発光波形のみを特徴的に変化させた特殊な機械読み取り専用インキとすることで充分であり、単に発明の効果をあえて低くするだけで実施可能であることは言うまでもない。   In addition, when the purpose is to improve machine discrimination like identification information, the emission color that can be visually confirmed by selecting a light emitter of the same hue is not changed intentionally, and only the emission waveform at the time of spectroscopic measurement is used. Needless to say, a special machine-read-only ink with characteristic changes is sufficient, and it can be implemented simply by reducing the effect of the invention.

一例として300nm以下の紫外線波長領域で初期発光し、その後、励起波長が短波長側にシフトした時に著しく発光強度が増加する励起特性をもつ緑色発光体1と紫外線320nmの紫外線波長領域で発光し、その後、励起波長が長波長側にシフトしても発光強度がほとんど変化しない励起特性を持つ赤色発光体2、長波紫外励起領域で発光し、その後、励起波長が更に長波長側にシフトしても発光強度が変化しない励起特性を持つ紫色発光体3の三つの発光体を混合してなる混合発光体の場合には、これまでの二色性発光体が有していた問題を完全に克服する発光体となる。   As an example, initial light emission in the ultraviolet wavelength region of 300 nm or less, and then, in the ultraviolet wavelength region of 320 nm ultraviolet light and the green light emitter 1 having an excitation characteristic that significantly increases the emission intensity when the excitation wavelength is shifted to the short wavelength side, Thereafter, even when the excitation wavelength is shifted to the long wavelength side, the red light emitting element 2 having an excitation characteristic that hardly changes the emission intensity, emits light in the long wave ultraviolet excitation region, and then the excitation wavelength is further shifted to the long wavelength side. In the case of a mixed illuminant obtained by mixing three illuminants of the purple illuminant 3 having an excitation characteristic that does not change the emission intensity, the problem that the dichroic illuminant has so far been completely overcome. Becomes a light emitter.

仮に使用者が簡易的な真偽判別のための色相確認として、紫外線長波、紫外線中波、紫外線短波の三波長励起領域のみで真偽判定を行うと想定し、第三者がその励起領域のみで色相が同一と判定できる偽造品を作製しようとした場合を仮定する。   Assuming that the user performs true / false judgment only in the three-wavelength excitation region of ultraviolet longwave, ultraviolet ultraviolet medium wave, and ultraviolet shortwave, as a simple hue check for true / false discrimination, a third party can only check the excitation region. Assume that a counterfeit product that can be determined to have the same hue is manufactured.

この多色発光体の場合、それぞれの発光体ごとの紫外線励起波長における励起波長間隔が約50nmと従来の紫外線長波、紫外線短波の二波長励起領域を利用した二色性発光体のほぼ半分となることに加え、長波紫外励起領域では紫色発光体3のみが発光しているのもの、中波紫外線励起領域では赤色発光体2と発光体3との混合色となり、短波紫外線励起領域では発光体1、発光体2、発光体3すべての混合色となることから、発光体1あるいは発光体2の種類を変更した場合には、中波紫外線励起領域あるいは短波紫外線励起領域における発色にも大きな影響を及ぼすことになる。   In the case of this multicolor illuminant, the excitation wavelength interval at the ultraviolet excitation wavelength of each illuminant is about 50 nm, which is almost half of the dichroic illuminant utilizing the conventional two-wavelength excitation region of ultraviolet long wave and ultraviolet short wave. In addition, only the violet light emitter 3 emits light in the long wave ultraviolet excitation region, the mixed color of the red light emitter 2 and the light emitter 3 in the medium wave ultraviolet excitation region, and the light emitter 1 in the short wave ultraviolet excitation region. Since the light emitting body 2 and the light emitting body 3 are all mixed colors, changing the type of the light emitting body 1 or the light emitting body 2 has a great influence on the color development in the medium wave ultraviolet excitation region or the short wave ultraviolet excitation region. Will be affected.

この場合、短波紫外線励起領域でのみ発光する発光体1については、他の波長励起領域での色相や発光強度に影響を及ぼさず、それ単独で色相調整や発光調整を行えると考えがちであるが、実際にはこれもすでに320nmより長波長側の励起光で発光していることから中波紫外線励起領域でその色相や発光強度の違いとして現れてしまうこととなる。   In this case, it is likely that the illuminant 1 that emits light only in the short-wave ultraviolet excitation region does not affect the hue and light emission intensity in other wavelength excitation regions, and can adjust the hue and light emission by itself. Actually, this also has already been emitted with excitation light having a wavelength longer than 320 nm, so that it appears as a difference in hue and emission intensity in the medium-wave ultraviolet excitation region.

このように中波紫外線励起領域以降のいずれの短波長側の波長領域においても異種の発光体の発光が複雑に絡み合った混合色であるため、紫外線励起波長中の三つの限定された励起波長領域でのみ色相を一致させようとした場合であっても、それを完全に模倣することは従来の二色性発光体と比較して著しく困難となっている。   In this way, in the wavelength region on the short wavelength side after the medium-wave ultraviolet excitation region, the light emission of different types of light emitters is a mixed color intricately intertwined, so three limited excitation wavelength regions in the ultraviolet excitation wavelength Even when trying to make the hues coincide with each other, it is extremely difficult to completely imitate the hue as compared with the conventional dichroic light emitter.

以上のように真性品と同じ三つの色相を発する偽造品を再現するためには、励起特性がほぼ完全に一致した発光体を使用する必要が生じる。色相が同一で紫外線励起特性が完全に一致した異種の発光体は存在しないため、その再現には真性品とほとんど同じ発光体が必要となる。   As described above, in order to reproduce a counterfeit product that emits the same three hues as the genuine product, it is necessary to use an illuminant having almost exactly the same excitation characteristics. Since there are no different types of illuminants with the same hue and perfectly matched UV excitation characteristics, the same illuminant as that of the genuine product is required for reproduction.

また、真性品の発光体の組み合わせであってもその配合割合が異なった場合には、いずれかの紫外線励起波長領域において一致しない色相が現れるため、その再現には高い技術レベルが必要となる。   Further, even in the case of a combination of genuine luminescent materials, if the blending ratio is different, a hue that does not match in any ultraviolet excitation wavelength region appears, and thus a high technical level is required for its reproduction.

本発明を実施するための最良の形態における、実施例を以下に4種類挙げて、それぞれ説明をする。実施例1及び実施例2に関しては、3種類の発光体を混合して作製した多色発光インキ組成物であり、一般的な紫外線照射装置を使用した目視による色相評価で大きな効果が得られるものである。また、実施例3に関しては、3種類の発光体を混合して作製した多色発光インキ組成物であり、機械読み取りに用いられる特殊な紫外線照射装置を使用した色相評価で大きな効果が得られるものである。また、実施例4に関しては、実施例3で使用した発光体にもう1種類の発光体を加えた、4種類の発光体を混合して作製した多色発光インキ組成物であり、機械読み取りに用いられる特殊な紫外線照射装置を使用した色相評価で大きな効果が得られるものであるとともに、一般的な紫外線照射装置を使用した目視による色相評価でも大きな効果が得られるものである。   In the best mode for carrying out the present invention, the following four examples will be described. Regarding Example 1 and Example 2, it is a multicolor light emitting ink composition prepared by mixing three kinds of light emitters, and a great effect can be obtained by visual hue evaluation using a general ultraviolet irradiation device. It is. Moreover, regarding Example 3, it is a multicolor light emitting ink composition prepared by mixing three kinds of light emitters, and a great effect can be obtained by hue evaluation using a special ultraviolet irradiation device used for machine reading. It is. Further, Example 4 is a multicolor light-emitting ink composition prepared by mixing four types of light emitters by adding another type of light emitter to the light emitter used in Example 3, and for machine reading. A great effect can be obtained by hue evaluation using a special ultraviolet irradiation device to be used, and a great effect can also be obtained by visual hue evaluation using a general ultraviolet irradiation device.

紫外線照射波長の変化に対して目視における色相変化を大きくした場合の本発明実施の一例を示す。この場合、使用者は紫外線長波領域及び紫外線中波領域、紫外線短波領域のランプを照射して色相を簡易的に判定すると仮定している。多色発光体に使用する個別の発光体は大まかにRGB領域に属する発光群からそれぞれ一つを選択し、選定した3種類の発光体を混合することとした。色相の変化が最大となりうる発光顔料の選定を図2のとおり行った。目的とした色相の変化を最大とするために、B系発光体1は発光ピークが440nmの紫色である可視領域の最低波長の発光体1を選定した。発光体1の紫外線照射波長と発光ピークにおける発光強度の関係(励起特性)を図3(a)に示す。また、発光体1の発光波長と発光ピークについて図3(b)に示す。発光体1は一般には長波紫外励起タイプに分類されるが、紫外線長波約380nmで紫色発光をし、それより短い波長の紫外線を照射した場合でも発光強度はほぼ変化しない励起特性の発光体である。   An example of the embodiment of the present invention when the visual hue change is increased with respect to the change of the ultraviolet irradiation wavelength is shown. In this case, it is assumed that the user simply determines the hue by irradiating a lamp in the ultraviolet long wave region, the ultraviolet medium wave region, and the ultraviolet short wave region. The individual light emitters used for the multicolor light emitter are roughly selected from each of the light emitting groups belonging to the RGB region, and the selected three kinds of light emitters are mixed. The selection of the luminescent pigment that can maximize the hue change was performed as shown in FIG. In order to maximize the intended hue change, the B-based luminous body 1 was selected as the luminous body 1 having the lowest wavelength in the visible region and having a violet emission peak of 440 nm. FIG. 3A shows the relationship (excitation characteristics) between the ultraviolet irradiation wavelength of the luminous body 1 and the emission intensity at the emission peak. Moreover, it shows in FIG.3 (b) about the light emission wavelength and light emission peak of the light-emitting body 1. FIG. The illuminant 1 is generally classified into a long wave ultraviolet excitation type, but is an illuminant having an excitation characteristic that emits purple light at an ultraviolet long wave of about 380 nm and whose emission intensity does not substantially change even when irradiated with ultraviolet light having a shorter wavelength. .

続いて、R系発光体2は発光ピークが650nmの赤色である可視領域の最大波長の発光体2を選定した。発光体2の紫外線照射波長と発光ピークにおける発光強度の関係(励起特性)を図4(a)に示す。また、発光体2の発光波長と発光ピークについて図4(b)に示す。発光体2は一般的には短波紫外線励起タイプとして分類されるが、紫外線中波約330nmで赤色発光し、それより短い波長の紫外線を照射した場合には発光強度がほぼ変化しない励起特性の発光体である。   Subsequently, as the R-based illuminant 2, the illuminant 2 having the maximum wavelength in the visible region having an emission peak of 650 nm in red was selected. FIG. 4A shows the relationship (excitation characteristics) between the ultraviolet irradiation wavelength of the luminous body 2 and the emission intensity at the emission peak. Moreover, it shows in FIG.4 (b) about the light emission wavelength and light emission peak of the light-emitting body 2. FIG. The illuminant 2 is generally classified as a short-wave ultraviolet excitation type, but emits red light at about 330 nm of ultraviolet light, and emits light having an excitation characteristic that does not substantially change the emission intensity when irradiated with ultraviolet light having a shorter wavelength. Is the body.

続いて、G系発光体3として発光ピークが520nmの緑色である発光体3を選定した。発光体3の紫外線照射波長と発光ピークにおける発光強度の関係(励起特性)を図5(a)に示す。また、発光体3の発光波長と発光ピークについて図5(b)に示す。発光体3は一般には短波紫外線励起タイプに分類されるが、紫外線短波300nmより短い短波領域で特異的に緑色発光する励起特性の発光体である。   Subsequently, the green light emitter 3 having a light emission peak of 520 nm in green was selected as the G-based light emitter 3. FIG. 5A shows the relationship (excitation characteristics) between the ultraviolet irradiation wavelength of the luminous body 3 and the emission intensity at the emission peak. Moreover, it shows in FIG.5 (b) about the light emission wavelength and light emission peak of the light-emitting body 3. FIG. The illuminant 3 is generally classified into a short wave ultraviolet excitation type, but is an illuminant having an excitation characteristic that specifically emits green light in a short wave region shorter than the ultraviolet short wave of 300 nm.

この例のように、発光体に紫外線照射波長に応じてドラスティックな色相変化の発現を意図する場合には、これら発光体1、発光体2、発光体3の選定の条件が必要となってくる。その選定条件として、発光体1は紫外線長波365nmで励起された後、紫外線中波領域や紫外線短波領域の短い波長に照射波長が移行しても、発光強度が少なくとも大きく増加しないことが望ましい。これは、紫外線長波領域以下で発光体1の発光強度が増加した場合に、紫外線中波領域及び紫外線短波領域において発光する発光体2及び発光体3の色相と重なって混ざり合った色相に変化してしまうためであり、好ましくは紫外線長波認証領域である365nmより短い波長では発光強度が低下する発光体が望ましい。   As in this example, when the illuminant is intended to exhibit a drastic hue change according to the ultraviolet irradiation wavelength, conditions for selecting the illuminant 1, the illuminant 2, and the illuminant 3 are necessary. come. As the selection condition, it is desirable that the luminous intensity does not increase at least greatly even when the light emitting body 1 is excited by the ultraviolet long wave 365 nm and then the irradiation wavelength shifts to a short wavelength in the ultraviolet medium wave region or the ultraviolet short wave region. When the light emission intensity of the light emitter 1 increases below the ultraviolet long wave region, it changes to a hue that overlaps with the hue of the light emitters 2 and 3 that emit light in the ultraviolet medium wave region and the ultraviolet short wave region. Therefore, it is preferable to use a light emitter that emits light with a reduced intensity at a wavelength shorter than 365 nm, which is the ultraviolet long wave authentication region.

発光体2は長波の紫外線で励起されないことを特徴とすることが望ましく、かつ短波の紫外線で発光強度が大きく増加することがないことが望ましい。これの問題と同様に長波の紫外線照射時に発光色の紫と赤が混ざり合い、短波の紫外線照射時には発光色の赤と緑が混ざり合うこととなるため、発光色の彩度が低下し色相の変化の視認性が低下してしまうことを避けるためでもある。   It is desirable that the illuminant 2 is not characterized by being excited by long wave ultraviolet rays, and it is desirable that the light emission intensity is not greatly increased by short wave ultraviolet rays. Similar to this problem, the emission colors purple and red are mixed when irradiated with long-wave ultraviolet light, and red and green are mixed when irradiated with short-wave ultraviolet light. It is also for avoiding that the visibility of a change falls.

発光体3については長波の紫外線及び中波の紫外線で励起されないことが望ましい。これは発光体1及び発光体2と同様に、長波の紫外線照射時や中波の紫外線照射時に緑発光する場合、紫発光及び赤発光と混ざり合うことになるため、これを防ぎ長波励起時の紫色や中波励起時の赤色の発光をあいまいな色相としないために必要な性質である。   It is desirable that the light emitter 3 is not excited by long wave ultraviolet light and medium wave ultraviolet light. As with the light emitter 1 and light emitter 2, when green light is emitted when irradiated with long wave ultraviolet light or medium wave ultraviolet light, it is mixed with violet light and red light emission. This is a necessary property to prevent the light emission of purple or red light during medium wave excitation from being ambiguous.

これら励起特性と色相が異なった発光体群を選定した後、それぞれの顔料コンテントの検討を行った。インキ適性や印刷作業性、印刷物の堅牢性等の実用性を考慮する場合、インキ中に顔料が占める割合は制限される場合が多いことから、発光体1、発光体2、発光体3を合計した重量がインキ全体においてインキ用ビヒクル70重量部に対して30重量部とし、その中で色相のバランスを考慮しながら発光体1、発光体2、発光体3の各々の重量部を微調整する方法とした。少量の発光体の混合にあたっては、簡易的には乳鉢等を用いて発光体が均一になるまで混合して、均一に分散した状態の多色発光体とした。   After selecting phosphor groups with different excitation characteristics and hues, each pigment content was examined. Considering practicality such as ink suitability, printing workability, and fastness of printed matter, the ratio of the pigment in the ink is often limited. Therefore, the total of luminous body 1, luminous body 2, and luminous body 3 The total weight of the light-emitting body 1, the light-emitting body 2, and the light-emitting body 3 is finely adjusted in consideration of the balance of hue. It was a method. In mixing a small amount of light emitters, a multicolor light emitter in a uniformly dispersed state was simply mixed using a mortar or the like until the light emitters were uniform.

まず、図1に示した発光体1、発光体2、発光体3をそれぞれ均等に10重量部ずつ混合した多色発光体を作製し、照射する紫外線の波長を広域に変化させた場合の色相の変化を確認した。効果の確認のための紫外線照射手段としては、長波紫外線照射ランプ(中心波長366nm)、中波紫外線照射ランプ(中心波長302nm)、短波紫外線照射ランプ(中心波長254nm)を使用した。   First, a multicolor light emitting body in which 10 parts by weight of each of the light emitting body 1, the light emitting body 2, and the light emitting body 3 shown in FIG. 1 are mixed together is manufactured, and the hue when the wavelength of ultraviolet rays to be irradiated is changed over a wide range. The change of was confirmed. As an ultraviolet irradiation means for confirming the effect, a long wave ultraviolet irradiation lamp (center wavelength 366 nm), a medium wave ultraviolet irradiation lamp (center wavelength 302 nm), and a short wave ultraviolet irradiation lamp (center wavelength 254 nm) were used.

その結果、長波の紫外線照射時の紫色の発色は充分な認識度があるが、中波の紫外線照射時には発光体2の赤色の発色が弱く、蛍光体1の青色発光と混ざり合った色である青紫として認識され、短波の紫外線照射時に発光体1、発光体2、発光体3の発光色が混ざり合い、ほぼ完全な白色として発光する結果となった。   As a result, the purple coloration when irradiated with long-wave ultraviolet rays has a sufficient degree of recognition, but when the medium-wave ultraviolet rays are irradiated, the red coloration of the light emitter 2 is weak and mixed with the blue light emission of the phosphor 1. It was recognized as bluish purple, and the light emission colors of the light emitter 1, light emitter 2, and light emitter 3 were mixed when irradiated with short-wave ultraviolet light, resulting in light emission as almost perfect white.

この結果を考慮して、改めて配合割合が異なったサンプル1からサンプル4なる図6の第2試作群を作製した。まず、サンプル1に関しては、発光体1を10gと発光体2を5gと発光体3を15g混合して多色発光体を作製した。サンプル2に関しては、発光体1を10gと発光体2を15gと発光体3を5g混合して多色発光体作製した。サンプル3に関しては、発光体1を5gと発光体2を15gと発光体3を10g混合して多色発光体作製した。サンプル4に関しては、発光体1を5gと発光体2を10gと発光体3を15g混合して多色発光体を作製した。その後、長波の紫外線照射時(中心波長366nm)、中波の紫外線照射時(中心波長302nm)、短波の紫外線照射時(中心波長254nm)の発光体の色相評価を目視で行った結果、図7のとおりとなった。   In consideration of this result, the second prototype group of FIG. 6 consisting of Sample 1 to Sample 4 having different blending ratios was produced. First, for sample 1, 10 g of the light emitter 1, 5 g of the light emitter 2, and 15 g of the light emitter 3 were mixed to produce a multicolor light emitter. For sample 2, a multicolor light emitter was prepared by mixing 10 g of the light emitter 1, 15 g of the light emitter 2, and 5 g of the light emitter 3. Regarding sample 3, a multicolor light emitter was prepared by mixing 5 g of the light emitter 1, 15 g of the light emitter 2, and 10 g of the light emitter 3. For sample 4, a multicolor light emitter was prepared by mixing 5 g of the light emitter 1, 10 g of the light emitter 2, and 15 g of the light emitter 3. Subsequently, as a result of visual evaluation of the hue of the illuminant at the time of long-wave ultraviolet irradiation (center wavelength 366 nm), medium-wave ultraviolet irradiation (center wavelength 302 nm), and short-wave ultraviolet irradiation (center wavelength 254 nm), FIG. It became as follows.

これらのいずれにおいても、本発明の本質である励起特性が異なった異種の発光体による発光変化は充分に備えており、機械判別を行うには充分な発光色の色相変化を有しているものの、この例においては色相変化を大きくすることを目的としたため、配合を再調整することとした。サンプル3とサンプル4の色相変化の評価が高かったことから、この二つを基準にして最終的に数%単位で各顔料配合比を微調整して最良な配合割合を決定するにいたった。   In any of these, the luminescence change by different kinds of illuminants having different excitation characteristics, which is the essence of the present invention, is sufficiently provided, and the hue change of the luminescent color is sufficient for machine discrimination. In this example, the purpose was to increase the hue change, so the formulation was readjusted. Since the evaluation of the hue change of Sample 3 and Sample 4 was high, finally, the best blending ratio was determined by finely adjusting the pigment blending ratio in units of several percent based on these two.

発光体1と発光体2と発光体3の最良な配合比を図8に、それによって作製された多色発光体に対して、各紫外線を照射した際の色相評価の結果を図9に示す。長波の紫外線照射時(中心波長366nm)においては紫色、中波の紫外線照射時(中心波長302nm)においては赤色、短波の紫外線照射時(中心波長254nm)においては緑色を発し目的とした効果を得ていることを確認した。   FIG. 8 shows the best blending ratio of the illuminant 1, the illuminant 2 and the illuminant 3, and FIG. 9 shows the result of the hue evaluation when each of the multicolor illuminants produced thereby is irradiated with ultraviolet rays. . The target effect is obtained by emitting purple when irradiated with long-wave ultraviolet light (center wavelength 366 nm), red when irradiated with medium-wave ultraviolet light (center wavelength 302 nm), and green when irradiated with short-wave ultraviolet light (center wavelength 254 nm). Confirmed that.

図10(a)に長波紫外線励起時の発光分布、図10(b)に中波紫外線励起時の発光分布、図10(c)に短波紫外線励起時の分光分布を示す。   FIG. 10 (a) shows the light emission distribution upon excitation of the long wave ultraviolet light, FIG. 10 (b) shows the light emission distribution upon excitation of the medium wave ultraviolet light, and FIG. 10 (c) shows the spectral distribution upon excitation of the short wave ultraviolet light.

図10(a)、(b)、(c)のグラフのY軸である発光強度はいずれも相対強度であって波形上の最高ピークがグラフ上で約80%となるスケールとした。これらは分光測定器(日立製作所製850型分光蛍光光度計)においても機械検出するに充分なピーク波長を有していることを確認できた。   The emission intensity on the Y axis of the graphs of FIGS. 10 (a), 10 (b), and 10 (c) is a relative intensity, and the maximum peak on the waveform is about 80% on the graph. These were confirmed to have a peak wavelength sufficient for mechanical detection even in a spectrophotometer (manufactured by Hitachi, Ltd., model 850 spectrofluorometer).

また、全色相を再現するための各紫外線照射ランプと多色発光体の距離についての調査を行った。図11に、多色発光体(1)と長波紫外線照射ランプ(2)と、中波紫外線照射ランプ(3)と、短波紫外線照射ランプ(4)との位置関係を示す。その位置関係において、多色発光体(1)と各紫外線照射ランプ(2)、(3)、(4)の距離を8種類のパターンに変化させて色相評価を行った。その色相評価の結果を図12に示す。この結果から、この発光体に対して各紫外線照射ランプの距離を変化させることで全色相の再現に加え、従来の単色発光体や二色性発光体では不可能であった白色発光が可能であることを確認できた。照射光量は距離の二乗に反比例することをから、逆に各紫外線ランプの距離を一定に保って照射光量を増減させることでもこの色相変化を確認できることは言うまでもない。   In addition, the distance between each ultraviolet irradiation lamp and the multicolor illuminant to reproduce the entire hue was investigated. FIG. 11 shows the positional relationship among the multicolor light emitter (1), the long wave ultraviolet irradiation lamp (2), the medium wave ultraviolet irradiation lamp (3), and the short wave ultraviolet irradiation lamp (4). In the positional relationship, the hue was evaluated by changing the distance between the multicolor illuminant (1) and each of the ultraviolet irradiation lamps (2), (3), and (4) into eight patterns. The result of the hue evaluation is shown in FIG. From this result, by changing the distance of each ultraviolet irradiation lamp with respect to this light emitter, in addition to reproducing the entire hue, it is possible to emit white light that was impossible with conventional monochromatic light emitters and dichroic light emitters. I was able to confirm that there was. Since the irradiation light quantity is inversely proportional to the square of the distance, it is needless to say that the hue change can be confirmed by increasing or decreasing the irradiation light quantity while keeping the distance of each ultraviolet lamp constant.

多色発光体を作製した後、これをインキ化するために、続いてインキ用ビヒクルを選定した。グラビア印刷、フレキソ印刷、凸版印刷、オフセット印刷、スクリーン印刷といった印刷方式で使用されるインキ用ビヒクルはいずれも有機物で構成されるため、紫外線を吸収する特性をもともと有している。   After producing a multicolor illuminant, an ink vehicle was subsequently selected to make it into an ink. Since ink vehicles used in printing methods such as gravure printing, flexographic printing, letterpress printing, offset printing, and screen printing are all made of organic matter, they originally have the property of absorbing ultraviolet rays.

ハロゲン、カルボニル基、ベンゼン環、不飽和基等を含む有機化合物はいずれも少なからず紫外線を吸収する特性を有しているが、サリチル酸系吸収剤やベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、シアノアクリレート系紫外線吸収剤等が代表的であり、特にベンゾトリアゾール系紫外線吸収剤は紫外線長波領域にも顕著な吸収特性を有していることで知られている。   All organic compounds containing halogen, carbonyl group, benzene ring, unsaturated group, etc. have a characteristic of absorbing ultraviolet rays, but salicylic acid type absorbers, benzophenone type ultraviolet absorbers, benzotriazole type ultraviolet absorbers Cyanoacrylate-based ultraviolet absorbers are representative, and benzotriazole-based ultraviolet absorbers are known to have remarkable absorption characteristics even in the ultraviolet longwave region.

また、ポリウレタン樹脂やポリウレア樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、アミノアルデヒド樹脂、メラミン樹脂、ポリスチレン樹脂、アクリル樹脂、スチレンアクリル共重合体、ゼラチン、ポリビニルアルコール等は紫外線領域の紫外線短波領域の中でも特に短い波長の光を吸収する特性を持っていることで知られている。   Polyurethane resin, polyurea resin, polyamide resin, polyester resin, polycarbonate resin, aminoaldehyde resin, melamine resin, polystyrene resin, acrylic resin, styrene acrylic copolymer, gelatin, polyvinyl alcohol, etc. are also in the ultraviolet shortwave region of the ultraviolet region. In particular, it is known to have a characteristic of absorbing light of a short wavelength.

この例においては各波長における色相を鮮明にみせることが目的であるため、紫外線中のある一定の波長のみを強く吸収する特性をもつインキ用ビヒクルを避けることが望ましい。   In this example, since the purpose is to show the hue at each wavelength clearly, it is desirable to avoid an ink vehicle having a characteristic of strongly absorbing only a certain wavelength in ultraviolet rays.

本実施例においてはグラビア印刷で用いられる水性スチレンアクリル系のワニスを用いることとしたが、これらインキ用ビヒクルの選定は使用者の所望する印刷方式を考慮して設計すべきであり、使用者が使用するインキ用ビヒクルが短波紫外線の吸収特性の高い性質を有するものに限定されるのであれば、発光体3の発光の減衰を考慮して発光体3のインキ中の混合比を高くして配合することで実現可能であることから、印刷方式を限定するものではない。   In this embodiment, the water-based styrene acrylic varnish used in gravure printing is used. However, the selection of the ink vehicle should be designed in consideration of the printing method desired by the user. If the ink vehicle to be used is limited to those having high absorption characteristics of short-wave ultraviolet rays, the mixing ratio of the light emitter 3 in the ink is increased in consideration of the attenuation of light emission of the light emitter 3 Therefore, the printing method is not limited.

最終的に図13に示すインキ配合でグラビア印刷用の多色発光インキ組成物を作製した。顔料は30重量部とし、多色発光体をインキ用ビヒクルに投入した後、補助剤としてシリコン系消泡剤2重量部を外割りで添加し、これを、高速分散機(特殊機械工業株式会社製ホモディスパー)を使用して最高回転数3000rpmで3分間再攪拌を行いインキ化した。これを、グラビア平版試験機(クラボウ株式会社製GP−2型)を用いて国立印刷局製造の無蛍光グラビア印刷用塗工紙を使用して175線/inchでグラビア印刷を行い目的とした印刷物を得た。   Finally, a multicolor luminescent ink composition for gravure printing was prepared with the ink composition shown in FIG. The pigment is 30 parts by weight, and after adding the multicolor illuminant to the ink vehicle, 2 parts by weight of a silicon-based antifoaming agent is added as an auxiliary agent. The mixture was re-stirred at a maximum rotational speed of 3000 rpm for 3 minutes using a homodisper manufactured by Homo Disper) to make an ink. Using this gravure lithographic testing machine (GP-2 type manufactured by Kurabo Industries Co., Ltd.), gravure printing is performed at 175 lines / inch using a non-fluorescent gravure printing paper manufactured by the National Printing Bureau, and the intended printed matter Got.

このインキ組成物は可視光下では白色であり、白色の塗工紙が下地となっていることから、目視の確認においてはその印刷位置を特定できない不可視の画像構成となった。これに多色発光体の色相確認と同様な方法で色相の確認を行ったところ、発光体の色相を損なうことなく、多色発光体の効果を発現できていることを確認できた。   Since this ink composition is white under visible light and white coated paper is the base, the invisible image structure cannot be specified by visual confirmation. When the hue was confirmed by the same method as the hue confirmation of the multicolor illuminant, it was confirmed that the effect of the multicolor illuminant could be exhibited without impairing the hue of the illuminant.

目視における認証性が高いことを目的とし、かつ発光体に有機系の顔料を使用した場合の本発明実施のもう一例を示す。無機系発光顔料の発光強度は有機系発光顔料の発光強度と比較して低いため、発光体群すべてに無機系発光顔料のみを使用した場合、使用者の要求する発光強度を満たすためにはインキ中に30%を超える高い顔料配合割合を余儀なくされる場合があり、印刷方式によっては連続印刷するには適さない印刷適正が劣り、印刷物の堅牢性が低くなってしまう場合がある。本発明の場合、複数の色相を複雑に発色させるためにはトータル発光体顔料コンテントが高い値となってしまう場合が考えられることから、発光体群のなかの少なくとも一種類に発光強度の高い有機系顔料を使用することで最終的な多色発光インキ中のトータルの発光顔料のコンテントを低くし、印刷適性を改善する例である。   Another example of the implementation of the present invention in the case where an organic pigment is used for the light-emitting body for the purpose of high visual recognition performance will be shown. Since the emission intensity of inorganic luminescent pigments is lower than the emission intensity of organic luminescent pigments, when only inorganic luminescent pigments are used in the entire luminous body group, ink is used to satisfy the luminescent intensity required by users. In some cases, a high pigment mixing ratio exceeding 30% may be unavoidable, and depending on the printing method, the printing suitability unsuitable for continuous printing may be inferior, and the fastness of the printed matter may be lowered. In the case of the present invention, in order to develop a plurality of hues in a complicated manner, the total phosphor pigment content may be high, so that at least one of the phosphor groups is an organic compound having a high emission intensity. This is an example in which the use of a pigment reduces the content of the total luminescent pigment in the final multicolor luminescent ink, thereby improving the printability.

実施例1と同様に使用者が真偽判別に用いる紫外線照射波長領域は、長波領域、中波領域、短波領域の簡易判別可能な三つの限定された範囲のみと仮定した。実施例1と同様に使用する発光体はRGB領域に属する発光群からそれぞれ一つを選択し、色相の異なる3種類の発光体を混合することとした。実施例1と同様に発光顔料の選定を図14のとおり行った。   As in the first embodiment, the ultraviolet irradiation wavelength region used for authenticity determination by the user is assumed to be only three limited ranges in which a long wave region, a medium wave region, and a short wave region can be easily determined. The light emitters used in the same manner as in Example 1 were selected from each of the light emitting groups belonging to the RGB region, and three types of light emitters having different hues were mixed. As in Example 1, the selection of the luminescent pigment was performed as shown in FIG.

G系発光体4の紫外線照射波長と発光ピークにおける発光強度の関係を図15(a)に示す。また、発光体4の発光波長と発光ピークについて図15(b)に示す。発光体4は520nmの発光ピークを有する長波紫外線励起タイプと分類される有機系の発光体であって、紫外線長波380nmで緑色発光をし、それより短い波長の紫外線を照射した場合には発光強度が一気に低下する励起特性の発光体である。有機系の発光体は無機系と比較して耐光性が劣るが発光強度は極めて高いうえ、長波の紫外線で発光した後、中波の紫外線領域及び短波の紫外線領域において顕著に発光が減少する特性を持つものが多々存在することから、堅牢性や耐光性において使用者の必要とする特性を満足する限りにおいて本発明を構成する長波紫外線励起タイプの発光体として使用するには好ましい特性を有している。   FIG. 15A shows the relationship between the ultraviolet irradiation wavelength of the G-based light emitter 4 and the emission intensity at the emission peak. Further, FIG. 15B shows the emission wavelength and emission peak of the luminous body 4. The illuminant 4 is an organic illuminant classified as a long wave ultraviolet excitation type having an emission peak of 520 nm, and emits green light at an ultraviolet long wave of 380 nm and emits ultraviolet light having a wavelength shorter than that. Is an illuminant having an excitation characteristic that decreases rapidly. Organic phosphors are inferior in light resistance compared to inorganic phosphors, but the emission intensity is extremely high, and light emission is significantly reduced in the mid-wave ultraviolet region and short-wave ultraviolet region after emitting light in the long-wave ultraviolet region. Therefore, as long as it satisfies the characteristics required by the user in terms of robustness and light resistance, it has preferable characteristics for use as a long wave ultraviolet excitation type light emitter constituting the present invention. ing.

続いて、B系発光体5として発光ピークが波長480nmの青色発光体5を選定した。発光体5の紫外線照射波長と発光ピークにおける発光強度の関係を図16(a)に示す。また、発光体5の発光波長と発光ピークについて図16(b)に示す。発光体5は短波紫外線励起タイプに分類される発光体であって、紫外線中波領域310nmで青色発光し、これより短い波長の紫外線を照射した場合には発光強度がほぼ変化しない励起特性の発光体である。   Subsequently, a blue light-emitting body 5 having an emission peak having a wavelength of 480 nm was selected as the B-based light-emitting body 5. FIG. 16A shows the relationship between the ultraviolet irradiation wavelength of the luminous body 5 and the emission intensity at the emission peak. Further, FIG. 16B shows the emission wavelength and emission peak of the luminous body 5. The illuminant 5 is an illuminant classified as a short-wave ultraviolet excitation type and emits blue light in the ultraviolet mid-wave region of 310 nm, and emits light having an excitation characteristic that does not substantially change the emission intensity when irradiated with ultraviolet light having a shorter wavelength. Is the body.

続いて、R系発光体6として発光ピークが波長620nmの赤色発光体6を選定した。発光体6の紫外線照射波長と発光ピークにおける発光強度の関係を図17(a)に示す。また、発光体6の発光波長と発光ピークについて図17(b)に示す。発光体6は短波紫外線励起タイプに分類される発光体であって、紫外線短波領域の300nmより短い波長で特異的に赤色発光する励起特性の発光体である。   Subsequently, a red light emitter 6 having an emission peak with a wavelength of 620 nm was selected as the R light emitter 6. FIG. 17A shows the relationship between the ultraviolet irradiation wavelength of the luminous body 6 and the emission intensity at the emission peak. In addition, FIG. 17B shows the emission wavelength and emission peak of the luminous body 6. The illuminant 6 is an illuminant classified into a short wave ultraviolet excitation type, and is an illuminant having excitation characteristics that specifically emits red light at a wavelength shorter than 300 nm in the ultraviolet short wave region.

これら発光体4、発光体5、発光体6の選定の条件は実施例1の発光体1、発光体2、発光体3と同様な特性が要求される。これら励起特性と色相が異なった発光体群を選定した後、それぞれの顔料コンテントの検討を実施例1と同様に行った。   The conditions for selecting the light emitter 4, the light emitter 5, and the light emitter 6 are required to have the same characteristics as those of the light emitter 1, the light emitter 2, and the light emitter 3 of the first embodiment. After selecting the phosphor groups having different excitation characteristics and hues, the pigment content was examined in the same manner as in Example 1.

最良な混合比を図18に示す。有機顔料である発光体4は無機系顔料である発光体5及び発光体6と比較して極めて強い発光強度を有すことから、その配合割合は極めて低い値で充分であり、結果としてインキ中に占める多色発光体の総顔料コンテントを引き下げる効果を得ることができる。   The best mixing ratio is shown in FIG. Since the phosphor 4 which is an organic pigment has a very strong emission intensity compared to the phosphor 5 and the phosphor 6 which are inorganic pigments, the blending ratio is very low, and as a result, It is possible to obtain an effect of reducing the total pigment content of the multicolor luminescent material.

また、発光体4は紫外線中波領域及び紫外線短波領域で発光が著しく減少するため、中波の紫外線励起時及び短波の紫外線励起時に発光しないことで、発光体5及び発光体6がもともと有する色相を、ほぼそのまま発することが可能となった。   Further, since the light emitter 4 emits light significantly in the ultraviolet medium wave region and the ultraviolet short wave region, it does not emit light when the medium wave ultraviolet light is excited and when the short wave ultraviolet light is excited. Can be emitted almost as is.

効果の確認のための紫外線照射手段は実施例1と同様に長波紫外線照射ランプ(中心波長366nm)、中波紫外線照射ランプ(中心波長302nm)、短波紫外線照射ランプ(中心波長254nm)を使用した。   As for the ultraviolet irradiation means for confirming the effect, a long wave ultraviolet irradiation lamp (center wavelength 366 nm), a medium wave ultraviolet irradiation lamp (center wavelength 302 nm), and a short wave ultraviolet irradiation lamp (center wavelength 254 nm) were used as in Example 1.

この多色発光体に各波長の紫外線を照射したところ、長波の紫外線照射においては緑色、中波の紫外線照射においては青色、短波の紫外線照射においては橙色発光し目的とした効果を得ていることを確認した。その色相評価について図19に示す。   When this multicolor illuminant is irradiated with ultraviolet rays of various wavelengths, it emits green light when irradiated with long-wave ultraviolet light, blue light when irradiated with medium-wave ultraviolet light, and orange light when irradiated with short-wave ultraviolet light to obtain the intended effect. It was confirmed. The hue evaluation is shown in FIG.

図18(a)に長波紫外線励起時の発光分布、図18(b)に中波紫外線励起時の発光分布、図18(c)に短波紫外線励起時の分光分布を示す。これらはいずれも分光測定器(日立製作所製850型分光蛍光光度計)を使用して測定を行った。図8のグラフのY軸である発光強度はいずれも相対強度であって波形上の最高ピークがグラフ上で約80%となるスケールとした。この結果、いずれの波長域においても機械検出するに充分なピーク波長を有していることを確認できた。   FIG. 18A shows the light emission distribution when the long wave ultraviolet light is excited, FIG. 18B shows the light emission distribution when the medium wave ultraviolet light is excited, and FIG. 18C shows the spectral distribution when the short wave ultraviolet light is excited. All of these were measured using a spectrophotometer (850 type spectrofluorimeter manufactured by Hitachi, Ltd.). The emission intensity on the Y-axis of the graph of FIG. 8 is a relative intensity, and the maximum peak on the waveform is about 80% on the graph. As a result, it was confirmed that the peak wavelength was sufficient for machine detection in any wavelength region.

また、全色相を再現するための紫外線照射ランプと多色発光体の距離についての調査を行った。多色発光体(1)と長波紫外線照射ランプ(2)と、中波紫外線照射ランプ(3)と、短波紫外線照射ランプ(4)との位置関係は、実施例1と同様に図11に示しとおりとした。その位置関係において、多色発光体(1)と各紫外線照射ランプ(2)、(3)、(4)の距離を変化させて色相評価を行った。その色相評価の結果を図21に示す。この例においては、選定したG系発光体の発光ピークが480nmであり、赤色の発光ピークが620nmと橙色であることから、紫、藍及び赤の色相を発光させ得ないが、白色の発光を得ることはできた。   In addition, the distance between the ultraviolet irradiation lamp and the multicolor light emitter for reproducing the whole hue was investigated. The positional relationship among the multicolor illuminant (1), the long wave ultraviolet irradiation lamp (2), the medium wave ultraviolet irradiation lamp (3), and the short wave ultraviolet irradiation lamp (4) is shown in FIG. It was as follows. In the positional relationship, the hue was evaluated by changing the distance between the multicolor illuminant (1) and each of the ultraviolet irradiation lamps (2), (3), and (4). The result of the hue evaluation is shown in FIG. In this example, the emission peak of the selected G-based illuminant is 480 nm, and the red emission peak is 620 nm, which is orange. Therefore, the purple, indigo and red hues cannot be emitted, but white emission is possible. I was able to get it.

この結果から、この印刷物に対して各紫外線照射ランプの距離を変化させることで紫、藍及び赤を除く色相の再現に加え、従来の単色発光体や二色性発光体では不可能であった白色発光が可能であることが実施例1と同様に確認できた。   From this result, in addition to reproduction of hues other than purple, indigo and red by changing the distance of each ultraviolet irradiation lamp with respect to this printed matter, it was impossible with conventional monochromatic light emitters and dichroic light emitters. It was confirmed as in Example 1 that white light emission was possible.

この例においては、長波紫外線励起タイプの発光体4にのみ有機系発光体を使用したが、発光体5に用いても発光体6に用いても何ら問題はなく、発光体の発光色とその励起特性、耐光性が使用者の意図したもとに一致するのであれば、複数の有機系発光体を使用しても実施可能であることはいうまでもない。   In this example, the organic light emitter is used only for the long wave ultraviolet excitation type light emitter 4, but there is no problem whether it is used for the light emitter 5 or the light emitter 6. Needless to say, the present invention can be implemented even if a plurality of organic light emitters are used as long as the excitation characteristics and the light resistance match those intended by the user.

この顔料比で実施例1と同様の手法でグラビアインキとした。可視光下でも有色の発光インキとするため最終的にフタロシアニンブルー5Gを1%加えた図22に示すインキ配合で実施例1と同一な方法でインキ化した。これを、グラビア平版試験機(クラボウ格式会社製GP−2型)を用いて国立印刷局製造の無蛍光の印刷用塗工紙を使用して175線/inchでグラビア印刷を行い目的とした印刷物を得た。   With this pigment ratio, a gravure ink was prepared in the same manner as in Example 1. In order to obtain a colored luminescent ink even under visible light, the ink composition was finally made into an ink by the same method as in Example 1 with the ink composition shown in FIG. 22 to which 1% of phthalocyanine blue 5G was added. Using this gravure lithographic testing machine (GP-2 type, manufactured by Kurabo Industries Co., Ltd.), the printed matter intended for gravure printing at 175 lines / inch using non-fluorescent printing coated paper manufactured by the National Printing Bureau Got.

このインキは可視光下では淡い青色であり、白色の塗工紙が下地となっていることから、目視の確認においてはその印刷位置を特定できる可視の画像構成となった。これに発光体の色相確認と同様な方法で色相の確認を行ったところ、着色顔料を用いたことで若干発光強度は低下したもののその色相自体は損なうことなく、多色発光体の効果を発現できていることを確認できた。   Since this ink is light blue under visible light and white coated paper is the base, a visible image configuration is obtained in which the printing position can be specified in visual confirmation. When the hue was confirmed by the same method as the hue confirmation of the luminescent material, the emission intensity was slightly reduced by using the color pigment, but the hue itself was not impaired, and the effect of the multicolor luminescent material was exhibited. It was confirmed that it was made.

紫外線長波領域から紫外線中波領域までの限定された範囲で色相の変化を有する本発明実施の一例を示す。この例における多色発光体は、400nm〜300nmの長波紫外線から中波紫外線の極めて狭い領域でBGRの色相変化を成すものである。   An example of the present invention having a hue change in a limited range from the ultraviolet long wave region to the ultraviolet medium wave region is shown. The multicolor illuminant in this example changes the hue of BGR in a very narrow region from 400 nm to 300 nm of long wave ultraviolet light to medium wave ultraviolet light.

現在、販売されている紫外線照射装置は、365nmを中心とするブラックライト等の長波紫外線照射ランプ、及び254nmを中心とする殺菌灯などに用いられる短波紫外線照射ランプが一般的であるが、その他にも302nmを中心とする医療用中波紫外線照射ランプもある。これらに用いられる水銀灯、キセンノンランプ等の輝線は広範囲にわたって分布しているため、照射する紫外線波長はその中心波長を外れた様々な紫外線波長が多少なりとも混在しており、当然のことながらその中心波長のみを照射しているわけではない。   The ultraviolet irradiation apparatus currently on the market is generally a long wave ultraviolet irradiation lamp such as a black light centering on 365 nm and a short wave ultraviolet irradiation lamp used for a germicidal lamp centering on 254 nm. There is also a medical medium wave ultraviolet irradiation lamp centering around 302 nm. Since the emission lines of mercury lamps and xenon lamps used in these are distributed over a wide range, the ultraviolet wavelengths to be irradiated are mixed with various ultraviolet wavelengths that deviate from the central wavelength. It does not irradiate only the central wavelength.

また、コンパクトな紫外線照射手段として近年広まりつつある紫外線照射LED、照射波長がランプと比較してシャープな域で照射可能であるものの最低波長は360nm程度であって、現在はそれ以下の紫外線波長域のものは入手不可能である。   In addition, ultraviolet irradiation LEDs, which have been spreading in recent years as compact ultraviolet irradiation means, can irradiate in an area where the irradiation wavelength is sharper than that of the lamp, but the minimum wavelength is about 360 nm, and currently the ultraviolet wavelength range is less than that. Is not available.

一方の機械読み取りに用いられる分光測定器等は低圧水銀灯やキセノンランプと回折格子の組み合わせで数nmスパンの紫外線照射範囲に絞り込んだ測定が可能である。実施例1及び実施例2においては使用者の認証性を考慮して、一般的に入手が容易な紫外線照射ランプを照射した場合に、もっとも色相変化が大きく感じる設計としたが、本実施例においては、一般に販売されている照射域の広いランプでは色変化は小さくし、一方の機械読み取りに用いられる分光測定器による認証性や、特殊な照射装置のみを用いた場合に簡易的なランプでは見られなかった色相変化をなすことを目的とした。これは鑑別系情報として発光を用いる特殊認証タイプである。   On the other hand, a spectrophotometer used for machine reading can measure by narrowing down to an ultraviolet irradiation range of several nm span by combining a low-pressure mercury lamp, a xenon lamp and a diffraction grating. In Example 1 and Example 2, in consideration of the user's authenticity, the design is such that the hue change is felt most greatly when an ultraviolet irradiation lamp that is generally easily available is irradiated. In general, a lamp with a wide irradiation area sold has a small color change. On the other hand, the authenticity by a spectrophotometer used for machine reading, or a simple lamp when only a special irradiation device is used. The purpose was to make a hue change that was not possible. This is a special authentication type that uses light emission as the identification information.

多色発光体に使用する個別の発光体はRGB領域に属する発光群からそれぞれ一つを選択し、3種類の発光体を混合することとした。その際の、3種類の発光顔料の選定を図23のとおりとした。B系発光体は発光ピークが440nmの紫色である可視領域の最低波長の発光体7を選定した。発光体7の紫外線照射波長と発光ピークにおける発光強度の関係(励起特性)を図24(a)に示す。また、発光体7の発光波長と発光ピークについて図24(b)に示す。発光体7は有機系発光体であり、一般には長波紫外線励起タイプと分類されるが、紫外線長波領域の約380nmで特異的に紫色発光をし、これより短い波長の紫外線を照射すると著しく発光が減衰する励起特性の発光体である。   The individual light emitters used for the multicolor light emitter are selected from each of the light emitting groups belonging to the RGB region, and three kinds of light emitters are mixed. The selection of the three types of luminescent pigments was as shown in FIG. As the B-based illuminant, the illuminant 7 having the lowest wavelength in the visible region having an emission peak of 440 nm in purple was selected. FIG. 24A shows the relationship (excitation characteristics) between the ultraviolet irradiation wavelength of the light emitter 7 and the light emission intensity at the light emission peak. FIG. 24B shows the emission wavelength and emission peak of the luminous body 7. The illuminant 7 is an organic illuminant and is generally classified as a long wave ultraviolet excitation type. However, the illuminant 7 emits violet light specifically at about 380 nm in the ultraviolet long wave region, and emits significantly when irradiated with ultraviolet light having a shorter wavelength. It is an illuminant with an excitation characteristic that attenuates.

次に、G系の発光体として発光ピークが540nmの緑色である発光体8を選定した。発光体8の紫外線照射波長と発光ピークにおける発光強度の関係(励起特性)を図25(a)に示す。また、発光体3の発光波長と発光ピークについて図25(b)に示す。発光体8は一般に長波紫外線励起タイプに分類されるが、長波長領域から短波長領域にかけて発光強度が変化しない励起特性の発光体である。   Next, the green light emitter 8 having an emission peak of 540 nm in green was selected as the G-based light emitter. FIG. 25A shows the relationship (excitation characteristic) between the ultraviolet irradiation wavelength of the light emitter 8 and the emission intensity at the emission peak. Further, FIG. 25B shows the emission wavelength and emission peak of the luminous body 3. The illuminant 8 is generally classified into a long wave ultraviolet excitation type, but is an illuminant having an excitation characteristic in which the emission intensity does not change from a long wavelength region to a short wavelength region.

次に、R系発光体は発光ピークが650nmの赤色である可視領域の最大波長の発光体9を選定した。発光体9の紫外線照射波長と発光ピークにおける発光強度の関係(励起特性)を図26(a)に示す。また、発光体2の発光波長と発光ピークについて図26(b)に示す。発光体9は一般的には短波紫外線励起タイプとして分類されるが、紫外線中波領域約330nmで赤色発光し、それ以下の紫外線波長を照射した場合には発光強度がほぼ変化しない励起特性の発光体である。   Next, as the R-based illuminant, the illuminant 9 having the maximum wavelength in the visible region having an emission peak of 650 nm in red was selected. FIG. 26A shows the relationship (excitation characteristic) between the ultraviolet irradiation wavelength of the luminous body 9 and the emission intensity at the emission peak. In addition, the emission wavelength and emission peak of the light emitter 2 are shown in FIG. The light emitter 9 is generally classified as a short wave ultraviolet excitation type, but emits red light in the ultraviolet midwave region of about 330 nm and emits light having an excitation characteristic that does not substantially change the emission intensity when irradiated with an ultraviolet wavelength shorter than that. Is the body.

多色発光体の限定された条件での認証を想定した本例においても実施例1及び実施例2と同じように発光体7、発光体8、発光体9の選定の条件は発光する紫外線領域が異なるものの発光体1、発光体2、発光体3と同様な性質が要求される。これら励起特性と色相が異なった発光体群を選定した後、それぞれの実施例1、実施例2と同様に顔料コンテントの検討を行った。   In the present example that assumes authentication under the limited conditions of the multicolor illuminant, the selection conditions of the illuminant 7, the illuminant 8, and the illuminant 9 are the same as in the first and second examples. However, the same properties as those of the light emitter 1, the light emitter 2, and the light emitter 3 are required. After selecting the phosphor groups having different excitation characteristics and hues, the pigment content was examined in the same manner as in Examples 1 and 2.

その結果に基づき、最良な混合比を図27に示す。また、紫外線照射波長毎の色相評価の結果を図28(a)、(b)に示す。図28(a)は、色相評価の確認手段として特殊な照射装置を使用した場合の色相評価結果を示し、図28(b)は、色相評価の確認手段として一般的な照射装置を使用した場合の色相評価結果を示す。   Based on the result, the best mixing ratio is shown in FIG. Moreover, the result of the hue evaluation for every ultraviolet irradiation wavelength is shown to Fig.28 (a), (b). FIG. 28A shows a hue evaluation result when a special irradiation apparatus is used as a hue evaluation confirmation means, and FIG. 28B shows a case where a general irradiation apparatus is used as a hue evaluation confirmation means. The hue evaluation results are shown.

まず、特殊な照射装置として、分光測定器の照射装置(キセンノンランプと回折格子)を用いて、照射波長を5nmスパンに区切って照射した場合に多色性発光体に現れた色相を目視で確認した結果を図28(a)に示す。この結果から、青から橙までの中間調を含めた色相の再現が400nmから300nmの限定された波長域で発生していることを確認した。   First, as a special irradiator, using a spectrophotometer irradiator (xenon lamp and diffraction grating), the hue that appears in the polychromatic light emitter when the irradiation wavelength is divided into 5 nm spans is visually observed. The confirmed result is shown in FIG. From this result, it was confirmed that the reproduction of the hue including the halftone from blue to orange occurred in a limited wavelength region from 400 nm to 300 nm.

また、この結果との比較のため、実施例1及び実施例2と同様に一般的な紫外線照射ランプを用いて色相評価を行った。色相評価の効果確認のための紫外線照射手段としては、長波紫外線照射ランプ(中心波長366nm)、中波紫外線照射ランプ(中心波長302nm)、短波紫外線照射ランプ(中心波長254nm)を使用し、その色相再現の結果を比較した。長波紫外線においては青色、中波紫外線においては黄色、短波紫外線においては橙色を発したが、RGB三つの主色相の一つである「緑」の色相は簡易的な照射ランプを用いて確認することが不可能であって、目的とした効果を得ていることを確認した。   For comparison with this result, the hue was evaluated using a general ultraviolet irradiation lamp in the same manner as in Example 1 and Example 2. As ultraviolet irradiation means for confirming the effect of hue evaluation, a long wave ultraviolet irradiation lamp (center wavelength 366 nm), a medium wave ultraviolet irradiation lamp (center wavelength 302 nm), and a short wave ultraviolet irradiation lamp (center wavelength 254 nm) are used. The reproduction results were compared. Blue in long wave ultraviolet rays, yellow in medium wave ultraviolet rays, and orange in short wave ultraviolet rays, but the green hue which is one of the three main hues of RGB should be confirmed using a simple irradiation lamp. It was impossible to confirm that the intended effect was obtained.

図29(a)に長波紫外線励起時(中心波長365nm)の発光分布、図29(b)に長波紫外線励起時(中心波長340nm)の発光分布、図29(c)に中波紫外線励起時(中心波長302nm)の分光分布を示す。それぞれのグラフのY軸である発光強度はいずれも相対強度であって波形上の最高ピークがグラフ上で約80%となるスケールとした。これらは分光測定器(日立製作所製850型分光蛍光光度計)を使用して測定を行い、この結果、いずれの波長域においても機械検出するに充分な発光ピークを有していることが確認できた。   FIG. 29A shows a light emission distribution at the time of long-wave ultraviolet excitation (center wavelength 365 nm), FIG. 29B shows a light emission distribution at the time of long-wave ultraviolet excitation (center wavelength 340 nm), and FIG. The spectral distribution of the central wavelength (302 nm) is shown. The emission intensity on the Y axis of each graph is a relative intensity, and the maximum peak on the waveform is about 80% on the graph. These are measured using a spectrophotometer (850 type spectrofluorometer manufactured by Hitachi, Ltd.), and as a result, it can be confirmed that they have a sufficient emission peak for mechanical detection in any wavelength range. It was.

多色発光体を作製した後、これをインキ化するためにインキ用ビヒクルを選定した。実施例1及び実施例2と同様に、最終的に図30に示すインキ配合でグラビア印刷用の多色発光インキ組成物を作製した。顔料30重量部及びインキ用ビヒクル70重量部とし、多色発光体をインキインキ用ビヒクルに投入した後、補助剤としてシリコン系消泡剤を2%外割りで添加し、これを、高速分散機(特殊機械工業株式会社製ホモディスパー)を使用して最高回転数3000rpmで3分間再攪拌を行いインキ化した。これを、グラビア平版試験機(クラボウ格式会社製GP−2型)を用いて国立印刷局製造の無蛍光の印刷用塗工紙を使用して175線/inchでグラビア印刷を行い目的とした印刷物を得た。   After producing a multicolor illuminant, an ink vehicle was selected to make it into an ink. In the same manner as in Example 1 and Example 2, a multicolor light-emitting ink composition for gravure printing was finally prepared with the ink formulation shown in FIG. After adding 30 parts by weight of pigment and 70 parts by weight of ink vehicle and adding the multicolor light emitter to the vehicle for ink ink, a silicon-based antifoaming agent is added in an extra 2% portion as an auxiliary agent. Using a special machine industry (Homo disperser), the mixture was re-stirred for 3 minutes at a maximum rotational speed of 3000 rpm to produce ink. Using this gravure lithographic testing machine (GP-2 type, manufactured by Kurabo Industries Co., Ltd.), the printed matter intended for gravure printing at 175 lines / inch using non-fluorescent printing coated paper manufactured by the National Printing Bureau Got.

このインキは可視光下では白色であり、白色の塗工紙が下地となっていることから、目視の確認においてはその印刷位置を特定できない不可視の画像構成となった。これに発光体の色相確認と同様な方法で色相の確認を行ったところ、その色相を損なうことなく、多色発光体の効果を発現できていることを確認できた。   Since this ink is white under visible light and the white coated paper is the base, the print position cannot be specified by visual confirmation. When the hue was confirmed by the same method as the hue confirmation of the illuminant, it was confirmed that the effect of the multicolor illuminant could be exhibited without impairing the hue.

実施例3の多色発光体に異種の発光体を加えて発光体を4種類とし、色相を変化させるとともに機械判別に適した発光変化を備えた例を示す。実施例3で作製した多色性発光体に対して、第4の発光体として、短波で急激に励起されるR系発光体である発光体13を加え紫外線長波領域から紫外線短波領域でそれぞれ励起特性の異なる4つの発光体を用いた例である。機械判別性を考慮して発光体13は色相変化に与える影響は小さいが、その他の発光体と発光ピークにおける波長が重ならず発光ピークを充分取得することが可能な発光バランスとした。   An example in which different types of illuminants are added to the multicolor illuminant of Example 3 to form four types of illuminants, the hue is changed, and emission changes suitable for machine discrimination are provided. In addition to the polychromatic luminescent material produced in Example 3, a luminescent material 13 which is an R-based luminescent material that is rapidly excited by a short wave is added as a fourth luminescent material, and excited in the ultraviolet long wave region to the ultraviolet short wave region, respectively. This is an example using four light emitters having different characteristics. In consideration of the machine discrimination, the light emitter 13 has a small influence on the hue change, but the light emission balance is such that the light emission peak can be sufficiently obtained without overlapping the wavelength of the light emission peak with other light emitters.

この多色発光体を構成する発光体群を図31に記す。発光体10、発光体11、発光体12は実施例3の発光体7、発光体8、発光体9と同じ発光体である。発光体10、発光体11、発光体12、発光体13の励起特性と発光特性について図32(a)、図32(b)、図33(a)、図33(b)、図34(a)、図34(b)、図35(a)、図35(b)に記す。発光体13は、実施例3の多色発光体が300nmより短い波長で大きな波長変化を有しないことを考慮して、300nmより長波長で励起波長が立ち上がりをする発光体から選定した。発光体13は一般には短波紫外線励起タイプに分類されるが、300nmより短い波長で励起波長が立ち上がり、顕著に強く発光する励起特性の発光体である。これら励起特性と色相が異なった発光体群を選定した後、それぞれの他の実施例と同様に顔料コンテントの検討を行った。   A light emitter group constituting this multicolor light emitter is shown in FIG. The luminous body 10, the luminous body 11, and the luminous body 12 are the same luminous bodies as the luminous body 7, the luminous body 8, and the luminous body 9 of Example 3. FIG. 32A, FIG. 32B, FIG. 33A, FIG. 33B, and FIG. 34A show excitation characteristics and light emission characteristics of the light emitter 10, light emitter 11, light emitter 12, and light emitter 13. FIG. ), FIG. 34 (b), FIG. 35 (a), and FIG. 35 (b). The light-emitting body 13 was selected from light-emitting bodies whose excitation wavelength rises at a wavelength longer than 300 nm, considering that the multicolor light-emitting body of Example 3 does not have a large wavelength change at a wavelength shorter than 300 nm. The illuminant 13 is generally classified into a short-wave ultraviolet excitation type, but is an illuminant having an excitation characteristic in which the excitation wavelength rises at a wavelength shorter than 300 nm and remarkably emits light. After selecting the phosphor groups having different excitation characteristics and hues, the pigment content was examined in the same manner as in the other examples.

その結果に基づき、最良な混合比を図36に示す。また、紫外線照射波長毎の色相評価の結果を図37(a)、(b)に示す。図37(a)は、色相評価の確認手段として特殊な照射装置を使用した場合の色相評価結果を示し、図37(b)は、色相評価の確認手段として一般的な照射装置を使用した場合の色相評価結果を示す。   Based on the result, the best mixing ratio is shown in FIG. Moreover, the result of the hue evaluation for every ultraviolet irradiation wavelength is shown to Fig.37 (a), (b). FIG. 37A shows a hue evaluation result when a special irradiation apparatus is used as a hue evaluation confirmation means, and FIG. 37B shows a case where a general irradiation apparatus is used as a hue evaluation confirmation means. The hue evaluation results are shown.

ここで言う特殊な照射装置は、実施例3で使用した分光測定器の照射装置を使用するとともに、一般的な照射装置についても実施例1、2、3で使用した長波紫外線照射ランプ(中心波長366nm)、中波紫外線照射ランプ(中心波長302nm)、短波紫外線照射ランプ(中心波長254nm)を使用した。この結果から、青から橙までの中間色調を含めた色相の再現が400nmから300nmの限定された波長領域で発生しているとともに、紫外線短波領域では橙から赤の発光に変化することを確認した。   The special irradiation device here uses the irradiation device of the spectrophotometer used in Example 3, and the long wave ultraviolet irradiation lamp (center wavelength) used in Examples 1, 2, and 3 for general irradiation devices as well. 366 nm), medium wave ultraviolet irradiation lamp (center wavelength 302 nm), and short wave ultraviolet irradiation lamp (center wavelength 254 nm). From this result, it was confirmed that the reproduction of the hue including the intermediate color tone from blue to orange occurred in a limited wavelength region from 400 nm to 300 nm and changed from orange to red light emission in the ultraviolet short wave region. .

図38(a)に長波紫外線励起時(中心波長365nm)の発光分布、図38(b)に長波紫外線波励起時(中心波長340nm)の発光分布、図38(c)に中波紫外線励起時(中心波長302nm)の分光分布、図38(d)に短波紫外線励起時(中心波長254nm)の分光分布を示す。この図38(a)、(b)、(c)、(d)のグラフのY軸である発光強度はいずれも相対強度であって波形上の最高ピークがグラフ上で約80%となるスケールとした。これらは分光測定器(日立製作所製850型分光蛍光光度計)を使用して測定を行い、この結果、いずれの波長領域においても機械検出するに充分なピーク波長を有していることを確認できたことに加え、短波励起時には実施例3の多色発光体とは異なる発光体13の発光ピークが顕著に確認できることを確認した。   FIG. 38 (a) shows the light emission distribution at the time of long wave ultraviolet excitation (center wavelength 365nm), FIG. 38 (b) shows the light emission distribution at the time of long wave ultraviolet wave excitation (center wavelength 340nm), and FIG. The spectral distribution at (center wavelength 302 nm) is shown in FIG. 38 (d), and the spectral distribution at the time of short-wave ultraviolet excitation (center wavelength 254 nm) is shown. 38A, 38B, 38D, and 38D are all relative intensities, and the maximum peak on the waveform is about 80% on the graph. It was. These are measured using a spectrophotometer (850 type spectrofluorometer manufactured by Hitachi, Ltd.), and as a result, it can be confirmed that it has a peak wavelength sufficient for mechanical detection in any wavelength region. In addition to this, it was confirmed that the emission peak of the illuminant 13 different from the multicolor illuminant of Example 3 can be remarkably confirmed during short-wave excitation.

この例においては、発光体13の配合割合は機械的に容易に検出可能な発光強度とするのみならず、目視によっても色相の変化が確認できることを目的とした画線構成としたが、発光体13を特別な真偽判別情報として取り扱う場合、あえて配合割合を下げて色相変化を抑制し、その色変化を、分光測定器を使用した機械判別でのみ検出できるレベルまで引き下げることは充分本発明の範囲で可能であることは言うまでもない。   In this example, the blending ratio of the light emitters 13 is not only set to a light emission intensity that can be easily detected mechanically, but also has an image line configuration for the purpose of confirming a change in hue by visual observation. In the case of handling 13 as special authenticity discrimination information, it is sufficient to lower the blending ratio to suppress the hue change and to reduce the color change to a level that can be detected only by machine discrimination using a spectrophotometer. It goes without saying that it is possible in a range.

多色発光体を作製した後、これをインキ化するためにインキ用ビヒクルを選定した。実施例1から実施例3と同様に最終的に図39に示すインキ配合でグラビア印刷用3色発光インキを作製した。顔料30重量部とし、多色発光体をインキインキ用ビヒクル70重量部に投入した後、補助剤としてシリコン系消泡剤を2重量部外割りで添加し、これを、高速分散機(特殊機械工業株式会社製ホモディスパーホモディスパー)を使用して最高回転数3000rpmで3分間再攪拌を行いインキ化した。これを、グラビア平版試験機(クラボウ株式会社製GP−2型)を用いて国立印刷局製造の無蛍光の印刷用塗工紙を使用して175線/inchでグラビア印刷を行い目的とした印刷物を得た。   After producing a multicolor illuminant, an ink vehicle was selected to make it into an ink. In the same manner as in Examples 1 to 3, finally, a three-color luminescent ink for gravure printing was prepared with the ink composition shown in FIG. After adding 30 parts by weight of the pigment and adding the multicolor luminescent material to 70 parts by weight of the ink-ink vehicle, 2 parts by weight of a silicon-based antifoaming agent was added as an auxiliary agent, and this was added to a high-speed disperser (special machine). (Industrial Co., Ltd., Homo Disper Homo Disper) was re-stirred at a maximum rotation number of 3000 rpm for 3 minutes to make an ink. Using this gravure lithographic test machine (GP-2 type, manufactured by Kurabo Industries Co., Ltd.), the printed matter intended for gravure printing at 175 lines / inch using non-fluorescent printing coated paper manufactured by the National Printing Bureau Got.

このインキは可視光下では白色であり、白色の塗工紙が下地となっていることから、目視の確認においてはその印刷位置を特定できない画線構成となった。これに発光体の色相確認と同様な方法で色相の確認を行ったところ、全くその色相を損なうことなく、多色発光体の効果を発現できていることを確認できた。   Since this ink is white under visible light and the white coated paper is the base, it has an image line configuration in which the printing position cannot be specified by visual confirmation. When the hue was confirmed by the same method as the hue confirmation of the illuminant, it was confirmed that the effect of the multicolor illuminant could be exhibited without any loss of the hue.

以上のように本発明を利用することで目視における色相変化や機械判別性、秘匿性等、使用者が所望する効果に応じて用いる発光体群を変えて様々な効果を得ることが可能である。実施例において発光体は全て発光顔料で構成したが、染料であっても何ら問題はないことは言うまでもない。また、全ての例において、色相の変化を優先したため色相の全く異なった発光体を使用したが、機械認証を優先させる場合には実施例4の発光体12、発光体13のように発光スペクトル形状が異なるが、同一の色相に属するものを組み合わせて使用することは、実施例の4つの例と比較しても技術的に容易であり、この発明の範疇であることは言うまでもない。   As described above, by using the present invention, it is possible to obtain various effects by changing the luminous body group used according to the effects desired by the user, such as visual hue change, machine discrimination, and confidentiality. . In the examples, all of the light emitters are composed of luminescent pigments, but it goes without saying that there is no problem even if they are dyes. In all the examples, a light emitting body having a completely different hue was used because priority was given to the change in hue. However, when priority is given to machine authentication, the shape of the emission spectrum, such as the light emitting body 12 and light emitting body 13 of Example 4, is used. However, it is needless to say that it is technically easy to use a combination of those belonging to the same hue as compared with the four examples of the embodiment, and is within the scope of the present invention.

一般的な化学式の発光色、励起特性及び発光波長を示す。The emission color, excitation characteristics, and emission wavelength of a general chemical formula are shown. 実施例1における、選定された3種類の発光顔料を示す。3 shows selected three types of luminescent pigments in Example 1. (a)は発光体1の励起特性、(b)は発光体1の発光特性を示す。(A) shows the excitation characteristic of the light emitter 1, and (b) shows the light emission characteristic of the light emitter 1. (a)は発光体2の励起特性、(b)は発光体2の発光特性を示す。(A) shows the excitation characteristic of the light emitter 2, and (b) shows the light emission characteristic of the light emitter 2. (a)は発光体3の励起特性、(b)は発光体3の発光特性を示す。(A) shows the excitation characteristic of the light emitter 3, and (b) shows the light emission characteristic of the light emitter 3. 実施例1における、3種類の蛍光顔料の混合重量を変化させた、5種類のサンプルの混合重量を示す。The mixing weight of 5 types of samples which changed the mixing weight of 3 types of fluorescent pigments in Example 1 is shown. 実施例1における、5種類のサンプルの紫外線代表波長の色相評価を示す。The hue evaluation of the ultraviolet representative wavelength of five types of samples in Example 1 is shown. 実施例1における、3種類の蛍光顔料の最良の混合重量を示す。The best mixing weight of the three types of fluorescent pigments in Example 1 is shown. 実施例1における、多色発光体の各紫外線波長における色相評価を示す。The hue evaluation in each ultraviolet wavelength of a multicolor light-emitting body in Example 1 is shown. 実施例1における、多色発光体に対し、(a)は長波紫外線励起時の発光分布、(b)は中波紫外線励起時の発光分布、(c)は短波紫外線励起時の発光分布を示す。In Example 1, (a) shows the light emission distribution at the time of exciting the long wave ultraviolet light, (b) shows the light emission distribution at the time of exciting the medium wave ultraviolet light, and (c) shows the light emission distribution at the time of exciting the short wave ultraviolet light. . 実施例1における、多色発光体と各紫外線照射ランプとの位置関係を示す。The positional relationship between a multicolor light emitter and each ultraviolet irradiation lamp in Example 1 is shown. 実施例1における、全色相再現のための多色発光体と紫外線照射ランプとの距離、及びそれぞれの色相評価を示す。The distance between the multicolor light emitter and the ultraviolet irradiation lamp for reproducing all hues in Example 1 and the evaluation of the respective hues are shown. 実施例1における、多色発光インキ組成物の配合割合を示す。The compounding ratio of the multicolor luminescent ink composition in Example 1 is shown. 実施例2における、選定された3種類の発光顔料を示す。3 shows selected three types of luminescent pigments in Example 2. (a)は発光体4の励起特性、(b)は発光体4発光特性を示す。(A) shows the excitation characteristics of the light emitter 4, and (b) shows the light emission characteristics of the light emitter 4. (a)は発光体5の励起特性、(b)は発光体5の発光特性を示す。(A) shows the excitation characteristics of the light emitter 5, and (b) shows the light emission characteristics of the light emitter 5. (a)は発光体6の励起特性、(b)は発光体6の発光特性を示す。(A) shows the excitation characteristic of the light emitter 6, and (b) shows the light emission characteristic of the light emitter 6. 実施例2における、3種類の蛍光顔料の最良の混合重量を示す。The best mixing weight of the three types of fluorescent pigments in Example 2 is shown. 実施例2における、多色発光体の各紫外線波長における色相評価を示す。The hue evaluation in each ultraviolet wavelength of a multicolor light-emitting body in Example 2 is shown. 実施例2における、多色発光体に対し、(a)は長波紫外線励起時の発光分布、(b)は中波紫外線励起時の発光分布、(c)は短波紫外線励起時の発光分布を示す。In Example 2, (a) shows the light emission distribution at the time of excitation of the long wave ultraviolet light, (b) shows the light emission distribution at the time of excitation of the medium wave ultraviolet light, and (c) shows the light emission distribution at the time of excitation of the short wave ultraviolet light. . 実施例2における、全色相再現のための多色発光体と紫外線照射ランプとの距離、及びそれぞれの色相評価を示す。In Example 2, the distance between the multicolor light emitter and the ultraviolet irradiation lamp for reproduction of all hues and the evaluation of each hue are shown. 実施例2における、多色発光インキ組成物の配合割合を示す。The compounding ratio of the multicolor luminescent ink composition in Example 2 is shown. 実施例3における、選定された3種類の発光顔料を示す。3 shows selected three types of luminescent pigments in Example 3. (a)は発光体7の励起特性、(b)は発光体7発光特性を示す。(A) shows the excitation characteristic of the light emitter 7, and (b) shows the light emission characteristic of the light emitter 7. (a)は発光体8の励起特性、(b)は発光体8の発光特性を示す。(A) shows the excitation characteristics of the light emitter 8, and (b) shows the light emission characteristics of the light emitter 8. (a)は発光体9の励起特性、(b)は発光体9の発光特性を示す。(A) shows the excitation characteristic of the light emitter 9, and (b) shows the light emission characteristic of the light emitter 9. 実施例3における、3種類の蛍光顔料の最良の混合重量を示す。The best mixing weight of the three types of fluorescent pigments in Example 3 is shown. 実施例3における、多色発光体に対し、(a)は特殊な照射装置の照射による色相評価、(b)は一般的な照射装置の照射による色相評価を示す。In Example 3, (a) shows a hue evaluation by irradiation of a special irradiation apparatus, and (b) shows a hue evaluation by irradiation of a general irradiation apparatus, with respect to the multicolor light emitter in Example 3. 実施例3における、多色発光体に対し、(a)は長波紫外線励起時の発光分布、(b)は長波紫外線励起時の発光分布、(c)は短波紫外線励起時の発光分布を示す。In Example 3, (a) shows the light emission distribution at the time of exciting the long wave ultraviolet light, (b) shows the light emission distribution at the time of exciting the long wave ultraviolet light, and (c) shows the light emission distribution at the time of exciting the short wave ultraviolet light. 実施例3における、多色発光インキ組成物の配合割合を示す。The compounding ratio of the multicolor luminescent ink composition in Example 3 is shown. 実施例4における、選定された3種類の発光顔料を示す。3 shows selected three types of luminescent pigments in Example 4. (a)は発光体10の励起特性、(b)は発光体10の発光特性を示す。(A) shows the excitation characteristic of the light emitter 10, and (b) shows the light emission characteristic of the light emitter 10. (a)は発光体11の励起特性、(b)は発光体11の発光特性を示す。(A) shows the excitation characteristic of the light emitter 11, and (b) shows the light emission characteristic of the light emitter 11. (a)は発光体12の励起特性、(b)は発光体12の発光特性を示す。(A) shows the excitation characteristic of the light emitter 12, and (b) shows the light emission characteristic of the light emitter 12. (a)は発光体13の励起特性、(b)は発光体13の発光特性を示す。(A) shows the excitation characteristic of the light emitter 13, and (b) shows the light emission characteristic of the light emitter 13. 実施例4における、3種類の蛍光顔料の最良の混合重量を示す。The best mixing weight of the three types of fluorescent pigments in Example 4 is shown. 実施例4における、多色発光体に対し、(a)は特殊な照射装置の照射による色相評価、(b)は一般的な照射装置の照射による色相評価を示す。In Example 4, (a) shows the hue evaluation by irradiation of a special irradiation device, and (b) shows the hue evaluation by irradiation of a general irradiation device, with respect to the multicolor light emitter. 実施例4における、多色発光体に対し、(a)は長波紫外線励起時の発光分布、(b)は長波紫外線励起時の発光分布、(c)は中波紫外線励起時の発光分布、(d)は短波紫外線励起時の発光分布を示す。(A) is a light emission distribution at the time of excitation of long wave ultraviolet light, (b) is a light emission distribution at the time of excitation of long wave ultraviolet light, and (c) is a light emission distribution at the time of excitation of medium wave ultraviolet light. d) shows the light emission distribution when the shortwave ultraviolet light is excited. 実施例3における、多色発光インキ組成物の配合割合を示す。The compounding ratio of the multicolor luminescent ink composition in Example 3 is shown.

符号の説明Explanation of symbols

1 多色発光体
2 長波紫外線照射ランプ
3 中波紫外線照射ランプ
4 短波紫外線照射ランプ
DESCRIPTION OF SYMBOLS 1 Multicolor light-emitting body 2 Long wave ultraviolet irradiation lamp 3 Medium wave ultraviolet irradiation lamp 4 Short wave ultraviolet irradiation lamp

Claims (5)

紫外線による励起特性の異なる少なくとも三つ以上の発光体を混合してなる多色発光混合物であって、
前記紫外線の照射により発光する前記発光体は、それぞれ単体でRGB表示領域のR領域、G領域又はB領域のいずれかの主波長をもち、
前記R領域の主波長をもつ少なくとも一つの発光体を第1の発光群、前記G領域の主波長をもつ少なくとも一つの発光体を第2の発光群、前記B領域の主波長をもつ少なくとも一つの発光体を第3の発光群とし、
前記第1の発光群から選ばれる少なくとも一つの発光体、前記第2の発光群から選ばれる少なくとも一つの発光体、前記第3の発光群から選ばれる少なくとも一つの発光体のうち、少なくとも三つ以上の発光体を混合してなり、
紫外線領域の第1の波長の光を照射したときに、混合した前記少なくとも三つ以上の発光体のうち、少なくとも一つの第1の発光体の発光強度が最も強く、
前記紫外線領域の第1の波長とは異なる第2の波長の光を照射したときに、混合した前記少なくとも三つ以上の発光体のうち、少なくとも一つの第2の発光体の発光強度が最も強く、
前記紫外線領域の第1の波長、第2の波長とは異なる第3の波長の光を照射したときに、混合した前記少なくとも三つ以上の発光体のうち、少なくとも一つの第3の発光体の発光強度が最も強くなるように混合してなることを特徴とする多色発光混合物。
A multicolor luminescent mixture obtained by mixing at least three luminescent materials having different excitation characteristics by ultraviolet rays,
The light emitters that emit light when irradiated with ultraviolet rays each have a main wavelength of any one of the R region, the G region, and the B region of the RGB display region,
At least one light emitter having a dominant wavelength in the R region is a first light emitting group, at least one light emitter having a dominant wavelength in the G region is a second light emitting group, and at least one having a dominant wavelength in the B region. One luminous body as a third luminous group,
At least three of at least one light emitter selected from the first light emission group, at least one light emitter selected from the second light emission group, and at least one light emitter selected from the third light emission group. A mixture of the above phosphors,
When the light having the first wavelength in the ultraviolet region is irradiated, the emission intensity of at least one of the at least three light emitters mixed is the strongest,
When irradiated with light having a second wavelength different from the first wavelength in the ultraviolet region, at least one of the mixed three or more light emitters has the highest light emission intensity. ,
Of the at least three or more light emitters mixed when irradiated with light having a third wavelength different from the first wavelength and the second wavelength in the ultraviolet region, at least one third light emitter A multicolor luminescent mixture, which is mixed so as to have the highest luminescence intensity.
前記発光体は、少なくとも一つの蛍光体又は燐光体から選ばれることを特徴とする請求項1記載の多色発光混合物。   The multicolor luminescent mixture according to claim 1, wherein the phosphor is selected from at least one phosphor or phosphor. 前記発光体は、無機系発光体の発光体で構成されるか、もしくは無機系発光体と有機系発光体の組み合わせによって構成されることを特徴とする請求項1又は2記載の多色発光混合物。   3. The multicolor luminescent mixture according to claim 1, wherein the illuminant is composed of an illuminant of an inorganic illuminant or a combination of an inorganic illuminant and an organic illuminant. . 請求項1、2又は3記載の多色発光混合物をビヒクルに混合してなることを特徴とする多色発光インキ組成物。   A multicolor luminescent ink composition comprising the multicolor luminescent mixture according to claim 1, 2 or 3 mixed with a vehicle. 請求項4記載の多色発光インキ組成物を用いて印刷層を形成してなることを特徴とする画像形成物。   An image-formed product comprising a printed layer formed using the multicolor luminescent ink composition according to claim 4.
JP2005096854A 2005-03-30 2005-03-30 Multicolor luminescent mixture, multicolor luminescent ink composition, and image formed product Expired - Fee Related JP4552052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005096854A JP4552052B2 (en) 2005-03-30 2005-03-30 Multicolor luminescent mixture, multicolor luminescent ink composition, and image formed product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005096854A JP4552052B2 (en) 2005-03-30 2005-03-30 Multicolor luminescent mixture, multicolor luminescent ink composition, and image formed product

Publications (2)

Publication Number Publication Date
JP2006274097A true JP2006274097A (en) 2006-10-12
JP4552052B2 JP4552052B2 (en) 2010-09-29

Family

ID=37209150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005096854A Expired - Fee Related JP4552052B2 (en) 2005-03-30 2005-03-30 Multicolor luminescent mixture, multicolor luminescent ink composition, and image formed product

Country Status (1)

Country Link
JP (1) JP4552052B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238817A (en) * 2007-03-07 2008-10-09 Xerox Corp Document and method of making document including invisible information for security application
JP2009292748A (en) * 2008-06-03 2009-12-17 National Institute Of Advanced Industrial & Technology Rare earth metal complex, ink composition using the same and fluorescent labeling agent
WO2012018084A1 (en) * 2010-08-04 2012-02-09 大日本印刷株式会社 Luminous medium and method for confirming luminous medium
WO2012018085A1 (en) * 2010-08-04 2012-02-09 大日本印刷株式会社 Light-emitting medium and method for confirming light-emitting medium
JP2012035548A (en) * 2010-08-09 2012-02-23 Dainippon Printing Co Ltd Light-emitting medium
JP2012073897A (en) * 2010-09-29 2012-04-12 Dainippon Printing Co Ltd Authenticity determination system and authenticity determination method for light-emitting medium
US10344175B2 (en) 2015-07-17 2019-07-09 Hp Indigo B.V. Electrostatic ink compositions
JP2019537054A (en) * 2016-11-22 2019-12-19 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Light-emitting taggant composition, light-emitting material containing the same, and article containing the same
CN111722498A (en) * 2019-03-22 2020-09-29 惠普赛天使公司 Radiation source for colorants

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251570A (en) * 1997-03-11 1998-09-22 Dainippon Printing Co Ltd Fluorescent luminous ink and fluorescent image formed product
JPH1142845A (en) * 1997-07-24 1999-02-16 Osaka Insatsu Ink Seizo Kk Printed container

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251570A (en) * 1997-03-11 1998-09-22 Dainippon Printing Co Ltd Fluorescent luminous ink and fluorescent image formed product
JPH1142845A (en) * 1997-07-24 1999-02-16 Osaka Insatsu Ink Seizo Kk Printed container

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238817A (en) * 2007-03-07 2008-10-09 Xerox Corp Document and method of making document including invisible information for security application
JP2009292748A (en) * 2008-06-03 2009-12-17 National Institute Of Advanced Industrial & Technology Rare earth metal complex, ink composition using the same and fluorescent labeling agent
US8523238B2 (en) 2010-08-04 2013-09-03 Dai Nippon Printing Co., Ltd. Light-emitting medium and method of confirming light-emitting medium
WO2012018084A1 (en) * 2010-08-04 2012-02-09 大日本印刷株式会社 Luminous medium and method for confirming luminous medium
WO2012018085A1 (en) * 2010-08-04 2012-02-09 大日本印刷株式会社 Light-emitting medium and method for confirming light-emitting medium
JP2012051362A (en) * 2010-08-04 2012-03-15 Dainippon Printing Co Ltd Luminous medium and method of confirming luminous medium
JP2012035548A (en) * 2010-08-09 2012-02-23 Dainippon Printing Co Ltd Light-emitting medium
JP2012073897A (en) * 2010-09-29 2012-04-12 Dainippon Printing Co Ltd Authenticity determination system and authenticity determination method for light-emitting medium
US10344175B2 (en) 2015-07-17 2019-07-09 Hp Indigo B.V. Electrostatic ink compositions
JP2019537054A (en) * 2016-11-22 2019-12-19 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Light-emitting taggant composition, light-emitting material containing the same, and article containing the same
CN111722498A (en) * 2019-03-22 2020-09-29 惠普赛天使公司 Radiation source for colorants
US11390094B2 (en) 2019-03-22 2022-07-19 Hp Scitex Ltd. Radiation sources for colorants
CN111722498B (en) * 2019-03-22 2023-02-17 惠普赛天使公司 Radiation source for colorants

Also Published As

Publication number Publication date
JP4552052B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
JP4552052B2 (en) Multicolor luminescent mixture, multicolor luminescent ink composition, and image formed product
JP4487090B2 (en) Luminous printed matter with authenticity discrimination
JP5541583B2 (en) Luminescent medium and method for confirming luminous medium
EP3390065B1 (en) Security element formed from at least two inks applied in overlapping patterns, articles carrying the security element, and authentication methods
JP5622087B2 (en) Luminescent medium
JP5699313B2 (en) Luminescent medium
RU2264296C2 (en) Half-tint image, produced by printing method
UA82181C2 (en) Ink set, printed article, a method of printing and use of a colorant
US8841063B2 (en) Illumination sources and subjects having distinctly matched and mismatched narrow spectral bands
JP4418881B2 (en) Anti-counterfeit printed matter
WO2012018085A1 (en) Light-emitting medium and method for confirming light-emitting medium
JP2007277281A (en) Mixed light-emitting body, light-emitting ink, light-emitting printed matter, light-emitting material-applied article and method for distinguishing authenticity
JP5573469B2 (en) Luminescent medium and method for confirming luminous medium
RU2639807C1 (en) Protective element for polygraphic products and fraud-proof polygraphic product
KR20200002447A (en) Fluorescence Security Element
JP2012037328A (en) Ultraviolet irradiation apparatus and inspection system
JP4635170B2 (en) Image forming body
JP5545545B2 (en) Authenticity determination system and authenticity determination method of luminescent medium
Mutanen et al. Luminescent Security Properties of Banknotes
PL239770B1 (en) Ink recipe composition for printing a multi-color image in security features applied to a substrate, visible in both the visible light (VIS) and ultraviolet (UV) wavelength range, method of making an arrangement having a security feature on a substrate, an arrangement intended for using as a security or identification feature of an object marked by an arrangement and method of authentication of an object having such a security feature
JP2019019240A (en) Fluorescent ink and printed matter produced by using the same
JP2002226753A (en) Anti-forgery ink and printed material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4552052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees