JP2006272299A - Centrifugal membrane device - Google Patents

Centrifugal membrane device Download PDF

Info

Publication number
JP2006272299A
JP2006272299A JP2005100094A JP2005100094A JP2006272299A JP 2006272299 A JP2006272299 A JP 2006272299A JP 2005100094 A JP2005100094 A JP 2005100094A JP 2005100094 A JP2005100094 A JP 2005100094A JP 2006272299 A JP2006272299 A JP 2006272299A
Authority
JP
Japan
Prior art keywords
separation membrane
liquid
container
rotating
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005100094A
Other languages
Japanese (ja)
Other versions
JP5005180B2 (en
Inventor
Kazuki Omori
一樹 大森
Yasuhisa Tanaka
保寿 田中
Mitsuharu Nagane
光治 永根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP2005100094A priority Critical patent/JP5005180B2/en
Publication of JP2006272299A publication Critical patent/JP2006272299A/en
Application granted granted Critical
Publication of JP5005180B2 publication Critical patent/JP5005180B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Centrifugal Separators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a centrifugal membrane device capable of efficiently separating even suspended solids such as particulate that is likely to produce fouling and capable of maintaining a separating function of the suspended solids for a long time with regard to the centrifugal membrane device that separates the suspended solids in a treated liquid through a separation membrane. <P>SOLUTION: The centrifugal membrane device 20 is provided with a rotary container 11 to which a raw material liquid is supplied, a rotary shaft 12 that gives rotation force to the container 11, and a separation membrane module 13 positioned and mounted on the shaft 12 in the container 11, the centrifugal force is given to the raw material liquid by rotating the container 11 through the shaft 12 to separate the particulate in the raw material liquid by the actions of the centrifugal force and the module 13. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、分離膜を介して被処理液中の懸濁物質を分離する遠心分離膜装置に関するものであり、更に詳しくは、懸濁物質を含有する被処理液として、無機系の懸濁物質、例えばカーボンフラーレン、カーボンナノチューブ、グラファイト、炭化珪素、コロイダルシリカや砥粒等の微粒子を含むもの、あるいは有機系懸濁物質、例えば汚泥、油脂、微生物や酵素等を含むもの、殊に、半導体産業におけるファウリングを生じ易いCMP
(Chemical Mechanical Polishing)排水等の研磨排水中に含まれるコロイダルシリカや砥粒等の無機系粒子の分離に好適な遠心分離膜装置に関するものである。
The present invention relates to a centrifugal separation membrane device for separating suspended substances in a liquid to be treated through a separation membrane, and more specifically, an inorganic suspended substance as a liquid to be treated containing a suspended substance. , Including carbon fullerenes, carbon nanotubes, graphite, silicon carbide, colloidal silica and abrasive particles, or organic suspensions such as sludge, fats and oils, microorganisms and enzymes, especially in the semiconductor industry CMP prone to fouling
(Chemical Mechanical Polishing) The present invention relates to a centrifugal separation membrane apparatus suitable for separating inorganic particles such as colloidal silica and abrasive grains contained in polishing wastewater such as wastewater.

この種の分離膜装置としては、例えば特許文献1、特許文献2及び特許文献3それぞれに記載の技術が知られている。特許文献1には固定分離膜濾過機が記載され、特許文献2には回転型膜分離装置が記載され、特許文献3には研磨材の回収装置が記載されている。   As this type of separation membrane device, for example, techniques described in Patent Document 1, Patent Document 2, and Patent Document 3 are known. Patent Document 1 describes a fixed separation membrane filter, Patent Document 2 describes a rotary membrane separator, and Patent Document 3 describes an abrasive recovery device.

特許文献1の固定平膜濾過機は、互いに間隔を隔てて積み重なって配設された環状の固定分離膜と、固定分離膜の環を貫通して延在する回転軸と、互いに間隔を隔てて積み重なって回転軸に固定された攪拌板と、固定分離膜と回転軸と攪拌板とを収容するケーシングとを備えている。この構成により、ケーシングのホールドアップ量が小さく、ケーシング内での原液の滞留時間が短く、更に固定平膜の透過流束が大きくなる。また、特許文献1には回転平膜濾過機についても記載されている。この回転平膜濾過機は、基本的には固定分離膜と攪拌板との位置関係が逆になったもので、攪拌板が固定され、回転平膜が回転軸に固定されているものである。これらいずれの濾過機も平膜と攪拌板が交互に配置され、平膜と攪拌板とが相対回転して平膜間の被処理液を攪拌板によって攪拌し、平膜への早期の堆積を緩やかにし、平膜の透過性を比較的長く維持するようにしている。   The fixed flat membrane filter of Patent Document 1 includes an annular fixed separation membrane that is stacked and spaced apart from each other, a rotating shaft that extends through the ring of the fixed separation membrane, and a spaced distance from each other. A stirring plate that is stacked and fixed to the rotating shaft, and a casing that accommodates the fixed separation membrane, the rotating shaft, and the stirring plate are provided. With this configuration, the hold-up amount of the casing is small, the residence time of the stock solution in the casing is short, and the permeation flux of the fixed flat membrane is large. Patent Document 1 also describes a rotary flat membrane filter. In this rotary flat membrane filter, the positional relationship between the fixed separation membrane and the stirring plate is basically reversed, the stirring plate is fixed, and the rotary flat membrane is fixed to the rotating shaft. . In any of these filters, the flat membrane and the stirring plate are alternately arranged, and the flat membrane and the stirring plate rotate relative to each other to stir the liquid to be treated between the flat membranes with the stirring plate, thereby prematurely depositing on the flat membrane. In order to maintain the permeability of the flat membrane relatively long.

特許文献2の回転型膜分離装置は、被処理液の供給入口を有する容器を貫通するように回転軸を配し、容器内にあって透過された液体を移送することの可能な構造を有する膜体を回転軸に装着し、膜体の両側に膜体との間に隙間を設けてバッフルを配して構成され、基本的に特許文献1の回転平膜濾過機が改良されたものである。そして、この回転型分離膜装置の場合には、膜体の直径が300〜1000mmであり、50〜1000rpmの範囲で膜体を回転させて運転することによって、膜分離性能を効果的に発揮し得る。   The rotary membrane separation apparatus of Patent Document 2 has a structure in which a rotating shaft is disposed so as to pass through a container having a supply inlet for a liquid to be processed, and the permeated liquid in the container can be transferred. The membrane body is mounted on a rotating shaft, and a baffle is provided on both sides of the membrane body with a gap between the membrane body. Basically, the rotary flat membrane filter of Patent Document 1 is improved. is there. In the case of this rotary separation membrane apparatus, the membrane body has a diameter of 300 to 1000 mm, and the membrane separation performance is effectively exhibited by operating by rotating the membrane body in the range of 50 to 1000 rpm. obtain.

特許文献3の研磨材の回収装置は、膜分離装置を遠心分離機の後段に配置し、研磨工程排水を遠心分離機に導入して遠心分離し、界面活性剤の一部を除去し、得られた濃縮液を膜分離装置に導入する。これにより、粗大固形物を除去するための膜分離装置の通液量を格段に少なくすることができ、膜分離装置の目詰まりを防止して、膜の交換頻度を低減することにより、ランニングコストを低減し、長期に亘り安定して不純物の少ない研磨材粒子を効率的に回収することができる。   In the abrasive recovery device of Patent Document 3, the membrane separation device is disposed at the subsequent stage of the centrifuge, the polishing process wastewater is introduced into the centrifuge and centrifuged, and a part of the surfactant is removed. The concentrated solution is introduced into a membrane separator. As a result, the flow rate of the membrane separator for removing coarse solids can be remarkably reduced, the clogging of the membrane separator is prevented, and the membrane replacement frequency is reduced, thereby reducing the running cost. Thus, it is possible to recover the abrasive particles with little impurities stably over a long period of time.

特開平06−277465号公報Japanese Patent Laid-Open No. 06-277465 特開2003−245527号公報JP 2003-245527 A 特開2001−225070号公報Japanese Patent Laid-Open No. 2001-2225070

しかしながら、特許文献1及び特許文献2に記載の従来の技術は、被処理液内で平膜と攪拌板とが相対回転して被処理液を分離する構造で、被処理液中の分離すべき粒子が常に攪拌されて被処理液全体に再拡散し、粒子の分離効率が悪く、粒子が微粒子化するほど顕著になるという課題があった。また、特許文献3に記載の技術の場合には粗大粒子を遠心分離機で分離し、分離した粗大粒子を純水に分散させて、再度膜分離装置で除去する技術であるが、この技術では遠心分離機と膜分離装置が個別に設置されるため、設備費や設置面積等が嵩む問題がある。   However, the conventional techniques described in Patent Document 1 and Patent Document 2 have a structure in which the flat film and the stirring plate relatively rotate in the liquid to be processed to separate the liquid to be processed, and should be separated in the liquid to be processed. There is a problem that the particles are constantly stirred and re-diffused throughout the liquid to be treated, the separation efficiency of the particles is poor, and the more the particles become finer, the more prominent. In the case of the technique described in Patent Document 3, coarse particles are separated by a centrifugal separator, and the separated coarse particles are dispersed in pure water and removed again by a membrane separator. In this technique, Since the centrifuge and the membrane separator are installed separately, there is a problem that the equipment cost, the installation area, etc. are increased.

本発明は、上記課題を解決するためになされたもので、ファウリングを生じ易い微粒子等の懸濁物質であっても効率良く分離することができ、しかも懸濁物質の分離機能を長時間に渡って維持することができる遠心分離膜装置を提供することを目的としている。   The present invention has been made in order to solve the above-mentioned problems, and even a suspended substance such as fine particles that easily cause fouling can be efficiently separated, and the suspended substance separation function can be provided for a long time. It aims at providing the centrifugal membrane apparatus which can be maintained over.

本発明の請求項1に記載の遠心分離膜装置は、懸濁物質を含有する被処理液が供給される回転容器と、この回転容器に回転力を付与する回転軸と、この回転軸に上記回転容器内に位置させて装着された分離膜モジュールと、を備え、上記回転軸を介して上記回転容器及び上記分離膜モジュールを回転させて上記被処理液に遠心力を付与し、この遠心力及び上記分離膜モジュールの透過分離作用で上記被処理液中の懸濁物質を分離する装置であって、上記回転容器に被処理液の供給手段を設け、上記回転軸の少なくとも一部を中空回転軸として形成すると共に上記中空回転軸の中空部を上記分離膜モジュールの透過液側と連通する透過液の排出手段として形成したことを特徴とするものである。   The centrifugal membrane device according to claim 1 of the present invention is a rotary container to which a liquid to be treated containing a suspended substance is supplied, a rotary shaft for applying a rotational force to the rotary vessel, A separation membrane module mounted in a rotating container, and applying the centrifugal force to the liquid to be treated by rotating the rotating container and the separation membrane module via the rotating shaft. And an apparatus for separating suspended substances in the liquid to be processed by the permeation separation action of the separation membrane module, wherein the rotating container is provided with means for supplying the liquid to be processed, and at least a part of the rotating shaft is rotated hollow The hollow rotating shaft is formed as a shaft and is formed as a permeate discharging means communicating with the permeate side of the separation membrane module.

また、本発明の請求項2に記載の遠心分離膜装置は、請求項1に記載の発明において、上記中空回転軸を、上記回転容器内に位置する第1中空回転軸部と上記回転容器外に位置する第2中空回転軸部とに区画し、上記第1中空回転軸部を、上記回転容器内と連通する被処理液の供給通路と分離膜モジュールの透過液側と連通する透過液の排出通路とに区画し、上記第2中空回転軸部の中空部と上記被処理液の供給通路とを連通させて上記被処理液の供給手段として形成したことを特徴とするものである。   A centrifugal membrane device according to claim 2 of the present invention is the centrifugal membrane device according to claim 1, wherein the hollow rotating shaft is connected to the first hollow rotating shaft portion located in the rotating container and the rotating container outside. The first hollow rotating shaft portion is partitioned into a second hollow rotating shaft portion, and the first hollow rotating shaft portion is connected to the supply passage of the liquid to be processed that communicates with the inside of the rotating container and the permeate liquid that communicates with the permeate side of the separation membrane module. It is divided into a discharge passage, and the hollow portion of the second hollow rotary shaft portion and the supply passage of the liquid to be processed are communicated to form the liquid to be processed.

また、本発明の請求項3に記載の遠心分離膜装置は、請求項2に記載の発明において、上記第1中空回転軸部を二重管構造の中空回転軸として形成し、上記二重管構造の中空回転軸の外側中空部を被処理液の供給通路として形成すると共にその内側中空部を透過液の排出通路として形成したことを特徴とするものである。   According to a third aspect of the present invention, there is provided the centrifugal membrane device according to the second aspect, wherein the first hollow rotating shaft portion is formed as a hollow rotating shaft having a double tube structure, and the double tube is formed. The outer hollow portion of the hollow rotating shaft having the structure is formed as a supply passage for the liquid to be processed, and the inner hollow portion is formed as a discharge passage for the permeated liquid.

また、本発明の請求項4に記載の遠心分離膜装置は、懸濁物質を含有する被処理液が供給される容器と、この容器内に配置され且つ上記容器内の被処理液が循環する孔が形成された回転容器と、この回転容器に上記被処理液中で回転力を付与する回転軸と、この回転軸に上記回転容器内に位置させて装着された分離膜モジュールと、を備え、上記回転軸を介して上記回転容器及び上記分離膜モジュールを回転させて上記回転容器の上記被処理液に遠心力を付与し、この遠心力及び上記分離膜モジュールの透過分離作用で上記回転容器内において上記被処理液中の懸濁物質を分離する装置であって、上記回転軸を二重管構造の中空回転軸として形成すると共に上記中空回転軸の外側または内側の中空部を上記分離膜モジュールの透過液側と連通する透過液の排出手段として形成したことを特徴とするものである。   According to a fourth aspect of the present invention, there is provided a centrifugal membrane device comprising: a container to which a liquid to be treated containing a suspended substance is supplied; and the liquid to be treated in the container is circulated in the container. A rotating container having a hole formed therein, a rotating shaft for applying a rotating force to the rotating container in the liquid to be treated, and a separation membrane module mounted on the rotating shaft so as to be positioned in the rotating container. The rotating container and the separation membrane module are rotated via the rotating shaft to give a centrifugal force to the liquid to be treated in the rotating container, and the rotating container is transmitted by the centrifugal force and the separation and separation action of the separation membrane module. An apparatus for separating suspended substances in the liquid to be treated inside, wherein the rotary shaft is formed as a hollow rotary shaft having a double tube structure, and a hollow part outside or inside the hollow rotary shaft is formed in the separation membrane Communication with the permeate side of the module It is characterized in that formed as discharge means for the permeate that.

また、本発明の請求項5に記載の遠心分離膜装置は、請求項4に記載の発明において、上記中空回転軸の上記排出手段とは別の中空部を、上記分離膜モジュールによって分離された懸濁物質の排出手段として形成したことを特徴とするものである。   In the centrifugal membrane device according to claim 5 of the present invention, in the invention according to claim 4, a hollow portion different from the discharge means of the hollow rotating shaft is separated by the separation membrane module. It is characterized by being formed as a means for discharging suspended substances.

また、本発明の請求項6に記載の遠心分離膜装置は、請求項1〜請求項5のいずれか1項に記載の発明において、上記分離膜モジュールは、複数の円板状分離膜体または複数の傘状分離膜体が上記回転軸の軸芯に沿って複数段に渡って取り付けられていることを特徴とするものである。   In addition, the centrifugal membrane device according to claim 6 of the present invention is the invention according to any one of claims 1 to 5, wherein the separation membrane module includes a plurality of disc-shaped separation membrane bodies or A plurality of umbrella-shaped separation membrane bodies are attached over a plurality of stages along the axis of the rotating shaft.

また、本発明の請求項7に記載の遠心分離膜装置は、請求項1〜請求項6のいずれか1項に記載の発明において、上記回転容器は、その半径方向の最大径部に、上記分離膜モジュールによって分離された懸濁物質の排出手段を有することを特徴とするものである。   The centrifugal membrane device according to claim 7 of the present invention is the centrifugal membrane device according to any one of claims 1 to 6, wherein the rotating container is arranged at the maximum diameter portion in the radial direction. It has a discharge means for the suspended substance separated by the separation membrane module.

また、本発明の請求項8に記載の遠心分離膜装置は、請求項1〜請求項7のいずれか1項に記載の発明において、上記被処理液の供給通路に加圧供給手段及び/または透過液の排出通路に吸引排出手段を設けたことを特徴とするものである。   The centrifugal membrane device according to an eighth aspect of the present invention is the centrifugal membrane device according to any one of the first to seventh aspects, wherein the supply passage for the liquid to be treated is supplied with a pressure supply means and / or A suction discharge means is provided in the permeate discharge passage.

また、本発明の請求項9に記載の遠心分離膜装置は、懸濁物質を含有する被処理液が供給される回転容器と、この回転容器に回転力を付与する回転軸と、上記回転容器内を被処理液室と透過液室の二室に区画して装着される分離膜モジュールと、を備え、上記回転軸を介して上記回転容器及び上記分離膜モジュールを回転させて上記被処理液に遠心力を付与し、この遠心力及び上記分離膜モジュールの透過分離作用で上記被処理液中の懸濁物質を分離する装置であって、上記回転軸を上記被処理液室側と連通して上記被処理液の供給通路となる中空回転軸及び上記透過液室側と連通して透過液の排出通路となる中空回転軸として形成したことを特徴とするものである。   According to a ninth aspect of the present invention, there is provided a centrifugal membrane device comprising: a rotary container to which a liquid to be treated containing a suspended substance is supplied; a rotary shaft for applying a rotational force to the rotary container; and the rotary container A separation membrane module that is mounted by partitioning the inside into a chamber to be treated and a permeate chamber, and rotating the rotating container and the separation membrane module via the rotating shaft to rotate the liquid to be treated. Is a device for separating the suspended matter in the liquid to be treated by the centrifugal force and the permeation and separation action of the separation membrane module, wherein the rotating shaft communicates with the liquid chamber side to be treated. And a hollow rotating shaft serving as a supply passage for the liquid to be treated and a hollow rotating shaft communicating with the permeate chamber side and serving as a permeate discharge passage.

また、本発明の請求項10に記載の遠心分離膜装置は、請求項7記載の発明において、上記被処理液室内の半径方向の最大径部に連通する非透過液の排出手段を設けたことを特徴とするものである。   Further, the centrifugal membrane device according to claim 10 of the present invention is the invention according to claim 7, further comprising a non-permeated liquid discharging means communicating with the maximum diameter portion in the radial direction in the liquid chamber to be processed. It is characterized by.

本発明の請求項1〜請求項10に記載の発明によれば、ファウリングを生じ易い微粒子等の懸濁物質であっても効率良く分離することができ、しかも懸濁物質の分離機能を長時間に渡って維持することができる遠心分離膜装置を提供することができる。   According to the first to tenth aspects of the present invention, even suspended substances such as fine particles that tend to cause fouling can be efficiently separated, and the function of separating suspended substances is prolonged. A centrifuge membrane device that can be maintained over time can be provided.

以下、図1〜図4に示す実施形態に基づいて本発明を説明する。尚、図1は本発明の遠心分離膜装置の一実施形態の全体を模式的に示す断面図、図2は図1に示す遠心分離膜装置の回転軸及び円板状分離膜体の水平方向の断面を示す要部断面図、図3は本発明の遠心分離膜装置の他の実施形態の全体を模式的に示す断面図、図3は本発明の遠心分離膜装置の更に他の実施形態を示す概念図である。   Hereinafter, the present invention will be described based on the embodiment shown in FIGS. 1 is a cross-sectional view schematically showing an entire embodiment of the centrifugal separation membrane device of the present invention, and FIG. 2 is a horizontal direction of a rotating shaft and a disc-shaped separation membrane body of the centrifugal separation membrane device shown in FIG. FIG. 3 is a sectional view schematically showing the whole of another embodiment of the centrifugal membrane device of the present invention, and FIG. 3 is still another embodiment of the centrifugal membrane device of the present invention. FIG.

第1の実施形態
本実施形態の遠心分離膜装置10は、例えば図1に示すように、被処理液(以下、「原料液」と称す。)に遠心力を付与し、分離膜を介して原料液と透過液との間に差圧を生じさせて原料液中の不純物を分離するように構成されている。原料液としては、例えば半導体製造工程で発生したCMP(化学的機械的研磨処理)の研磨屑や研磨砥粒等の無機系の微粒子等の懸濁物質を含む排水、油水混合排水や有機性排水の処理工程から排出される各種の汚泥等の有機系の懸濁物質を含む排水等がある。本実施形態の遠心分離膜装置10は、例えば、半導体製造工程で発生したCMP排水等のミクロンレベルからナノレベルの微粒子を含有するファウリングを生じ易い排水から微粒子を分離する場合に好ましく用いることができる。
First embodiment
For example, as shown in FIG. 1, the centrifugal membrane device 10 of the present embodiment applies a centrifugal force to a liquid to be treated (hereinafter referred to as “raw material liquid”), and the raw material liquid and the permeated liquid through the separation membrane. And a pressure difference between them to generate impurities so as to separate impurities in the raw material liquid. Examples of the raw material liquid include waste water containing suspended solids such as inorganic fine particles such as CMP (Chemical Mechanical Polishing) generated in the semiconductor manufacturing process, oil-water mixed waste water, and organic waste water. There are various kinds of sludge and other waste water containing organic suspended matter discharged from the treatment process. The centrifuge membrane device 10 of the present embodiment is preferably used when separating fine particles from wastewater that easily generates fouling containing micron to nano level fine particles such as CMP wastewater generated in a semiconductor manufacturing process. it can.

即ち、本実施形態の遠心分離膜装置10は、図1に示すように、断面が略六角形の樽状に形成された回転容器11と、この回転容器11の下面中心を貫通し上面近傍に達するように下面に連結された回転軸12と、この回転軸12に装着され且つ回転容器11内で原料液中の微粒子を分離する分離膜モジュール13と、回転軸12を回転駆動させるモータ14と、回転容器11を回転自在に収納するケーシング15と、を備え、ケーシング15内で回転容器11及び分離膜モジュール13が回転軸12を介して一体的に回転し、回転容器11内に供給された原料液中の微粒子(以下、単に「微粒子」と称す。)を分離して、微粒子が集積されて固形分を主成分とするスラッジ、微粒子濃度の高い濃縮液及び分離膜モジュール13を透過した透過液の三種類の処理水に分けて排出するように構成されている。回転容器11は、モータ14を駆動源として、例えば100〜1000rpm、好ましくは200〜300rpmの回転速度で回転するようになっている。   That is, as shown in FIG. 1, the centrifugal membrane device 10 of the present embodiment has a rotating container 11 having a substantially hexagonal cross section and a lower surface of the rotating container 11 that passes through the center of the lower surface of the rotating container 11. A rotating shaft 12 connected to the lower surface so as to reach, a separation membrane module 13 that is attached to the rotating shaft 12 and separates the fine particles in the raw material liquid in the rotating container 11, and a motor 14 that rotationally drives the rotating shaft 12. A casing 15 that rotatably houses the rotating container 11, and the rotating container 11 and the separation membrane module 13 are integrally rotated through the rotating shaft 12 in the casing 15 and supplied to the rotating container 11. Fine particles (hereinafter, simply referred to as “fine particles”) in the raw material liquid are separated, and the fine particles are collected to pass through the sludge mainly containing solids, the concentrated liquid having a high fine particle concentration, and the separation membrane module 13. It is configured to separately output the three kinds of the treated water in the liquid. The rotating container 11 is configured to rotate at a rotational speed of, for example, 100 to 1000 rpm, preferably 200 to 300 rpm, using the motor 14 as a drive source.

図1に示すように回転容器11の下面には回転容器11と軸芯を共有する軸部11Aが垂直下方に延設されている。回転容器11は軸部11Aにおいて回転軸12に連結されている。また、この軸部11Aは基台16に取り付けられた軸受け(図示せず)によって軸支され、回転容器11は軸部11A及び軸受けを介して基台16上で回転するようになっている。また、断面が略六角形状を呈する回転容器11は、その側面の上下方向中ほどが最大径部として形成されている。この最大径部には固形分をスラッジとして排出する排出口11Bが形成され、この排出口11Bにはその開閉手段として間欠的に作動するパイロットバルブ17が装着されている。パイロットバルブ17は、排出口11Bを間欠的に開閉して回転容器11の最大径部に集積されたスラッジ(固形分)を外部へ排出するようにしてある。   As shown in FIG. 1, a shaft portion 11 </ b> A sharing an axis with the rotating container 11 extends vertically downward on the lower surface of the rotating container 11. The rotary container 11 is connected to the rotary shaft 12 at the shaft portion 11A. The shaft portion 11A is supported by a bearing (not shown) attached to the base 16, and the rotary container 11 rotates on the base 16 via the shaft 11A and the bearing. Further, the rotary container 11 having a substantially hexagonal cross section is formed with the maximum diameter portion in the middle of the side surface in the vertical direction. A discharge port 11B for discharging solid content as sludge is formed in the maximum diameter portion, and a pilot valve 17 that operates intermittently as an opening / closing means is mounted on the discharge port 11B. The pilot valve 17 opens and closes the discharge port 11B intermittently to discharge sludge (solid content) accumulated in the maximum diameter portion of the rotary container 11 to the outside.

上記回転軸12は、図1に示すように、回転容器11内で分離膜モジュール13を支持する第1中空回転軸部121と、この第1中空回転軸部121の下端に連設され且つ回転容器11の軸部11A内を貫通する第2中空回転軸部122とから構成され、原料液の供給手段と処理液の排出手段を有している。即ち、第1、第2中空回転軸部121、122は一体化しており、これら両者の中空部は互いに隔壁123を介して区画されている。   As shown in FIG. 1, the rotary shaft 12 is connected to the first hollow rotary shaft portion 121 that supports the separation membrane module 13 in the rotary container 11 and the lower end of the first hollow rotary shaft portion 121 and rotates. The container 11 includes a second hollow rotating shaft portion 122 penetrating through the shaft portion 11A of the container 11, and includes a raw material liquid supply means and a processing liquid discharge means. In other words, the first and second hollow rotating shaft portions 121 and 122 are integrated, and both of these hollow portions are partitioned from each other via the partition wall 123.

上記分離膜モジュール13は、図1に示すように、複数の円板状分離膜体13Aを有し、これらの円板状分離膜体13Aは第1中空回転軸部121に対して上下方向に所定間隔を空けて取り付けられている。円板状分離膜体13Aは、例えば、従来公知の多孔質セラミック、多孔質の焼結金属等の多孔質物質によって内部に中空部(図示せず)が形成された円板形状の多孔質担体と、この多孔質担体の外表面に被覆された従来公知の織布、不織布や有機高分子膜等からなる膜体とを有し、有機高分子膜及び多孔質担体を介して原料液中の微粒子を分離し、微粒子が分離された透過液が中空部内に流入するようにしてある。   As shown in FIG. 1, the separation membrane module 13 has a plurality of disc-shaped separation membrane bodies 13 </ b> A, and these disc-shaped separation membrane bodies 13 </ b> A are arranged in the vertical direction with respect to the first hollow rotating shaft portion 121. It is attached at a predetermined interval. The disc-shaped separation membrane body 13A is, for example, a disc-shaped porous carrier in which a hollow portion (not shown) is formed by a porous material such as a conventionally known porous ceramic or porous sintered metal. And a film body made of a conventionally known woven fabric, non-woven fabric, organic polymer film or the like coated on the outer surface of the porous carrier, and in the raw material liquid via the organic polymer membrane and the porous carrier The fine particles are separated, and the permeated liquid from which the fine particles have been separated flows into the hollow portion.

而して、第1中空回転軸部121は、図1、図2に示すように、小径管121Aとこれより大径に形成された大径管121Bからなる二重管構造の中空回転軸として形成されている。小径管121Aと大径管121Bの隙間が原料液の供給手段として形成され、小径管121Aの内側が分離膜モジュール13の透過液の排出手段として形成されている。即ち、小径管121Aの上端は大径管121Bの上端より下方へ引っ込んで位置しており、小径管121Aの上端は大径管121Bの内壁に連結され、小径管121Aと大径管121Bの隙間を小径管121Aの上端で閉じて原料液供給通路124として形成されている。第1中空回転軸部121と第2中空回転軸部122の隔壁123には第1中空回転軸部121の原料液供給通路124と第2中空回転軸部122の中空部とを連絡する連絡通路123Aが放射状に形成され、第2中空回転軸部122の中空部に供給された原料液が複数の連絡通路123Aを介して原料液供給通路124に流入し、大径管121Bに軸方向に沿って形成された複数の孔から回転容器11内に供給するようになっている。複数の孔は、大径管121Bの周方向の複数個所に形成され、分離膜モジュール13の複数の円板状分離膜体13Aの間に配置されている。つまり、第2中空回転軸部122の中空部、連絡通路123A及び原料液供給通路124が原料液の供給手段として構成されている。そして、原料液の供給手段には加圧ポンプ等の加圧手段が設けられ、原料液を回転容器11内に供給するようにしてある。   Thus, as shown in FIGS. 1 and 2, the first hollow rotary shaft portion 121 is a double-pipe hollow rotary shaft composed of a small-diameter tube 121A and a large-diameter tube 121B formed larger than the small-diameter tube 121A. Is formed. A gap between the small-diameter pipe 121A and the large-diameter pipe 121B is formed as a raw material supply means, and the inside of the small-diameter pipe 121A is formed as a permeate discharge means for the separation membrane module 13. That is, the upper end of the small-diameter pipe 121A is positioned so as to be retracted downward from the upper end of the large-diameter pipe 121B, and the upper end of the small-diameter pipe 121A is connected to the inner wall of the large-diameter pipe 121B. Is closed at the upper end of the small-diameter pipe 121A to form a raw material liquid supply passage 124. A communication passage that connects the raw material liquid supply passage 124 of the first hollow rotary shaft portion 121 and the hollow portion of the second hollow rotary shaft portion 122 to the partition wall 123 of the first hollow rotary shaft portion 121 and the second hollow rotary shaft portion 122. 123A is formed radially, and the raw material liquid supplied to the hollow portion of the second hollow rotary shaft portion 122 flows into the raw material liquid supply passage 124 through the plurality of communication passages 123A, and extends in the axial direction to the large diameter pipe 121B. The rotating container 11 is supplied from a plurality of holes formed in this manner. The plurality of holes are formed at a plurality of locations in the circumferential direction of the large-diameter pipe 121B, and are arranged between the plurality of disc-shaped separation membrane bodies 13A of the separation membrane module 13. That is, the hollow portion of the second hollow rotary shaft portion 122, the communication passage 123A, and the raw material liquid supply passage 124 are configured as the raw material liquid supply means. The raw material liquid supply means is provided with a pressurizing means such as a pressure pump so that the raw material liquid is supplied into the rotary container 11.

また、上記分離膜モジュール13を構成する円板状分離膜体13Aは、図1、図2に示すように、第1中空回転軸部121が密着状態で貫通する貫通孔を中心部に有している。図2で部分的に示すように大径管121Bの周壁には円板状分離膜体13Aの貫通孔に配置した孔が周方向に所定間隔を隔てて複数形成され、また、小径管121Aには大径管121Bの孔に対応する孔が形成されている。そして、小径管121Aの孔と大径管121Bの孔とは連絡管121Cによって連結され、円板状分離膜体13Aの中空部と小径管121Aの中空部からなる透過液排出通路125とが連絡管121Cを介して連通している。尚、図2において、破線部分は大径管121Bに軸方向に沿って上下の円板状分離膜体13Aの間に形成された複数の孔から回転容器11内に原料液が供給する状態を示している。また、大径管121B上端の封止プレートの内面間近には図1に示すように透過液排出管18の拡径部18Aが配置され、この拡径部18Aには分離膜モジュール13の透過液を透過液排出管18内に導く導入口(図示せず)が複数個所に形成されている。従って、円板状分離膜体13Aの透過液は、第1中空回転軸部121の連絡管121C及び透過液排出通路125を経由して透過液排出管18から回転容器11の外部へ排出されるようになっている。そして、透過液排出側には真空ポンプ等の吸引手段が必要に応じて設けられ、吸引手段によって透過液を排出するようにしてある。   Further, the disc-shaped separation membrane body 13A constituting the separation membrane module 13 has a through-hole through which the first hollow rotating shaft portion 121 penetrates in a close contact state as shown in FIGS. ing. As shown partially in FIG. 2, a plurality of holes arranged in the through-holes of the disc-shaped separation membrane body 13A are formed at predetermined intervals in the circumferential direction on the peripheral wall of the large-diameter pipe 121B. Is formed with a hole corresponding to the hole of the large diameter pipe 121B. The hole of the small diameter pipe 121A and the hole of the large diameter pipe 121B are connected by a communication pipe 121C, and the permeate discharge passage 125 formed by the hollow part of the disc-shaped separation membrane body 13A and the hollow part of the small diameter pipe 121A communicates. It communicates via the pipe 121C. In FIG. 2, a broken line portion indicates a state in which the raw material liquid is supplied into the rotary container 11 from a plurality of holes formed between the upper and lower disk-shaped separation membrane bodies 13A along the axial direction in the large diameter pipe 121B. Show. Further, as shown in FIG. 1, an enlarged diameter portion 18A of the permeate discharge pipe 18 is disposed near the inner surface of the sealing plate at the upper end of the large diameter pipe 121B, and the permeate of the separation membrane module 13 is disposed in the enlarged diameter portion 18A. Are introduced at a plurality of locations in the permeate discharge pipe 18 (not shown). Accordingly, the permeated liquid of the disc-shaped separation membrane body 13A is discharged from the permeated liquid discharge pipe 18 to the outside of the rotary container 11 via the communication pipe 121C and the permeated liquid discharge passage 125 of the first hollow rotary shaft 121. It is like that. A suction means such as a vacuum pump is provided on the permeate discharge side as required, and the permeate is discharged by the suction means.

また、図1に示すように、上記回転容器11の上部には透過液排出管18を囲む濃縮液排出管19が装着され、この濃縮液排出管19の下端は回転軸12の大径管121Bの上端近傍に達している。この濃縮液排出管19には吸引手段を設け、吸引手段によって濃縮液を吸引して排出するようにしても良い。濃縮液排出管19と透過液排出管18とは軸芯を共有する二重管として形成され、これら両者18、19の隙間が濃縮液の排出通路となっている。濃縮液排出管19の下端は第1中空回転軸部121の上端との間に隙間を隔てて中空円板状に拡径し、この拡径部19Aの外周面全周に渡って濃縮液の流入口が形成されている。従って、透過液排出管18と濃縮液排出管19からなる二重管構造の回転軸12は、回転容器11の上部を貫通し、回転容器11は、二重管構造の回転軸12に軸支された状態で回転するようになっている。   Further, as shown in FIG. 1, a concentrated liquid discharge pipe 19 surrounding the permeate discharge pipe 18 is attached to the upper part of the rotating container 11, and the lower end of the concentrated liquid discharge pipe 19 is a large diameter pipe 121 </ b> B of the rotary shaft 12. Near the top of The concentrate discharge pipe 19 may be provided with suction means, and the concentrate may be sucked and discharged by the suction means. The concentrated liquid discharge pipe 19 and the permeated liquid discharge pipe 18 are formed as a double pipe sharing an axial center, and a gap between the both 18 and 19 serves as a concentrated liquid discharge passage. The lower end of the concentrated liquid discharge pipe 19 is expanded in a hollow disk shape with a gap between the lower end of the first hollow rotating shaft part 121 and the concentrated liquid is spread over the entire outer peripheral surface of the expanded diameter part 19A. An inflow port is formed. Accordingly, the rotary shaft 12 having a double pipe structure including the permeate discharge pipe 18 and the concentrate discharge pipe 19 passes through the upper portion of the rotary container 11, and the rotary container 11 is pivotally supported by the rotary shaft 12 having a double pipe structure. It is designed to rotate in a state that has been applied.

また、第2中空回転軸部121の上端には外周縁部が下方に屈曲して形成されたバッフルプレート126が取り付けられ、このバッフルプレート126と回転容器11の上面との間に濃縮液の通路を形成すると共に回転容器11内の原料液が濃縮液に混入しないようにしている。   Further, a baffle plate 126 having an outer peripheral edge bent downward is attached to the upper end of the second hollow rotary shaft 121, and a concentrated liquid passage is provided between the baffle plate 126 and the upper surface of the rotary container 11. And the raw material liquid in the rotating container 11 is prevented from being mixed into the concentrated liquid.

次に、動作について説明する。本実施形態ではコロイダルシリカや砥粒等の微粒子を含むCMP排水を原料液として処理する場合について説明する。原料液供給源からCMP排水を原料液(例えば、研磨排水)として遠心分離膜装置10へ供給すると、原料液は、原料液供給通路124、即ち第2中空回転軸部122の中空部、隔壁123の連絡通路123A及び第1中空回転軸部121の原料液供給通路124を経由して回転容器11内に流入する。この時、モータ14が既に駆動しているため、回転容器11は、回転軸12を介して所定の回転速度(例えば、200〜300rpm)で回転すると共に第1中空回転軸部121に装着された分離膜モジュール13も回転容器11と一緒に回転し、回転容器11内の原料液に遠心力を付与する。原料液は回転容器11内で遠心力を受けて内壁面に押し付けられると共に、原料液中の微粒子は水との比重差によって徐々に回転容器11の最大径部に集まり、回転容器11の中心部では微粒子濃度が低く、内壁面に向かうほど微粒子濃度の高い濃縮液になる。   Next, the operation will be described. In this embodiment, a case will be described in which CMP wastewater containing fine particles such as colloidal silica and abrasive grains is treated as a raw material liquid. When CMP waste water is supplied from the raw material liquid supply source to the centrifugal separation membrane device 10 as a raw material liquid (for example, polishing waste water), the raw material liquid is supplied to the raw material liquid supply passage 124, that is, the hollow portion of the second hollow rotating shaft portion 122, the partition wall 123. The communication passage 123 </ b> A and the raw material liquid supply passage 124 of the first hollow rotary shaft 121 flow into the rotary container 11. At this time, since the motor 14 is already driven, the rotating container 11 is rotated at a predetermined rotation speed (for example, 200 to 300 rpm) via the rotating shaft 12 and is mounted on the first hollow rotating shaft portion 121. The separation membrane module 13 also rotates together with the rotating container 11 and imparts centrifugal force to the raw material liquid in the rotating container 11. The raw material liquid receives centrifugal force in the rotating container 11 and is pressed against the inner wall surface, and the fine particles in the raw material liquid gradually gather at the maximum diameter part of the rotating container 11 due to the difference in specific gravity with water, and the central part of the rotating container 11 Then, the concentration of fine particles is low, and the concentration of the fine particles increases toward the inner wall surface.

円板状分離膜体13Aは第2中空回転軸部121内の透過液排出通路125の径方向外側に配置されているため、回転容器11内の原料液に遠心力を付与すると、円板状分離膜体13Aの外表面側と内部の排出通路側との間に遠心力による圧力差が生じ、この圧力差で原料液の微粒子が分離されて、図1、図2それぞれに矢印で示すように透過液が円板状分離膜体13Aの中空部から第1中空回転軸部121の連絡管121Cを経由して透過液排出通路125に達する。そして、第1中空回転軸部121内に挿入された透過液排出管18の拡径部18Aから透過液排出管18を経由して外部へ排出される。   Since the disc-shaped separation membrane body 13A is disposed on the radially outer side of the permeate discharge passage 125 in the second hollow rotary shaft portion 121, when a centrifugal force is applied to the raw material liquid in the rotary container 11, the disc-shaped separation membrane body 13A is disc-shaped. A pressure difference due to centrifugal force is generated between the outer surface side of the separation membrane body 13A and the internal discharge passage side, and the fine particles of the raw material liquid are separated by this pressure difference, as shown by arrows in FIGS. Then, the permeated liquid reaches the permeated liquid discharge passage 125 from the hollow portion of the disc-shaped separation membrane body 13 </ b> A via the connecting pipe 121 </ b> C of the first hollow rotary shaft portion 121. And it is discharged | emitted outside via the permeate discharge pipe 18 from the enlarged diameter part 18A of the permeate discharge pipe 18 inserted in the 1st hollow rotating shaft part 121. FIG.

一方、分離膜モジュール13による微粒子の分離が進むと、各円板状分離膜体13Aの表面に微粒子が堆積し、微粒子同士が円板状分離膜体13A内外の差圧によって凝集してより大きな粒子として成長して粗大化する。微粒子が粗大化して大きくなると、この成長粒子は円板状分離膜体13Aの表面で遠心力を受けて表面から剥離する、いわゆる自浄作用(セルフクリーニング)によって回転容器11の内壁面の最大径部、つまり排出口11B近傍へ集積する。この成長粒子は円板状分離膜体13A内外の差圧によって緻密な粒子構造になっており、しかも分離膜モジュール13は回転容器11と一緒に回転していて上下の円板状分離膜体13A、13A間の原料液は攪拌されることがないため、円板状分離膜体13Aから剥離しても元の微粒子に戻って拡散することもなく、遠心力の作用で成長粒子のまま排出口11Bにスラッジ(固形分)として集まる。   On the other hand, when the separation of the fine particles by the separation membrane module 13 proceeds, the fine particles are deposited on the surface of each disk-shaped separation membrane body 13A, and the fine particles are aggregated due to the pressure difference inside and outside the disk-shaped separation membrane body 13A. Grows and coarsens as particles. When the fine particles become larger and larger, the grown particles receive centrifugal force on the surface of the disc-shaped separation membrane body 13A and are separated from the surface, so that the maximum diameter portion of the inner wall surface of the rotating vessel 11 is removed by so-called self-cleaning action (self-cleaning). That is, it accumulates in the vicinity of the discharge port 11B. The grown particles have a dense particle structure due to the differential pressure inside and outside the disc-shaped separation membrane body 13A, and the separation membrane module 13 rotates together with the rotating container 11 so that the upper and lower disc-shaped separation membrane bodies 13A. Since the raw material liquid between 13A is not agitated, it does not return to the original fine particles even if it is peeled off from the disc-shaped separation membrane body 13A, and remains as grown particles by the action of centrifugal force. It collects as sludge (solid content) in 11B.

回転容器11内の濃縮液は、回転容器11の上面とバッフルプレート126との隙間を通路として回転容器11上部の濃縮液排出管19の拡径部19Aに達し、拡径部19Aからその内部に流入し、濃縮液排出管19から外部へ排出される。また、成長粒子等の回転容器11内の最大径部に集積されたスラッジは、パイロットバルブ17が間欠的に作動して、回転容器11の外側へ排出される。   The concentrated liquid in the rotating container 11 reaches the enlarged diameter portion 19A of the concentrated liquid discharge pipe 19 at the upper part of the rotating container 11 through the gap between the upper surface of the rotating container 11 and the baffle plate 126, and enters the inside from the enlarged diameter section 19A. It flows in and is discharged from the concentrate discharge pipe 19 to the outside. Further, sludge accumulated in the maximum diameter portion of the rotating container 11 such as grown particles is discharged to the outside of the rotating container 11 by the pilot valve 17 being intermittently operated.

以上説明したように本実施形態によれば、原料液が供給される回転容器11と、この回転容器11に回転力を付与する回転軸12と、この回転軸12に回転容器11内に位置させて装着された分離膜モジュール13とを備え、回転軸12を介して回転容器11を回転させて原料液に遠心力を付与し、この遠心力及び分離膜モジュール13の作用で原料液中の微粒子を分離するため、原料液中では微粒子が水との比重差によって回転容器11の最大径部に移動し、分離膜モジュール13で分離された微粒子は各円板状分離膜体13Aの表面で成長して粗大化し、粗大化した粒子が遠心力を受けて各円板状分離膜体13Aから剥離するため、各円板状分離膜体13Aはそれぞれ常にセルフクリーニング作用を受けて長時間に渡って分離機能を維持することができる。   As described above, according to the present embodiment, the rotary container 11 to which the raw material liquid is supplied, the rotary shaft 12 that applies a rotational force to the rotary container 11, and the rotary shaft 12 is positioned in the rotary container 11. The separation membrane module 13 is mounted on the rotating vessel 11, and the rotating vessel 11 is rotated to apply a centrifugal force to the raw material liquid. The centrifugal force and the separation membrane module 13 act to act on the fine particles in the raw material liquid. In the raw material liquid, the fine particles move to the maximum diameter portion of the rotating container 11 due to the difference in specific gravity with water, and the fine particles separated by the separation membrane module 13 grow on the surface of each disc-shaped separation membrane body 13A. Since the coarsened particles are separated from each disk-shaped separation membrane body 13A under centrifugal force, each disk-shaped separation membrane body 13A is always subjected to a self-cleaning action for a long time. Maintain separation function Rukoto can.

また、本実施形態によれば、回転軸12は、回転容器11の下部を貫通する第2中空回転軸部122と、第2中空回転軸部122に連設され且つ第2中空回転軸部122と軸芯を共有する第1中空回転軸部121とからなり、第1中空回転軸部121の軸芯に位置する中空部と分離膜モジュール13の透過液側とが連絡管121Cを介して連通し、この軸芯中空部が透過液排出通路125として形成されているため、第1中空回転軸部121を介して透過液を回転容器11の外側へ排出することができる。   In addition, according to the present embodiment, the rotating shaft 12 is connected to the second hollow rotating shaft portion 122 that penetrates the lower portion of the rotating container 11, and the second hollow rotating shaft portion 122, and the second hollow rotating shaft portion 122. And the first hollow rotary shaft portion 121 sharing the shaft core, and the hollow portion located at the shaft core of the first hollow rotary shaft portion 121 and the permeate side of the separation membrane module 13 communicate with each other via the connecting pipe 121C. In addition, since the shaft hollow portion is formed as the permeate discharge passage 125, the permeate can be discharged to the outside of the rotary container 11 through the first hollow rotary shaft portion 121.

また、本実施形態によれば、回転軸12の第1中空回転軸部121を二重管構造にしてその内部に原料液側に開口する原料液供給通路124と透過液排出通路125とを区画し、また、第1中空回転軸部121の原料液供給通路124と第2中空回転軸部122の中空部とを連絡通路123Aを介して連通し、更に、分離膜モジュール13の透過液側と第1中空回転軸部121の透過液排出通路125とが連絡管121Cを介して連通しているため、回転軸12内に原料液供給通路124と透過液の透過液排出通路125を形成することができ、分離膜モジュール13 を回転軸12を介して回転容器11と一緒に回転させることができ、原料液中の微粒子の分離効率を高めることができる。   In addition, according to the present embodiment, the first hollow rotary shaft portion 121 of the rotary shaft 12 has a double tube structure, and the raw material liquid supply passage 124 and the permeate discharge passage 125 that open to the raw material liquid side are partitioned therein. In addition, the raw material liquid supply passage 124 of the first hollow rotary shaft portion 121 and the hollow portion of the second hollow rotary shaft portion 122 communicate with each other via a communication passage 123A, and further, the permeate side of the separation membrane module 13 Since the permeate discharge passage 125 of the first hollow rotary shaft portion 121 communicates with the communication pipe 121C, the raw material liquid supply passage 124 and the permeate permeate discharge passage 125 are formed in the rotary shaft 12. The separation membrane module 13 can be rotated together with the rotary container 11 via the rotary shaft 12, and the separation efficiency of the fine particles in the raw material liquid can be increased.

第2の実施形態
本実施形態の遠心分離膜装置20は、図3に示すように、原料液を処理し、濃縮液と透過液の二種類に分けて回転容器外へ排出するようにしている。第1の実施形態では原料液を処理し、濃縮液、透過液及びスラッジの三種類に分けて回転容器の外部へ排出しているが、本実施形態では微粒子を固形分として集積することなく濃縮液として排出する点で上記実施形態と相違している。
Second embodiment
As shown in FIG. 3, the centrifugal membrane device 20 of the present embodiment processes the raw material liquid and divides it into two types of concentrated liquid and permeated liquid and discharges them to the outside of the rotating container. In the first embodiment, the raw material liquid is treated and divided into three types of concentrate, permeate, and sludge and discharged to the outside of the rotating container. In this embodiment, however, the fine particles are concentrated without being collected as solids. It is different from the above embodiment in that it is discharged as a liquid.

即ち、本実施形態の遠心分離膜装置20は、図3に示すように、回転容器21、回転軸22、分離膜モジュール23、モータ24及び容器25を備え、回転容器21が容器25内に供給された原料液中で回転軸22を介して回転し、原料液に遠心力を付与して原料液中の微粒子を分離するように構成されている。そして、第1の実施形態と同様に、原料液の供給手段には加圧手段が設けられ、透過液の排出手段には吸引手段が設けられている。尚、原料液は容器25内に充満していても良い。   That is, as shown in FIG. 3, the centrifugal membrane device 20 of this embodiment includes a rotating container 21, a rotating shaft 22, a separation membrane module 23, a motor 24 and a container 25, and the rotating container 21 is supplied into the container 25. The raw material liquid is configured to rotate through a rotating shaft 22 and to apply centrifugal force to the raw material liquid to separate the fine particles in the raw material liquid. As in the first embodiment, the raw material liquid supply means is provided with a pressurizing means, and the permeate discharge means is provided with a suction means. The raw material liquid may be filled in the container 25.

而して、上記回転容器21は、図3に示すように断面が釣鐘形状に形成され、下部の濾過液排出口に最大径部が形成され、容器25内の原料液中に浸漬されている。回転容器21は、その軸芯を貫通する回転軸22に装着され、その上端において回転軸22に固定されている。回転容器21の下面中央には原料液が進入する孔21Aが形成され、その上面には回転軸を囲むように複数の孔21Bが形成されている。そして、原料液は、回転容器21の下面の孔21Aからその内部に流入し、その上面の複数の孔21Bから流出し、容器25内を循環するようになっている。   Thus, the rotary container 21 has a bell-shaped cross section as shown in FIG. 3, the maximum diameter portion is formed at the lower filtrate outlet, and is immersed in the raw material liquid in the container 25. . The rotating container 21 is mounted on a rotating shaft 22 that passes through the shaft core, and is fixed to the rotating shaft 22 at the upper end thereof. A hole 21A through which the raw material liquid enters is formed at the center of the lower surface of the rotating container 21, and a plurality of holes 21B are formed on the upper surface so as to surround the rotating shaft. The raw material liquid flows into the inside of the hole 21 </ b> A on the lower surface of the rotating container 21, flows out of the plurality of holes 21 </ b> B on the upper surface, and circulates in the container 25.

上記回転軸22は、図3に示すように、小径管22Aと大径管22Bからなる二重管構造の中空回転軸として一体化し、小径管22Aを介してモータ24に連結されている。小径管22Aは、分離膜モジュール23による濃縮液の排出通路22Cを形成し、その下端部には濃縮液の中空排出口(インペラー)26が連結されていると共にその上端部には濃縮液排出管27が装着されている。小径管22Aは、濃縮液排出管27の一端部の中空円板部27Aに対して回転自在に構成され、その周壁に形成された複数の孔から濃縮液を濃縮液排出管27に排出する。小径管21Aと中空円板部27Aとの間には摺動部材(図示せず)が介在して液漏れを防止している。また、大径管22Bは、その上端が原料液の液面やや上方に突出し、上端において小径管22Aに連結されている。そして、大径管22Bと小径管22A間の隙間が分離膜モジュール23の透過液排出通路22Dとして形成されている。大径管22Bは、濃縮液排出管28の一端部に連結された中空円板部28Aに対して回転自在に構成され、その周方向に形成された複数の孔から透過液排出管28に導く。大径管22Bと中空円板部28Aとの間には摺動部材(図示せず)が介在して液漏れを防止している。   As shown in FIG. 3, the rotating shaft 22 is integrated as a hollow rotating shaft having a double tube structure including a small diameter tube 22A and a large diameter tube 22B, and is connected to a motor 24 via the small diameter tube 22A. The small-diameter pipe 22A forms a concentrated liquid discharge passage 22C by the separation membrane module 23, and a concentrated liquid hollow discharge port (impeller) 26 is connected to the lower end of the small diameter pipe 22A, and a concentrated liquid discharge pipe is connected to the upper end of the small diameter pipe 22A. 27 is attached. The small-diameter pipe 22A is configured to be rotatable with respect to the hollow disc portion 27A at one end of the concentrate discharge pipe 27, and discharges the concentrate to the concentrate discharge pipe 27 from a plurality of holes formed in the peripheral wall thereof. A sliding member (not shown) is interposed between the small diameter tube 21A and the hollow disc portion 27A to prevent liquid leakage. Further, the upper end of the large-diameter tube 22B protrudes slightly upward from the surface of the raw material liquid, and is connected to the small-diameter tube 22A at the upper end. A gap between the large diameter tube 22B and the small diameter tube 22A is formed as a permeate discharge passage 22D of the separation membrane module 23. The large-diameter tube 22B is configured to be rotatable with respect to a hollow disk portion 28A connected to one end of the concentrate discharge tube 28, and is led to the permeate discharge tube 28 from a plurality of holes formed in the circumferential direction thereof. . A sliding member (not shown) is interposed between the large diameter tube 22B and the hollow disk portion 28A to prevent liquid leakage.

上記分離膜モジュール23は、複数の傘状分離膜体23Aを有し、回転軸22を介して回転容器21と一体的に回転するように構成されている。傘状分離膜体23Aは、上記実施形態の円板状分離膜体と同様に、多孔質担体と、この多孔質担体を被覆する有機高分子膜によって中空状に形成され、その中空部が回転軸22の大径管22Bに周方向に形成された複数の孔を介して透過液排出通路22Dと連通している。回転容器21は、分離膜モジュール23を囲み、その内周壁面に沿って分離膜モジュール23の下方に配置されたインペラー26内へ濃縮液を導くように形成されている。   The separation membrane module 23 includes a plurality of umbrella-shaped separation membrane bodies 23 </ b> A and is configured to rotate integrally with the rotary container 21 via the rotation shaft 22. The umbrella-shaped separation membrane body 23A is formed in a hollow shape by a porous carrier and an organic polymer membrane that covers the porous carrier, like the disc-shaped separation membrane body of the above embodiment, and the hollow portion rotates. The large diameter pipe 22B of the shaft 22 communicates with the permeate discharge passage 22D through a plurality of holes formed in the circumferential direction. The rotary container 21 surrounds the separation membrane module 23 and is formed so as to guide the concentrated liquid into an impeller 26 disposed below the separation membrane module 23 along an inner peripheral wall surface thereof.

上記容器25の上面には原料液供給ノズル25Aがその中心から外側に偏倚させて設けられ、この原料液供給管25Aから原料液を容器25内に供給するようにしてある。容器25の上面の中心にはモータ24を支持する支持ノズル25Bが形成され、モータ24はフランジを介して支持ノズル25B上に固定されている。そして、支持ノズル25Bを濃縮液排出管27が水平方向に貫通し、外部の濃縮液排出配管(図示せず)に接続されている。また、容器25の上面を透過液排出管28が垂直方向に貫通し、外部の透過液排出配管(図示せず)に接続されている。   A raw material liquid supply nozzle 25A is provided on the upper surface of the container 25 so as to be biased outward from the center thereof, and the raw material liquid is supplied into the container 25 from the raw material liquid supply pipe 25A. A support nozzle 25B that supports the motor 24 is formed at the center of the upper surface of the container 25, and the motor 24 is fixed on the support nozzle 25B via a flange. A concentrate discharge pipe 27 penetrates the support nozzle 25B in the horizontal direction and is connected to an external concentrate discharge pipe (not shown). Further, a permeate discharge pipe 28 penetrates the upper surface of the container 25 in the vertical direction, and is connected to an external permeate discharge pipe (not shown).

次に、動作について説明する。原料液ノズル25Aから原料液を容器25内に供給し、所定の液面に達した時点でモータ24が回転し、回転容器21及び分離膜モジュール23が共に回転軸22を介して原料液内で回転させて原料液に遠心力を付与すると、微粒子はその比重差により中心部から周辺部に向かって粒度が大きくなる粒度分布を生じると共に、分離膜モジュール23の内外に差圧を生じ、その差圧により原料液中の液分が傘状分離膜体23Aを透過し、原料液中の微粒子等の固形分または濃縮された懸濁物質が分離される。分離された微粒子は傘状分離膜体23の表面に堆積されると共に成長し、成長した微粒子が遠心力で剥離され、回転容器21の最大径部に集まり、回転容器21の中心部では微粒子濃度が低く、内壁面に向かうほど微粒子濃度の高い濃縮液になる。濃縮液は、回転容器21の内壁面に沿って下方へ導かれて最大径部に配置されたインペラー26内へ流入する。この濃縮液は、回転軸22の小径管22A内側の濃縮液排出通路22Cを経由して濃縮液排出管27から随時に外部へ排出される。   Next, the operation will be described. The raw material liquid is supplied from the raw material liquid nozzle 25 </ b> A into the container 25, and when the liquid level reaches a predetermined liquid level, the motor 24 rotates, and both the rotary container 21 and the separation membrane module 23 pass through the rotating shaft 22 in the raw material liquid. When centrifugal force is applied to the raw material liquid by rotating, the fine particles generate a particle size distribution in which the particle size increases from the central part toward the peripheral part due to the specific gravity difference, and a differential pressure is generated inside and outside the separation membrane module 23. Due to the pressure, the liquid component in the raw material liquid permeates the umbrella-shaped separation membrane body 23A, and solids such as fine particles in the raw material liquid or concentrated suspended substances are separated. The separated fine particles are deposited and grow on the surface of the umbrella-shaped separation film body 23, and the grown fine particles are separated by centrifugal force and gather at the maximum diameter portion of the rotating container 21. The concentration of the fine particles increases toward the inner wall surface. The concentrated liquid is guided downward along the inner wall surface of the rotating container 21 and flows into the impeller 26 disposed at the maximum diameter portion. The concentrated liquid is discharged from the concentrated liquid discharge pipe 27 to the outside at any time via the concentrated liquid discharge passage 22C inside the small diameter pipe 22A of the rotary shaft 22.

また、分離膜モジュール23では、傘状分離膜体23Aにおいて微粒子が分離されて透過液が傘状分離膜体23A内部の中空部から回転軸22の大径管22Bと小径管22Aに形成された透過液排出通路22Dを経由して透過液排出管28から外部へ排出される。従って、本実施形態では、原料液を濃縮液と透過液として回転容器21の外部へ排出する以外は、上記実施形態と同様に作用効果を期することができる。   In the separation membrane module 23, the fine particles are separated in the umbrella-shaped separation membrane body 23A, and the permeate is formed in the large-diameter tube 22B and the small-diameter tube 22A of the rotary shaft 22 from the hollow portion inside the umbrella-shaped separation membrane body 23A. It is discharged to the outside from the permeate discharge pipe 28 via the permeate discharge passage 22D. Therefore, in the present embodiment, the same effects can be obtained as in the above-described embodiment except that the raw material liquid is discharged as the concentrated liquid and the permeated liquid to the outside of the rotating container 21.

第3の実施形態
本実施形態の遠心分離膜装置30は、図4に示すように、回転容器31、回転軸32および分離膜モジュール33を備えて構成されている。回転容器31は、同図に示すように、断面が略六角形状に形成されている。回転容器31の最大径部には分離膜モジュール33が取り付けられ、分離膜モジュール33によって回転容器31内を上下二室に区画している。回転容器31の上下中央部にはそれぞれ第1、第2回転軸32A、32Bが接続され、これらの回転軸32A、32Bはいずれも中空回転軸として形成されている。第1回転軸32Aは原料液供給管を兼ね、第2回転軸32Bは透過液排出管を兼ねている。
Third embodiment
As shown in FIG. 4, the centrifugal membrane device 30 of the present embodiment includes a rotating container 31, a rotating shaft 32, and a separation membrane module 33. As shown in the figure, the rotary container 31 has a substantially hexagonal cross section. A separation membrane module 33 is attached to the maximum diameter portion of the rotating container 31, and the inside of the rotating container 31 is divided into two upper and lower chambers by the separation membrane module 33. First and second rotating shafts 32A and 32B are connected to the upper and lower central portions of the rotating container 31, respectively. These rotating shafts 32A and 32B are both formed as hollow rotating shafts. The first rotating shaft 32A also serves as a raw material liquid supply pipe, and the second rotating shaft 32B also serves as a permeate discharge pipe.

上記分離膜モジュール33は、多孔質担体と有機高分子膜とを有する円形状の平膜として形成されている。回転容器31内の分離膜モジュール33の上方には原料液室31Aが形成され、分離膜モジュール33の下方には透過液室31Bが形成されている。そして、本実施形態では、原料液室31A側と透過液室31B側との間に圧力差を付け、この圧力差で原料液B中の微粒子を分離するようにしている。尚、同図では分離膜モジュール33の孔を模式的に大きく表示してあるが、実際には極めて細かい微細孔であることは云うまでもない。   The separation membrane module 33 is formed as a circular flat membrane having a porous carrier and an organic polymer membrane. A raw material liquid chamber 31 A is formed above the separation membrane module 33 in the rotary container 31, and a permeate chamber 31 B is formed below the separation membrane module 33. In the present embodiment, a pressure difference is applied between the raw material liquid chamber 31A side and the permeate liquid chamber 31B side, and the fine particles in the raw material liquid B are separated by this pressure difference. In the figure, the pores of the separation membrane module 33 are shown schematically large, but it goes without saying that the pores are actually extremely fine.

また、上記第1回転軸32Aはロータリジョイント34Aを介して原料供給配管35に接続され、第2回転軸32Bはロータリジョイント34Bを介して透過液排出配管36に接続されている。従って、回転容器31は上下のロータリジョイント34A、34B間で回転するように構成されている。図示してないが、原料液供給配管35には加圧ポンプ等の加圧手段が設けられ、透過液排出配管36には真空ポンプ等の吸引手段が設けられている。加圧手段及び吸引手段は、原料液室31Aと透過液室31Bとの間に差圧を設け、原料液供給配管35から原料液を供給し、透過液排出配管36から透過液を排出できるように、原料液供給配管35または透過液排出配管36の少なくともいずれか一方に取り付けてあれば良い。   The first rotary shaft 32A is connected to the raw material supply pipe 35 via a rotary joint 34A, and the second rotary shaft 32B is connected to a permeate discharge pipe 36 via a rotary joint 34B. Therefore, the rotary container 31 is configured to rotate between the upper and lower rotary joints 34A and 34B. Although not shown, the raw material liquid supply pipe 35 is provided with pressurizing means such as a pressurizing pump, and the permeate discharge pipe 36 is provided with suction means such as a vacuum pump. The pressurizing means and the suction means can provide a differential pressure between the raw material liquid chamber 31A and the permeate liquid chamber 31B, supply the raw material liquid from the raw material liquid supply pipe 35, and discharge the permeate from the permeate discharge pipe 36. In addition, it may be attached to at least one of the raw material liquid supply pipe 35 and the permeate discharge pipe 36.

第1回転軸32A及び原料供給配管35内にはそれぞれの軸芯を通る濃縮液排出管37が設けられ、この濃縮液排出管37は第1回転軸32Aから回転容器31内に延設され、その延設端が回転容器31の最大径部に達している。従って、原料液Bは、第1回転軸32Aから回転容器31内に供給され、濃縮液が濃縮液排出管37から外部へ排出される。また、透過液Cは、第2回転軸32Bから外部へ排出される。   In the first rotating shaft 32A and the raw material supply pipe 35, there are provided concentrated liquid discharge pipes 37 passing through the respective shaft cores, and this concentrated liquid discharge pipe 37 is extended from the first rotating shaft 32A into the rotary container 31; The extended end reaches the maximum diameter portion of the rotating container 31. Accordingly, the raw material liquid B is supplied into the rotary container 31 from the first rotary shaft 32A, and the concentrated liquid is discharged from the concentrated liquid discharge pipe 37 to the outside. Further, the permeate C is discharged from the second rotating shaft 32B to the outside.

次に、動作について説明する。回転容器21が回転する状態で、原料液供給配管35から原料液Bを加圧供給すると、原料液Bは第1回転軸32Aから回転容器31の原料液室31A内に流入する。この時、回転容器31が所定速度で図4の矢印Aで示すように回転しているため、原料液B中の微粒子は遠心力を受け、微粒子が液体との比重差で原料液室31A内の中心から外周に向けて粒度分布が生じ、粒径の大きな微粒子が原料液室31Aの内周面に集積されて濃縮液を形成する。また、原料液室31Aと透過液室31Bとの圧力差によって原料液B中の微粒子が分離膜モジュール33によって分離され、微粒子が分離膜モジュール33の上面に徐々に堆積し、透過液Cが分離膜モジュール33を透過して透過液室31Bに流入する。透過液室31B内の透過液Cは第2回転軸32Bの中空部からなる透過液排出配管36から外部へ排出される。   Next, the operation will be described. When the raw material liquid B is pressurized and supplied from the raw material liquid supply pipe 35 while the rotary container 21 rotates, the raw material liquid B flows into the raw material liquid chamber 31A of the rotary container 31 from the first rotating shaft 32A. At this time, since the rotating container 31 is rotating at a predetermined speed as indicated by an arrow A in FIG. 4, the fine particles in the raw material liquid B are subjected to centrifugal force, and the fine particles are in the raw material liquid chamber 31A due to the specific gravity difference from the liquid. A particle size distribution is generated from the center to the outer periphery, and fine particles having a large particle size are accumulated on the inner peripheral surface of the raw material liquid chamber 31A to form a concentrated liquid. Further, the fine particles in the raw material liquid B are separated by the separation membrane module 33 due to the pressure difference between the raw material liquid chamber 31A and the permeate liquid chamber 31B, and the fine particles are gradually deposited on the upper surface of the separation membrane module 33. It passes through the membrane module 33 and flows into the permeate chamber 31B. The permeate C in the permeate chamber 31B is discharged to the outside through a permeate discharge pipe 36 that is a hollow portion of the second rotating shaft 32B.

分離膜モジュール33の上面において微粒子が成長して大きくなると、成長微粒子は微粒子の時より更に大きな遠心力を受けて分離膜モジュール33から剥離して原料液B中に戻る。しかし、成長微粒子は液分との大きな比重差によって原料液室31Aの内周面寄りの濃縮液側へ移動し、原料液室31Aの最大径部へ集積されて濃縮液となる。従って、分離膜モジュール33の上面は遠心力によりセルフクリーニングされて常に清浄な状態を維持し、長時間に渡って原料液B中の微粒子を分離することができる。また、原料液室31Aの内周面寄りに集まった濃縮液は濃縮液排出配管37を経由して外部へ排出される。   When the fine particles grow and become larger on the upper surface of the separation membrane module 33, the grown fine particles are separated from the separation membrane module 33 under the centrifugal force larger than that of the fine particles and return to the raw material liquid B. However, the growing fine particles move to the concentrated liquid side closer to the inner peripheral surface of the raw material liquid chamber 31A due to a large specific gravity difference with the liquid component, and are accumulated in the maximum diameter portion of the raw material liquid chamber 31A to become a concentrated liquid. Therefore, the upper surface of the separation membrane module 33 is self-cleaned by centrifugal force and is always kept clean, and the fine particles in the raw material liquid B can be separated for a long time. Further, the concentrated liquid collected near the inner peripheral surface of the raw material liquid chamber 31 </ b> A is discharged to the outside through the concentrated liquid discharge pipe 37.

従って本実施形態によれば、分離膜モジュール33の上流側の回転容器31内の最大径部に濃縮液排出管37を設けたため、濃縮液を連続的に排出することができる。また、本実施形態おいても原料液Bを長時間に渡って微粒子を分離処理することができ、上記各実施形態に準じた作用効果を期することができる。   Therefore, according to the present embodiment, since the concentrate discharge pipe 37 is provided at the maximum diameter portion in the rotary container 31 on the upstream side of the separation membrane module 33, the concentrate can be continuously discharged. Also in the present embodiment, the raw material liquid B can be subjected to separation treatment over a long period of time, and the effects according to the above embodiments can be expected.

上記各実施形態において、原料液を長時間に渡って処理すると、分離膜モジュール13、23、33に目詰まりが発生するが、この場合にはそれぞれの分離膜モジュール13、23、33を透過液側から原料液側に向けて透過液または洗浄液を通液し、逆洗することによって目詰まりを解消することができる。   In each of the above embodiments, when the raw material liquid is processed for a long time, clogging occurs in the separation membrane modules 13, 23, 33. In this case, the separation membrane modules 13, 23, 33 are passed through the permeate. Clogging can be eliminated by passing a permeate or a cleaning liquid from the side toward the raw material liquid side and backwashing.

その他の実施形態
第1の実施形態では複数の円板状分離膜体を有する分離膜モジュールについて説明し、第2の実施形態では複数の傘状分離膜体を有する分離膜モジュールについて説明したが、第1、第2の実施形態では分離膜体がいずれも多孔質担体と有機高分子膜からなる複合平面膜または複合曲面膜であったが、分離膜体としては、板状分離膜体または管状分離膜体を回転軸に放射状に取り付け、放射状の板状分離膜体または放射状の棒状分離膜体を回転軸に複数段に渡って取り付けたものであっても良い。これらの板状分離膜体または管状分離膜体としては、例えば中空糸膜を束ねてその端部を集合させた分離膜モジュールを用いることもできる。その他の構成は上記各実施形態に準じて構成されている。
Other embodiments
In the first embodiment, a separation membrane module having a plurality of disc-shaped separation membrane bodies has been described. In the second embodiment, a separation membrane module having a plurality of umbrella-shaped separation membrane bodies has been described. In the embodiment of 2, the separation membrane body is a composite plane membrane or a composite curved membrane made of a porous carrier and an organic polymer membrane. However, as the separation membrane body, a plate-like separation membrane body or a tubular separation membrane body is used. A radial plate-like separation membrane body or a radial rod-like separation membrane body may be attached to the rotation shaft in a plurality of stages. As these plate-like separation membrane bodies or tubular separation membrane bodies, for example, separation membrane modules in which hollow fiber membranes are bundled and their ends are assembled can also be used. Other configurations are configured in accordance with the above embodiments.

本実施例では図3に示す傘状分離膜を有する遠心分離膜装置を用いて、回転容器の回転速度を表1に示すように変えてCMP排水の遠心分離処理を行った。また、比較例1は、回転容器及び分離膜モジュールとも回転させない場合、比較例2は回転容器のみを回転させた場合、比較例3は分離膜モジュールのみを回転させた場合を示している。

Figure 2006272299
In this example, the centrifugal drainage of the CMP waste water was performed using the centrifugal separation membrane apparatus having the umbrella-shaped separation membrane shown in FIG. Comparative Example 1 shows a case where neither the rotating container nor the separation membrane module is rotated, Comparative Example 2 shows a case where only the rotating container is rotated, and Comparative Example 3 shows a case where only the separation membrane module is rotated.
Figure 2006272299

表1に示す結果によれば、実施例1〜3の場合にはいずれの場合にも連続運転時間が10時間以上と長く、分離膜モジュールの性能が長時間に渡って維持できることが判った。これに対して、回転容器及び分離膜モジュールの双方とも回転させない比較例1の場合には運転時間が30分と極めて短いことが判った。   According to the results shown in Table 1, it was found that in any of Examples 1 to 3, the continuous operation time was as long as 10 hours or more, and the performance of the separation membrane module could be maintained for a long time. In contrast, in the case of Comparative Example 1 in which neither the rotating container nor the separation membrane module was rotated, it was found that the operation time was as extremely short as 30 minutes.

尚、本発明は上記各実施形態に何等制限されるものではなく、必要に応じて各構成要素を適宜設計変更することができる。   Note that the present invention is not limited to the above-described embodiments, and each component can be appropriately changed in design as necessary.

本発明は、石油、化学工業、食品工業、医薬品工業、バイオテクノロジーの分野などで使用される遠心分離膜装置に好適に利用することができる。   The present invention can be suitably used for a centrifugal membrane device used in the fields of petroleum, chemical industry, food industry, pharmaceutical industry, biotechnology, and the like.

本発明の遠心分離膜装置の一実施形態の全体を模式的に示す断面図である。It is sectional drawing which shows typically the whole one Embodiment of the centrifuge membrane apparatus of this invention. 図1に示す遠心分離膜装置の回転軸の第1中空回転軸部の水平方向の断面を示す断面図である。It is sectional drawing which shows the cross section of the horizontal direction of the 1st hollow rotating shaft part of the rotating shaft of the centrifuge membrane apparatus shown in FIG. 本発明の遠心分離膜装置の他の実施形態の全体を模式的に示す断面図である。It is sectional drawing which shows typically the whole other embodiment of the centrifuge membrane apparatus of this invention. 本発明の遠心分離膜装置の更に他の実施形態に示す概念図である。It is a conceptual diagram shown in other embodiment of the centrifuge membrane apparatus of this invention.

符号の説明Explanation of symbols

10、20、30 遠心分離膜装置
11、21、31 回転容器
12、22、32A、32B 回転軸
13、23、33 分離膜モジュール
13A 円板状分離膜体
18 濃縮液排出管
19 透過液排出管
23A 傘状分離膜体
26 原料液供給管
28 透過液排出管
121 第1中空回転軸部
122 第2中空回転軸部
124 原料液供給通路(被処理液の供給手段)
10, 20, 30 Centrifugal membrane device 11, 21, 31 Rotating container 12, 22, 32A, 32B Rotating shaft
13, 23, 33 Separation membrane module 13A Disc-shaped separation membrane body 18 Concentrated liquid discharge pipe 19 Permeate liquid discharge pipe 23A Umbrella-shaped separation membrane body 26 Raw material liquid supply pipe 28 Permeate discharge pipe 121 First hollow rotating shaft part 122 First 2 Hollow rotating shaft 124 Raw material liquid supply passage (supplying means for liquid to be processed)

Claims (10)

懸濁物質を含有する被処理液が供給される回転容器と、この回転容器に回転力を付与する回転軸と、この回転軸に上記回転容器内に位置させて装着された分離膜モジュールと、を備え、上記回転軸を介して上記回転容器及び上記分離膜モジュールを回転させて上記被処理液に遠心力を付与し、この遠心力及び上記分離膜モジュールの透過分離作用で上記被処理液中の懸濁物質を分離する装置であって、上記回転容器に被処理液の供給手段を設け、上記回転軸の少なくとも一部を中空回転軸として形成すると共に上記中空回転軸の中空部を上記分離膜モジュールの透過液側と連通する透過液の排出手段として形成したことを特徴とする遠心分離膜装置。   A rotating container to which a liquid to be treated containing a suspended substance is supplied; a rotating shaft for applying a rotating force to the rotating container; and a separation membrane module mounted on the rotating shaft so as to be positioned in the rotating container; And rotating the rotating container and the separation membrane module via the rotating shaft to apply a centrifugal force to the liquid to be treated, and the centrifugal force and the permeation separation action of the separation membrane module in the liquid to be treated. An apparatus for separating the suspended solids of the apparatus, wherein the rotating vessel is provided with means for supplying a liquid to be treated, and at least a part of the rotating shaft is formed as a hollow rotating shaft, and the hollow portion of the hollow rotating shaft is separated. A centrifugal membrane device characterized in that it is formed as a permeate discharging means communicating with a permeate side of a membrane module. 上記中空回転軸を、上記回転容器内に位置する第1中空回転軸部と上記回転容器外に位置する第2中空回転軸部とに区画し、上記第1中空回転軸部を、上記回転容器内と連通する被処理液の供給通路と分離膜モジュールの透過液側と連通する透過液の排出通路とに区画し、上記第2中空回転軸部の中空部と上記被処理液の供給通路とを連通させて上記被処理液の供給手段として形成したことを特徴とする請求項1に記載の遠心分離膜装置。   The hollow rotation shaft is partitioned into a first hollow rotation shaft portion located inside the rotation container and a second hollow rotation shaft portion located outside the rotation container, and the first hollow rotation shaft portion is divided into the rotation container. A treatment liquid supply passage communicating with the inside and a permeate discharge passage communicating with the permeate side of the separation membrane module; and a hollow portion of the second hollow rotary shaft portion and a treatment liquid supply passage; The centrifuge membrane device according to claim 1, wherein the centrifuge membrane device is formed as a means for supplying the liquid to be processed. 上記第1中空回転軸部を二重管構造の中空回転軸として形成し、上記二重管構造の中空回転軸の外側中空部を被処理液の供給通路として形成すると共にその内側中空部を透過液の排出通路として形成したことを特徴とする請求項2に記載の遠心分離膜装置。   The first hollow rotating shaft portion is formed as a hollow rotating shaft having a double tube structure, the outer hollow portion of the hollow rotating shaft having the double tube structure is formed as a supply passage for the liquid to be treated, and the inner hollow portion is transmitted therethrough. The centrifuge membrane device according to claim 2, wherein the centrifuge membrane device is formed as a liquid discharge passage. 懸濁物質を含有する被処理液が供給される容器と、この容器内に配置され且つ上記容器内の被処理液が循環する孔が形成された回転容器と、この回転容器に上記被処理液中で回転力を付与する回転軸と、この回転軸に上記回転容器内に位置させて装着された分離膜モジュールと、を備え、上記回転軸を介して上記回転容器及び上記分離膜モジュールを回転させて上記回転容器の上記被処理液に遠心力を付与し、この遠心力及び上記分離膜モジュールの透過分離作用で上記回転容器内において上記被処理液中の懸濁物質を分離する装置であって、上記回転軸を二重管構造の中空回転軸として形成すると共に上記中空回転軸の外側または内側の中空部を上記分離膜モジュールの透過液側と連通する透過液の排出手段として形成したことを特徴とする遠心分離膜装置。   A container to which a liquid to be treated containing suspended substances is supplied, a rotating container disposed in the container and having a hole through which the liquid to be treated in the container circulates, and the liquid to be treated in the rotating container A rotating shaft for applying a rotational force, and a separation membrane module mounted on the rotating shaft so as to be positioned in the rotating vessel, and the rotating vessel and the separation membrane module are rotated via the rotating shaft. In this device, a centrifugal force is applied to the liquid to be treated in the rotating container, and the suspended substance in the liquid to be treated is separated in the rotating container by the centrifugal force and the permeation separation action of the separation membrane module. The rotating shaft is formed as a hollow rotating shaft having a double-pipe structure, and the outer or inner hollow portion of the hollow rotating shaft is formed as a permeate discharging means communicating with the permeate side of the separation membrane module. Features Centrifugal separation membrane device. 上記中空回転軸の上記排出手段とは別の中空部を、上記分離膜モジュールによって分離された懸濁物質の排出手段として形成したことを特徴とする請求項4に記載の遠心分離膜装置。   5. The centrifugal separation membrane device according to claim 4, wherein a hollow portion different from the discharge means of the hollow rotating shaft is formed as a discharge means for the suspended matter separated by the separation membrane module. 上記分離膜モジュールは、複数の円板状分離膜体または複数の傘状分離膜体が上記回転軸の軸芯に沿って複数段に渡って取り付けられていることを特徴とする請求項1〜請求項5のいずれか1項に記載の遠心分離膜装置。   2. The separation membrane module, wherein a plurality of disc-shaped separation membrane bodies or a plurality of umbrella-like separation membrane bodies are attached in a plurality of stages along the axis of the rotating shaft. The centrifuge membrane device according to claim 5. 上記回転容器は、その半径方向の最大径部に、上記分離膜モジュールによって分離された懸濁物質の排出手段を有することを特徴とする請求項1〜請求項6のいずれか1項に記載の遠心分離膜装置。   The said rotary container has the discharge means of the suspended solid isolate | separated with the said separation membrane module in the largest diameter part of the radial direction, The any one of Claims 1-6 characterized by the above-mentioned. Centrifugal membrane device. 上記被処理液の供給通路に加圧供給手段及び/または透過液の排出通路に吸引排出手段を設けたことを特徴とする請求項1〜請求項7のいずれか1項に記載の遠心分離膜装置。   The centrifugal separation membrane according to any one of claims 1 to 7, wherein a pressure supply means and / or a suction discharge means is provided in the permeate discharge passage in the liquid supply passage. apparatus. 懸濁物質を含有する被処理液が供給される回転容器と、この回転容器に回転力を付与する回転軸と、上記回転容器内を被処理液室と透過液室の二室に区画して装着される分離膜モジュールと、を備え、上記回転軸を介して上記回転容器及び上記分離膜モジュールを回転させて上記被処理液に遠心力を付与し、この遠心力及び上記分離膜モジュールの透過分離作用で上記被処理液中の懸濁物質を分離する装置であって、上記回転軸を上記被処理液室側と連通して上記被処理液の供給通路となる中空回転軸及び上記透過液室側と連通して透過液の排出通路となる中空回転軸として形成したことを特徴とする遠心分離膜装置。   A rotating container to which a liquid to be treated containing a suspended substance is supplied, a rotating shaft for applying a rotational force to the rotating container, and the inside of the rotating container are divided into a chamber to be processed and a permeating liquid chamber. A separation membrane module to be mounted, and a centrifugal force is applied to the liquid to be treated by rotating the rotary container and the separation membrane module via the rotation shaft, and the centrifugal force and the permeation of the separation membrane module. An apparatus for separating suspended substances in the liquid to be treated by a separation action, wherein the rotary shaft communicates with the liquid chamber side to be treated and serves as a supply passage for the liquid to be treated and the permeate. A centrifugal membrane device characterized in that it is formed as a hollow rotating shaft that communicates with the chamber side and serves as a permeate discharge passage. 上記被処理液室内の半径方向の最大径部に連通する非透過液の排出手段を設けたことを特徴とする請求項9記載の遠心分離膜装置。   10. The centrifugal membrane device according to claim 9, further comprising a non-permeate discharging means that communicates with the radially largest diameter portion in the liquid chamber to be treated.
JP2005100094A 2005-03-30 2005-03-30 Centrifugal membrane device Active JP5005180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005100094A JP5005180B2 (en) 2005-03-30 2005-03-30 Centrifugal membrane device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005100094A JP5005180B2 (en) 2005-03-30 2005-03-30 Centrifugal membrane device

Publications (2)

Publication Number Publication Date
JP2006272299A true JP2006272299A (en) 2006-10-12
JP5005180B2 JP5005180B2 (en) 2012-08-22

Family

ID=37207547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005100094A Active JP5005180B2 (en) 2005-03-30 2005-03-30 Centrifugal membrane device

Country Status (1)

Country Link
JP (1) JP5005180B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106311492A (en) * 2016-09-30 2017-01-11 江苏牡丹离心机制造有限公司 Feed pipe of centrifugal machine and vertical centrifugal machine
KR101760674B1 (en) 2015-10-13 2017-07-24 김대건 Ceramic membrane module and filtering-condensing apparatus provided with the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121667A (en) * 1985-11-22 1987-06-02 Iijima Seimitsu Kogyo Kk Centrifugal type continuous filter apparatus using semipermeable membrane
JP2003534912A (en) * 2000-06-08 2003-11-25 ウェストファリア セパレーター フード テヒ ゲーエムベーハー Centrifuge by sieve system and method of operating the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121667A (en) * 1985-11-22 1987-06-02 Iijima Seimitsu Kogyo Kk Centrifugal type continuous filter apparatus using semipermeable membrane
JP2003534912A (en) * 2000-06-08 2003-11-25 ウェストファリア セパレーター フード テヒ ゲーエムベーハー Centrifuge by sieve system and method of operating the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101760674B1 (en) 2015-10-13 2017-07-24 김대건 Ceramic membrane module and filtering-condensing apparatus provided with the same
CN106311492A (en) * 2016-09-30 2017-01-11 江苏牡丹离心机制造有限公司 Feed pipe of centrifugal machine and vertical centrifugal machine

Also Published As

Publication number Publication date
JP5005180B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
US9186604B1 (en) Hydroclone with vortex flow barrier
JP3577460B2 (en) Rotating disk type filtration device equipped with means for reducing axial force
EP2849864B1 (en) Hydroclone with inlet flow shield
CA2828922C (en) Multi-chambered hydroclone
CN101700472B (en) Rotary membrane separation device and application thereof
US8308953B2 (en) Methods of dynamic filtration using centrifugal force and methods of making a dynamic filtration device
AU741391B2 (en) Rotary filtration device with flow-through inner member
JPS5858144B2 (en) Filtration equipment and method
JP2015520672A5 (en)
US9192946B2 (en) Hydroclone
CN1569302A (en) Methods for centrifugally separating mixture and centrifugal separators
US4717485A (en) Multi-phase separator with porous filter disks
JP2006510475A (en) Filtration device
FR2775911A1 (en) Sludge separation by filtration from biologically treated effluent
CN201586483U (en) Novel rotary membrane separation device
CN110075717B (en) Rotary type filtering structure, device and method for reducing pollution of ceramic membrane
JP5005180B2 (en) Centrifugal membrane device
JP2015142883A (en) Solid-liquid separator
EP0289674A1 (en) Multi-phase separator
JP6513460B2 (en) Separation filtration system and separation filtration method
JPH05309242A (en) Filter element and liquid treating device
RU2226419C1 (en) Centrifugal type device for purification of liquid from dispersible impurities
JP2006061911A (en) Rotary membrane separator
JP2013252478A (en) Treatment method and treatment device of oil component-containing drainage
RU2699121C2 (en) Method for separation of liquid non-uniform disperse systems and installation for implementation thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5005180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250