JP2006272265A - Method and apparatus for modifying surface of article by fluorine-containing gas - Google Patents

Method and apparatus for modifying surface of article by fluorine-containing gas Download PDF

Info

Publication number
JP2006272265A
JP2006272265A JP2005098889A JP2005098889A JP2006272265A JP 2006272265 A JP2006272265 A JP 2006272265A JP 2005098889 A JP2005098889 A JP 2005098889A JP 2005098889 A JP2005098889 A JP 2005098889A JP 2006272265 A JP2006272265 A JP 2006272265A
Authority
JP
Japan
Prior art keywords
fluorine
gas
zone
chamber
surface modification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005098889A
Other languages
Japanese (ja)
Other versions
JP4634199B2 (en
Inventor
Takashi Tanioka
貴 谷岡
Koya Fukae
功也 深江
Taisuke Yonemura
泰輔 米村
Tamio Nagatsuka
民雄 長塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kogyo Co Ltd
Original Assignee
Kanto Denka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kogyo Co Ltd filed Critical Kanto Denka Kogyo Co Ltd
Priority to JP2005098889A priority Critical patent/JP4634199B2/en
Publication of JP2006272265A publication Critical patent/JP2006272265A/en
Application granted granted Critical
Publication of JP4634199B2 publication Critical patent/JP4634199B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Silicon Compounds (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for safely modifying the surface of an article easily by F<SB>2</SB>gas in a simple apparatus. <P>SOLUTION: F<SB>2</SB>gas having satisfactory concentration and quantity is generated efficiently from a fluorine-containing compound by exciting the fluorine-containing compound in a pressure-reduced state to produce active radicals, increasing the reduced pressure to atmospheric pressure or higher and cooling the produced active radicals to substantially deactivate all of the produced active radicals. The generated F<SB>2</SB>gas is used for modifying the surface of the article. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、含フッ素化合物含有ガスを減圧下で励起して活性種を生成させ、その後圧力を大気圧あるいはそれ以上へと上昇させるとともに冷却することで、生成した活性種の全てを実質的に失活させフッ素含有ガス(以下、F2ガスと言う場合がある)を発生させ、該F2ガスを物品の表面と接触させて該表面を改質する方法に関する。 The present invention excites the fluorine-containing compound-containing gas under reduced pressure to generate active species, and then raises the pressure to atmospheric pressure or higher and cools it to substantially all the generated active species. The present invention relates to a method for generating a fluorine-containing gas (hereinafter sometimes referred to as F 2 gas) by deactivation and bringing the F 2 gas into contact with the surface of an article to modify the surface.

また、本発明は、含フッ素化合物含有ガスを減圧下で励起して活性種を生成させ、その後圧力を大気圧あるいはそれ以上へと上昇させるとともに冷却することで、生成した活性種の全てを実質的に失活させF2ガスを発生させ、該F2ガスを物品の表面と接触させて表面を改質するための装置にも関する。 Further, the present invention excites the fluorine-containing compound-containing gas under reduced pressure to generate active species, and then raises the pressure to atmospheric pressure or higher and cools it to substantially all the generated active species. manner quenched to generate F 2 gas, also relates to an apparatus for modifying the surface of the F 2 gas is contacted with the surface of the article.

プラズマCVD法は、半導体デバイスの製造における薄膜形成に広く用いられている。プラズマCVD法では、NF3等のガス状の含フッ素化合物をプラズマ化し、該プラズマ活性種により半導体基板表面のエッチングやCVDチャンバーのクリーニングが行われている。その際、F2ガスも生成するが、F2ガスは排ガスとして処理されている。
例えば、F2ガスをプラズマ化し、このプラズマ活性種を用いてCVDチャンバーの内壁をクリーニングする方法としては、特許文献1のようなものが挙げられる。この場合、F2ガス自体が利用されるのではなく、F2ガスのプラズマが使用されている。
また、含フッ素化合物に由来するプラズマを用いて半導体以外の材料の表面処理を行う方法としては、金属材料やプラスチック材料の表面処理が報告されている(特許文献2及び特許文献3を参照)。しかし、この方法ではプラズマが表面処理される物品の内部に侵入し、該物質に損傷を与える可能性がある。
The plasma CVD method is widely used for thin film formation in the manufacture of semiconductor devices. In the plasma CVD method, a gaseous fluorine-containing compound such as NF 3 is converted into plasma, and the surface of the semiconductor substrate is etched and the CVD chamber is cleaned by the plasma active species. At that time, F 2 gas is also produced, but the F 2 gas is treated as exhaust gas.
For example, as a method for converting F 2 gas into plasma and cleaning the inner wall of the CVD chamber using this plasma active species, the method described in Patent Document 1 can be cited. In this case, F 2 gas plasma is not used but F 2 gas plasma is used.
In addition, as a method for performing surface treatment of a material other than a semiconductor using plasma derived from a fluorine-containing compound, surface treatment of a metal material or a plastic material has been reported (see Patent Document 2 and Patent Document 3). However, in this method, the plasma can penetrate into the surface of the article to be surface treated and damage the material.

F2ガスをプラズマ化せずに用いて表面処理を行う方法も報告されている(例えば、特許文献4を参照)。しかし、このようにF2ガスを直接用いる方法には、以下の問題がある。まず、F2ガスの毒性、危険性、反応性、及び腐食性のため、F2ガスを大量に保管、輸送、及び使用することが困難である。危険性を低減するため、希釈したF2ガスを使用することもできるが、保管及び輸送コストが増加する。さらに、F2ガスが接触する部位には、非常に安定な材料を用いる必要があるため、表面処理設備のコストが高くなる。 There has also been reported a method of performing surface treatment using F 2 gas without converting it into plasma (see, for example, Patent Document 4). However, such a method using F 2 gas directly has the following problems. First, the toxicity of F 2 gas, risk, reactivity, and for corrosion resistance, mass storage of F 2 gas, transportation, and it is difficult to use. To reduce the risk, diluted F 2 gas can be used, but storage and transportation costs increase. Furthermore, since it is necessary to use a very stable material for the portion where the F 2 gas comes into contact, the cost of the surface treatment equipment increases.

また、ハロゲン化合物を、大気圧又はその近傍の圧力下で低周波電圧を印加することにより励起して分解し、ハロゲン又はハロゲン化水素を発生させ、物品の表面を処理する方法が提案されている(特許文献5を参照)。大気圧又はその近傍の圧力下という条件で実施できることは、操作上簡易で安全な方法という利点をもつ。しかし、この方法では分解効率が低く、発生させ得るハロゲン又はハロゲン化水素の濃度はかなり希薄なレベルのものであって、その後の利用に供するのに充分な濃度や量を確保するのは容易なことでない。
特開2004−39740号公報 特開2000−319433号公報 特開平8−217897号公報 特開2001−240956号公報 特開平9−205272号公報
In addition, a method has been proposed in which a halogen compound is excited and decomposed by applying a low-frequency voltage under atmospheric pressure or a pressure in the vicinity thereof to generate halogen or hydrogen halide to treat the surface of the article. (See Patent Document 5). The fact that it can be carried out under the condition of atmospheric pressure or a pressure in the vicinity thereof has the advantage of a safe and easy operation method. However, in this method, the decomposition efficiency is low, and the concentration of halogen or hydrogen halide that can be generated is quite dilute, and it is easy to secure a concentration and amount sufficient for subsequent use. That's not true.
JP 2004-39740 A JP 2000-319433 A JP-A-8-217897 Japanese Patent Laid-Open No. 2001-240956 JP-A-9-205272

本発明は、上記のような事情に鑑みなされたものであり、簡便な装置において安全で容易にF2ガスによる表面改質を行う方法を提供する。本発明は、安全で容易にF2ガスによる表面改質を行うことができる装置も提供する。 The present invention has been made in view of the above circumstances, and provides a method for performing surface modification with F 2 gas safely and easily in a simple apparatus. The present invention also provides an apparatus that can perform surface modification with F 2 gas safely and easily.

本発明者らは、これらの課題を解決すべく鋭意検討を進めた結果、F2ガスよりも取り扱いが容易な含フッ素化合物を含有するガスを供給し、表面改質前に該含フッ素化合物をF2ガスに変換することにより、安全で容易にF2ガスによる表面改質を行うことができることを発見し、特には、含フッ素化合物を減圧状態で励起して活性種を生成させ、その後圧力を大気圧あるいはそれ以上に上昇させるとともに冷却することで、生成した活性種の全てを実質的に失活させることにより、含フッ素化合物からFガスを効率良く、充分な濃度と量とで発生させることができることを見出し、本発明を完成させた。 As a result of diligent investigations to solve these problems, the present inventors have supplied a gas containing a fluorine-containing compound that is easier to handle than F 2 gas, and the fluorine-containing compound is not subjected to surface modification. It was discovered that surface modification with F 2 gas can be performed safely and easily by converting to F 2 gas, and in particular, the fluorine-containing compound is excited under reduced pressure to generate active species, and then the pressure the by cooling with increasing atmospheric pressure or more, the by substantially inactivate all of the generated active species efficiently F 2 gas from the fluorine-containing compound, generated in a sufficient concentration and amount The present invention has been completed.

本発明によれば、含フッ素化合物から表面改質に必要とされる量のF2ガスを製造して表面改質に使用できるため、大量のF2ガスを予め準備・保管する必要がない。 According to the present invention, since an amount of F 2 gas required for surface modification can be produced from a fluorine-containing compound and used for surface modification, it is not necessary to prepare and store a large amount of F 2 gas in advance.

即ち、本発明は、以下のものを提供する。

[A](1)第1のゾーン中で、含フッ素化合物含有ガスに減圧下でエネルギーを付与することにより、含フッ素化合物含有ガス中の少なくとも1つの含フッ素化合物を励起し、それにより発生した活性種を含む励起含フッ素化合物含有ガスを生成し、
(2)生成した励起含フッ素化合物含有ガスを、第1のゾーンと連通した第2のゾーンに輸送する間に、輸送系内の圧力を大気圧または大気圧以上へと上昇させるとともに輸送系を冷却することにより、活性種の全てを実質的に失活させ、フッ素ガスに変換して、フッ素含有ガスを生成し、
(3)第2のゾーン中で、フッ素含有ガスと物品の表面とを減圧、大気圧または大気圧以上の圧力下で接触させ、該物品の表面を改質する、
表面改質方法。
[B](1)第1のゾーン中で、含フッ素化合物含有ガスに減圧下でエネルギーを付与することにより、含フッ素化合物含有ガス中の少なくとも1つの含フッ素化合物を励起し、それにより発生した活性種を含む励起含フッ素化合物含有ガスを生成し、
(2)第1のゾーン中の圧力を大気圧あるいは大気圧以上へと上昇させるとともに冷却することにより、活性種の全てを実質的に失活させ、フッ素ガスに変換して、フッ素含有ガスを生成し、
(3)生成したフッ素含有ガスを、第1のゾーンと連通した第2のゾーンに輸送し、
(4)第2のゾーン中で、フッ素含有ガスを物品の表面と減圧、大気圧または大気圧以上の圧力下で接触させ、該物品の表面を改質する、
表面改質方法。
[C]第1のゾーンが第1の反応チャンバーであり、第2のゾーンが第2の反応チャンバーである、[A]〜[B]の何れかに記載の表面改質方法。
[D]含フッ素化合物含有ガスにエネルギーを付与してから表面改質される物品と接触させるまでの間に、不活性ガスを導入する工程をさらに含む、[A]〜[C]の何れかに記載の表面改質方法。
[E]エネルギーを付与する工程が含フッ素化合物含有ガスのプラズマ化を含む、[A]〜[D]の何れかに記載の表面改質方法。
[F]含フッ素化合物が、NF3、C26、COF2、またはこれらの組み合わせから選択される、[A]〜[E]の何れかに記載の表面改質方法。
[G]含フッ素化合物含有ガスが、不活性ガス及び/または酸素を含む、[A]〜[F]の何れかに記載の表面改質方法。
[H]不活性ガスが、He、Ne、Ar、Xe、Kr、N2、またはこれらの組み合わせである、[G]に記載の表面改質方法。
[I]含フッ素化合物が、C26、COF2、またはこれら混合物のとき、酸素の存在下でプラズマ化される、[A]〜[H]の何れかに記載の表面改質方法。
[J]表面改質が、物品表面のフッ素化によって行われる、[A]〜[I]の何れかに記載の表面改質方法。
[K]表面改質される物品が、金属及び/または金属化合物及び/またはポリマーである、[A]〜[J]の何れかに記載の表面改質方法。
[L]ポリマーが、ポリプロピレンを主成分とする物品である、[K]に記載の表面改質方法。
[M]金属化合物が、金属酸化物、金属窒化物、金属炭化物、金属水酸化物及び金属塩化物の群から選択される1種以上である、[K]に記載の表面改質方法。
[N]金属化合物がSiを主成分とする化合物である、[K]に記載の表面改質方法。
[O]Siを主成分とする化合物が、Si、SiO2、Si34、SiC、ポリシリコン、アモルファスシリコン、またはこれらの組み合わせである、[N]に記載の表面改質方法。
[P]Siを主成分とする化合物が、LPCVD装置で成膜されたものである、[N]に記載の表面改質方法。
[Q](1)含フッ素化合物含有ガスを減圧下でプラズマ化する手段を備えた、第1のゾーンと、
(2)該第1のゾーンと連通し、内部に表面改質される物品を有するとともに、該第1のゾーンから輸送する間に、輸送系内の圧力を大気圧あるいはそれ以上に調整するとともに輸送系を冷却する手段を備え、発生したフッ素含有ガスと該物品の表面とを減圧、大気圧または大気圧以上の圧力下で接触させて、該物品の表面を改質する手段を備えた、第2のゾーンと、
を備えた表面改質装置。
[R](1)含フッ素化合物含有ガスを減圧下でプラズマ化し、その後圧力を大気圧あるいはそれ以上に調整するとともに冷却することによりフッ素含有ガスを発生する手段を備えた、第1のゾーンと、
(2)該第1のゾーンと連通し、内部に表面改質される物品を有するとともに、発生したフッ素含有ガスと該物品の表面とを減圧、大気圧または大気圧以上の圧力下で接触させて、該物品の表面を改質する手段を備えた、第2のゾーンと、
を備えた表面改質装置。
[S](1)含フッ素化合物含有ガスを減圧下でプラズマ化する手段を備えた、第1のチャンバーと、
(2)該第1のチャンバーと連通し、圧力を大気圧あるいはそれ以上に調整するとともに冷却することでフッ素含有ガスを発生する手段を備えた輸送路と、
(3)該輸送路と連通し、内部に表面改質される物品を有するとともに、発生したフッ素含有ガスと該物品の表面とを減圧、大気圧または大気圧以上の圧力下で接触させて、該物品の表面を改質する手段を備えた、第2のチャンバーと、
を備えた表面改質装置。
[T]第1のチャンバーの後ろに真空ポンプが、さらに第2のチャンバーの前及び/または後に、コンプレッサー若しくは真空ポンプが設置される、[Q]〜[S]の何れかに記載の表面改質装置。
[U]第1のチャンバー、真空ポンプ、第2のチャンバー、及び真空ポンプが順に連通し、さらに、第1のチャンバーと真空ポンプ、第2のチャンバーと真空ポンプが、それぞれ独立して連通する、[Q]〜[S]の何れかに記載の表面改質装置。
[V]第1のチャンバー、真空ポンプ、コンプレッサー、及び第2のチャンバーが順に連通し、さらに、第1のチャンバーと真空ポンプ、コンプレッサーと第2のチャンバーが、それぞれ独立して連通する、[Q]〜[S]の何れかに記載の表面改質装置。
[W][Q]〜[V]の何れかに記載の装置を、有機及び/または無機材料の直接フッ素化反応に用いる表面改質方法。
That is, the present invention provides the following.

[A] (1) In the first zone, by applying energy to the fluorine-containing compound-containing gas under reduced pressure, at least one fluorine-containing compound in the fluorine-containing compound-containing gas is excited and generated thereby Producing an excited fluorine-containing compound-containing gas containing active species,
(2) While transporting the generated excited fluorine-containing compound-containing gas to the second zone communicating with the first zone, the pressure in the transport system is increased to atmospheric pressure or higher and the transport system is By cooling, substantially all of the active species are deactivated and converted to fluorine gas, producing a fluorine-containing gas,
(3) In the second zone, the fluorine-containing gas and the surface of the article are brought into contact under reduced pressure, atmospheric pressure or a pressure higher than atmospheric pressure to modify the surface of the article.
Surface modification method.
[B] (1) In the first zone, by applying energy to the fluorine-containing compound-containing gas under reduced pressure, at least one fluorine-containing compound in the fluorine-containing compound-containing gas was excited and generated thereby Producing an excited fluorine-containing compound-containing gas containing active species,
(2) By raising the pressure in the first zone to atmospheric pressure or above atmospheric pressure and cooling it, substantially all of the active species are deactivated and converted to fluorine gas. Generate and
(3) transporting the generated fluorine-containing gas to a second zone communicating with the first zone;
(4) In the second zone, the fluorine-containing gas is brought into contact with the surface of the article under reduced pressure, atmospheric pressure or a pressure higher than atmospheric pressure to modify the surface of the article.
Surface modification method.
[C] The surface modification method according to any one of [A] to [B], wherein the first zone is a first reaction chamber and the second zone is a second reaction chamber.
[D] The method according to any one of [A] to [C], further comprising a step of introducing an inert gas between the time when energy is applied to the fluorine-containing compound-containing gas and the contact with the article to be surface-modified. The surface modification method described in 1.
[E] The surface modification method according to any one of [A] to [D], wherein the step of imparting energy includes plasma formation of the fluorine-containing compound-containing gas.
[F] The surface modification method according to any one of [A] to [E], wherein the fluorine-containing compound is selected from NF 3 , C 2 F 6 , COF 2 , or a combination thereof.
[G] The surface modification method according to any one of [A] to [F], wherein the fluorine-containing compound-containing gas contains an inert gas and / or oxygen.
[H] The surface modification method according to [G], wherein the inert gas is He, Ne, Ar, Xe, Kr, N 2 , or a combination thereof.
[I] The surface modification method according to any one of [A] to [H], wherein when the fluorine-containing compound is C 2 F 6 , COF 2 , or a mixture thereof, the plasma is formed in the presence of oxygen.
[J] The surface modification method according to any one of [A] to [I], wherein the surface modification is performed by fluorination of the article surface.
[K] The surface modification method according to any one of [A] to [J], wherein the article to be surface-modified is a metal and / or a metal compound and / or a polymer.
[L] The surface modification method according to [K], wherein the polymer is an article mainly composed of polypropylene.
[M] The surface modification method according to [K], wherein the metal compound is at least one selected from the group consisting of metal oxides, metal nitrides, metal carbides, metal hydroxides, and metal chlorides.
[N] The surface modification method according to [K], wherein the metal compound is a compound containing Si as a main component.
[O] The surface modification method according to [N], wherein the compound containing Si as a main component is Si, SiO 2 , Si 3 N 4 , SiC, polysilicon, amorphous silicon, or a combination thereof.
[P] The surface modification method according to [N], wherein the compound containing Si as a main component is formed by an LPCVD apparatus.
[Q] (1) a first zone comprising means for converting the fluorine-containing compound-containing gas into plasma under reduced pressure;
(2) While having an article which is in communication with the first zone and whose surface is modified inside, and adjusting the pressure in the transport system to atmospheric pressure or higher while transporting from the first zone, A means for cooling the transport system, and a means for modifying the surface of the article by bringing the generated fluorine-containing gas into contact with the surface of the article under reduced pressure, atmospheric pressure or a pressure higher than atmospheric pressure, A second zone;
A surface modification apparatus equipped with
[R] (1) a first zone comprising means for generating a fluorine-containing gas by converting a fluorine-containing compound-containing gas into a plasma under reduced pressure and then adjusting the pressure to atmospheric pressure or higher and cooling it; ,
(2) Having an article that is surface-modified inside and communicates with the first zone, and the generated fluorine-containing gas and the surface of the article are brought into contact under reduced pressure, atmospheric pressure, or pressure higher than atmospheric pressure. A second zone comprising means for modifying the surface of the article;
A surface modification apparatus equipped with
[S] (1) a first chamber comprising means for converting the fluorine-containing compound-containing gas into plasma under reduced pressure;
(2) a transport path that communicates with the first chamber and that has means for generating a fluorine-containing gas by adjusting the pressure to atmospheric pressure or higher and cooling it;
(3) having an article which is in communication with the transport path and whose surface is modified inside, and contacting the generated fluorine-containing gas with the surface of the article under reduced pressure, atmospheric pressure or pressure higher than atmospheric pressure; A second chamber comprising means for modifying the surface of the article;
A surface modification apparatus equipped with
[T] The surface modification according to any one of [Q] to [S], wherein a vacuum pump is installed behind the first chamber, and a compressor or a vacuum pump is installed before and / or after the second chamber. Quality equipment.
[U] The first chamber, the vacuum pump, the second chamber, and the vacuum pump communicate with each other in order, and further, the first chamber and the vacuum pump, and the second chamber and the vacuum pump communicate with each other independently. [Q] to [S] The surface modifying apparatus according to any one of [S].
[V] The first chamber, the vacuum pump, the compressor, and the second chamber communicate with each other in order, and the first chamber and the vacuum pump, and the compressor and the second chamber communicate with each other independently, [Q ] To [S].
[W] A surface modification method using the apparatus according to any one of [Q] to [V] for direct fluorination reaction of organic and / or inorganic materials.

本発明において、第1のゾーンは、エネルギーを付与する手段により、含フッ素化合物含有ガスに減圧下でエネルギーが付与される空間をさし、第2のゾーンとは、表面改質される物品が設置される空間をさす。第1のゾーンと第2のゾーンとはガス連通し、含フッ素化合物含有ガスが第1のゾーンから第2のゾーンへガス連通する。   In the present invention, the first zone refers to a space where energy is imparted to the fluorine-containing compound-containing gas under reduced pressure by means for imparting energy, and the second zone refers to the article whose surface is to be modified. Refers to the installation space. The first zone and the second zone are in gas communication, and the fluorine-containing compound-containing gas is in gas communication from the first zone to the second zone.

第1のゾーン及び第2のゾーンは、同一のチャンバーであってもよいし、異なるチャンバーであってもよい。後者の場合、第1のゾーン及び第2のゾーンは、各々第1のチャンバー及び第2のチャンバーとなる。第1のチャンバー及び第2のチャンバーは、任意の公知の方法によりガス連通される。例えば、第1のチャンバー及び第2のチャンバーがガス流通によって接続され、含フッ素化合物含有ガスが該ガス流路を通じて第1のゾーンから第2のゾーンへ流通する。
また、第1のゾーンと第2のゾーンは独立して連通しており、両者の圧力を独立に
変動させることができる。第1のゾーンでは減圧下で含フッ素化合物含有ガスを励起し、第1のゾーンから第2のゾーンへの輸送過程で圧力を大気圧あるいはそれ以上に上げるとともに冷却することにより、生成した活性種の全てを実質的に失活させF2ガスに変換し、第2のゾーンで該F2ガスを物品の表面と、減圧、大気圧または大気圧以上の圧力下で接触させ、表面を改質する。ただし、F2への変換は、かかる様態に限定されるものではなく、第1のゾーン中で行われてもよい。
本発明において、第1のゾーンに供給される含フッ素化合物含有ガス中の含フッ素化合物はエネルギー付与によって励起し分解された後にF2ガスを生成し、F2ガスよりも取り扱いが容易であれば特に制限はないが、F2ガスを効率的に発生させるという点からNF3、C2F6、COF2が望ましい。これらの含フッ素化合物は、単独で使用しても、また組み合わせて使用してもよい。
The first zone and the second zone may be the same chamber or different chambers. In the latter case, the first zone and the second zone become the first chamber and the second chamber, respectively. The first chamber and the second chamber are in gas communication by any known method. For example, the first chamber and the second chamber are connected by gas flow, and the fluorine-containing compound-containing gas flows from the first zone to the second zone through the gas flow path.
Moreover, the 1st zone and the 2nd zone are connected independently, The pressure of both can be fluctuate | varied independently. In the first zone, the fluorine-containing compound-containing gas is excited under reduced pressure, and the active species generated by raising the pressure to atmospheric pressure or higher and cooling in the process of transport from the first zone to the second zone All of the above is substantially deactivated and converted to F 2 gas, and in the second zone, the F 2 gas is brought into contact with the surface of the article under reduced pressure, atmospheric pressure or a pressure higher than atmospheric pressure to modify the surface. To do. However, the conversion to F 2 is not limited to such a mode, and may be performed in the first zone.
In the present invention, the fluorine-containing compound in the fluorine-containing compound-containing gas supplied to the first zone generates F 2 gas after being excited and decomposed by applying energy, and is easier to handle than F 2 gas. Although there is no particular limitation, NF 3 , C 2 F 6 , and COF 2 are desirable in terms of efficiently generating F 2 gas. These fluorine-containing compounds may be used alone or in combination.

第1のゾーンに供給される含フッ素化合物含有ガスは、含フッ素化合物以外のガスを含有してもよい。含フッ素化合物以外のガスの種類及び流量、並びに第1のゾーンの圧力は、第1のゾーンで含フッ素化合物を励起する様態、及び、目的とする生成F2濃度に応じて選択される。第1のゾーンでプラズマを発生させる場合、含フッ素化合物以外のガスとして、不活性ガス及び/又は酸素を用いることができる。不活性ガスには、He、Ne、Ar、Xe、Kr、N2、またはそれらの組み合わせが含まれる。含フッ素化合物がC2F6あるいはCOF2を含む場合、O2が好ましい。 The fluorine-containing compound-containing gas supplied to the first zone may contain a gas other than the fluorine-containing compound. The type and flow rate of the gas other than the fluorine-containing compound and the pressure in the first zone are selected in accordance with the state of exciting the fluorine-containing compound in the first zone and the target generated F 2 concentration. When plasma is generated in the first zone, an inert gas and / or oxygen can be used as a gas other than the fluorine-containing compound. The inert gas includes He, Ne, Ar, Xe, Kr, N 2 , or combinations thereof. When the fluorine-containing compound contains C 2 F 6 or COF 2 , O 2 is preferable.

第1のゾーンにおいて、含フッ素化合物にエネルギーを付与して励起する方法としては、プラズマ化が挙げられる。プラズマ化には、任意の公知の手法を用いることができ、例えば、誘導結合プラズマ(ICP)、ヘリコン波プラズマ、及び電子サイクロトン共鳴プラズマ(ECR)が挙げられる。   In the first zone, as a method for exciting the fluorine-containing compound by applying energy, plasma formation can be mentioned. Arbitrary well-known methods can be used for plasmatization, and examples thereof include inductively coupled plasma (ICP), helicon wave plasma, and electron cyclotron resonance plasma (ECR).

第1のゾーンで励起された含フッ素化合物を含有するガスは、第2のゾーンで表面改質される物品と接触するまでの間にF2を生成する。F2は第1のゾーンで生成してもよく、第1のゾーンから第2のゾーンへ輸送する間に生成してもよい。第1のゾーン及び第2のゾーンが異なるチャンバーである場合、両者を接続するガス流路中でF2が生成してもよい。F2が生成する反応機構に制限はなく、例えば励起により生じたFラジカルの再結合が挙げられる。 The gas containing the fluorine-containing compound excited in the first zone generates F 2 until it comes into contact with the article to be surface-modified in the second zone. F 2 may be generated in the first zone or may be generated during transport from the first zone to the second zone. When the first zone and the second zone are different chambers, F 2 may be generated in the gas flow path connecting the two . There is no limitation on the reaction mechanism in which F 2 is generated, and examples thereof include recombination of F radicals generated by excitation.

含フッ素化合物含有ガスが2以上の含フッ素化合物を含有する場合、全ての種類の含フッ素化合物からF2が生成してもよく、一部の種類の含フッ素化合物のみがF2生成に寄与してもよい。なお第1のゾーンに供給される際に含フッ素化合物を含有したガスを、本明細書では「含フッ素化合物含有ガス」と表記する。第1のゾーンで励起された含フッ素化合物を含有するガスを、「励起含フッ素化合物含有ガス」と表記する。また、「励起含フッ素化合物含有ガス」中に、励起された含フッ素化合物由来のF2が含まれる場合がある。 When the fluorine-containing compound-containing gas contains two or more fluorine-containing compounds, F 2 may be generated from all types of fluorine-containing compounds, and only some types of fluorine-containing compounds contribute to F 2 generation. May be. Note that a gas containing a fluorine-containing compound when supplied to the first zone is referred to as a “fluorine-containing compound-containing gas” in this specification. The gas containing the fluorine-containing compound excited in the first zone is referred to as “excited fluorine-containing compound-containing gas”. Further, the “excited fluorine-containing compound-containing gas” may contain F 2 derived from the excited fluorine-containing compound.

本発明の方法では、表面改質に必要な量のF2ガスを第1のゾーンで含フッ素化合物を励起することにより製造し、第2のゾーンで表面改質に消費するため、予め大量のF2ガスを準備または輸送し、取り扱う必要がないという利点が得られる。つまり、表面改質を行う前はF2ガスよりも安定で取り扱いが容易な含フッ素化合物の形態で保存し、表面改質の際に当該含フッ素化合物をF2ガスに変換して利用することにより、従来のF2ガスの取り扱いに関する問題を解決することができる。 In the method of the present invention, an amount of F 2 gas necessary for the surface modification is produced by exciting the fluorine-containing compound in the first zone and consumed for the surface modification in the second zone. The advantage is that F 2 gas need not be prepared or transported and handled. In other words, it is prior to performing surface modification and stored in the form of a stable and easy to handle fluorine-containing compound than F 2 gas, using an equivalent fluorinated compound during surface modification are converted into F 2 gas Thus, it is possible to solve the problems related to the conventional handling of F 2 gas.

含フッ素化合物を励起してから表面改質される物品と接触させるまでの間に、該含フッ素化合物に別のガスを混合してもよい。これにより、発生F2ガス濃度を任意に調整することができる。混合する別のガスとしては、不活性ガスが好ましい。ここで不活性ガスとは、前述の通りである。別のガスの導入は、第1のゾーン内及び第2のゾーン内の任意の位置で行うことができる。第1のゾーン及び第2のゾーンが異なるチャンバーである場合、第1のチャンバーと第2のチャンバーとを接続するガス流路の任意の位置で行うことができる。 Another gas may be mixed with the fluorine-containing compound during the period from when the fluorine-containing compound is excited to when it is brought into contact with the article to be surface-modified. Thereby, the generated F 2 gas concentration can be adjusted arbitrarily. As another gas to be mixed, an inert gas is preferable. Here, the inert gas is as described above. The introduction of another gas can be performed at any position in the first zone and the second zone. When the first zone and the second zone are different chambers, it can be performed at an arbitrary position of the gas flow path connecting the first chamber and the second chamber.

第2のゾーンの圧力、温度及び発生F2濃度は、表面改質される物品の材質及び表面積に応じて選択される。
表面改質がなされる物品に特に制限はなく、F2ガスと接触して反応するものがあれば、何れの材質の物品でもよい。F2ガスと反応するという観点から、表面改質される物品は、金属及び/または金属化合物及び/またはポリマーであることが好ましい。金属としては、例えば、鉄、アルミニウム、チタン、亜鉛、ニッケル、スズ、銅等の単体金属や、ステンレス、真鍮等の合金が挙げられる。金属化合物としては、金属酸化物、金属窒化物、金属炭化物、金属水酸化物及び金属塩化物の群から選択される1種以上が挙げられ、例えば、Siを主成分とする化合物、即ちSi、SiO2、Si3N4、SiC、ポリシリコン、アモルファスシリコン、またはこれらの組み合わせ等が挙げられる。また、該Siを主成分とする化合物はLPCVD装置で成膜されたものも挙げられる。ポリマーとしては、ポリプロピレンを主成分とする物が挙げられる。
The pressure, temperature and generated F 2 concentration of the second zone are selected according to the material and surface area of the article to be surface modified.
There are no particular restrictions on the article to be surface-modified, and any article may be used as long as it reacts upon contact with F 2 gas. From the viewpoint of reacting with F 2 gas, the surface-modified article is preferably a metal and / or a metal compound and / or a polymer. Examples of the metal include simple metals such as iron, aluminum, titanium, zinc, nickel, tin, and copper, and alloys such as stainless steel and brass. Examples of the metal compound include one or more selected from the group of metal oxides, metal nitrides, metal carbides, metal hydroxides, and metal chlorides. For example, a compound containing Si as a main component, that is, Si, Examples thereof include SiO 2 , Si 3 N 4 , SiC, polysilicon, amorphous silicon, or a combination thereof. In addition, examples of the compound containing Si as a main component include those formed by an LPCVD apparatus. As a polymer, the thing which has a polypropylene as a main component is mentioned.

本発明は、第1のゾーン及び第2のゾーンを備えた表面改質装置に関し、第1のチャンバー、第2のチャンバー、及び第1のチャンバーと第2のチャンバーとを接続するガス流路を備えた表面改質装置にも関する。   The present invention relates to a surface reforming apparatus having a first zone and a second zone, and includes a first chamber, a second chamber, and a gas flow path connecting the first chamber and the second chamber. It also relates to a surface modification device provided.

第1のゾーンは減圧下でエネルギーを付与する手段を備え、含フッ素化合物含有ガスにエネルギーを付与することにより、含フッ素化合物含有ガス中の少なくとも1つの含フッ素化合物が励起される。エネルギーを付与する手段としては、プラズマ発生装置が挙げられる。プラズマ発生装置としては、ICPプラズマ装置、ECRプラズマ装置、及びヘリコン波プラズマ発生装置等が挙げられる。   The first zone includes means for applying energy under reduced pressure. By applying energy to the fluorine-containing compound-containing gas, at least one fluorine-containing compound in the fluorine-containing compound-containing gas is excited. As a means for applying energy, a plasma generator can be used. Examples of the plasma generator include an ICP plasma device, an ECR plasma device, and a helicon wave plasma generator.

第1のゾーンで含フッ素化合物を励起した後は、励起含フッ素化合物含有ガスは第2のゾーンに輸送される。第2のゾーンは、表面改質される物品を搬入する手段を備えることができる。搬入手段に特に制限はなく、移動ステージが試料搬入室を経由して搬入されてもよい。   After exciting the fluorine-containing compound in the first zone, the excited fluorine-containing compound-containing gas is transported to the second zone. The second zone can comprise means for carrying an article to be surface modified. There are no particular restrictions on the loading means, and the moving stage may be loaded via the sample loading chamber.

第1及び第2のゾーンが異なるチャンバーである場合、第1のチャンバー及び第2のチャンバーを接続するガス流路を通じて励起含フッ素化合物含有ガスが流通する。また、第1のチャンバーを減圧にするため第1のチャンバーの後ろに真空ポンプが、さらに、第2のチャンバーを表面改質される物品に応じて減圧乃至加圧にするため第2のチャンバーの前及び/または後に、コンプレッサー若しくは真空ポンプが設置される。   When the first and second zones are different chambers, the excited fluorine-containing compound-containing gas flows through the gas flow path connecting the first chamber and the second chamber. In addition, a vacuum pump is provided behind the first chamber for reducing the pressure of the first chamber, and further, a second pump is provided for reducing the pressure of the second chamber according to the article to be surface-modified. A compressor or vacuum pump is installed before and / or after.

本発明の表面改質装置は、輸送系を冷却する手段をさらに備える。冷却する温度としては100℃以下とすることが望ましく、好ましくは50℃以下、より好ましくは25℃以下であり、また0℃以上が好ましい。この条件により活性種の全てを実質的に失活させ、効率的にフッ素ガスへの変換が行われるとともに、輸送系材料への腐食をも抑えることが可能となる。   The surface modification apparatus of the present invention further includes means for cooling the transport system. The cooling temperature is desirably 100 ° C. or lower, preferably 50 ° C. or lower, more preferably 25 ° C. or lower, and preferably 0 ° C. or higher. Under this condition, all of the active species are substantially deactivated, and conversion to fluorine gas is performed efficiently, and corrosion to the transport system material can be suppressed.

本発明の表面改質装置は、励起含フッ素化合物含有ガスと不活性ガスとを混合する手段をさらに備えてもよい。励起含フッ素化合物含有ガスと不活性ガスとを混合する手段に特に制限はなく、単に励起含フッ素化合物含有ガスの流路と不活性ガスの流路とが合流するよう設計されていてもよい。   The surface modification apparatus of the present invention may further include means for mixing the excited fluorine-containing compound-containing gas and the inert gas. The means for mixing the excited fluorine-containing compound-containing gas and the inert gas is not particularly limited, and it may be designed so that the flow path of the excited fluorine-containing compound-containing gas and the flow path of the inert gas simply merge.

第2のゾーンあるいは第2のチャンバーから排出されたガスにはF2や含フッ素化合物が残存する場合があるため、該排出ガスは排出ガス処理装置へ送られる。 Since F 2 and fluorine-containing compounds may remain in the gas exhausted from the second zone or the second chamber, the exhaust gas is sent to the exhaust gas processing device.

以下、含フッ素化合物含有ガスをプラズマ化により励起する本発明の実施態様について、図1を参照して説明する。   Hereinafter, an embodiment of the present invention in which a fluorine-containing compound-containing gas is excited by plasma will be described with reference to FIG.

図1の表面改質装置において、第1のチャンバーはプラズマ発生装置を備え、該第1のチャンバー後ろの真空ポンプでプラズマ発生に適した圧力まで減圧にする。減圧にした後、Ar等でプラズマを発生させる。作動条件は、供給される含フッ素化合物が励起されるよう選択される。作動条件は、含フッ素化合物の分解率が高くなるよう、好ましくは含フッ素化合物が完全に分解されるよう、選択される。好ましくは133.3Pa〜1333Paである。その後、含フッ素化合物、例えばNF3を含有するガスを第1のチャンバーに供給する。含フッ素化合物を、第1のチャンバーに供給する前に他のガス、例えばN2やArを混合してもよい。この混合を行う場合、含フッ素化合物及び別のガスを含有するガスが含フッ素化合物含有ガスとして第1のチャンバーに供給される。即ち、その供給される含フッ素化合物含有ガスは、NF3単独でもよいし、NF3とN2やArとの混合ガスであってもよい。 In the surface modification apparatus of FIG. 1, the first chamber includes a plasma generator, and the pressure is reduced to a pressure suitable for plasma generation by a vacuum pump behind the first chamber. After reducing the pressure, plasma is generated with Ar or the like. The operating conditions are selected such that the supplied fluorine-containing compound is excited. The operating conditions are selected so that the decomposition rate of the fluorine-containing compound is high, and preferably the fluorine-containing compound is completely decomposed. Preferably it is 133.3Pa-1333Pa. Thereafter, a gas containing a fluorine-containing compound, for example, NF 3 is supplied to the first chamber. Another gas such as N 2 or Ar may be mixed before supplying the fluorine-containing compound to the first chamber. When this mixing is performed, a gas containing a fluorine-containing compound and another gas is supplied to the first chamber as a fluorine-containing compound-containing gas. That is, the supplied fluorine-containing compound-containing gas may be NF 3 alone or a mixed gas of NF 3 and N 2 or Ar.

含フッ素化合物含有ガスがNF3単独の場合は、
NF3 → 1/2N2 + 3/2F2
のように、NF3が完全にF2に変換されると、25%のN2ガスが発生するため、発生するF2ガスの濃度は最大75%となる。本発明の好ましい特徴の一つは、NF3の完全分解を実質的に達成できることにある。
When the fluorine-containing compound-containing gas is NF 3 alone,
NF 3 → 1 / 2N 2 + 3 / 2F 2
Thus, when NF 3 is completely converted to F 2 , 25% of N 2 gas is generated, so the concentration of the generated F 2 gas is 75% at the maximum. One preferred feature of the present invention is that substantially complete degradation of NF 3 can be achieved.

励起含フッ素化合物含有ガスは、ガス流路を通じて第1のチャンバーから第2のチャンバーに輸送される。該ガス流路中で、圧力を大気圧あるいはそれ以上へと上昇させるとともに冷却することにより、活性種の全てを実質的に失活させ、フッ素ガスへと変換する。   The excited fluorine-containing compound-containing gas is transported from the first chamber to the second chamber through the gas flow path. By raising the pressure to atmospheric pressure or higher and cooling in the gas flow path, all the active species are substantially deactivated and converted to fluorine gas.

導入可能なNF3量が、100sccm〜5000sccmであることから、発生F2ガス量は、150sccm〜7500sccmとなる。75%よりも希釈して使用したい場合は、処理室(第2のチャンバー)手前から、また、F2ガス濃度をできる限り低い濃度で取り扱いたい場合は、真空ポンプ手前から、不活性ガスを導入する。あるいはプラズマを発生させる条件に合致するのであれば、プラズマ発生装置手前より不活性ガスを導入し、任意の濃度に調節する。即ち、図中に示した3つの入口の内、1つ以上の任意の別のガスを混合することができる。あるいはまた、別のガスを全く混合しなくてもよく、含フッ素化合物に別のガスが混合された含フッ素化合物含有ガスを予め準備してもよい。この希釈F2ガスをライン下流に設けた処理室(第2のチャンバー)に導入し、物品の表面改質に用いる。大気圧(常圧)下での表面改質は図1、減圧下での表面改質は図2、加圧下での表面改質は図3に示すような構造になる。第2のチャンバーから排出されるガスは、排出処理装置に導入される。 Since the amount of NF 3 that can be introduced is 100 sccm to 5000 sccm, the amount of generated F 2 gas is 150 sccm to 7500 sccm. Introduce an inert gas from the front of the treatment chamber (second chamber) if you want to dilute it below 75%, or from the front of the vacuum pump if you want to handle the F 2 gas concentration as low as possible. To do. Alternatively, if the plasma generation conditions are met, an inert gas is introduced from the front of the plasma generation apparatus and adjusted to an arbitrary concentration. That is, one or more arbitrary other gases can be mixed among the three inlets shown in the figure. Alternatively, another gas may not be mixed at all, and a fluorine-containing compound-containing gas in which another gas is mixed with the fluorine-containing compound may be prepared in advance. This diluted F 2 gas is introduced into a processing chamber (second chamber) provided downstream of the line and used for surface modification of the article. The surface modification under atmospheric pressure (normal pressure) is as shown in FIG. 1, the surface modification under reduced pressure is as shown in FIG. 2, and the surface modification under pressure is as shown in FIG. The gas discharged from the second chamber is introduced into the discharge processing apparatus.

以下、本発明を実施例により説明するが、本発明が以下の実施例に限定されるものではない。
実施例1
図1の装置を用いて、含フッ素化合物含有ガスからF2を製造した。含フッ素化合物として、NF3を用い、またプラズマ発生装置として誘導結合プラズマ(ICP)発生装置(ASTeX社製ASTRONi)を使用した。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to a following example.
Example 1
Using the apparatus of FIG. 1, F 2 was produced from a fluorine-containing compound-containing gas. NF 3 was used as the fluorine-containing compound, and an inductively coupled plasma (ICP) generator (ASTRONi manufactured by ASTeX) was used as the plasma generator.

まず、約25℃(20-25℃)で第1のチャンバーを1Torr(133Pa)まで減圧にした後、Arを1000sccm導入しプラズマを発生させた。次に、NF3(流量:1000 sccm)を第1のチャンバーに供給した。第1のチャンバー下流の配管を100℃以下の温度を維持するように冷却し、希釈ガス入口3で窒素(流量:48000 sccm)により希釈するとともに、含フッ素化合物含有ガスを真空ポンプ下流で大気圧下約25℃の第2のチャンバーに輸送した。 First, after reducing the pressure of the first chamber to 1 Torr (133 Pa) at about 25 ° C. (20-25 ° C.), 1000 sccm of Ar was introduced to generate plasma. Next, NF 3 (flow rate: 1000 sccm) was supplied to the first chamber. The piping downstream of the first chamber is cooled so as to maintain a temperature of 100 ° C. or lower, diluted with nitrogen (flow rate: 48000 sccm) at the dilution gas inlet 3, and the fluorine-containing compound-containing gas is at atmospheric pressure downstream of the vacuum pump. Transported to a second chamber at about 25 ° C. below.

本実施例のNF3流量では、理論上、供給したNF3が完全にF2に変換すると(NF3 → 1/2N2 + 3/2F2)、N2及びF2が、それぞれ500 sccm及び1500 sccm発生することになる。従って、NF3が完全に変換された場合には、窒素で再希釈した後のF2の濃度は3.0 vol.% となる。 In the NF 3 flow rate of this example, theoretically, when the supplied NF 3 is completely converted to F 2 (NF 3 → 1 / 2N 2 + 3 / 2F 2 ), N 2 and F 2 are 500 sccm and 1500 sccm will be generated. Therefore, when NF 3 is completely converted, the concentration of F 2 after re-dilution with nitrogen is 3.0 vol.%.

真空ポンプと第2のチャンバーとの間で含フッ素化合物含有ガスをサンプリングし、FT-IR測定及び10%KI水溶液を用いた滴定を行った。FT-IR測定装置には、Midac社製FT-IR IGA-2000を用いた。その結果、含フッ素化合物含有ガス中のF2の濃度は、3.10 vol.% であり、第1のチャンバーに供給したNF3の変換率は99.78%であることがわかった。 The fluorine-containing compound-containing gas was sampled between the vacuum pump and the second chamber, and FT-IR measurement and titration using a 10% KI aqueous solution were performed. The FT-IR IGA-2000 manufactured by Midac was used as the FT-IR measurement apparatus. As a result, it was found that the concentration of F 2 in the fluorine-containing compound-containing gas was 3.10 vol.%, And the conversion rate of NF 3 supplied to the first chamber was 99.78%.

次に、第2のチャンバー内でポリプロピレン板の表面処理を行った。第2のチャンバーとしては、内容積4.6LのNi製の円柱体容器を用いた。この中にポリプロピレン板(以下、PPと略すことがある。L×W×H=20mm×20mm×2mm)を5個設置し、窒素ガスで第2のチャンバー内を置換した。その後、上記操作により得た含フッ素化合物含有ガスを、第2のチャンバー内に輸送し、約25℃で所定時間、PPの表面処理を行った。処理時間ごとのPP表面の接触角(水との接触角(単位:度))を測定した(処理前のPP接触角は、89度)。その測定結果を表1に示す(PP 5個(n=5)の平均値を算出)。
実施例2
第1のチャンバーから放出された含フッ素化合物含有ガスを希釈する窒素の流量を28000 sccm に変更した点を除き、実施例1と同様に実験を行った。なお、この条件でNF3が完全に変換する場合、常圧下の第2のチャンバーに輸送される含フッ素化合物含有ガス中のF2の濃度は、5.0 vol.% となる。
Next, the surface treatment of the polypropylene plate was performed in the second chamber. As the second chamber, a cylindrical cylinder made of Ni having an internal volume of 4.6 L was used. Five polypropylene plates (hereinafter abbreviated as PP. L × W × H = 20 mm × 20 mm × 2 mm) were placed therein, and the inside of the second chamber was replaced with nitrogen gas. Thereafter, the fluorine-containing compound-containing gas obtained by the above operation was transported into the second chamber, and the surface treatment of PP was performed at about 25 ° C. for a predetermined time. The contact angle (contact angle with water (unit: degree)) of the PP surface for each treatment time was measured (PP contact angle before treatment was 89 degrees). The measurement results are shown in Table 1 (calculating the average value of 5 PPs (n = 5)).
Example 2
The experiment was performed in the same manner as in Example 1 except that the flow rate of nitrogen for diluting the fluorine-containing compound-containing gas released from the first chamber was changed to 28000 sccm. When NF 3 is completely converted under these conditions, the concentration of F 2 in the fluorine-containing compound-containing gas transported to the second chamber under normal pressure is 5.0 vol.%.

サンプリングされた含フッ素化合物含有ガス中のF2の濃度は、5.03 vol.%であり、NF3の変換率は99.78%であることがわかった。 It was found that the concentration of F 2 in the sampled fluorine-containing compound-containing gas was 5.03 vol.%, And the conversion rate of NF 3 was 99.78%.

次に、実施例1と同様にして、PPの表面処理を行い、その接触角を測定した。その測定結果を表1に示す。
実施例3
含フッ素化合物として、C2F6を用い、またプラズマ発生装置として誘導結合プラズマ(ICP)発生装置(Landmark Technology社製Litmas Blue1200)を使用した。
まず、約25℃(20-25℃)で第1のチャンバーを1Torr(133Pa)まで減圧した。次に、C2F6(流量:40 sccm)を酸素(流量:160 sccm )で希釈して含フッ素化合物含有ガスとして第1のチャンバーに供給した。プラズマ発生装置には、1200Wの出力を印加した。第1のチャンバーから放出される含フッ素化合物含有ガスを希釈ガス入口3で窒素(流量:100slm)により再度希釈するとともに、大気圧下約25℃の第2のチャンバーに輸送した。
Next, the surface treatment of PP was performed in the same manner as in Example 1, and the contact angle was measured. The measurement results are shown in Table 1.
Example 3
C 2 F 6 was used as the fluorine-containing compound, and an inductively coupled plasma (ICP) generator (Litmas Blue 1200 manufactured by Landmark Technology) was used as the plasma generator.
First, the first chamber was depressurized to 1 Torr (133 Pa) at about 25 ° C. (20-25 ° C.). Next, C 2 F 6 (flow rate: 40 sccm) was diluted with oxygen (flow rate: 160 sccm) and supplied to the first chamber as a fluorine-containing compound-containing gas. An output of 1200 W was applied to the plasma generator. The fluorine-containing compound-containing gas released from the first chamber was diluted again with nitrogen (flow rate: 100 slm) at the dilution gas inlet 3 and transported to the second chamber at about 25 ° C. under atmospheric pressure.

サンプリングされた含フッ素化合物含有ガス中には、714 ppm のF2ガスが検出され、供給したC2F6の変換率はほぼ100%であった。 In the sampled fluorine-containing compound-containing gas, 714 ppm of F 2 gas was detected, and the conversion rate of the supplied C 2 F 6 was almost 100%.

次に、上記の窒素で希釈した含フッ素化合物含有ガスを使用して、ポリプロピレン板に代えて金属板を使用する以外は、実施例1と同様にし、その表面処理を行った。内容積4.6LのNi製の円柱体容器(第2のチャンバー)内に、アルミニウム板(以下、Alと略すことがある。L×W×H=20mm×20mm×2mm)を5個設置し、窒素ガスで第2のチャンバー内を置換した。その後、上記操作により得た含フッ素化合物含有ガスを、第2のチャンバー内に輸送し、25℃で所定時間、Alの表面処理を行った。処理時間ごとのAl表面の接触角(水との接触角(単位:度))を測定した。その測定結果を表2に示す。
実施例4
含フッ素化合物含有ガスとしてC2F6に代えてCOF2を用いた点を除き、実施例3と同様にして実験を行った。
Next, the surface treatment was performed in the same manner as in Example 1 except that the fluorine-containing compound-containing gas diluted with nitrogen was used and a metal plate was used instead of the polypropylene plate. Five aluminum plates (hereinafter abbreviated as Al. L × W × H = 20mm × 20mm × 2mm) are installed in a cylindrical cylinder made of Ni (second chamber) with an internal volume of 4.6L. The inside of the second chamber was replaced with nitrogen gas. Thereafter, the fluorine-containing compound-containing gas obtained by the above operation was transported into the second chamber, and Al was surface-treated at 25 ° C. for a predetermined time. The contact angle (contact angle with water (unit: degree)) of the Al surface for each treatment time was measured. The measurement results are shown in Table 2.
Example 4
The experiment was performed in the same manner as in Example 3 except that COF 2 was used instead of C 2 F 6 as the fluorine-containing compound-containing gas.

サンプリングされた含フッ素化合物含有ガス中には、146 ppm のF2ガスが検出され、供給したCOF2の変換率は71%であった。 146 ppm of F 2 gas was detected in the sampled fluorine-containing compound-containing gas, and the conversion rate of the supplied COF 2 was 71%.

次に、実施例3と同様にして、Alに代えて銅板(Cuと略すことがある)の表面処理を行い、その接触角を測定した。なお、このときCuは、予め酸洗(Cuを0.1NのHCl溶液に入れて30 min 攪拌後、水洗3回)及び加熱処理(大気中200℃で1hr加熱後、デシケータ中で放冷)を行った。その測定結果を表2に示す。
実施例5
図1の装置を用いて、ポリプロピレンの表面改質を行った。含フッ素化合物ガスとしてNF3を用い、プラズマ発生装置として誘導結合プラズマ(ICP)発生装置(Landmark Technology社製Litmas Blue1200)を使用した。第2のチャンバーには、L×W×H=20mm×20mm×2mmのポリプロピレン(PP)試料を設置した。
Next, in the same manner as in Example 3, a surface treatment was performed on a copper plate (sometimes abbreviated as Cu) instead of Al, and the contact angle was measured. At this time, Cu was previously pickled (Cu was added to a 0.1N HCl solution and stirred for 30 min, then washed with water three times) and heat-treated (heated at 200 ° C. for 1 hr in the air and then allowed to cool in a desiccator). went. The measurement results are shown in Table 2.
Example 5
Surface modification of polypropylene was performed using the apparatus shown in FIG. NF 3 was used as the fluorine-containing compound gas, and an inductively coupled plasma (ICP) generator (Litmas Blue1200 manufactured by Landmark Technology) was used as the plasma generator. In the second chamber, a polypropylene (PP) sample of L × W × H = 20 mm × 20 mm × 2 mm was placed.

まず、約25℃(20-25℃)で第1のチャンバーを1Torrまで減圧した。次に、NF3(流量:100 sccm )を入口1で窒素(流量:400 sccm )により希釈して含フッ素化合物含有ガスを作成し、該含フッ素化合物含有ガスを第1のチャンバーに供給した。プラズマ発生装置には1200Wの出力を印加した。第1のチャンバーから放出された含フッ素化合物含有ガスを入口3で窒素(流量:14400 sccm )により再度希釈し、大気圧下約25℃の第2のチャンバーに導入した。この条件でNF3が完全に変換されると、第2のチャンバーに導入される含フッ素化合物含有ガス中のF2濃度は、1vol.% となる(サンプリングして分析した結果、F2濃度は、1.05vol.% であり、変換率99.84% であった)。 First, the first chamber was depressurized to 1 Torr at about 25 ° C. (20-25 ° C.). Next, NF 3 (flow rate: 100 sccm) was diluted with nitrogen (flow rate: 400 sccm) at the inlet 1 to prepare a fluorine-containing compound-containing gas, and the fluorine-containing compound-containing gas was supplied to the first chamber. An output of 1200 W was applied to the plasma generator. The fluorine-containing compound-containing gas released from the first chamber was diluted again with nitrogen (flow rate: 14400 sccm) at the inlet 3 and introduced into the second chamber at about 25 ° C. under atmospheric pressure. When NF 3 is completely converted under these conditions, the F 2 concentration in the fluorine-containing compound-containing gas introduced into the second chamber is 1 vol.% (The result of sampling and analysis shows that the F 2 concentration is 1.05 vol.%, And the conversion rate was 99.84%).

第2のチャンバーでは、PP試料を大気圧下25℃で3時間、含フッ素化合物含有ガスと接触させた。   In the second chamber, the PP sample was contacted with the fluorine-containing compound-containing gas at 25 ° C. under atmospheric pressure for 3 hours.

PP試料表面を、ULVAC-PHI社製XPS PHI Quantum 2000により分析した。処理前では、試料表面における炭素の原子濃度は83 atom% であり、フッ素の原子濃度は0 atom% であったが、処理後では、炭素の原子濃度は48 atom% 、フッ素の原子濃度は45 atom% となった。このXPSの結果から、試料表面がフッ素化されたことがわかる。   The surface of the PP sample was analyzed by XPS PHI Quantum 2000 manufactured by ULVAC-PHI. Before the treatment, the atomic concentration of carbon on the sample surface was 83 atom% and the atomic concentration of fluorine was 0 atom%, but after the treatment, the atomic concentration of carbon was 48 atom% and the atomic concentration of fluorine was 45 atom%. atom%. From the XPS results, it can be seen that the sample surface was fluorinated.

なお、XPS測定条件は以下の通りである。   The XPS measurement conditions are as follows.

X-ray Source:Al Ka 1486.6eV monochromatic
X-ray Power:24.72W
X-ray Beam Diameter:100.0mm
Source Analyzer Angle:45.0°
Neutralizer Energy:1.0V
Neutralizer Current:25.0nA
Depth Profile
Sputter Ion:Ar+
Sputter Energy:3.000keV
Sputter Current:25.0nA
実施例6
NF3(流量:200 sccm )を窒素(流量:300 sccm )で希釈して含フッ素化合物含有ガスを作成し、第1のチャンバーから放出される含フッ素化合物含有ガスを流量9300 sccm の窒素で希釈した点を除き、実施例5と同様にPP試料の表面改質を行った。NF3が完全に変換されたと仮定すると、常圧下の第2のチャンバーに導入される含フッ素化合物含有ガス中のF2濃度は、3vol.% となる(サンプリングして分析した結果、F2濃度は、2.97 vol.% であり、変換率99.73% であった)。
X-ray Source: Al Ka 1486.6eV monochromatic
X-ray Power: 24.72W
X-ray Beam Diameter: 100.0mm
Source Analyzer Angle: 45.0 °
Neutralizer Energy: 1.0V
Neutralizer Current: 25.0nA
Depth Profile
Sputter Ion: Ar +
Sputter Energy: 3.000keV
Sputter Current: 25.0nA
Example 6
NF 3 (flow rate: 200 sccm) is diluted with nitrogen (flow rate: 300 sccm) to create a fluorine-containing compound-containing gas, and the fluorine-containing compound-containing gas released from the first chamber is diluted with nitrogen at a flow rate of 9300 sccm Except for this point, the surface modification of the PP sample was performed in the same manner as in Example 5. When NF 3 is assumed to have been completely converted, F 2 concentration of the fluorine-containing compound-containing gas introduced into the second chamber under normal pressure is, 3 vol.% And comprising (a result of the analysis by sampling, F 2 concentration Was 2.97 vol.%, And the conversion rate was 99.73%).

PP試料表面を、実施例5と同様にULVAC-PHI社製XPS PHI Quantum 2000により分析した。処理前では、試料表面における炭素の原子濃度は83 atom% であり、フッ素の原子濃度は0 atom% であったが、処理後では、炭素の原子濃度は41 atom% 、フッ素の原子濃度は52 atom% であった。この結果から、試料表面がフッ素化されたことがわかる。
実施例7
図1の装置を用いて、SiO2膜ウエハのエッチング試験を行った。内容積4.6LのNi製の円柱体容器(第2のチャンバー)内に、単結晶Si上にSiO2膜(7500Å)を成膜したウエハ(25mm×25mm)を設置した。また、この第2のチャンバーの上流に、プラズマ発生装置(第1のチャンバー)として誘導結合プラズマ(ICP)発生装置(ASTeX社製ASTRONi)を設置し、さらに第1のチャンバー下流に配管を冷却する冷却装置を設置した。
The surface of the PP sample was analyzed by XPS PHI Quantum 2000 manufactured by ULVAC-PHI as in Example 5. Before the treatment, the atomic concentration of carbon on the sample surface was 83 atom% and the atomic concentration of fluorine was 0 atom%, but after the treatment, the atomic concentration of carbon was 41 atom% and the atomic concentration of fluorine was 52 atom%. atom%. This result shows that the sample surface was fluorinated.
Example 7
An etching test of the SiO 2 film wafer was performed using the apparatus shown in FIG. A wafer (25 mm × 25 mm) in which a SiO 2 film (7500 mm) was formed on single crystal Si was placed in a cylindrical cylindrical container (second chamber) made of Ni having an internal volume of 4.6 L. An inductively coupled plasma (ICP) generator (ASTRONi manufactured by ASTeX) is installed upstream of the second chamber as a plasma generator (first chamber), and the pipe is cooled downstream of the first chamber. A cooling device was installed.

第1及び第2のチャンバー内を、窒素により置換した。その後、第2のチャンバー内を、0.5×105Paまで減圧し、所定温度((1)260℃、並びに(2) 310℃)に加熱した。また、約25℃(20-25℃)で第1のチャンバーを1Torr(133Pa)まで減圧にした後、Arを1000sccm導入しプラズマを発生させた。次に、NF3(流量:1000 sccm)を第1のチャンバーに供給した。第1のチャンバー下流の配管を100℃以下の温度を維持するように冷却し、希釈ガス入口3で窒素(流量:5500 sccm)により希釈した。これにより、F2濃度20 vol.% の含フッ素化合物含有ガスを発生させた。この含フッ素化合物含有ガスのうち1000 sccm を、上記の0.5×105Pa 及び各々の所定温度に保ったまま第2のチャンバー内に輸送し、それぞれの温度において目的のウエハの表面処理を行った。 The inside of the first and second chambers was replaced with nitrogen. Thereafter, the pressure in the second chamber was reduced to 0.5 × 10 5 Pa and heated to predetermined temperatures ((1) 260 ° C. and (2) 310 ° C.). The first chamber was decompressed to 1 Torr (133 Pa) at about 25 ° C. (20-25 ° C.), and then Ar was introduced at 1000 sccm to generate plasma. Next, NF 3 (flow rate: 1000 sccm) was supplied to the first chamber. The piping downstream of the first chamber was cooled so as to maintain a temperature of 100 ° C. or lower, and diluted with nitrogen (flow rate: 5500 sccm) at the dilution gas inlet 3. As a result, a fluorine-containing compound-containing gas having an F 2 concentration of 20 vol.% Was generated. Of this fluorine-containing compound-containing gas, 1000 sccm was transported into the second chamber while maintaining the above-mentioned 0.5 × 10 5 Pa and the respective predetermined temperatures, and the target wafer was surface-treated at each temperature. .

処理後のウエハは、Nanometrics社製Nano Spec 3000AF-T を用いて膜厚測定を行い、各々の所定温度でのエッチングレートを求めた。その結果を表3に示す。
実施例8
図1の表面処理装置を使用して、化合物のフッ素化を行った。
The processed wafer was subjected to film thickness measurement using Nano Spec 3000AF-T manufactured by Nanometrics, and the etching rate at each predetermined temperature was determined. The results are shown in Table 3.
Example 8
The compound was fluorinated using the surface treatment apparatus of FIG.

図1の表面処理装置において、処理室の位置に捕集ボンベを置き、その後段に恒温槽を付帯した1000mlのPFA製反応器を設置した。その反応器に1,3-ジオキソラン-2-オン 517g(5.87mol)を入れ、50℃の恒温槽中で融解させた。次に、窒素ガスを200sccmの流量で反応器内に30分間吹き込みながら、溶存している空気等のガス成分を系外に追い出し、系内の窒素置換を行った。その後、含フッ素化合物含有ガスとしてNF3を用い、更にプラズマ発生装置としては誘導結合プラズマ(ICP)発生装置(ASTeX社製ASTRONi)を使用して、NF3からF2を50−100℃の温度制御のもとで発生させた。NF3:1000sccmを導入し、N2:3000sccmで希釈し30%F2を発生させた。その30%F2のうち350sccmを、先端にSUS製フィルター(細孔直径15μm、表面積 7.5cm2)を装着したガス吹き込み管を使用して反応器に導入した。回転数を約800rpmにした攪拌機によって絶えず反応液を攪拌して、一ヶ所にフッ素ガスを滞留させないようにした。反応器内の液相温度は、外部の恒温槽により50−60℃に保つようにした。同時に、反応器上部に取り付けた冷却器で、原料、生成物及び副生したフッ化水素の蒸気を凝縮・還流させながら、気相温度を35−50℃に保つようにした。未反応フッ素等の不凝縮ガスは、冷却器の後に設けた除害装置で処理した。 In the surface treatment apparatus of FIG. 1, a collection cylinder was placed at the position of the treatment chamber, and a 1000 ml PFA reactor attached with a thermostatic bath was installed at the subsequent stage. The reactor was charged with 517 g (5.87 mol) of 1,3-dioxolan-2-one and melted in a thermostatic bath at 50 ° C. Next, while nitrogen gas was blown into the reactor at a flow rate of 200 sccm for 30 minutes, dissolved gas components such as air were driven out of the system, and nitrogen substitution in the system was performed. Then, using NF3 as the fluorine-containing compound-containing gas, and using an inductively coupled plasma (ICP) generator (ASTRONi manufactured by ASTeX) as the plasma generator, temperature control from 50 to 100 ° C from NF 3 to F 2 Generated under. NF 3 : 1000 sccm was introduced and diluted with N 2 : 3000 sccm to generate 30% F 2 . 350 sccm of the 30% F 2 was introduced into the reactor using a gas blowing tube equipped with a SUS filter (pore diameter 15 μm, surface area 7.5 cm 2 ) at the tip. The reaction solution was continuously stirred by a stirrer having a rotation speed of about 800 rpm so that the fluorine gas was not retained in one place. The liquid phase temperature in the reactor was kept at 50-60 ° C. by an external thermostat. At the same time, the gas phase temperature was maintained at 35-50 ° C. while condensing and refluxing the raw material, product, and by-product hydrogen fluoride vapor with a cooler attached to the upper part of the reactor. Uncondensed gases such as unreacted fluorine were treated with a detoxifying device provided after the cooler.

フッ素の導入量が10.6mol(原料の1.8モル当量)に達した時点で反応を終了し、副生したフッ化水素を蒸留して除去した後、水(200ml)及び10%NaHCO3水溶液(100ml)で洗浄し、ジクロロメタン(500ml×6回)で抽出した。その抽出液を無水硫酸マグネシウムで乾燥した後、ジクロロメタンを留去した。得られた粗生成物590gを蒸留精製したところ、純度90%以上の4-フルオロ-1,3-ジオキソラン-2-オンが480g得られた(収率 約70%)。 The reaction was terminated when the amount of fluorine introduced reached 10.6 mol (1.8 molar equivalents of the raw material), and hydrogen fluoride produced as a by-product was removed by distillation, and then water (200 ml) and 10% aqueous NaHCO 3 solution (100 ml) ) And extracted with dichloromethane (500 ml × 6 times). The extract was dried over anhydrous magnesium sulfate and dichloromethane was distilled off. When 590 g of the obtained crude product was purified by distillation, 480 g of 4-fluoro-1,3-dioxolan-2-one having a purity of 90% or more was obtained (yield: about 70%).

純度90%の粗生成物は、15℃にて再結晶を3回繰り返したところ、純度99%以上の4-フルオロ-1,3-ジオキソラン-2-オンが約390g得られた。   The crude product having a purity of 90% was recrystallized three times at 15 ° C., and about 390 g of 4-fluoro-1,3-dioxolan-2-one having a purity of 99% or more was obtained.

Figure 2006272265
Figure 2006272265

Figure 2006272265
Figure 2006272265

Figure 2006272265
Figure 2006272265

本発明による大気圧(常圧)下での表面改質を行う装置の概略を示す図である。It is a figure which shows the outline of the apparatus which performs the surface modification under atmospheric pressure (normal pressure) by this invention. 本発明による減圧下での表面改質を行う装置の概略を示す図である。It is a figure which shows the outline of the apparatus which performs the surface modification under reduced pressure by this invention. 本発明による加圧下での表面改質を行う装置の概略を示す図である。It is a figure which shows the outline of the apparatus which performs the surface modification under the pressurization by this invention.

Claims (23)

(1)第1のゾーン中で、含フッ素化合物含有ガスに減圧下でエネルギーを付与することにより、含フッ素化合物含有ガス中の少なくとも1つの含フッ素化合物を励起し、それにより発生した活性種を含む励起含フッ素化合物含有ガスを生成し、
(2)生成した励起含フッ素化合物含有ガスを、第1のゾーンと連通した第2のゾー
ンに輸送する間に、輸送系内の圧力を大気圧または大気圧以上へと上昇させるとともに輸送系を冷却することにより、活性種の全てを実質的に失活させ、フッ素ガスに変換して、フッ素含有ガスを生成し、
(3)第2のゾーン中で、フッ素含有ガスと物品の表面とを減圧、大気圧または大気圧以上の圧力下で接触させ、該物品の表面を改質する、
表面改質方法。
(1) In the first zone, by applying energy to the fluorine-containing compound-containing gas under reduced pressure, at least one fluorine-containing compound in the fluorine-containing compound-containing gas is excited, and the activated species generated thereby Producing an excited fluorine-containing compound-containing gas,
(2) While transporting the generated excited fluorine-containing compound-containing gas to the second zone communicating with the first zone, the pressure in the transport system is increased to atmospheric pressure or higher and the transport system is By cooling, substantially all of the active species are deactivated and converted to fluorine gas, producing a fluorine-containing gas,
(3) In the second zone, the fluorine-containing gas and the surface of the article are brought into contact under reduced pressure, atmospheric pressure or a pressure higher than atmospheric pressure to modify the surface of the article.
Surface modification method.
(1)第1のゾーン中で、含フッ素化合物含有ガスに減圧下でエネルギーを付与することにより、含フッ素化合物含有ガス中の少なくとも1つの含フッ素化合物を励起し、それにより発生した活性種を含む励起含フッ素化合物含有ガスを生成し、
(2)第1のゾーン中の圧力を大気圧あるいは大気圧以上へと上昇させるとともに冷却することにより、活性種の全てを実質的に失活させ、フッ素ガスに変換して、フッ素含有ガスを生成し、
(3)生成したフッ素含有ガスを、第1のゾーンと連通した第2のゾーンに輸送し、
(4)第2のゾーン中で、フッ素含有ガスを物品の表面と減圧、大気圧または大気圧以上の圧力下で接触させ、該物品の表面を改質する、
表面改質方法。
(1) In the first zone, by applying energy to the fluorine-containing compound-containing gas under reduced pressure, at least one fluorine-containing compound in the fluorine-containing compound-containing gas is excited, and the activated species generated thereby Producing an excited fluorine-containing compound-containing gas,
(2) By raising the pressure in the first zone to atmospheric pressure or above atmospheric pressure and cooling it, substantially all of the active species are deactivated and converted to fluorine gas. Generate and
(3) transporting the generated fluorine-containing gas to a second zone communicating with the first zone;
(4) In the second zone, the fluorine-containing gas is brought into contact with the surface of the article under reduced pressure, atmospheric pressure or a pressure higher than atmospheric pressure to modify the surface of the article.
Surface modification method.
第1のゾーンが第1の反応チャンバーであり、第2のゾーンが第2の反応チャンバーである、請求項1〜2の何れかに記載の表面改質方法。   The surface modification method according to claim 1, wherein the first zone is a first reaction chamber and the second zone is a second reaction chamber. 含フッ素化合物含有ガスにエネルギーを付与してから表面改質される物品と接触させるまでの間に、不活性ガスを導入する工程をさらに含む、請求項1〜3の何れかに記載の表面改質方法。   The surface modification according to any one of claims 1 to 3, further comprising a step of introducing an inert gas between applying energy to the fluorine-containing compound-containing gas and bringing it into contact with the article to be surface-modified. Quality method. エネルギーを付与する工程が含フッ素化合物含有ガスのプラズマ化を含む、請求項1〜4の何れかに記載の表面改質方法。   The surface modification method according to any one of claims 1 to 4, wherein the step of imparting energy includes plasmatization of the fluorine-containing compound-containing gas. 含フッ素化合物がNF3、C26、COF2、またはこれらの組み合わせから選択される、請求項1〜5の何れかに記載の表面改質方法。 The surface modification method according to claim 1, wherein the fluorine-containing compound is selected from NF 3 , C 2 F 6 , COF 2 , or a combination thereof. 含フッ素化合物含有ガスが、不活性ガス及び/または酸素を含む、請求項1〜6の何れかに記載の表面改質方法。   The surface modification method according to claim 1, wherein the fluorine-containing compound-containing gas contains an inert gas and / or oxygen. 不活性ガスが、He、Ne、Ar、Xe、Kr、N2、またはこれらの組み合わせである、請求項7に記載の表面改質方法。 The surface modification method according to claim 7, wherein the inert gas is He, Ne, Ar, Xe, Kr, N 2 , or a combination thereof. 含フッ素化合物が、C26、COF2、またはこれら混合物のとき、酸素の存在下でプラズマ化される、請求項1〜8の何れかに記載の表面改質方法。 The surface modification method according to claim 1, wherein when the fluorine-containing compound is C 2 F 6 , COF 2 , or a mixture thereof, the plasma is formed in the presence of oxygen. 表面改質が、物品表面のフッ素化によって行われる、請求項1〜9の何れかに記載の表面改質方法。   The surface modification method according to claim 1, wherein the surface modification is performed by fluorination of the article surface. 表面改質される物品が、金属及び/または金属化合物及び/またはポリマーである、請求項1〜10の何れかに記載の表面改質方法。   The surface modification method according to any one of claims 1 to 10, wherein the article to be surface-modified is a metal and / or a metal compound and / or a polymer. ポリマーが、ポリプロピレンを主成分とする物品である、請求項11に記載の表面
改質方法。
The surface modification method according to claim 11, wherein the polymer is an article mainly composed of polypropylene.
金属化合物が、金属酸化物、金属窒化物、金属炭化物、金属水酸化物及び金属塩化物の群から選択される1種以上である、請求項11に記載の表面改質方法。   The surface modification method according to claim 11, wherein the metal compound is at least one selected from the group consisting of metal oxides, metal nitrides, metal carbides, metal hydroxides, and metal chlorides. 金属化合物がSiを主成分とする化合物である、請求項11に記載の表面改質方法。   The surface modification method according to claim 11, wherein the metal compound is a compound containing Si as a main component. Siを主成分とする化合物が、Si、SiO2、Si34、SiC、ポリシリコン、アモルファスシリコン、またはこれらの組み合わせである、請求項14に記載の表面改質方法。 The surface modification method according to claim 14, wherein the compound containing Si as a main component is Si, SiO 2 , Si 3 N 4 , SiC, polysilicon, amorphous silicon, or a combination thereof. Siを主成分とする化合物が、LPCVD装置で成膜されたものである、請求項14に記載の表面改質方法。   The surface modification method according to claim 14, wherein the compound containing Si as a main component is formed by an LPCVD apparatus. (1)含フッ素化合物含有ガスを減圧下でプラズマ化する手段を備えた、第1のゾーンと、
(2)該第1のゾーンと連通し、内部に表面改質される物品を有するとともに、該第1のゾーンから輸送する間に、輸送系内の圧力を大気圧あるいは大気圧以上に調整するとともに輸送系を冷却する手段を備え、発生したフッ素含有ガスと該物品の表面とを減圧、大気圧または大気圧以上の圧力下で接触させて該物品の表面を改質する手段を備えた、第2のゾーンと、
を備えた表面改質装置。
(1) a first zone comprising means for converting the fluorine-containing compound-containing gas into plasma under reduced pressure;
(2) It has an article that is in communication with the first zone and has a surface modified inside, and adjusts the pressure in the transport system to atmospheric pressure or higher than atmospheric pressure during transportation from the first zone. And a means for cooling the transport system, and a means for modifying the surface of the article by bringing the generated fluorine-containing gas into contact with the surface of the article under reduced pressure, atmospheric pressure or a pressure higher than atmospheric pressure, A second zone;
A surface modification apparatus equipped with
(1)含フッ素化合物含有ガスを減圧下でプラズマ化し、その後圧力を大気圧あるいはそれ以上に調整するとともに冷却することによりフッ素含有ガスを発生する手段を備えた、第1のゾーンと、
(2)該第1のゾーンと連通し、内部に表面改質される物品を有するとともに、発生したフッ素含有ガスと該物品の表面とを減圧、大気圧または大気圧以上の圧力下で接触させて、該物品の表面を改質する手段を備えた、第2のゾーンと、
を備えた表面改質装置。
(1) a first zone comprising means for generating a fluorine-containing gas by converting the fluorine-containing compound-containing gas into a plasma under reduced pressure and then adjusting the pressure to atmospheric pressure or higher and cooling it;
(2) Having an article which is in communication with the first zone and whose surface is modified inside, and the generated fluorine-containing gas and the surface of the article are brought into contact under reduced pressure, atmospheric pressure or pressure higher than atmospheric pressure. A second zone comprising means for modifying the surface of the article;
A surface modification apparatus equipped with
(1)含フッ素化合物含有ガスを減圧下でプラズマ化する手段を備えた、第1のチャンバーと、
(2)該第1のチャンバーと連通し、圧力を大気圧あるいはそれ以上に調整するとともに冷却することによりフッ素含有ガスを発生する手段を備えた輸送路と、
(3)該輸送路と連通し、内部に表面改質される物品を有するとともに、発生したフッ素含有ガスと該物品の表面とを減圧、大気圧または大気圧以上の圧力下で接触させて、該物品の表面を改質する手段を備えた、第2のチャンバーと、
を備えた表面改質装置。
(1) a first chamber comprising means for converting the fluorine-containing compound-containing gas into plasma under reduced pressure;
(2) a transport path that communicates with the first chamber, includes a means for generating a fluorine-containing gas by adjusting the pressure to atmospheric pressure or higher and cooling it;
(3) having an article that is surface-modified inside and in communication with the transport path, and contacting the generated fluorine-containing gas with the surface of the article under reduced pressure, atmospheric pressure or pressure higher than atmospheric pressure; A second chamber comprising means for modifying the surface of the article;
A surface modification apparatus equipped with
第1のチャンバーの後ろに真空ポンプが、さらに第2のチャンバーの前及び/または後に、コンプレッサー若しくは真空ポンプが設置される、請求項17〜19の何れかに記載の表面改質装置。   The surface modification apparatus according to any one of claims 17 to 19, wherein a vacuum pump is installed behind the first chamber, and a compressor or a vacuum pump is installed before and / or after the second chamber. 第1のチャンバー、真空ポンプ、第2のチャンバー、及び真空ポンプが順に連通し、さらに、第1のチャンバーと真空ポンプ、第2のチャンバーと真空ポンプが、それぞれ独立して連通する、請求項17〜19の何れかに記載の表面改質装置。   The first chamber, the vacuum pump, the second chamber, and the vacuum pump communicate with each other in order, and further, the first chamber and the vacuum pump, and the second chamber and the vacuum pump communicate with each other independently. The surface modification apparatus in any one of -19. 第1のチャンバー、真空ポンプ、コンプレッサー、及び第2のチャンバーが順に連通し、さらに、第1のチャンバーと真空ポンプ、コンプレッサーと第2のチャンバーが、それぞれ独立して連通する、請求項17〜19の何れかに記載の表面改質装置。   The first chamber, the vacuum pump, the compressor, and the second chamber communicate with each other in order, and the first chamber and the vacuum pump, and the compressor and the second chamber communicate with each other independently. The surface modification apparatus in any one of. 請求項17〜22の何れかに記載の装置を、有機及び/または無機材料の直接フッ素化反応に用いる表面改質方法。   A surface modification method using the apparatus according to any one of claims 17 to 22 for a direct fluorination reaction of an organic and / or inorganic material.
JP2005098889A 2005-03-30 2005-03-30 Surface modification method and apparatus using fluorine-containing gas Active JP4634199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005098889A JP4634199B2 (en) 2005-03-30 2005-03-30 Surface modification method and apparatus using fluorine-containing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005098889A JP4634199B2 (en) 2005-03-30 2005-03-30 Surface modification method and apparatus using fluorine-containing gas

Publications (2)

Publication Number Publication Date
JP2006272265A true JP2006272265A (en) 2006-10-12
JP4634199B2 JP4634199B2 (en) 2011-02-16

Family

ID=37207516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005098889A Active JP4634199B2 (en) 2005-03-30 2005-03-30 Surface modification method and apparatus using fluorine-containing gas

Country Status (1)

Country Link
JP (1) JP4634199B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150676A (en) * 2006-12-19 2008-07-03 Air Water Inc Method for regenerating hard film-coated metallic member
JP2010526986A (en) * 2007-05-11 2010-08-05 エスディーシー マテリアルズ インコーポレイテッド Heat exchanger, cooling device and cooling method
WO2013145955A1 (en) * 2012-03-28 2013-10-03 セントラル硝子株式会社 Method and apparatus for producing fluorine gas
US9302260B2 (en) 2007-10-15 2016-04-05 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
JP2016086188A (en) * 2007-12-21 2016-05-19 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツングSolvay Fluor GmbH Process for production of microelectromechanical systems
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10314934A (en) * 1997-05-20 1998-12-02 Seiko Epson Corp Surface treating method
JP2004075471A (en) * 2002-08-20 2004-03-11 Anelva Corp Method for producing gaseous halogen, apparatus for producing gaseous halogen and recovery/circulation system for gaseous halogen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10314934A (en) * 1997-05-20 1998-12-02 Seiko Epson Corp Surface treating method
JP2004075471A (en) * 2002-08-20 2004-03-11 Anelva Corp Method for producing gaseous halogen, apparatus for producing gaseous halogen and recovery/circulation system for gaseous halogen

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9216398B2 (en) 2005-04-19 2015-12-22 SDCmaterials, Inc. Method and apparatus for making uniform and ultrasmall nanoparticles
US9719727B2 (en) 2005-04-19 2017-08-01 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
JP2008150676A (en) * 2006-12-19 2008-07-03 Air Water Inc Method for regenerating hard film-coated metallic member
JP2010526986A (en) * 2007-05-11 2010-08-05 エスディーシー マテリアルズ インコーポレイテッド Heat exchanger, cooling device and cooling method
JP2014139509A (en) * 2007-05-11 2014-07-31 Sdc Materials Inc Heat exchanger, cooler, and cooling method
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9737878B2 (en) 2007-10-15 2017-08-22 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9302260B2 (en) 2007-10-15 2016-04-05 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9597662B2 (en) 2007-10-15 2017-03-21 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
JP2016086188A (en) * 2007-12-21 2016-05-19 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツングSolvay Fluor GmbH Process for production of microelectromechanical systems
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
WO2013145955A1 (en) * 2012-03-28 2013-10-03 セントラル硝子株式会社 Method and apparatus for producing fluorine gas
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9566568B2 (en) 2013-10-22 2017-02-14 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9950316B2 (en) 2013-10-22 2018-04-24 Umicore Ag & Co. Kg Catalyst design for heavy-duty diesel combustion engines
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same

Also Published As

Publication number Publication date
JP4634199B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
JP4634199B2 (en) Surface modification method and apparatus using fluorine-containing gas
JP4804345B2 (en) F2-containing gas manufacturing method and F2-containing gas manufacturing apparatus
JP3855081B2 (en) CVD apparatus equipped with fluorine gas cleaning mechanism and method of cleaning CVD apparatus with fluorine gas
JP5011148B2 (en) Semiconductor device manufacturing method, cleaning method, and substrate processing apparatus
US20120285492A1 (en) Methods of dry stripping boron-carbon films
US20060016459A1 (en) High rate etching using high pressure F2 plasma with argon dilution
JP4459329B2 (en) Method and apparatus for removing attached film
JP2004146787A (en) Method for etching high dielectric constant material, and for cleaning deposition chamber for high dielectric constant material
JP2009503270A (en) Use of NF3 to remove surface deposits
TW583736B (en) Plasma cleaning gas and plasma cleaning method
TW201216355A (en) Plasma processing method and plasma processing apparatus
US20070028943A1 (en) Method of using sulfur fluoride for removing surface deposits
JP2016219786A (en) Dry etching method, dry etching agent, and method of manufacturing semiconductor device
JP2013062342A (en) Cleaning method of film forming device
JP2008060171A (en) Method of cleaning semiconductor processing equipment
TW201348136A (en) Method and apparatus for producing fluorine gas
JPWO2018181104A1 (en) Dry etching method or dry cleaning method
JP4320389B2 (en) CVD chamber cleaning method and cleaning gas used therefor
JP2019044264A (en) Processing method of tungsten oxide, and manufacturing method for tungsten hexafluoride
JP4220318B2 (en) Cleaning method inside process chamber
JP2008294121A (en) Manufacturing method and manufacturing apparatus of semiconductor device
JP2003327412A (en) Method for generating fluorine
TW202300702A (en) Etching gas and etching method
JPH10212582A (en) Method for using chlorine trifluoride in cleaning surface of thin film forming device
JP2008115473A (en) Production device for silicon-containing film, and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101118

R150 Certificate of patent or registration of utility model

Ref document number: 4634199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250