JP2006270114A - Method for processing semiconductor substrate - Google Patents

Method for processing semiconductor substrate Download PDF

Info

Publication number
JP2006270114A
JP2006270114A JP2006135291A JP2006135291A JP2006270114A JP 2006270114 A JP2006270114 A JP 2006270114A JP 2006135291 A JP2006135291 A JP 2006135291A JP 2006135291 A JP2006135291 A JP 2006135291A JP 2006270114 A JP2006270114 A JP 2006270114A
Authority
JP
Japan
Prior art keywords
heat treatment
semiconductor substrate
oxygen
silicon substrate
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006135291A
Other languages
Japanese (ja)
Inventor
Soichi Nadahara
壮一 灘原
Kikuo Yamabe
紀久夫 山部
Hideyuki Kobayashi
英行 小林
Kunihiro Terasaka
国博 寺坂
Naohiko Aku
直彦 安久
Akito Yamamoto
明人 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006135291A priority Critical patent/JP2006270114A/en
Publication of JP2006270114A publication Critical patent/JP2006270114A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Formation Of Insulating Films (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for processing a semiconductor substrate, which can inhibit the generation of minute defects and oxygen deposition which cause element characteristics to deteriorate. <P>SOLUTION: In the method for processing the semiconductor substrate having a step of subjecting the semiconductor substrate, of which the surface is exposed, to a heat treatment under a gaseous atmosphere, in order to control so as to inhibit the deposition and the growth of oxygen in the semiconductor substrate by the heat treatment and the heat treatment steps before the heat treatment, a heat treatment step in an argon gas atmosphere before the heat treatment are performed under heat treating temperatures and heat treating time which are below certain limits. Thereafter, the heat treatment is performed under the argon gas atmosphere at temperatures not lower than 1,100°C. The internal minute defect concentration of the region, whose depth is 50 μm deeper than that of the surface of the semiconductor substrate, is made to be 1×10<SP>9</SP>particles/cm<SP>3</SP>or less, and the internal minute defect density of the region, whose depth is 10 μm deeper than that of the surface, is made to be 1×10<SP>7</SP>particles/cm<SP>3</SP>or less. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体基板の処理方法に係り、特に素子特性の劣化を防止し得る半導体基板の処理方法の改良に関する。   The present invention relates to a method for processing a semiconductor substrate, and more particularly to an improvement in a method for processing a semiconductor substrate that can prevent deterioration of element characteristics.

近年、コンピュ−タ−や通信機器の重要部分には、多数のトランジスタや抵抗等を電気回路を達成するようにむすびつけ、1チップ上に集積化して形成した大規模集積回路(LSI)が多用されている。   In recent years, large-scale integrated circuits (LSIs) formed by integrating a large number of transistors, resistors, and the like so as to achieve an electric circuit and integrating them on a single chip are often used in important parts of computers and communication devices. ing.

LSI作成に用いられるウエハはその表面が鏡面化されている。鏡面化の方法は、まず、引き上げ法又は浮遊帯法により作成したシリコン結晶から円板状のウエハを切り出す。次いでこのウエハの表面をラッピング,エッチング,ポリッシングして所望の厚さのウエハを得る。最後に、このウエハを酸又は有機溶剤により洗浄することで、表面が鏡面化したウエハが得られる。   The surface of a wafer used for LSI production is mirror-finished. As a mirror surface method, first, a disk-shaped wafer is cut out from a silicon crystal formed by a pulling method or a floating zone method. Next, the wafer surface is lapped, etched, and polished to obtain a wafer having a desired thickness. Finally, the wafer is cleaned with an acid or an organic solvent to obtain a wafer having a mirror-finished surface.

しかしながら、この種の方法には次のような問題があった。即ち、例えば、950〜1100℃程度の温度でウエハを酸化すると、鏡面に10〜100個/cm2 程度の酸化誘起積層欠陥(OSF:Oxidation induced Stacking Fault)が形成される。 However, this type of method has the following problems. That is, for example, when the wafer is oxidized at a temperature of about 950 to 1100 ° C., about 10 to 100 / cm 2 of oxidation induced stacking faults (OSF) are formed on the mirror surface.

このOSFの発生は、図10に示すように、シリコン基板1の表面の表面汚染物2,微細な傷3,SiO2 ,SiC等の異種物質4や、シリコン基板1の内部(表面付近)のスワール,酸素析出物等の微小欠陥5が原因だと考えられている。なお、微小欠陥5は結晶育成中に発生する。 As shown in FIG. 10, the generation of the OSF is caused by surface contaminants 2 on the surface of the silicon substrate 2, minute scratches 3, foreign substances 4 such as SiO 2 and SiC, and the inside (near the surface) of the silicon substrate 1. It is thought to be caused by minute defects 5 such as swirls and oxygen precipitates. Note that the minute defect 5 occurs during crystal growth.

このようなOSFが生じたウエハに素子を形成すると、接合リークや、CCD(電荷結合素子)の画像欠陥等が生じるため、素子特性が劣化するという問題がある。   When an element is formed on a wafer on which such an OSF has occurred, there is a problem in that element leakage is caused due to junction leakage, CCD (charge coupled device) image defects, and the like.

ところで、LSI用として用いられる半導体基板は、通常、CZ(チョクラルスキ−)法により形成されている。このため、結晶成長時に、るつぼや雰囲気から半導体基板に過剰な酸素が溶け込む。これら半導体基板中の過剰な酸素は、熱処理により、結晶内部に析出核を生じ、その周囲に0.1〜1.0μm程度の大きさの内部微小欠陥(BMD:Bulk Micro Defect )を形成する。   Incidentally, a semiconductor substrate used for LSI is usually formed by a CZ (Czochralski) method. For this reason, excessive oxygen dissolves into the semiconductor substrate from the crucible or atmosphere during crystal growth. Excess oxygen in these semiconductor substrates generates precipitation nuclei inside the crystal by heat treatment, and forms internal micro defects (BMD: Bulk Micro Defect) having a size of about 0.1 to 1.0 μm around it.

図11を用いてより詳しくBMDについて説明する。図11は、ウェル構造を有するCMOSにおける酸素の析出を説明するための図である。この種のCMOSにあっては、製造の初期工程にpウェル又はnウェルを形成するために、1100℃以上の温度でウエハ1の表面に不純物を熱拡散している。この工程で、ウエハ1内の酸素のうち、表面層の酸素は外方拡散されるため、図11(a)に示すように、DZ層(Denuded Zone)と呼ばれる無欠陥層12がウエハ1の表面に形成される。次いで図11(b)に示すように、減圧CVD法による窒化膜形成等の諸工程において、ウエハ1は600〜800℃程度の熱処理を受け、理想的には酸素析出物の核13がウエハ1の内部の中間層14に形成される。次いで図11(c)に示すように、フィールド酸化膜の形成工程等において、ウエハ1が1000℃前後の熱処理を受けると、核13は析出物を周囲に成長させ、BMD15が高濃度に分布する。   BMD will be described in more detail with reference to FIG. FIG. 11 is a diagram for explaining the precipitation of oxygen in a CMOS having a well structure. In this type of CMOS, impurities are thermally diffused on the surface of the wafer 1 at a temperature of 1100 ° C. or higher in order to form a p-well or an n-well in the initial manufacturing process. In this step, oxygen in the surface layer out of oxygen in the wafer 1 is diffused outward, so that a defect-free layer 12 called a DZ layer (Denuded Zone) is formed on the wafer 1 as shown in FIG. Formed on the surface. Next, as shown in FIG. 11B, in various processes such as formation of a nitride film by a low pressure CVD method, the wafer 1 is subjected to heat treatment at about 600 to 800 ° C. Is formed in the intermediate layer 14. Next, as shown in FIG. 11C, when the wafer 1 is subjected to a heat treatment at around 1000 ° C. in the field oxide film forming process or the like, the nuclei 13 grow precipitates around and the BMD 15 is distributed at a high concentration. .

上述したBMDの生成は、ウエハの熱履歴のみならず、炭素濃度,結晶成長時の引き上げ条件等によっても大きく変わる。BMDの核となるものは、現在のところ、結晶引き上げ時に生じる微小な酸素析出物であると考えられており、析出物のサイズとその数はウエハ内でばらついている。   The generation of BMD described above varies greatly depending not only on the thermal history of the wafer but also on the carbon concentration, the pulling conditions during crystal growth, and the like. At present, the core of BMD is considered to be minute oxygen precipitates generated during crystal pulling, and the size and the number of precipitates vary within the wafer.

このとき、非酸化性ガス雰囲気で熱処理すると、例えば、窒素雰囲気では表面が不均一に窒化されてしまい、表面荒れを生じる。また、希ガス雰囲気では十分な純度が確保されなければ表面で不均一にエッチングが起こり、これも表面荒れの原因となるため、一般的に酸化性雰囲気で熱処理を行なっている。このため、DZ層の形成方法として、酸素の外方拡散により、表面酸素濃度を低下させる手法が用いられている。このため、ウエハ表面は薄い酸化膜で覆われる。   At this time, if heat treatment is performed in a non-oxidizing gas atmosphere, for example, the surface is nitrided non-uniformly in a nitrogen atmosphere, resulting in surface roughness. Further, in a rare gas atmosphere, if sufficient purity is not ensured, etching occurs unevenly on the surface, which also causes surface roughness, so that heat treatment is generally performed in an oxidizing atmosphere. For this reason, as a method of forming the DZ layer, a method of reducing the surface oxygen concentration by outward diffusion of oxygen is used. For this reason, the wafer surface is covered with a thin oxide film.

しかしながら、酸化性雰囲気による熱処理では酸化膜を介した平衡濃度までしか表面酸素濃度は下がらないために、析出物の抑制は十分でなく、完全なDZ層の形成は困難であり、例えば、ウエハ表面にゲート酸化膜等の薄い酸化膜を形成すると、ピンホール等が発生し、酸化膜の耐圧劣化が起こるという問題があった。また、より深い領域までDZ層を形成するために、長時間の酸素の外方拡散を行なうと、低酸素濃度側のDZ層が深くなり、酸素の析出,成長が進むために基板中の固溶酸素濃度が低下し、基板強度劣化を引き起こし、素子活性領域に結晶欠陥が発生するという問題が発生する。   However, since the surface oxygen concentration is reduced only to the equilibrium concentration through the oxide film in the heat treatment in an oxidizing atmosphere, the suppression of precipitates is not sufficient, and it is difficult to form a complete DZ layer. When a thin oxide film such as a gate oxide film is formed on the substrate, pinholes or the like are generated, resulting in a problem that the breakdown voltage of the oxide film is deteriorated. In addition, when oxygen is diffused for a long time in order to form a DZ layer in a deeper region, the DZ layer on the low oxygen concentration side becomes deeper, and precipitation and growth of oxygen proceed, so that the solid state in the substrate is increased. The problem is that the dissolved oxygen concentration is lowered, the substrate strength is deteriorated, and crystal defects are generated in the element active region.

上述の如く、従来の半導体基板の処理方法では良質なDZ層を形成するのが困難であるという問題があった。   As described above, the conventional semiconductor substrate processing method has a problem that it is difficult to form a high-quality DZ layer.

本発明は、上記事情を考慮してなされたもので、その目的とするところは、素子特性を劣化させる原因となるBMDやOSFの発生を抑制できる半導体基板の処理方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for processing a semiconductor substrate capable of suppressing the generation of BMD and OSF that cause deterioration of element characteristics.

上記の目的を達成するために、本発明の半導体基板の処理方法(請求項1)は、表面が露出している半導体基板をガス雰囲気中で熱処理する工程を有する半導体基板の処理方法において、前記熱処理は酸素、炭素、窒素又はカーボン系のガスの濃度が10ppb以下の1100℃以上のアルゴンガス雰囲気で行なわれ、前記熱処理以前のアルゴンガス雰囲気での熱工程の中で、前記半導体基板を前記熱処理以前の前記アルゴンガス雰囲気に挿入後の熱処理温度と保持時間(保持時間ゼロは除く)とが、前記熱処理温度と前記保持時間とを座標とする平面において、(900℃、4分),(800℃,40分),(700℃,11時間),(600℃,320時間)の4つの点を結ぶ線以下の領域に含まれ、且つ、前記熱処理及び該熱処理以前の前記熱工程により、前記半導体基板中の酸素の析出、成長を抑制するように制御し、前記半導体基板の表面から50μm以上の深さの領域の内部微小欠陥密度を1×109 個/cm3 以下、前記表面から10μm以内の深さの領域の内部微小欠陥密度を1×107 個/cm3 以下にすることを特徴とする。 In order to achieve the above object, a semiconductor substrate processing method according to the present invention (Claim 1) is a semiconductor substrate processing method including a step of heat-treating a semiconductor substrate having an exposed surface in a gas atmosphere. The heat treatment is performed in an argon gas atmosphere of 1100 ° C. or higher with a concentration of oxygen, carbon, nitrogen, or carbon-based gas of 10 ppb or less, and the semiconductor substrate is subjected to the heat treatment in a heat process in an argon gas atmosphere before the heat treatment. The heat treatment temperature and the retention time (excluding the retention time of zero) after being inserted into the previous argon gas atmosphere are (900 ° C., 4 minutes), (800 in a plane having the heat treatment temperature and the retention time as coordinates. C., 40 minutes), (700.degree. C., 11 hours), (600.degree. C., 320 hours) included in the region below the line connecting the four points, and before the heat treatment and the heat treatment. By the thermal process, the precipitation of oxygen in the semiconductor substrate, is controlled to suppress the growth, the internal micro defect density region from the surface 50μm or more of the depth of the semiconductor substrate 1 × 10 9 pieces / cm 3 Hereinafter, the density of internal micro defects in a region having a depth within 10 μm from the surface is set to 1 × 10 7 pieces / cm 3 or less.

また、本発明の他の半導体基板の処理方法は、シリコン基板中の格子間にシリコンを導入すると共に、前記シリコン基板中の酸素を外方拡散する工程と、前記シリコン基板を非酸化性雰囲気中で熱処理する工程とを備えたことを特徴とする。   In another semiconductor substrate processing method of the present invention, silicon is introduced between lattices in a silicon substrate, and oxygen in the silicon substrate is diffused outward, and the silicon substrate is placed in a non-oxidizing atmosphere. And a heat treatment process.

また、本発明の他の半導体基板の処理方法は、シリコン基板を1100℃以上の酸化性雰囲気中で熱処理し、前記シリコン基板の表面に酸化膜を形成する工程と、この酸化膜を除去し、前記シリコン基板の表面が露出した状態で前記シリコン基板を非酸化性雰囲気中で熱処理する工程とを有することを特徴とする。ここで、前記非酸化性雰囲気中での熱処理は1100℃以上の温度であることが望ましい。   In another semiconductor substrate processing method of the present invention, a silicon substrate is heat-treated in an oxidizing atmosphere at 1100 ° C. or higher to form an oxide film on the surface of the silicon substrate, and the oxide film is removed. And heat-treating the silicon substrate in a non-oxidizing atmosphere with the surface of the silicon substrate exposed. Here, the heat treatment in the non-oxidizing atmosphere is preferably at a temperature of 1100 ° C. or higher.

なお、非酸化性雰囲気中とは、Ar等の不活性ガス雰囲気中のみならず、基板表面と不都合な反応を起こさない雰囲気中や、基板表面にダメージを与えない雰囲気中も含む。例えば、水素雰囲気中でも良い。   Note that the non-oxidizing atmosphere includes not only an inert gas atmosphere such as Ar but also an atmosphere that does not cause an undesirable reaction with the substrate surface and an atmosphere that does not damage the substrate surface. For example, it may be in a hydrogen atmosphere.

また、本発明の半導体基板は、表面から10μm以内の深さの第1の領域で106 個/cm3 以下となり、且つ表面から50μm以上の深さの第2の領域で106 個/cm3 以上5×108 個/cm3 以下の範囲で一定となり、且つ前記第1の領域と前記第2の領域との間で表面に向かって減少する内部結晶欠陥密度分布を有することを特徴とする。 Also, the semiconductor substrate of the present invention, 106 in the first region from the surface within 10μm depth / cm 3 or less and becomes, and 106 from the surface in the second region above a depth of 50 [mu] m / cm The internal crystal defect density distribution is constant in a range of 3 to 5 × 10 8 pieces / cm 3 and decreases toward the surface between the first region and the second region. To do.

[作用]
非酸化性雰囲気の熱処理工程で、本発明のように、熱処理温度と熱処理時間とを選べば、半導体基板の表面及び内部における積層欠陥及び酸素析出物の発生を十分に抑制できる。したがって、本発明の半導体基板の処理方法(請求項1)によれば、基板表面に良質な酸化膜を形成できる。
[Action]
If the heat treatment temperature and the heat treatment time are selected as in the present invention in the heat treatment step in a non-oxidizing atmosphere, the generation of stacking faults and oxygen precipitates on the surface and inside of the semiconductor substrate can be sufficiently suppressed. Therefore, according to the semiconductor substrate processing method of the present invention (claim 1), a high-quality oxide film can be formed on the substrate surface.

また、本発明の他の半導体基板の処理方法によれば、シリコン基板中の格子間にシリコンが優先的に導入されるので、シリコン基板中の格子間酸素が析出しづらくなると共に、シリコン基板中の酸素が外方拡散されるので、シリコン基板表面の格子間酸素濃度を、析出をともなわずに、下げることができる。また、非酸化性雰囲気中での熱処理により、微小欠陥が修復されると共に、酸素が更に外方拡散される。したがって、BMD等の基板欠陥が少ないシリコン基板が得られる。   Further, according to another semiconductor substrate processing method of the present invention, silicon is preferentially introduced between the lattices in the silicon substrate, so that interstitial oxygen in the silicon substrate becomes difficult to precipitate and in the silicon substrate. Therefore, the interstitial oxygen concentration on the silicon substrate surface can be lowered without precipitation. Further, the heat treatment in a non-oxidizing atmosphere repairs micro defects and further diffuses oxygen outward. Accordingly, a silicon substrate with few substrate defects such as BMD can be obtained.

また、本発明の他の半導体基板の処理方法によれば、1100℃以上の酸化性雰囲気中での熱処理による酸化膜の形成の際に、シリコン基板表面で膨脹が生じシリコン結晶の再配列が起こる。このとき、再配列されなかったシリコンがシリコン基板の内部に移動し、シリコン格子間にシリコンが導入されると共に、シリコン基板中の酸素が外方拡散されるため、シリコン基板中の酸素析出物が少なくなる。また、非酸化性雰囲気中での熱処理により、微小欠陥が修復されると共に、酸素が更に外方拡散される。したがって、BMD等の基板欠陥が少ないシリコン基板が得られる。   According to another semiconductor substrate processing method of the present invention, when an oxide film is formed by heat treatment in an oxidizing atmosphere at 1100 ° C. or higher, expansion occurs on the surface of the silicon substrate and rearrangement of silicon crystals occurs. . At this time, the silicon that has not been rearranged moves into the silicon substrate, silicon is introduced between the silicon lattices, and oxygen in the silicon substrate is diffused outward, so that oxygen precipitates in the silicon substrate are formed. Less. Further, the heat treatment in a non-oxidizing atmosphere repairs micro defects and further diffuses oxygen outward. Accordingly, a silicon substrate with few substrate defects such as BMD can be obtained.

また、本発明者等の研究によれば、表面から10μm以内の深さの第1の領域で107 個/cm3 以下となり、且つ表面から50μm以上の深さの第2の領域で107 個/cm3 以上1×109 個/cm3 以下の範囲で一定となり、且つ前記第1の領域と前記第2の領域との間で表面に向かって一様に減少する内部結晶欠陥密度分布を有する半導体基板であれば、BMD等の基板欠陥による素子特性の劣化を防止できることが分かった。 Further, according to the study by the present inventors, 10 7 from the surface in the first region within a depth of 10 [mu] m / cm 3 or less and becomes, and the second region 107 from the surface of the above 50μm depth Internal crystal defect density distribution that is constant in the range of not less than 1 piece / cm 3 and not more than 1 × 10 9 pieces / cm 3 and uniformly decreases toward the surface between the first region and the second region. It has been found that a semiconductor substrate having a can prevent deterioration of element characteristics due to a substrate defect such as BMD.

本発明によれば、素子特性の劣化させる原因となる半導体基板中の微小欠陥や酸素析出物の発生を十分抑制できる。   According to the present invention, generation of minute defects and oxygen precipitates in a semiconductor substrate that cause deterioration of device characteristics can be sufficiently suppressed.

以下、図面を参照しながら実施例を説明する。   Hereinafter, embodiments will be described with reference to the drawings.

先ず、780℃,3時間、続いて、1000℃,16時間の乾燥雰囲気中でウエハを酸化し、2×103 個/cm2 のOSFが生じているウエハを用意する。次にこのウエハをアルゴン,ヘリウム等の不活性ガス雰囲気中で1〜8時間程度,1200℃の熱処理を行なう。 First, the wafer is oxidized in a dry atmosphere at 780 ° C. for 3 hours and then at 1000 ° C. for 16 hours to prepare a wafer in which OSF of 2 × 10 3 pieces / cm 2 is generated. Next, this wafer is heat-treated at 1200 ° C. for about 1 to 8 hours in an inert gas atmosphere such as argon or helium.

次いでウエハを780℃,3時間、続いて、1000℃,16時間の乾燥雰囲気中で酸化した後、ウエハの表面をライトエッチングする。   Next, the wafer is oxidized in a dry atmosphere at 780 ° C. for 3 hours and then at 1000 ° C. for 16 hours, and then the surface of the wafer is light-etched.

このようにして得られたウエハを光学顕微鏡で観察してみると、図1に示すように、OSF密度は約4個/cm2 でOSF密度を減少できることが分かった。 When the wafer thus obtained was observed with an optical microscope, it was found that the OSF density can be reduced at an OSF density of about 4 / cm 2 as shown in FIG.

一方、あらかじめ780℃,3時間と1000℃,16時間の熱処理を行なっていないウェハでは、OSF密度は約0.6個/cm2 とほとんど発生しなかった。 On the other hand, the OSF density was hardly generated at about 0.6 / cm 2 on the wafer which had not been heat-treated at 780 ° C. for 3 hours and 1000 ° C. for 16 hours.

なお、本実施例の熱処理方法は、基本的に基板表面は酸化膜等の保護膜が除去された状態で行なうため、アルゴン等の不活性ガス雰囲気中に酸素,窒素又はカーボン系のガス等が不純物として混入すると、ウエハ表面は荒れる恐れがある。このため、アルゴン等の不活性ガス雰囲気中の酸素,炭素,窒素又はカーボン系のガス等の不純物濃度は10ppb以下であることが望ましい。   The heat treatment method of this embodiment is basically performed in a state where the protective film such as an oxide film is removed from the surface of the substrate, so that oxygen, nitrogen, carbon-based gas or the like is present in an inert gas atmosphere such as argon. If mixed as impurities, the wafer surface may be roughened. For this reason, it is desirable that the impurity concentration of oxygen, carbon, nitrogen or carbon-based gas in an inert gas atmosphere such as argon is 10 ppb or less.

次に本発明の他の実施例について説明する。   Next, another embodiment of the present invention will be described.

ウェル構造を有するCMOSにあっては、製造の初期工程にpウェル又はnウェルを形成するために、1100℃以上,数時間の熱処理(1100℃以上の非酸化性雰囲気の熱処理)によって、ウエハの表面に不純物を熱拡散する。この工程で、ウエハ内の酸素のうち、表面層の酸素は外方拡散され、所定のDZ層と呼ばれる無欠陥層がウエハの表面に形成される。この後、減圧CVD法による窒化膜形成等の諸工程において、ウエハは600〜800℃程度の熱処理を受け、酸素析出物の核が理想的にはウエハの内部の中間層に形成される。次いでフィールド酸化膜の形成工程等において、ウエハが1000℃前後の熱処理を受けると、上記核は析出物を周囲に成長させ、BMDが高濃度に分布する。この酸素析出物の核の生成は、ウエハの熱履歴のみならず、炭素濃度,結晶成長時の引き上げ条件等によっても大きく変わる。このため、析出物のサイズとその数はウエハ内でばらついている。   In a CMOS having a well structure, in order to form a p-well or an n-well in the initial manufacturing process, a heat treatment of 1100 ° C. or higher for several hours (heat treatment in a non-oxidizing atmosphere at 1100 ° C. or higher) is performed. Impurities are thermally diffused on the surface. In this step, oxygen in the surface layer out of oxygen in the wafer is diffused outward, and a defect-free layer called a predetermined DZ layer is formed on the surface of the wafer. Thereafter, in various processes such as nitride film formation by a low pressure CVD method, the wafer is subjected to a heat treatment at about 600 to 800 ° C., and nuclei of oxygen precipitates are ideally formed in an intermediate layer inside the wafer. Next, when the wafer is subjected to a heat treatment at around 1000 ° C. in a field oxide film formation process or the like, the nuclei grow precipitates around and the BMD is distributed at a high concentration. The generation of nuclei of oxygen precipitates varies greatly depending not only on the thermal history of the wafer but also on the carbon concentration, the pulling conditions during crystal growth, and the like. For this reason, the size and number of precipitates vary within the wafer.

上記工程の前に本発明の熱処理として、アルゴン雰囲気中で、1200℃,4時間の熱処理をウエハに施す。図2にはこのような熱処理が施されたウエハの表面からの深さとBMD密度との関係が実線で示されている。また、比較のため、上記熱処理が施されていない従来のウエハの表面からの深さとBMD密度との関係を点線で示してある。   Before the above process, as the heat treatment of the present invention, heat treatment is performed on the wafer at 1200 ° C. for 4 hours in an argon atmosphere. In FIG. 2, the relationship between the depth from the surface of the wafer subjected to such heat treatment and the BMD density is shown by a solid line. For comparison, the relationship between the depth from the surface of a conventional wafer not subjected to the heat treatment and the BMD density is indicated by a dotted line.

この図から深さが約30μm以下の領域では、本発明のほうがBMD濃度が小さいことが分かる。しかも、10μm以下での値は約1×107 (個/cm3 )以下で十分小さい。 From this figure, it can be seen that the BMD concentration is smaller in the present invention in the region where the depth is about 30 μm or less. Moreover, the value at 10 μm or less is sufficiently small at about 1 × 10 7 (pieces / cm 3 ) or less.

更に、上記アルゴン雰囲気中の高温熱処理において、ボートイン温度を800℃,保持時間を40分以下に変更して行なったところ、図3に示すようにウエハ表面の酸素析出物を低減できることが分かった。即ち、保持時間が短くなると一般にBMD密度は小さくなるが、ある保持時間以下、この場合は20分以下になると、逆にBMD密度は大きくなることが分かる。   Further, in the high-temperature heat treatment in the argon atmosphere, the boat-in temperature was changed to 800 ° C. and the holding time was changed to 40 minutes or less, and it was found that oxygen precipitates on the wafer surface could be reduced as shown in FIG. . That is, when the holding time is shortened, the BMD density is generally reduced, but when the holding time is less than a certain holding time, in this case, 20 minutes or less, the BMD density is increased.

図4は、このようにBMD密度を小さくできる熱処理時間,保持時間の領域を示す図である。図中の実線で区分された領域のうち、斜線側の領域(実線も含む)の熱処理時間,保持時間で熱処理を行なえば良い。   FIG. 4 is a diagram showing regions of heat treatment time and holding time that can reduce the BMD density in this way. Of the regions divided by the solid line in the figure, the heat treatment may be performed with the heat treatment time and holding time of the hatched region (including the solid line).

図5は、ウエハ表面からの深さとBMD密度との関係を示す特性図である。この図から保持時間20分の条件では、1100℃以上の熱処理において、ウエハ表層のBMDは制御性良く低密度に維持されていることが分かる。   FIG. 5 is a characteristic diagram showing the relationship between the depth from the wafer surface and the BMD density. From this figure, it can be seen that the BMD of the wafer surface layer is maintained at a low density with good controllability in the heat treatment at 1100 ° C. or higher under the condition of holding time of 20 minutes.

また、本発明の熱処理を施したウエハを950℃で酸化して厚さ20nmの酸化膜を形成してキャパシタを作成し、その評価を行なった。   Further, the wafer subjected to the heat treatment of the present invention was oxidized at 950 ° C. to form an oxide film having a thickness of 20 nm, and a capacitor was prepared and evaluated.

本熱処理を施していない従来のウエハで作成したキャパシタでは、8MV/cm以下の電界で崩壊するものが20〜60%あるのに対し、1100℃以上の本熱処理を施したウエハで作成したキャパシタでは、耐圧不良なものは全体の数%にすぎなかった。   Capacitors made with a conventional wafer that has not been subjected to the main heat treatment have a breakdown of 20 to 60% in an electric field of 8 MV / cm or less, whereas capacitors made with a wafer that has been subjected to the main heat treatment at 1100 ° C. or higher. Only a few percent of the products had poor pressure resistance.

このように、アルゴン等の非酸化性ガス雰囲気中で1100℃以上の熱処理を施すことにより、OSFの発生を抑制できると共に、表層付近の酸素析出物の発生をばらつきなく制御でき、もって、酸化膜耐圧不良を防止できるなどの効果が得られる。なお、上記実施例では、熱処理を4時間行なった場合について述べたが、これに限らず、1時間以上熱処理を行なえば、同様な効果が得られる。   In this way, by performing heat treatment at 1100 ° C. or higher in a non-oxidizing gas atmosphere such as argon, the generation of OSF can be suppressed and the generation of oxygen precipitates in the vicinity of the surface layer can be controlled without variation, so that the oxide film Effects such as prevention of breakdown voltage failure can be obtained. In addition, although the case where heat processing was performed for 4 hours was described in the said Example, the same effect will be acquired if not only this but heat processing for 1 hour or more.

ところで、熱処理時間が長い場合には、ウエハ内部の酸素析出量が増加するため、プロセス中にウエハにそりが生じたり、プロセス中の熱工程に対するストレスマージンが低下するという問題がある。   By the way, when the heat treatment time is long, the amount of oxygen precipitated in the wafer increases, so that there is a problem that the wafer is warped during the process or the stress margin for the thermal process during the process is lowered.

本発明者等の調べによれば、非酸化性雰囲気の熱処理によって、ウエハ内部に2×1017atoms/cm3 を越える量の酸素が析出すると、結晶欠陥が発生したり、素子特性が劣化することが分かった。このことから、ウエハ表面の酸素濃度を1×1017atoms/cm3 以下にし、ウエハ内部の酸素析出量が2×1017atoms/cm3 以下になるような熱処理条件を選択することが必要である。 According to the study by the present inventors, when a quantity of oxygen exceeding 2 × 10 17 atoms / cm 3 is precipitated inside the wafer by heat treatment in a non-oxidizing atmosphere, crystal defects are generated or device characteristics are deteriorated. I understood that. Therefore, it is necessary to select the heat treatment conditions such that the oxygen concentration on the wafer surface is 1 × 10 17 atoms / cm 3 or less and the oxygen precipitation amount in the wafer is 2 × 10 17 atoms / cm 3 or less. is there.

次に本発明の他の実施例に係るシリコン基板の処理方法について説明する。   Next, a method for treating a silicon substrate according to another embodiment of the present invention will be described.

まず、シリコン基板を1100℃以上,酸化性雰囲気中(ドライ酸素100%)で熱処理し、シリコン基板の表面にシリコン酸化膜を形成する。この熱処理により、シリコン基板の内部の格子間にシリコン原子が導入され、シリコン基板の内部の格子間に酸素が析出するのを抑制できる。   First, a silicon substrate is heat-treated in an oxidizing atmosphere (100% dry oxygen) at 1100 ° C. or higher to form a silicon oxide film on the surface of the silicon substrate. By this heat treatment, silicon atoms can be introduced between the lattices inside the silicon substrate, and oxygen can be prevented from being precipitated between the lattices inside the silicon substrate.

格子間にシリコン原子が導入されるのは、上記1100℃以上の熱処理によってシリコン酸化膜が形成される際に、シリコン基板の表面で原子の再配列が起こり、このときに生じる膨脹により再配列に寄与できなかった余ったシリコン原子がシリコン基板内部に移動するからだと考えられる。   Silicon atoms are introduced between the lattices when atoms are rearranged on the surface of the silicon substrate when the silicon oxide film is formed by the heat treatment at 1100 ° C. or higher. This is thought to be because surplus silicon atoms that could not contribute moved into the silicon substrate.

次にシリコン基板の表面に形成されたシリコン酸化膜を除去した後、このシリコン基板を1200℃の不活性ガス雰囲気中で4時間熱処理を行なう。なお、この熱処理の時間は、4時間に限定されるものではなく、通常の場合、1時間以上であれば良い。   Next, after removing the silicon oxide film formed on the surface of the silicon substrate, the silicon substrate is heat-treated in an inert gas atmosphere at 1200 ° C. for 4 hours. In addition, the time of this heat processing is not limited to 4 hours, Usually, it may be 1 hour or more.

図6は、上記酸化雰囲気中の熱処理の温度(酸化温度)と酸素析出量との関係を示す特性図である。この図6から酸化温度が1100℃以上の場合に、生のシリコン基板よりも酸素析出量が減少することが分かる。したがって、酸化温度は1100℃以上でなければならないことが分かる。   FIG. 6 is a characteristic diagram showing the relationship between the heat treatment temperature (oxidation temperature) in the oxidizing atmosphere and the amount of precipitated oxygen. As can be seen from FIG. 6, when the oxidation temperature is 1100 ° C. or higher, the amount of precipitated oxygen is smaller than that of the raw silicon substrate. Therefore, it can be seen that the oxidation temperature must be 1100 ° C. or higher.

図7は、初期酸素濃度とBMD密度との関係を示す特性図である。   FIG. 7 is a characteristic diagram showing the relationship between the initial oxygen concentration and the BMD density.

図中、●は本実施例の酸化雰囲気中の熱処理を行なったシリコン基板についての測定データを示している。   In the figure, ● represents the measurement data for the silicon substrate subjected to the heat treatment in the oxidizing atmosphere of this example.

具体的には、1200℃の酸化雰囲気中で1時間の熱処理を行なったシリコン基板を、1200℃のArガス雰囲気中で1時間の熱処理を行なった場合の測定データである。   Specifically, it is measurement data when a silicon substrate that has been heat-treated in an oxidizing atmosphere at 1200 ° C. for 1 hour is heat-treated in an Ar gas atmosphere at 1200 ° C. for 1 hour.

一方、○は上記1200℃の酸化雰囲気中の熱処理を行なっていないシリコン基板についての測定データを示している。つまり、上記Arガス雰囲気中の熱処理だけを行なった場合の測定データである。   On the other hand, ◯ indicates measurement data for a silicon substrate that has not been heat-treated in an oxidizing atmosphere at 1200 ° C. That is, it is measurement data when only the heat treatment in the Ar gas atmosphere is performed.

この図7から上記1200℃の酸化雰囲気中の熱処理を行なった場合には、初期酸素濃度に関係なくBMD密度が小さいことが分かる。   It can be seen from FIG. 7 that the BMD density is small regardless of the initial oxygen concentration when the heat treatment is performed in an oxidizing atmosphere at 1200 ° C.

一方、上記1200℃の酸化雰囲気中の熱処理を行なわない場合には、初期酸素濃度の増加に伴ってBMD密度も増加することが分かる。   On the other hand, it can be seen that when the heat treatment in the oxidizing atmosphere at 1200 ° C. is not performed, the BMD density increases as the initial oxygen concentration increases.

したがって、本実施例の酸化雰囲気中の熱処理は、BMD密度の低減化に必須の工程であることが確認できる。   Therefore, it can be confirmed that the heat treatment in the oxidizing atmosphere of this example is an essential process for reducing the BMD density.

図8は、酸化性雰囲気で熱処理した後に上記不活性ガス雰囲気中での熱処理が行なわれる前後におけるシリコン基板の表面からの深さと酸素濃度との関係を示す図で、図中、曲線aは上記熱処理前の特性曲線を示し、曲線bは上記熱処理後の特性曲線を示している。   FIG. 8 is a diagram showing the relationship between the depth from the surface of the silicon substrate and the oxygen concentration before and after the heat treatment in the inert gas atmosphere after the heat treatment in the oxidizing atmosphere. A characteristic curve before the heat treatment is shown, and a curve b shows the characteristic curve after the heat treatment.

この図から酸化性雰囲気中での熱処理直後ではシリコン基板の内部で全体的に高かった酸素濃度が、上記不活性ガス雰囲気中での熱処理により、全体的に低くなることが分かる。このように酸素濃度が低下するのは、不活性ガス雰囲気中での熱処理工程により、シリコン基板表面の酸素が外方拡散するからである。   From this figure, it can be seen that immediately after the heat treatment in the oxidizing atmosphere, the oxygen concentration which is generally high inside the silicon substrate is lowered overall by the heat treatment in the inert gas atmosphere. The reason why the oxygen concentration is lowered is that oxygen on the surface of the silicon substrate is diffused outward by the heat treatment step in an inert gas atmosphere.

図9は、上述した不活性ガス雰囲気中でのシリコン基板の熱処理工程の効果を示す図で、シリコン基板の表面からの深さとBMD密度との関係を示している。図中、曲線cは上記熱処理がある場合、曲線dは上記熱処理がない場合を示している。この図から上記不活性ガス雰囲気中の熱処理工程を行なうことにより、BMD密度を十分小さくできることが分かる。   FIG. 9 is a diagram showing the effect of the heat treatment step of the silicon substrate in the inert gas atmosphere described above, and shows the relationship between the depth from the surface of the silicon substrate and the BMD density. In the figure, curve c indicates the case where the heat treatment is performed, and curve d indicates the case where the heat treatment is not performed. It can be seen from this figure that the BMD density can be sufficiently reduced by performing the heat treatment step in the inert gas atmosphere.

このようにBMD密度が大幅に低減するのは、シリコン基板表面の酸素が外方拡散することにより、シリコン基板表面のBMDが消滅するからである。なお、このときOSFも消滅する。   The reason why the BMD density is greatly reduced in this way is that the BMD on the silicon substrate surface disappears due to the outward diffusion of oxygen on the silicon substrate surface. At this time, the OSF also disappears.

また、本発明者等は、このような処理が施されたシリコン基板を950℃で酸化して厚さ20nmの酸化膜を形成してキャパシタを作成し、その酸化膜並びにシリコン基板の表面のBMDを評価してみた。   In addition, the inventors of the present invention oxidized the silicon substrate subjected to such a treatment at 950 ° C. to form an oxide film having a thickness of 20 nm to form a capacitor, and the BMD on the surface of the oxide film and the silicon substrate. I tried to evaluate.

その結果、酸化性雰囲気中での熱処理温度が1100℃以上の場合には、シリシリコン酸化膜及びシリコン基板の表面のBMDは制御性良く低密度に維持されていることが分かった。また、8MV/cm以下の電界で耐圧不良を示すキャパシタは、全体の数%にすぎなかった。   As a result, it was found that when the heat treatment temperature in the oxidizing atmosphere is 1100 ° C. or higher, the BMD on the surface of the silicon oxide film and the silicon substrate is maintained at a low density with good controllability. Further, only a few percent of the capacitors showed a breakdown voltage failure with an electric field of 8 MV / cm or less.

比較のため、酸化性雰囲気中の熱処理を施していない従来のシリコン基板に形成したキャパシタについて調べたところ、8MV/cm以下の電界で耐圧不良を示すものが全体の20〜60%もあった。   For comparison, when a capacitor formed on a conventional silicon substrate not subjected to a heat treatment in an oxidizing atmosphere was examined, 20 to 60% of the capacitors exhibiting a breakdown voltage with an electric field of 8 MV / cm or less.

以上述べたように本実施例によれば、シリコン基板に1100℃,酸化性雰囲気中の熱処理を施した後、1200℃,不活性ガス雰囲気中の熱処理を施すことにより、シリコン基板の強度劣化を引き起こすこと無く、素子特性を劣化させる原因となるBMDやOSFの発生を抑制できる。   As described above, according to the present embodiment, the silicon substrate is subjected to heat treatment in an oxidizing atmosphere at 1100 ° C., and then subjected to heat treatment in an inert gas atmosphere at 1200 ° C., thereby reducing the strength of the silicon substrate. Without causing it, it is possible to suppress the occurrence of BMD and OSF that cause the device characteristics to deteriorate.

次に本発明の他の実施例に係るシリコン基板の処理方法について説明する。   Next, a method for treating a silicon substrate according to another embodiment of the present invention will be described.

まず最初に、シリコン基板上に酸化膜を形成する。この酸化膜は、例えば、熱酸化法,CVD法等の成膜方法を用いて形成する。   First, an oxide film is formed on a silicon substrate. This oxide film is formed using a film forming method such as a thermal oxidation method or a CVD method.

次にシリコン基板を1100℃以上の窒素等の非酸化性ガス雰囲気中で熱処理する。   Next, the silicon substrate is heat-treated in a non-oxidizing gas atmosphere such as nitrogen at 1100 ° C. or higher.

次にシリコン基板上に形成された酸化膜を除去した後、アルゴン等の不活性ガス雰囲気中で熱処理する。   Next, after removing the oxide film formed on the silicon substrate, heat treatment is performed in an inert gas atmosphere such as argon.

以上述べた方法でも、1100℃以上の窒素等の非酸化性ガス雰囲気中での熱処理により、シリコン基板中の格子間にシリコンが導入され、そして、シリコン基板中の酸素が外方拡散されるため、酸素析出物の発生量を十分小さくでき、先の実施例と同様な効果が期待できる。   Even in the method described above, silicon is introduced between lattices in the silicon substrate by heat treatment in a non-oxidizing gas atmosphere such as nitrogen at 1100 ° C. or higher, and oxygen in the silicon substrate is diffused outward. Further, the amount of oxygen precipitates generated can be made sufficiently small, and the same effect as in the previous examples can be expected.

なお、本発明は上述した実施例に限定されるものではない。例えば、上記実施例では、非酸化性雰囲気としてアルゴンガス雰囲気を用いたが、他の希ガスの雰囲気や、水素雰囲気を用いても同様な効果が得られる。その他、本発明の要旨を逸脱しない範囲で、種々変形して実施できる。   In addition, this invention is not limited to the Example mentioned above. For example, in the above embodiment, an argon gas atmosphere is used as the non-oxidizing atmosphere, but the same effect can be obtained by using an atmosphere of other rare gas or a hydrogen atmosphere. In addition, various modifications can be made without departing from the scope of the present invention.

熱処理時間とOSF密度との関係を示す特性図。The characteristic view which shows the relationship between heat processing time and OSF density. 深さとBMD密度との関係を示す特性図。The characteristic view which shows the relationship between depth and BMD density. 熱処理温度が800℃の場合の保持時間とBMD密度との関係を示す特性図。The characteristic view which shows the relationship between holding time and BMD density in case heat processing temperature is 800 degreeC. 低欠陥密度が得られる熱処理温度,熱処理時間の領域を示す図。The figure which shows the area | region of the heat processing temperature and heat processing time from which a low defect density is obtained. BMD密度と深さと熱処理温度との関係を示す特性図。The characteristic view which shows the relationship between BMD density, depth, and heat processing temperature. 酸化温度と酸素析出量との関係を示す特性図。The characteristic view which shows the relationship between oxidation temperature and the amount of oxygen precipitation. 初期酸素濃度とBMD密度との関係を示す特性図。The characteristic view which shows the relationship between initial stage oxygen concentration and BMD density. シリコン基板の表面からの深さと酸素濃度との関係を示す図。The figure which shows the relationship between the depth from the surface of a silicon substrate, and oxygen concentration. シリコン基板の表面からの深さとBMD密度との関係を示す図。The figure which shows the relationship between the depth from the surface of a silicon substrate, and BMD density. 従来の問題点を説明するためのウエハ断面図。The wafer sectional view for explaining the conventional problem. 酸素の析出挙動を説明するための図。The figure for demonstrating the precipitation behavior of oxygen.

符号の説明Explanation of symbols

1…シリコン基板、2…表面汚染物、3…微細な傷、4…異種物質、5…微小欠陥、12…無欠陥層、13…核、14…中間層、15…BMD。   DESCRIPTION OF SYMBOLS 1 ... Silicon substrate, 2 ... Surface contaminant, 3 ... Fine flaw, 4 ... Foreign material, 5 ... Micro defect, 12 ... Defect-free layer, 13 ... Core, 14 ... Intermediate layer, 15 ... BMD.

Claims (2)

表面が露出している半導体基板をガス雰囲気中で熱処理する工程を有する半導体基板の処理方法において、
前記熱処理は酸素、炭素、窒素又はカーボン系のガスの濃度が10ppb以下の1100℃以上のアルゴンガス雰囲気で行なわれ、前記熱処理以前のアルゴンガス雰囲気での熱工程の中で、前記半導体基板を前記熱処理以前の前記アルゴンガス雰囲気に挿入後の熱処理温度と保持時間(保持時間ゼロは除く)とが、前記熱処理温度と前記保持時間とを座標とする平面において、(900℃、4分),(800℃,40分),(700℃,11時間),(600℃,320時間)の4つの点を結ぶ線以下の領域に含まれ、且つ、前記熱処理及び該熱処理以前の前記熱工程により、前記半導体基板中の酸素の析出、成長を抑制するように制御し、前記半導体基板の表面から50μm以上の深さの領域の内部微小欠陥密度を1×109 個/cm3 以下、前記表面から10μm以内の深さの領域の内部微小欠陥密度を1×107 個/cm3 以下にすることを特徴とする半導体基板の処理方法。
In a semiconductor substrate processing method including a step of heat-treating a semiconductor substrate having an exposed surface in a gas atmosphere,
The heat treatment is performed in an argon gas atmosphere of 1100 ° C. or higher with a concentration of oxygen, carbon, nitrogen, or a carbon-based gas of 10 ppb or less, and the semiconductor substrate is subjected to the heat treatment in an argon gas atmosphere before the heat treatment. The heat treatment temperature and holding time (excluding the holding time of zero) after insertion into the argon gas atmosphere before the heat treatment are (900 ° C., 4 minutes) in a plane with the heat treatment temperature and the holding time as coordinates (900 ° C., 4 minutes), ( 800 ° C., 40 minutes), (700 ° C., 11 hours), (600 ° C., 320 hours) included in the region below the line connecting the four points, and by the heat treatment and the heat step before the heat treatment, the precipitation of oxygen in the semiconductor substrate, is controlled to suppress the growth, the internal micro defect density region from the surface 50μm or more of the depth of the semiconductor substrate 1 × 10 9 pieces / cm 3 or less Method of treating a semiconductor substrate, which comprises an internal micro defect density in the depth of the region within 10μm from the surface below 1 × 10 7 cells / cm 3.
前記半導体基板はシリコン基板であることを特徴とする請求項1に記載の半導体基板の処理方法。 The method for processing a semiconductor substrate according to claim 1, wherein the semiconductor substrate is a silicon substrate.
JP2006135291A 1992-07-17 2006-05-15 Method for processing semiconductor substrate Pending JP2006270114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006135291A JP2006270114A (en) 1992-07-17 2006-05-15 Method for processing semiconductor substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP19111892 1992-07-17
JP2006135291A JP2006270114A (en) 1992-07-17 2006-05-15 Method for processing semiconductor substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP4349538A Division JPH0684925A (en) 1992-07-17 1992-12-28 Semiconductor substrate and its treatment

Publications (1)

Publication Number Publication Date
JP2006270114A true JP2006270114A (en) 2006-10-05

Family

ID=37205654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006135291A Pending JP2006270114A (en) 1992-07-17 2006-05-15 Method for processing semiconductor substrate

Country Status (1)

Country Link
JP (1) JP2006270114A (en)

Similar Documents

Publication Publication Date Title
US5885905A (en) Semiconductor substrate and method of processing the same
JPS6255697B2 (en)
JPH05102162A (en) Manufacture of semiconductor wafer
JPH0475655B2 (en)
US20100155903A1 (en) Annealed wafer and method for producing annealed wafer
JP3381816B2 (en) Semiconductor substrate manufacturing method
JPH11168106A (en) Treatment method of semiconductor substrate
US4666532A (en) Denuding silicon substrates with oxygen and halogen
JPWO2003009365A1 (en) Method for manufacturing silicon wafer, method for manufacturing silicon epitaxial wafer, and silicon epitaxial wafer
US8758505B2 (en) Silicon wafer and method for manufacturing the same
JP3022044B2 (en) Method for manufacturing silicon wafer and silicon wafer
WO2010131412A1 (en) Silicon wafer and method for producing the same
KR860000228B1 (en) Semiconductor substance and its manufacturing method
JP2001253795A (en) Silicon epitaxial water and method of producing the same
JPS60247935A (en) Manufacture of semiconductor wafer
US5574307A (en) Semiconductor device and method of producing the same
JP3292545B2 (en) Heat treatment method for semiconductor substrate
JPS6120337A (en) Manufacture of semiconductor device
JP2006270114A (en) Method for processing semiconductor substrate
JP2006040972A (en) Silicon epitaxial wafer and its manufacturing method
JP2008227060A (en) Method of manufacturing annealed wafer
JPH06295913A (en) Manufacture of silicon wafer and silicon wafer
JPS58102528A (en) Treatment of semiconductor wafer
JPH0897222A (en) Manufacture of silicon wafer, and silicon wafer
JPH08162461A (en) Method of heat treating semiconductor substrate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090519