JP2003327412A - Method for generating fluorine - Google Patents

Method for generating fluorine

Info

Publication number
JP2003327412A
JP2003327412A JP2002137468A JP2002137468A JP2003327412A JP 2003327412 A JP2003327412 A JP 2003327412A JP 2002137468 A JP2002137468 A JP 2002137468A JP 2002137468 A JP2002137468 A JP 2002137468A JP 2003327412 A JP2003327412 A JP 2003327412A
Authority
JP
Japan
Prior art keywords
fluorine
generating
clf
agent
brf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002137468A
Other languages
Japanese (ja)
Other versions
JP4230169B2 (en
Inventor
Isamu Mori
勇 毛利
Minoru Aramaki
稔 荒牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2002137468A priority Critical patent/JP4230169B2/en
Publication of JP2003327412A publication Critical patent/JP2003327412A/en
Application granted granted Critical
Publication of JP4230169B2 publication Critical patent/JP4230169B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for generating fluorine which is useful for obtaining materials for syntheses of fluoride and for cleaning an apparatus for depositing a thin film or the like. <P>SOLUTION: In the method for generating fluorine by heating a fluorine- generating agent, one operation of generating fluorine and subsequently the other operation of re-fluorinating the fluorine-generating agent with a fluorinating agent are alternately carried out. The fluorine-generating agent is K<SB>3</SB>NiF<SB>7</SB>or CoF<SB>3</SB>and the fluorinating agent is at least a kind of compound selected from ClF, ClF<SB>3</SB>, ClF<SB>5</SB>, BrF, BrF<SB>3</SB>, BrF<SB>5</SB>, IF<SB>3</SB>, IF<SB>5</SB>, IF<SB>7</SB>, NF<SB>3</SB>, N<SB>2</SB>F<SB>4</SB>, N<SB>2</SB>F<SB>2</SB>, N<SB>3</SB>F, H<SB>2</SB>NF, HNF<SB>2</SB>, NOF and NO<SB>2</SB>F or at least a kind of compound selected from these compounds corresponding to the fluorinating agent to which 1-20 vol.% F<SB>2</SB>is added. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、フッ化物の合成原
料や薄膜堆積装置などのクリーニングに有用なフッ素を
安全に大量供給するためのフッ素の発生方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for generating fluorine for safely supplying a large amount of fluorine useful for cleaning synthetic raw materials for fluoride and thin film deposition equipment.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】フッ
素(F2)は、各種フッ化物の合成原料やクリーニング
ガスとして有用な物質であることが知られている。しか
し、F2は、非常に反応性が高くボンベに高濃度ガスを
高圧充填することが困難であるため大量に輸送できない
という問題がある。また合成原料、クリーングガスとし
て使用する場合、F2の純度はできる限り高いほうが好
ましい。通常、フッ素の発生方法としては、フッ化水素
−フッ化カリウム溶融塩の電気分解による方法が工業的
に最も良く利用されている。また近年、オンサイトでフ
ッ素を供給可能な電気分解装置も市販されている。しか
しながら、電気分解では電極の消耗や陽極効果による異
常などのように安定性に問題があり、メンテンナンス時
には非常に危険なフッ化水素を取り扱うことが必要にな
るため、高純度のF2を供給する方法としては、K3Ni
7を加熱する方法が知られている(式参照、Larned
B Asprey, Journal Fluorine chemistry, vol.7, 359-3
61, 1976)。
PRIOR ART AND PROBLEMS TO BE SOLVED BY THE INVENTION Fluorine (F 2 ) is known to be a useful substance as a raw material for synthesizing various fluorides and as a cleaning gas. However, F 2 has a problem that it cannot be transported in a large amount because it is very reactive and it is difficult to fill the cylinder with a high-concentration gas under high pressure. When used as a synthetic raw material or clean gas, the purity of F 2 is preferably as high as possible. Usually, as a method for generating fluorine, a method by electrolysis of molten salt of hydrogen fluoride-potassium fluoride is most industrially used. Further, in recent years, an electrolysis device capable of supplying fluorine on-site has been commercially available. However, electrolysis has stability problems such as electrode wear and abnormalities due to the anode effect, and it is necessary to handle very dangerous hydrogen fluoride during maintenance, so high-purity F 2 is supplied. As a method, K 3 Ni
A method of heating F 7 is known (see formula, Learned)
B Asprey, Journal Fluorine chemistry, vol.7, 359-3
61, 1976).

【0003】 K3NiF7 → K3NiF6 + 0.5F2・・・・ しかしながら、この方法では固体フッ素化合物の重量に
対して発生可能なフッ素量が少なく、大量にフッ素を輸
送すると言う観点からは問題が残る。またF2供給法と
しては、NF3プラズマを発生させN2とF2に分解させ
る方法も知られている。しかし、この方法ではF2がN2
で希釈されることや条件にもよるがNFxラジカルの生
成による不純物が生成する可能性がある。また、活性種
の寿命が長いため、例えば有機物合成などには発火の危
険性がある場合は使用できない。
K 3 NiF 7 → K 3 NiF 6 + 0.5F 2 ... However, in this method, the amount of fluorine that can be generated is small relative to the weight of the solid fluorine compound, and from the viewpoint of transporting a large amount of fluorine. Remains a problem. As an F 2 supply method, a method is known in which NF 3 plasma is generated and decomposed into N 2 and F 2 . However, in this method, F 2 is N 2
However, impurities may be generated due to the generation of NFx radicals, although it may be diluted with. In addition, since the active species have a long life, they cannot be used, for example, in the synthesis of organic substances when there is a risk of ignition.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記の問
題点に鑑み鋭意検討の結果、フッ素発生剤を熱分解して
2を発生させた後、フッ素化剤、またはこれらのガス
に少量(1〜20vol%)のF2を添加したフッ素化
剤で再生処理することにより大量にF2を取り出す方法
を見出し本発明に至った。
DISCLOSURE OF THE INVENTION As a result of intensive studies in view of the above problems, the present inventors have found that after the fluorine-generating agent is thermally decomposed to generate F 2 , the fluorinating agent, or these gases. The present invention has found a method of extracting a large amount of F 2 by regenerating with a fluorinating agent to which a small amount (1 to 20 vol%) of F 2 is added.

【0005】すなわち本発明は、フッ素発生剤を加熱す
ることによりフッ素を発生させる方法において、フッ素
を発生させ、その後、フッ素化剤でフッ素発生剤を再フ
ッ素化する操作を交互に行うことを特徴とするフッ素の
発生方法で、そのフッ素発生剤が、K3NiF7、CoF
3であり、またフッ素化剤が、ClF、ClF3、ClF
5、BrF、BrF3、BrF5、IF3、IF5、IF7
NF3、N24,N2 2、N3F、H2NF、HNF2、N
OF、NO2Fの内から選ばれる少なくとも1種の化合
物、または該フッ素化剤にF2を1〜20vol%添加
したこれらの化合物の内から選ばれる少なくとも1種の
化合物であることを特徴とするフッ素の発生方法を提供
するものである。
That is, the present invention heats a fluorine generating agent.
In the method of generating fluorine by
Is generated, and then the fluorine generating agent is refreshed with a fluorinating agent.
Fluorine characterized by alternating fluorination operations
The fluorine generating agent is K3NiF7, CoF
3And the fluorinating agent is ClF, ClF3, ClF
Five, BrF, BrF3, BrFFive, IF3, IFFive, IF7,
NF3, N2FFour, N2F 2, N3F, H2NF, HNF2, N
OF, NO2At least one compound selected from F
Or the fluorinating agent is F21 to 20 vol%
At least one selected from these compounds
Providing a method for generating fluorine characterized by being a compound
To do.

【0006】本発明において、フッ素発生剤としてK3
NiF7を使用する場合、F2発生のための加熱条件は、
200〜800℃の温度範囲で、更に好ましくは300
〜400℃の温度範囲であり、インターハロゲンガス
(ClF、ClF3、ClF5、BrF、BrF3、Br
5、IF3、IF5、IF7)での再生条件は、20〜2
00℃の温度範囲で、更に好ましくは50〜150℃の
温度範囲が良く、更に好ましくは130〜150℃の温
度範囲が良い。K3NiF7の加熱条件に於いて、200
℃以下であると発生速度(分解速度)が遅く非効率的で
あり、また800℃以上であると充填管がフッ素による
損傷(腐蝕)を激しく受けるため好ましくない。インタ
ーハロゲンガスでの再生フッ素化は、比較的低温でも可
能であるが、特に冷却する必要などないため20℃以上
200℃以下で有れば良い。200℃以上であると分解
との競争反応になり再生効率が落ちるため好ましくな
い。再生反応をNF3を使用する場合は、K3NiF7
填管に導入する前に加熱式活性化装置あるいはプラズマ
式活性化装置でNF3の活性化(分解)を行っておく必
要がある。この際のK3NiF7の加熱温度はインターハ
ロゲンガスでの加熱条件と同じである。加熱式装置での
NF3の活性化は、300〜800℃の温度範囲が好ま
しい。プラズマ式活性化装置の場合、分解に用いる周波
数は高周波領域でもマイクロ波領域でも構わないが、で
きる限り大気圧近くで分解できる方が装置的に簡易であ
り好ましい。
In the present invention, K 3 is used as the fluorine-generating agent.
When using NiF 7 , the heating conditions for generating F 2 are:
In the temperature range of 200 to 800 ° C., more preferably 300
The temperature range is up to 400 ° C., and the interhalogen gas (ClF, ClF 3 , ClF 5 , BrF, BrF 3 , Br) is used.
The reproduction conditions in F 5 , IF 3 , IF 5 , IF 7 ) are 20 to 2
In the temperature range of 00 ° C, the temperature range of 50 to 150 ° C is more preferable, and the temperature range of 130 to 150 ° C is more preferable. Under the heating conditions of K 3 NiF 7 , 200
When the temperature is lower than 0 ° C, the generation rate (decomposition rate) is slow and inefficient, and when the temperature is higher than 800 ° C, the filling pipe is severely damaged (corroded) by fluorine, which is not preferable. Regeneration fluorination with an interhalogen gas is possible at a relatively low temperature, but since it is not particularly necessary to cool it, the temperature may be 20 ° C. or higher and 200 ° C. or lower. If the temperature is 200 ° C. or higher, a competitive reaction with the decomposition occurs and the regeneration efficiency decreases, which is not preferable. When NF 3 is used for the regeneration reaction, it is necessary to activate (decompose) NF 3 with a heating activation device or a plasma activation device before introducing it into a K 3 NiF 7 filled tube. The heating temperature of K 3 NiF 7 at this time is the same as the heating condition with the interhalogen gas. The activation of NF 3 in the heating device is preferably carried out in the temperature range of 300 to 800 ° C. In the case of the plasma activation device, the frequency used for decomposition may be in the high frequency region or the microwave region, but it is preferable that the decomposition can be performed as close to atmospheric pressure as possible because it is device simple.

【0007】次にフッ素発生剤としてCoF3を使用
し、加熱してF2を発生させる場合、450〜800℃
の温度範囲で、更に好ましくは550〜700℃の温度
範囲である。800℃以下が好ましい理由は、K3Ni
7と同様であり、450℃以下では分解が効率的に進
まない問題がある。CoF3を分解するとCoF2が生成
する。CoF2のCoF3への再生にインターハロゲンガ
スを使用する場合もしくは前述の方法と同様にNF3
予め活性化させて行う場合、500℃以下の温度で行う
ことが好ましい。500℃以上であるとCoF3の生成
と分解が競争的に起こるため非効率的である。
Next, when CoF 3 is used as a fluorine generating agent and heated to generate F 2 , 450 to 800 ° C.
Is more preferable, and a temperature range of 550 to 700 ° C. is more preferable. The reason why the temperature is preferably 800 ° C or lower is that K 3 Ni
Similar to F 7 , there is a problem that decomposition does not proceed efficiently at 450 ° C or lower. Decomposition of CoF 3 produces CoF 2 . When an interhalogen gas is used for regeneration of CoF 2 into CoF 3 or when NF 3 is previously activated in the same manner as in the above-mentioned method, it is preferable to carry out at a temperature of 500 ° C. or lower. When the temperature is 500 ° C. or higher, the production and decomposition of CoF 3 occur competitively, which is inefficient.

【0008】[0008]

【実施例】以下、実施例により本発明を詳細に説明する
が、本発明はかかる実施例に限定されるものではない。
The present invention is described in detail below with reference to examples, but the present invention is not limited to these examples.

【0009】実施例1 示差熱重量分析装置内にK3NiF7を仕込み、Ar気流
中で加熱した結果、約200℃から重量が急速に減少し
た。なお、発生したガスはF2であった。また、K3Ni
7を加熱しF2を発生させた後の試料(K3NiF6と推
定される)をClF3雰囲気中で加熱した場合、示差熱
重量分析からClF3で暴露すると共に重量増加が起こ
り、130℃以上で急速な重量増加が起こった。また、
他のインターハロゲンガスを使用しても同様の結果を得
ることができた。以上のことからフッ素系インターハロ
ゲンガスを使用する場合、K3NiF7からのF2発生
は、200℃以上、再生処理は室温でも構わないが13
0℃以上が好ましいことが解った。
Example 1 As a result of charging K 3 NiF 7 in a differential thermogravimetric analyzer and heating it in an Ar stream, the weight rapidly decreased from about 200 ° C. The generated gas was F 2 . In addition, K 3 Ni
When a sample (presumed to be K 3 NiF 6 ) after heating F 7 and generating F 2 was heated in a ClF 3 atmosphere, it was exposed to ClF 3 from differential thermogravimetric analysis, and weight increase occurred, A rapid weight gain occurred above 130 ° C. Also,
Similar results could be obtained using other interhalogen gases. From the above, when a fluorine-based interhalogen gas is used, the generation of F 2 from K 3 NiF 7 is 200 ° C. or higher, and the regeneration treatment may be performed at room temperature.
It was found that 0 ° C or higher is preferable.

【0010】実施例2 K3NiF7を5g充填した内容積50ccのダブルエン
ドのステンレスシリンダを真空ポンプで約1Paまで脱
気して300℃に加熱したところ、ブルドン管式圧力計
での指示値が0.25MPaに上昇した。シリンダ内の
ガスをGC−MSで分析しところF2であった。管内の
ガスを真空ポンプで脱気して温度を200℃まで落と
し、ClF3を0.1MPaまで充填し圧力減少が止ま
るまで放置する操作を5回ほど行った。その後、管内を
真空に脱気して再び300℃に加熱したところ、管内の
圧力は0.25MPaまで上昇した。この操作を更に繰
り返し4回ほど行ったがClF3で処理した後にK3Ni
7を加熱することによりF2を得ることができた。ま
た、ClF3に変えてBrF3、BrF5、IF5、I
7、N22、N24、NOF、NO2Fで同様の実験を
行ったが再生処理後にF2を得ることができた。
Example 2 A double-ended stainless steel cylinder having an internal volume of 50 cc filled with 5 g of K 3 NiF 7 was degassed to about 1 Pa by a vacuum pump and heated to 300 ° C. Increased to 0.25 MPa. The gas in the cylinder was F 2 when analyzed by GC-MS. The gas in the tube was degassed with a vacuum pump, the temperature was lowered to 200 ° C., ClF 3 was charged to 0.1 MPa, and the operation was allowed to stand until the pressure decrease stopped about 5 times. Then, when the inside of the tube was degassed to vacuum and heated again to 300 ° C., the pressure inside the tube rose to 0.25 MPa. This operation was further repeated about 4 times, but after treatment with ClF 3 , K 3 Ni was added.
It could be obtained F 2 by heating the F 7. Also, instead of ClF 3 , BrF 3 , BrF 5 , IF 5 , I
Similar experiments were conducted with F 7 , N 2 F 2 , N 2 F 4 , NOF and NO 2 F, but F 2 could be obtained after the regeneration treatment.

【0011】実施例3 図1に示した直径2.5cm、長さ100cmのステン
レス製のシリンダーにK3NiF7を100g充填し35
0℃に加熱したところ発生したフッ素により反応器内部
圧力が約6MPaに上昇した。管内圧力を1Pa、管内
温度を約150℃に低下させたのち、NF3(100S
CCM)をマイクロ波発信管を通じてシリンダ内に2時
間流通させ圧力を13.3kPaで保持した。しかるの
ちマイクロ波(1.45GHz、1.5KW)を発信管
に印加してNF3の分解を行いシリンダ内にその分解ガ
スを流通させた。その後、再加熱したところF2の発生
によりシリンダー内圧力は約6MPaまで上昇した。こ
の操作を加熱とNF3による再処理を繰り返し5回実施
したが、再生処理後に加熱するとF2を発生しシリンダ
内ガスによる圧力上昇が起こった。
Example 3 100 g of K 3 NiF 7 was filled in a stainless steel cylinder having a diameter of 2.5 cm and a length of 100 cm shown in FIG.
When heated to 0 ° C., fluorine generated generated the internal pressure of the reactor to about 6 MPa. After reducing the pressure inside the pipe to 1 Pa and the temperature inside the pipe to approximately 150 ° C, NF 3 (100S
CCM) was circulated in the cylinder for 2 hours through a microwave transmission tube, and the pressure was maintained at 13.3 kPa. Then, microwaves (1.45 GHz, 1.5 KW) were applied to the transmitter tube to decompose NF 3 , and the decomposed gas was passed through the cylinder. Then, when it was reheated, the pressure in the cylinder rose to about 6 MPa due to the generation of F 2 . This operation was repeated 5 times by repeating heating and retreatment with NF 3 , but when heating after the regeneration treatment, F 2 was generated and the pressure in the cylinder increased due to the gas.

【0012】実施例4 実施例3と同様の装置にK3NiF7を100g充填し3
50℃に加熱したところ発生したフッ素により反応器内
部圧力が約6MPaに上昇した。管内圧力を1Pa、管
内温度を約150℃に低下させたのち、NF3(100
SCCM)を800℃に加熱したアルミナ管を通じてシ
リンダ内に3時間流通させ圧力を13.3kPaで保持
した。しかるのちマイクロ波(1.45GHz、1.5
KW)を発信管に印加してNF3の分解を行いシリンダ
内にその分解ガスを流通させた。その後、再加熱したと
ころF2の発生によりシリンダー内圧力は約6MPaま
で上昇した。この操作を加熱とNF3による再処理を繰
り返し5回実施したが、再生処理後に加熱するとF2
発生しシリンダ内ガスによる圧力上昇が起こった。
Example 4 The same apparatus as in Example 3 was filled with 100 g of K 3 NiF 7 , and 3
Fluorine generated when heated to 50 ° C. raised the internal pressure of the reactor to about 6 MPa. After reducing the pipe pressure to 1 Pa and the pipe temperature to approximately 150 ° C, NF 3 (100
SCCM) was circulated in the cylinder for 3 hours through an alumina tube heated to 800 ° C. and the pressure was maintained at 13.3 kPa. Then microwave (1.45 GHz, 1.5
(KW) was applied to the transmitter tube to decompose NF 3 and the decomposed gas was passed through the cylinder. Then, when it was reheated, the pressure in the cylinder rose to about 6 MPa due to the generation of F 2 . This operation was repeated 5 times by repeating heating and retreatment with NF 3 , but when heating after the regeneration treatment, F 2 was generated and the pressure in the cylinder increased due to the gas.

【0013】実施例5 実施例3で使用したマイクロ波プラズマ発生装置に変え
て誘導結合型高周波プラズマ発生装置(1.2kW、2
MHz)を取り付けて同様の実験を行った(但し、圧力
は0.1kPa)。ガスとしてNF3、NOF、F2添加
NF3、N24、N22で各々実施した。その結果、K3
NiF7は再生され繰り返しF2発生が可能である結果が
得られた。
Example 5 Instead of the microwave plasma generator used in Example 3, an inductively coupled high frequency plasma generator (1.2 kW, 2
(MHz) was attached and the same experiment was conducted (however, the pressure was 0.1 kPa). NF 3, NOF as gas were each performed in F 2 addition NF 3, N 2 F 4, N 2 F 2. As a result, K 3
The result was that NiF 7 was regenerated and repeated generation of F 2 was possible.

【0014】実施例6 実施例3で用いた実験装置のシリンダをアルミナ管に変
え、K3NiF7に替えてCoF3を用いてF2の発生及び
その後の再生試験を行った。CoF3は650℃で加熱
することによりF2を発生させた。また、再生処理時に
はヒータを450℃設定にしたが、管の構造上CoF3
充填部の温度は400〜100℃であった。再生処理の
結果、CoF3からF2を再放出可能であった。またNF
3に替えてN22、N24、NOF、NO2F、5vol
%F2添加NF3を使用しても同様の結果が得られた。
Example 6 The cylinder of the experimental apparatus used in Example 3 was replaced with an alumina tube, CoF 3 was used in place of K 3 NiF 7 , and F 2 generation and subsequent regeneration tests were conducted. CoF 3 generated F 2 by heating at 650 ° C. Also, the heater was set to 450 ° C. during the regeneration process, but due to the structure of the tube, CoF 3
The temperature of the filling part was 400 to 100 ° C. As a result of the regeneration treatment, it was possible to re-emit F 2 from CoF 3 . Also NF
3 instead of N 2 F 2 , N 2 F 4 , NOF, NO 2 F, 5 vol
Similar results were obtained using NF 3 with% F 2 .

【0015】実施例7 図2は、F2発生装置の概念図を示したものであるが、
3NiF7(50g)を充填したカラム(φ25cm×
L40cm)を2本(カラムA、カラムB)並列に接続
し、それらを加熱(250℃)しておき、まずカラムA
2から10SCCMでF2を抜き出した。カラムA2の
圧力が大気圧まで低下した時点で、カラムB3からF2
を取り出し、カラムB3の温度を150℃まで低下させ
て、ClF3充填管(フッ素化剤充填管1)からClF3
を取り出し充填した(0.2MPa)。カラムA2にC
lF3を充填後、圧力が大気圧まで低下した時点でCl
3をガス排気装置7を介して排気口から廃棄しながら
ガス流量制御装置4で10SCCMでカラムA2に1時
間供給した。ClF3の供給を止め、カラムA2をN2
パージした後、真空引きし、250℃まで加熱した。次
にカラムB3からのF2の供給を停止した時点で250
℃に昇温したカラムA2からF2を10SCCMで取り
出した。この間、カラムB3にClF3を流通させてカ
ラムA2で行ったと同様の操作で再生処理を行った。前
述の一連の操作を繰り返し行うことにより連続してガス
流量制御装置5を介してF2をCVD装置6にF2を供給
することが可能であった。また、F2を供給しながらS
i皮膜が付着したガラス板の洗浄を実施したところ(1
00℃、1kPa)、Si膜は除去洗浄されていた。F
2の再生処理をNF3プラズマで実施したところ、連続し
たF2供給が可能であった。
Embodiment 7 FIG. 2 shows a conceptual diagram of the F 2 generator.
A column (φ25 cm ×) packed with K 3 NiF 7 (50 g)
L40 cm) two (column A, column B) are connected in parallel, and they are heated (250 ° C.), and first, column A
F 2 was extracted with 2 to 10 SCCM. When the pressure in the column A2 drops to atmospheric pressure, the column B3 to F 2
The column B3 was cooled to 150 ° C., and the ClF 3 packed tube (fluorinating agent packed tube 1) was used to remove ClF 3
Was taken out and filled (0.2 MPa). C in column A2
After filling with 1F 3 , when the pressure drops to atmospheric pressure, Cl
While F 3 was discarded from the exhaust port via the gas exhaust device 7, it was supplied to the column A 2 at 10 SCCM by the gas flow control device 4 for 1 hour. After the supply of ClF 3 was stopped and the column A2 was purged with N 2 , the column A2 was evacuated and heated to 250 ° C. Next, when the supply of F 2 from column B3 was stopped, 250
F 2 was taken out from the column A2 heated to 10 ° C. with 10 SCCM. During this time, ClF 3 was circulated in the column B3 to carry out the regeneration treatment by the same operation as in the column A2. Continuously by repeating the series of operations described above it it was possible to supply the F 2, F 2 in the CVD apparatus 6 through the gas flow controller 5. Also, while supplying F 2 , S
When the glass plate with the i film was washed (1
(00 ° C., 1 kPa), the Si film was removed and washed. F
When the regeneration treatment of No. 2 was performed with NF 3 plasma, continuous F 2 supply was possible.

【0016】[0016]

【発明の効果】本発明は、反応性が非常に高濃度ガスを
高圧充填できないため大量に輸送供給不可能であったF
2を大量に供給可能とする。このことにより半導体工業
におけるデバイス製造装置等において、装置内壁、治
具、配管等に堆積した不要な堆積物を除去するクリーニ
ングガスや合成原料としてのF2の利用が促進できる。
INDUSTRIAL APPLICABILITY According to the present invention, since a highly reactive gas cannot be charged at a high pressure, it cannot be transported and supplied in a large amount.
2 can be supplied in large quantities. As a result, in a device manufacturing apparatus or the like in the semiconductor industry, it is possible to promote the use of F 2 as a cleaning gas or a synthetic raw material for removing unnecessary deposits accumulated on the inner walls of the apparatus, jigs, pipes and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】ステンレス製シリンダの構造を示す。FIG. 1 shows the structure of a stainless steel cylinder.

【図2】F2発生装置の概念図を示す。FIG. 2 shows a conceptual diagram of an F 2 generator.

【符号の説明】[Explanation of symbols]

1・・・フッ素化剤充填管 2・・・カラムA 3・・・カラムB 4、5・・・ガス流量制御装置 6・・・CVD装置 7・・・ガス排気装置 8・・・プラズマ発生装置(必要に応じて設置) 1 ... Fluorinating agent filling tube 2 ... Column A 3 ... Column B 4, 5 ... Gas flow rate control device 6 ... CVD equipment 7 ... Gas exhaust system 8: Plasma generator (installed if necessary)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 フッ素発生剤を加熱することによりフッ
素を発生させる方法において、フッ素を発生させ、その
後、フッ素化剤でフッ素発生剤を再フッ素化する操作を
交互に行うことを特徴とするフッ素の発生方法。
1. A method of generating fluorine by heating a fluorine generating agent, wherein fluorine is generated, and thereafter, an operation of refluorinating the fluorine generating agent with a fluorinating agent is alternately performed. How to occur.
【請求項2】 フッ素発生剤が、K3NiF7、CoF3
であることを特徴とする請求項1記載のフッ素の発生方
法。
2. The fluorine-generating agent is K 3 NiF 7 , CoF 3
The method for generating fluorine according to claim 1, wherein
【請求項3】 フッ素化剤が、ClF、ClF3、Cl
5、BrF、BrF3、BrF5、IF3、IF5、I
7、NF3、N24,N22、N3F、H2NF、HNF
2、NOF、NO2Fの内から選ばれる少なくとも1種の
化合物、または該フッ素化剤にF2を1〜20vol%
添加したこれらの化合物の内から選ばれる少なくとも1
種の化合物であることを特徴とする請求項1記載のフッ
素の発生方法。
3. The fluorinating agent is ClF, ClF 3 , Cl
F 5 , BrF, BrF 3 , BrF 5 , IF 3 , IF 5 , I
F 7 , NF 3 , N 2 F 4 , N 2 F 2 , N 3 F, H 2 NF, HNF
1 to 20 vol% of F 2 in at least one compound selected from 2 , NOF and NO 2 F, or the fluorinating agent
At least one selected from these added compounds
The method for generating fluorine according to claim 1, which is a compound of a species.
JP2002137468A 2002-05-13 2002-05-13 Fluorine generation method Expired - Fee Related JP4230169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002137468A JP4230169B2 (en) 2002-05-13 2002-05-13 Fluorine generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002137468A JP4230169B2 (en) 2002-05-13 2002-05-13 Fluorine generation method

Publications (2)

Publication Number Publication Date
JP2003327412A true JP2003327412A (en) 2003-11-19
JP4230169B2 JP4230169B2 (en) 2009-02-25

Family

ID=29699222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002137468A Expired - Fee Related JP4230169B2 (en) 2002-05-13 2002-05-13 Fluorine generation method

Country Status (1)

Country Link
JP (1) JP4230169B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117509A (en) * 2004-09-24 2006-05-11 Showa Denko Kk Method for producing fluorine gas
JP2007176768A (en) * 2005-12-28 2007-07-12 Showa Denko Kk Method for producing fluorine gas
JP2007191378A (en) * 2005-12-19 2007-08-02 Showa Denko Kk Fluorine gas supply method and apparatus therefor
JP2011506246A (en) * 2007-12-11 2011-03-03 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for preparing manganese tetrafluoride
WO2013145955A1 (en) * 2012-03-28 2013-10-03 セントラル硝子株式会社 Method and apparatus for producing fluorine gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117509A (en) * 2004-09-24 2006-05-11 Showa Denko Kk Method for producing fluorine gas
JP2007191378A (en) * 2005-12-19 2007-08-02 Showa Denko Kk Fluorine gas supply method and apparatus therefor
JP2007176768A (en) * 2005-12-28 2007-07-12 Showa Denko Kk Method for producing fluorine gas
JP2011506246A (en) * 2007-12-11 2011-03-03 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for preparing manganese tetrafluoride
WO2013145955A1 (en) * 2012-03-28 2013-10-03 セントラル硝子株式会社 Method and apparatus for producing fluorine gas

Also Published As

Publication number Publication date
JP4230169B2 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
JP3855081B2 (en) CVD apparatus equipped with fluorine gas cleaning mechanism and method of cleaning CVD apparatus with fluorine gas
CN1327485C (en) Cleaning method of thin tilm forming device
JP4634199B2 (en) Surface modification method and apparatus using fluorine-containing gas
JP4804345B2 (en) F2-containing gas manufacturing method and F2-containing gas manufacturing apparatus
JPS59142839A (en) Cleaning method of vapor-phase apparatus
JPH07508313A (en) Plasma cleaning method for removing residue in plasma processing equipment
CN1192815C (en) Method and device for processing PFC
JP3727797B2 (en) Method for producing nitrogen trifluoride
US8551439B2 (en) Method of refining carbon parts for production of polycrystalline silicon
WO2013145955A1 (en) Method and apparatus for producing fluorine gas
KR20120104214A (en) Method for removing deposits
JP4230169B2 (en) Fluorine generation method
JPH04311570A (en) Film forming device provided with deposit recovering device
JP2007176770A (en) Method of producing high purity fluorine gas and apparatus for producing high purity fluorine gas
JP4196371B2 (en) Halogen gas production method, halogen gas production apparatus, and halogen gas recovery / circulation system
US6162955A (en) Manufacturing method for perfluoroethane
JP2008294121A (en) Manufacturing method and manufacturing apparatus of semiconductor device
JP2003081614A (en) High purity gaseous fluorine, production method therefor, and its use
JP2017504557A (en) Method for producing polycrystalline silicon
JP2010058009A (en) Method of decomposing nitrogen trifluoride and device using this method
JP4220318B2 (en) Cleaning method inside process chamber
JPH0680962A (en) Method for cleaning ammonium silicofluoride
RU2415185C1 (en) Procedure for production of metal lead
JP4531467B2 (en) Cleaning method in chamber of semiconductor thin film forming apparatus
JP2000007313A (en) Treatment for raising purity of carbon material and apparatus for treatment for raising purity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050111

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees