JP2006270075A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2006270075A
JP2006270075A JP2006044854A JP2006044854A JP2006270075A JP 2006270075 A JP2006270075 A JP 2006270075A JP 2006044854 A JP2006044854 A JP 2006044854A JP 2006044854 A JP2006044854 A JP 2006044854A JP 2006270075 A JP2006270075 A JP 2006270075A
Authority
JP
Japan
Prior art keywords
semiconductor device
wire
electrode pad
aupd
pad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006044854A
Other languages
Japanese (ja)
Inventor
Mitsuru Ota
充 太田
Tomonori Kato
友規 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp filed Critical NEC Electronics Corp
Priority to JP2006044854A priority Critical patent/JP2006270075A/en
Publication of JP2006270075A publication Critical patent/JP2006270075A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45164Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4845Details of ball bonds
    • H01L2224/48451Shape
    • H01L2224/48453Shape of the interface with the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48507Material at the bonding interface comprising an intermetallic compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012022N purity grades, i.e. 99%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the reliability of a joint region between a bonding wire and an electrode pad during a high-temperature operation. <P>SOLUTION: In a semiconductor device 100, a semiconductor chip 102 is mounted on a lead frame 121, and the chip and the frame are sealed with sealing resin 115. A lead frame 119 is provided on the side of the lead frame 121. A part of the lead frame 119 is sealed with the sealing resin 115 as an inner lead 117. The sealing resin 115 is composed of a resin composition substantially containing no halogen. Further, the inner lead 117 and the exposed portion of an Al pad 107 provided on the semiconductor chip 102 are electrically connected to each other via an AuPd wire 111. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体チップの電極パッドと、ボンディングワイヤ等の接続部材との接合部分が封止樹脂により封止された半導体装置に関する。   The present invention relates to a semiconductor device in which a bonding portion between an electrode pad of a semiconductor chip and a connection member such as a bonding wire is sealed with a sealing resin.

半導体チップ上の電極パッドとリードフレームとをワイヤボンディング等の接続部材により接続し、封止樹脂で封止した半導体装置として、従来、特許文献1および特許文献2に記載のものがある。   Conventionally, there are semiconductor devices described in Patent Documents 1 and 2 as semiconductor devices in which electrode pads on a semiconductor chip and lead frames are connected by a connecting member such as wire bonding and sealed with a sealing resin.

特許文献1には、ボンディング線としてMnを必須成分とする金合金を用い、臭素またはアンチモンを含む封止樹脂を用いることが記載されている。また、特許文献1には、以下のことが記載されている。すなわち、難燃性を高めるためには、封止樹脂中に臭素およびアンチモンの少なくとも一方は含有することが不可欠であり、0.1重量%未満では封止難燃効果がえられない。そして、Mnを必須とする金合金細線を使用すると、臭素およびアンチモンの含有量を従来より増加させても信頼性を損なうことなく、難燃性を高めることができる。さらに、Pdの単独添加では化合物相の成長速度を抑制させることを確認したが、腐食の抑制効果は必ずしも十分ではなく、特に化合物の広範囲に腐食が進む段階に相当するような長時間加熱において、腐食を遅らせる効果を得るためにはPd添加量を約1重量%を超える範囲が必要となる。しかしPdの高濃度含有によりボール部の形状が扁平になったり、ボール部の硬化により接合時にシリコン基板に損傷を与えることが問題視される。Pd添加量を少量にするとボール形状は問題ないが、長時間加熱した接合部において化合物が十分成長した後では腐食抑制の効果は小さいことが問題となる。Mn添加を併用することにより、Pd単独では抑制が困難であった電気抵抗の上昇も抑えられ、少量のPdでも腐食進行を抑える効果を非常に高めることができる。これらの理由から、腐食の進行を短時間および長時間にわたり抑えるためには、MnとPdの併用が有効である。   Patent Document 1 describes that a gold alloy containing Mn as an essential component is used as a bonding wire and a sealing resin containing bromine or antimony is used. Patent Document 1 describes the following. That is, in order to enhance the flame retardancy, it is indispensable to contain at least one of bromine and antimony in the sealing resin, and if it is less than 0.1% by weight, the sealing flame retardant effect cannot be obtained. And if the gold alloy fine wire which requires Mn is used, even if it increases bromine and antimony content conventionally, a flame retardance can be improved, without impairing reliability. Furthermore, it has been confirmed that the addition of Pd alone suppresses the growth rate of the compound phase, but the effect of inhibiting the corrosion is not necessarily sufficient, especially in the long-time heating corresponding to the stage where the corrosion progresses over a wide area of the compound. In order to obtain the effect of delaying corrosion, a range in which the amount of Pd added exceeds about 1% by weight is required. However, there is a problem that the shape of the ball portion becomes flat due to the high concentration of Pd, or the silicon substrate is damaged at the time of bonding due to the hardening of the ball portion. If the amount of Pd added is small, the ball shape is not a problem, but after the compound has sufficiently grown in the joint heated for a long time, the effect of inhibiting corrosion is a problem. By using Mn in combination, an increase in electrical resistance, which was difficult to suppress with Pd alone, can be suppressed, and the effect of suppressing the progress of corrosion can be greatly enhanced even with a small amount of Pd. For these reasons, the combined use of Mn and Pd is effective for suppressing the progress of corrosion over a short time and a long time.

また、特許文献2には、リードフレームのダイパッド上に半導体チップを搭載し、ボンディングワイヤでボンディングパッドとの接続を行ったものを、まず、難燃剤および難燃助剤を含まない保護層で被覆し、その外側を難燃性樹脂で被覆することにより得られる半導体装置が記載されている。
特開平10−303239号公報 特開平4−206651号公報
In Patent Document 2, a semiconductor chip mounted on a die pad of a lead frame and connected to a bonding pad with a bonding wire is first covered with a protective layer that does not contain a flame retardant and a flame retardant aid. However, a semiconductor device obtained by coating the outside with a flame-retardant resin is described.
JP-A-10-303239 JP-A-4-206651

ところが、本発明者が上記特許文献1および2に記載の技術について検討したところ、高温で動作させた際の電極パッドとボンディングワイヤとの接合信頼性の点で、なおも改善の余地があることが明らかになった。   However, when the present inventor examined the techniques described in Patent Documents 1 and 2, there is still room for improvement in terms of the reliability of bonding between the electrode pad and the bonding wire when operated at a high temperature. Became clear.

そこで、本発明者は、電極パッドの材料がAl、接続部材であるボンディングワイヤが純金線(Au)であって、封止樹脂中にハロゲンとしてBrを含む構成の半導体装置について検討を行った。その結果、AuワイヤとBrを含む封止樹脂とを備える半導体装置を高温保存すると、下記式(1)〜式(6)に示した反応の進行により不良が発生することが見出された。なお、具体的な検討内容については後述する。
2Al+Au→AuAl2 (1)
AuAl2+Au→2AuAl (2)
AuAl+Au→Au2Al (3)
2Au2Al+Au→Au5Al2 (4)
Au5Al2+3Au→2Au4Al (5)
Au4Al+3Br-→4Au+AlBr3 (6)
Therefore, the present inventor has studied a semiconductor device having a structure in which the electrode pad material is Al, the bonding wire as the connecting member is a pure gold wire (Au), and the sealing resin contains Br as a halogen. As a result, it has been found that when a semiconductor device including an Au wire and a sealing resin containing Br is stored at a high temperature, a failure occurs due to the progress of reactions shown in the following formulas (1) to (6). Specific details will be described later.
2Al + Au → AuAl 2 (1)
AuAl 2 + Au → 2AuAl (2)
AuAl + Au → Au 2 Al (3)
2Au 2 Al + Au → Au 5 Al 2 (4)
Au 5 Al 2 + 3Au → 2Au 4 Al (5)
Au 4 Al + 3Br → 4Au + AlBr 3 (6)

そこで、本発明者は、以上の知見に基づき、上記式(1)〜式(6)に示した反応を進行させないという観点で、高温での長時間動作における信頼性をさらに向上させるべく検討を行った。その結果、封止樹脂中の少なくとも一部の領域にBrを含む樹脂組成物が使用されている従来用いられている構成から、Brを実質的に含まない構成とするとともに、ボンディングワイヤ等の接続部材が所定の金属を含むAu合金である構成とすることにより、高温動作時の信頼性を顕著に向上させることが可能であることを見出し、本発明に至った。   Therefore, the present inventor has examined based on the above knowledge to further improve the reliability in long-time operation at high temperatures from the viewpoint of not allowing the reactions shown in the above formulas (1) to (6) to proceed. went. As a result, the structure in which the resin composition containing Br is used in at least a part of the sealing resin is changed from a conventionally used structure to a structure that does not substantially contain Br, and bonding wires and the like are connected. It has been found that the reliability of the member during high-temperature operation can be remarkably improved by adopting a structure in which the member is an Au alloy containing a predetermined metal, and the present invention has been achieved.

本発明によれば、
半導体チップと、
前記半導体チップに設けられた電極パッドと、
前記半導体チップの外部に設けられた接続端子と前記半導体チップとを接続する接続部材と、
を備え、
前記電極パッドと前記接続部材とが封止樹脂により封止された半導体装置であって、
前記接続部材が、下記式(I)で示される金属を含むとともに、
前記封止樹脂が、実質的にハロゲンを含まないことを特徴とする半導体装置が提供される。
AuM (I)
(ただし、上記式(I)において、Mは、Pd、Cu、AgおよびPtのうち、少なくとも一つを含む。)
According to the present invention,
A semiconductor chip;
An electrode pad provided on the semiconductor chip;
A connection member for connecting the semiconductor chip and a connection terminal provided outside the semiconductor chip;
With
A semiconductor device in which the electrode pad and the connection member are sealed with a sealing resin,
The connecting member contains a metal represented by the following formula (I),
A semiconductor device is provided in which the sealing resin does not substantially contain halogen.
AuM (I)
(However, in the above formula (I), M includes at least one of Pd, Cu, Ag, and Pt.)

本発明において、接続部材は、接続端子と半導体チップとを電気的に接続する部材であればよく、具体的には、ワイヤ、ボール、リボン状の接続部材等が挙げられる。   In the present invention, the connection member may be a member that electrically connects the connection terminal and the semiconductor chip, and specifically includes a wire, a ball, a ribbon-like connection member, and the like.

また、本発明によれば、
半導体チップと、
前記半導体チップに設けられた電極パッドと、
前記半導体チップの外部に設けられた接続端子と前記半導体チップとを接続するワイヤと、
を備え、
前記電極パッドと前記ワイヤとが封止樹脂により封止された半導体装置であって、
前記ワイヤが、下記式(I)で示される金属を含むとともに、
前記封止樹脂が、実質的にハロゲンを含まないことを特徴とする半導体装置が提供される。
AuM (I)
(ただし、上記式(I)において、Mは、Pd、Cu、AgおよびPtのうち、少なくとも一つを含む。)
Moreover, according to the present invention,
A semiconductor chip;
An electrode pad provided on the semiconductor chip;
A connection terminal provided outside the semiconductor chip and a wire connecting the semiconductor chip;
With
A semiconductor device in which the electrode pad and the wire are sealed with a sealing resin,
The wire includes a metal represented by the following formula (I),
A semiconductor device is provided in which the sealing resin does not substantially contain halogen.
AuM (I)
(However, in the above formula (I), M includes at least one of Pd, Cu, Ag, and Pt.)

本発明の構成によれば、ワイヤ等の接続部材が上記式(I)で示される金属を含むため、高温動作時の、Auと電極パッドを構成する金属との相互拡散を抑制するとともに、封止樹脂中にハロゲンが実質的に含まれないため、ハロゲンによる腐食を抑制することができる。このため、Auと電極パッドを構成する金属とを含む領域の成長によるクラックの発生を抑制し、かつ、ハロゲン化物の生成により生じるボイドや変色を抑制することができる。このため、これらの相乗効果により、高温動作時のボンディングワイヤと電極パッドとの接合領域における不良の発生を抑制し、信頼性を向上させることができる。また、ボンディングワイヤ以外の接続部材を用いた場合にも、接続部材電極パッドとの接合領域における不良の発生を抑制できる。   According to the configuration of the present invention, since the connection member such as the wire includes the metal represented by the above formula (I), the interdiffusion between Au and the metal constituting the electrode pad during high temperature operation is suppressed and the sealing is performed. Since halogen is not substantially contained in the stop resin, corrosion by halogen can be suppressed. For this reason, generation | occurrence | production of the crack by the growth of the area | region containing Au and the metal which comprises an electrode pad can be suppressed, and the void and discoloration which arise by the production | generation of a halide can be suppressed. For this reason, by these synergistic effects, it is possible to suppress the occurrence of defects in the bonding region between the bonding wire and the electrode pad during high-temperature operation and improve the reliability. In addition, even when a connection member other than the bonding wire is used, it is possible to suppress the occurrence of defects in the bonding region with the connection member electrode pad.

なお、本明細書において、上記式(I)で示される金属とは、AuとMとを含む金属のことをいい、たとえばAuとMとの合金が挙げられる。   In the present specification, the metal represented by the above formula (I) refers to a metal containing Au and M, for example, an alloy of Au and M.

また、本明細書において、封止樹脂がハロゲンを実質的に含まないとは、封止樹脂を構成する組成物中の樹脂や、難燃剤等の添加剤のいずれも、ハロゲンが意図的に添加された構成でないことをいい、たとえば、樹脂組成物中のハロゲン濃度が100ppm以下であることをいう。   Further, in this specification, that the sealing resin does not substantially contain halogen means that halogen is intentionally added to any of the additives in the composition constituting the sealing resin and additives such as a flame retardant. For example, it means that the halogen concentration in the resin composition is 100 ppm or less.

本発明によれば、ワイヤ等の接続部材が上記式(I)で示される金属を含むとともに、封止樹脂が実質的にハロゲンを含まない構成とすることにより、高温動作時の接続部材とAlを含む電極パッドとの接合領域の信頼性を向上させる技術が実現される。   According to the present invention, the connection member such as a wire includes the metal represented by the above formula (I), and the sealing resin does not substantially contain a halogen, so that the connection member and Al during high temperature operation can be obtained. A technique for improving the reliability of the bonding region with the electrode pad including the element is realized.

以下、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、共通の構成要素には同じ符号を付し、適宜説明を省略する。また、以下においては、ボンディングパッドと半導体チップとを電気的に接続する接続部材がボンディングワイヤである場合を例に説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, common constituent elements are denoted by the same reference numerals, and description thereof is omitted as appropriate. In the following, a case where the connecting member that electrically connects the bonding pad and the semiconductor chip is a bonding wire will be described as an example.

まず、本発明の理解のために、課題を解決するための手段の項で記載した従来の半導体装置における高温動作時の故障メカニズムについて説明する。   First, in order to understand the present invention, a failure mechanism during a high temperature operation in a conventional semiconductor device described in the section for solving the problems will be described.

図9は、検討に用いた半導体装置の構成を示す断面図である。図9に示した半導体装置200は、シリコン基板(不図示)上に、配線層と層間絶縁膜等とが積層した多層膜(不図示)が設けられた構成である。多層膜(不図示)上の所定の位置に、Alパッド207が設けられ、Alパッド207の側面全面および上面の一部をポリイミド膜209が被覆している。ポリイミド膜209からの露出部においては、Alパッド207の上面が露出しており、露出部にAuワイヤ211が接続されている。Alパッド207の接続部分であるAuワイヤ211の先端はAuボール213となっており、Auボール213とAlパッド207とが接合されている。ポリイミド膜209の上面全面に、臭素化エポキシ樹脂を含む樹脂組成物により構成される封止樹脂215が設けられ、Alパッド207とAuボール213との接合部分が被覆されている。   FIG. 9 is a cross-sectional view showing the configuration of the semiconductor device used for the study. The semiconductor device 200 shown in FIG. 9 has a configuration in which a multilayer film (not shown) in which a wiring layer and an interlayer insulating film are stacked is provided on a silicon substrate (not shown). An Al pad 207 is provided at a predetermined position on a multilayer film (not shown), and the polyimide film 209 covers the entire side surface and a part of the upper surface of the Al pad 207. In the exposed portion from the polyimide film 209, the upper surface of the Al pad 207 is exposed, and the Au wire 211 is connected to the exposed portion. The tip of the Au wire 211, which is the connection part of the Al pad 207, is an Au ball 213, and the Au ball 213 and the Al pad 207 are joined. A sealing resin 215 made of a resin composition containing a brominated epoxy resin is provided on the entire upper surface of the polyimide film 209 to cover the joint between the Al pad 207 and the Au ball 213.

Auワイヤ211の径の異なる半導体装置200(図9)について、高温保存時の寿命を評価するとともに、接合不良の原因を検討した。その結果、高温動作時に、ボンディングワイヤに接合不具合が生じる原因として、以下のことが見出された。   Regarding the semiconductor device 200 (FIG. 9) having a different diameter of the Au wire 211, the lifetime during high-temperature storage was evaluated and the cause of the bonding failure was examined. As a result, the following has been found as a cause of bonding defects in bonding wires during high temperature operation.

まず、図10は、Auワイヤ211の直径を20μmとした際の、175℃、185℃、200℃および220℃で保存したときのAuワイヤ211の寿命のワイブルプロットを示す図である。図10に示したように、保存温度が高温であるほど累積不良率が10%となるまでの時間が短いことがわかる。   First, FIG. 10 is a diagram showing a Weibull plot of the life of the Au wire 211 when stored at 175 ° C., 185 ° C., 200 ° C. and 220 ° C. when the diameter of the Au wire 211 is 20 μm. As shown in FIG. 10, it can be seen that the higher the storage temperature, the shorter the time until the cumulative defect rate becomes 10%.

さらに、Auワイヤ211のワイヤ径と保存温度を変化させて試験を行い、故障メカニズムの解析を行った。
まず、Auワイヤ211のワイヤ径を20μmとした場合について検討した。
半導体装置200を220℃で48時間保存した。保存後、半導体装置200を常温まで冷却して、Alパッド207とAuボール213との接合部分のSEM(走査型電子顕微鏡)観察を行った。図11は、Alパッド207、Auボール213およびAuワイヤ211の断面の光学顕微鏡像を示す図であり、図12は、図11中の四角で囲んだ領域を拡大したSEM像を示す図である。図11および図12に示したように、この試料においては、Au4Al層とAu5Al2層との界面でクラックが生じるとともに、Au4Al層にボイドが形成されている。
Furthermore, the test was performed by changing the wire diameter and storage temperature of the Au wire 211, and the failure mechanism was analyzed.
First, the case where the wire diameter of the Au wire 211 was 20 μm was examined.
The semiconductor device 200 was stored at 220 ° C. for 48 hours. After the storage, the semiconductor device 200 was cooled to room temperature, and SEM (scanning electron microscope) observation of the joint portion between the Al pad 207 and the Au ball 213 was performed. FIG. 11 is a view showing an optical microscope image of a cross section of the Al pad 207, the Au ball 213, and the Au wire 211, and FIG. 12 is a view showing an enlarged SEM image of a region surrounded by a square in FIG. . As shown in FIGS. 11 and 12, in this sample, cracks are generated at the interface between the Au 4 Al layer and the Au 5 Al 2 layer, and voids are formed in the Au 4 Al layer.

また、図13は、ワイヤ径が20μmのAuワイヤ211を用いた半導体装置200を185℃および220℃で保存した際の試験時間(hr)とボイド長さ(μm)との関係を、不良発生時間とともに示した図である。図13に示したように、Auボール213のボール径は80μmである。また、不良発生時間とは、VF(順電圧)不良が検知された時間であり、図13中に下向きの矢印で示した時間である。図13より、185℃保存および220℃保存のいずれの場合についても、ボイド長さが40μm程度の時点で不良発生が検知されていることがわかる。これより、ボイドがAuボール213の直径の半分程度の大きさになると、抵抗値の増加によるVF不良が発生するものと推察される。   FIG. 13 shows the relationship between the test time (hr) and void length (μm) when the semiconductor device 200 using the Au wire 211 having a wire diameter of 20 μm is stored at 185 ° C. and 220 ° C. It is the figure shown with time. As shown in FIG. 13, the ball diameter of the Au ball 213 is 80 μm. The failure occurrence time is a time when a VF (forward voltage) failure is detected, and is a time indicated by a downward arrow in FIG. From FIG. 13, it can be seen that in both cases of storage at 185 ° C. and storage at 220 ° C., the occurrence of a defect is detected when the void length is about 40 μm. From this, it is inferred that when the void is about half the diameter of the Au ball 213, a VF failure occurs due to an increase in the resistance value.

以上より、ワイヤ径が20μmのAuワイヤ211を用いた場合には、以下のメカニズムで不良発生に至ることが推察される。図14は、不良発生のメカニズムを説明する図である。下記式(1)〜式(6)は、Alパッド207とAuボール213との接合部で生じていると考えられる反応式である。
2Al+Au→AuAl2 (1)
AuAl2+Au→2AuAl (2)
AuAl+Au→Au2Al (3)
2Au2Al+Au→Au5Al2 (4)
Au5Al2+3Au→2Au4Al (5)
Au4Al+3Br-→4Au+AlBr3 (6)
From the above, when the Au wire 211 having a wire diameter of 20 μm is used, it is presumed that a defect occurs due to the following mechanism. FIG. 14 is a diagram for explaining the mechanism of occurrence of defects. The following equations (1) to (6) are reaction equations that are considered to occur at the joint between the Al pad 207 and the Au ball 213.
2Al + Au → AuAl 2 (1)
AuAl 2 + Au → 2AuAl (2)
AuAl + Au → Au 2 Al (3)
2Au 2 Al + Au → Au 5 Al 2 (4)
Au 5 Al 2 + 3Au → 2Au 4 Al (5)
Au 4 Al + 3Br → 4Au + AlBr 3 (6)

図14および上記式(1)〜式(6)に示したように、半導体装置200を高温で保存すると、Alパッド207とAuボール213との界面におけるAuとAlとの相互拡散により、上記式(1)〜式(5)に示した反応が進み、Au側すなわちAuボール213の底部にAu4Alが生成する(図14の(i))。そして、Au4Alが生成することにより生じる体積膨張に起因して、Au4Al層とAu層との間にストレスが加わることにより、これらの界面にクラックが発生する(図14の(ii))。さらに、Au4Alは、封止樹脂215中の臭素化エポキシ樹脂に由来する臭素イオン(Br-)による腐食を受け、上記式(6)に示した反応により、臭化アルミニウムが発生する。上記式(6)により生じるAlBr3は、融点が97℃と低いため、常温では体積が減少し、ボイド状態になると考えられる(図14の(iii))。このため、ワイヤ径が20μmのAuワイヤ211を用いた場合、上記式(6)によりAlBr3が生じることに起因するボイドの発生が、不良発生の支配的な要因であると推察される。 As shown in FIG. 14 and the above formulas (1) to (6), when the semiconductor device 200 is stored at a high temperature, the above formula is obtained due to the mutual diffusion of Au and Al at the interface between the Al pad 207 and the Au ball 213. The reactions shown in (1) to (5) proceed, and Au 4 Al is generated on the Au side, that is, the bottom of the Au ball 213 ((i) in FIG. 14). Then, due to the volume expansion caused by Au 4 Al is generated by stress applied between the Au 4 Al layer and the Au layer, a crack is generated in these interfaces (in FIG. 14 (ii) ). Further, Au 4 Al is corroded by bromine ions (Br ) derived from the brominated epoxy resin in the sealing resin 215, and aluminum bromide is generated by the reaction shown in the above formula (6). Since AlBr 3 produced by the above formula (6) has a low melting point of 97 ° C., it is considered that the volume decreases at room temperature and a void state is formed ((iii) in FIG. 14). For this reason, when the Au wire 211 having a wire diameter of 20 μm is used, it is presumed that the generation of voids due to the generation of AlBr 3 is a dominant factor in the occurrence of defects according to the above formula (6).

次に、Auワイヤ211のワイヤ径を70μmとして試験を行った。
半導体装置200を200℃で1250時間保存した。保存後、半導体装置200を常温まで冷却して、Alパッド207とAuボール213との接合部分のSEM(走査型電子顕微鏡)観察を行った。図15は、Alパッド207(図15では符号不図示)、Auボール213(図15では符号不図示)およびAuワイヤ211(図15では符号不図示)の断面の光学顕微鏡像を示す図であり、図16は、図15中の四角で囲んだ領域を拡大したSEM像を示す図である。図17は、図16の元素分析マップを示す図である。この試料においては、AuAl合金層が非常に脆い状態となっていた。また、図15〜図17より、AuAl合金層中には、Auが網目状に分布しており、脆い部分はAlBr3であると推定された。
Next, the test was conducted with the Au wire 211 having a wire diameter of 70 μm.
The semiconductor device 200 was stored at 200 ° C. for 1250 hours. After the storage, the semiconductor device 200 was cooled to room temperature, and SEM (scanning electron microscope) observation of the joint portion between the Al pad 207 and the Au ball 213 was performed. FIG. 15 is a view showing an optical microscope image of a cross section of the Al pad 207 (not shown in FIG. 15), the Au ball 213 (not shown in FIG. 15), and the Au wire 211 (not shown in FIG. 15). FIG. 16 is a diagram showing an SEM image in which a region surrounded by a square in FIG. 15 is enlarged. FIG. 17 is a diagram showing the elemental analysis map of FIG. In this sample, the AuAl alloy layer was in a very fragile state. Further, from FIGS. 15 to 17, it was estimated that Au was distributed in a network in the AuAl alloy layer, and the brittle portion was AlBr 3 .

また、図18は、ワイヤ径が70μmのAuワイヤ211を用いた半導体装置200を220℃で保存した際の試験時間(hr)とボイド長さ(μm)との関係を、不良発生時間とともに示した図である。図18に示したように、Auボール213のボール径は220μm程度である。また、不良発生時間とは、VF(順電圧)不良が検知された時間であり、図18中に下向きの矢印で示した時間である。図18より、不良発生が検知されるのは、ボイド長さの急激な増加がおさまった後であることがわかる。ワイヤ径が70μmと太い場合、Auボール213の直径および断面積も大きくなるため、ボイドの成長が不良発生の支配的な要因とはならないと推察される。   FIG. 18 shows the relationship between the test time (hr) and the void length (μm) when the semiconductor device 200 using the Au wire 211 having a wire diameter of 70 μm is stored at 220 ° C. along with the defect occurrence time. It is a figure. As shown in FIG. 18, the ball diameter of the Au ball 213 is about 220 μm. The failure occurrence time is a time when a VF (forward voltage) failure is detected, and is a time indicated by a downward arrow in FIG. From FIG. 18, it can be seen that the occurrence of a defect is detected after the sudden increase in the void length has stopped. When the wire diameter is as thick as 70 μm, the diameter and cross-sectional area of the Au ball 213 are also increased, and it is assumed that the growth of voids does not become a dominant factor for the occurrence of defects.

以上より、ワイヤ径が70μmのAuワイヤ211を用いた場合には、以下のメカニズムで不良発生に至ることが推察される。図19は、不良発生のメカニズムを説明する図である。図19に示したように、ワイヤ径が太いと、ボイドが発生しても直ちに不良とはならず、長時間の高温保管下で生成したAu4Alに対するBrイオンの酸化作用により、上記式(6)に示した反応が進行し、Alパッド207とAuボール213との界面におけるAuとAlBr3の生成反応が進行すると考えられる。上記式(6)により生成するAlBr3は高抵抗であるため、この生成量が増加するとVFが大きくなり、不良の発生につながると考えられる。このため、ワイヤ径が70μmのAuワイヤ211を用いた場合、上記式(6)によりAlBr3が生じることに高抵抗層の成長が、不良発生の支配的な要因であると推察される。 From the above, when the Au wire 211 having a wire diameter of 70 μm is used, it is presumed that defects are caused by the following mechanism. FIG. 19 is a diagram for explaining the mechanism of occurrence of defects. As shown in FIG. 19, when the wire diameter is large, even if a void is generated, it does not immediately become defective, but by the oxidizing action of Br ions on Au 4 Al generated under high temperature storage for a long time, the above formula ( It is considered that the reaction shown in 6) proceeds and the formation reaction of Au and AlBr 3 at the interface between the Al pad 207 and the Au ball 213 proceeds. AlBr 3 produced by the above formula (6) is for a high resistance, VF increases when this product amount increases, believed to lead to the occurrence of defects. For this reason, when the Au wire 211 having a wire diameter of 70 μm is used, it is presumed that the growth of the high resistance layer is the dominant factor in the generation of defects due to the generation of AlBr 3 according to the above formula (6).

以上の解析結果から、Auワイヤ211の直径により支配的な要因が変動しうるものの、Auワイヤ211と臭素化エポキシ樹脂を含む封止樹脂215を用いた半導体装置200を高温保存すると、上記式(1)〜式(6)に示した反応の進行により不良が発生することが見出された。   From the above analysis results, although the dominant factor may vary depending on the diameter of the Au wire 211, when the semiconductor device 200 using the sealing resin 215 including the Au wire 211 and brominated epoxy resin is stored at a high temperature, the above formula ( It was found that defects occurred due to the progress of the reactions shown in 1) to Formula (6).

そこで、次に、上記式(1)〜式(6)に示した反応の進行およびそれに伴う不良の発生を抑制する装置構成の例を説明する。   Then, the example of the apparatus structure which suppresses progress of reaction shown to said Formula (1)-Formula (6) and generation | occurrence | production of the defect accompanying it next is demonstrated.

(第一の実施形態)
図1は、本実施形態の半導体装置の構成を示す断面図である。また、図2は、図1の半導体装置100の電極パッドとボンディングワイヤとが接合された領域の周辺の構成を拡大して示す断面図である。
図1および図2に示した半導体装置100は、半導体チップ102と、半導体チップ102に設けられた電極パッド(Alパッド107)と、半導体チップ102の外部に設けられた接続端子(インナーリード117)と半導体チップ102とを接続する接続部材であるワイヤ(AuPdワイヤ111)と、を備える。AuPdワイヤ111の先端部はボール状のAuPdボール113となっている。Alパッド107と、AuPdワイヤ111の先端のAuPdボール113とは、封止樹脂115により封止されている。
AuPdワイヤ111は、下記式(I)で示される金属を含むとともに、封止樹脂115は、実質的にハロゲンを含まない。封止樹脂115中の樹脂は、分子骨格中にBr基を実質的に含まない高分子化合物からなる。
AuM (I)
(ただし、上記式(I)において、Mは、Pd、Cu、AgおよびPtのうち、少なくとも一つを含む。)
本実施形態では、上記式(I)で示される金属がAuおよびPdを含む。
AuPdワイヤ111先端のAuPdボール113において、Alパッド107との接続領域の近傍に、上記式(I)で示される金属中のMの偏在領域(Pd偏析領域106)を有する。
Pd偏析領域106は、半導体装置100の完成時に明確に存在していてもよい。Pd偏析領域106は、完成後の加熱処理によりさらに明確に出現する。また、Pd偏析領域106がAlパッド107中に含まれる金属(Al)とAuPdワイヤ111中に含まれる金属(Au)とが拡散してなる領域の周囲に生じた金属領域であってもよく、この金属領域が合金から構成されていてもよい。Pd偏析領域106は、Pdが偏析によりAuPdボール113中で相対的に濃縮されている領域とすることができる。
Alパッド107とAuPdボール113との接続領域近傍において、Alパッド107とPd偏析領域106との間に、AlとAuとの合金層(AuAl合金層105)を有する。なお、Alパッド107は、Alを主成分とする電極パッドの一例である。また、Alは、Alパッド107中に含まれる主成分の金属である。また、AlとAuとの合金層の面積が、Alパッド107とAuPdワイヤ111との接続部分の面積の50%以上を占める。
Pd偏析領域106は、Alパッド107中に含まれる金属とAuPdボール113中に含まれる金属との拡散を抑制する拡散抑制領域として機能し、AuAl合金層105の成長を抑制するバリア領域である。Pd偏析領域106は層状に設けられた構成とすることができる。こうすることにより、AuAl合金層105が加熱された際にさらに成長することをより一層確実に抑制できる。
(First embodiment)
FIG. 1 is a cross-sectional view showing the configuration of the semiconductor device of this embodiment. FIG. 2 is an enlarged cross-sectional view showing a configuration around a region where the electrode pad and the bonding wire of the semiconductor device 100 of FIG. 1 are bonded.
1 and 2 includes a semiconductor chip 102, an electrode pad (Al pad 107) provided on the semiconductor chip 102, and a connection terminal (inner lead 117) provided outside the semiconductor chip 102. And a wire (AuPd wire 111) which is a connecting member for connecting the semiconductor chip 102 and the semiconductor chip 102. The tip of the AuPd wire 111 is a ball-shaped AuPd ball 113. The Al pad 107 and the AuPd ball 113 at the tip of the AuPd wire 111 are sealed with a sealing resin 115.
The AuPd wire 111 contains a metal represented by the following formula (I), and the sealing resin 115 substantially does not contain halogen. The resin in the sealing resin 115 is made of a polymer compound that does not substantially contain a Br group in the molecular skeleton.
AuM (I)
(However, in the above formula (I), M includes at least one of Pd, Cu, Ag, and Pt.)
In the present embodiment, the metal represented by the formula (I) includes Au and Pd.
The AuPd ball 113 at the tip of the AuPd wire 111 has an M uneven distribution region (Pd segregation region 106) in the metal represented by the above formula (I) in the vicinity of the connection region with the Al pad 107.
The Pd segregation region 106 may clearly exist when the semiconductor device 100 is completed. The Pd segregation region 106 appears more clearly by the heat treatment after completion. Further, the Pd segregation region 106 may be a metal region generated around a region in which a metal (Al) contained in the Al pad 107 and a metal (Au) contained in the AuPd wire 111 are diffused, This metal region may be made of an alloy. The Pd segregation region 106 can be a region where Pd is relatively concentrated in the AuPd ball 113 due to segregation.
In the vicinity of the connection region between the Al pad 107 and the AuPd ball 113, an Al / Au alloy layer (AuAl alloy layer 105) is provided between the Al pad 107 and the Pd segregation region 106. The Al pad 107 is an example of an electrode pad mainly composed of Al. Al is a main component metal contained in the Al pad 107. Further, the area of the alloy layer of Al and Au occupies 50% or more of the area of the connection portion between the Al pad 107 and the AuPd wire 111.
The Pd segregation region 106 functions as a diffusion suppression region that suppresses the diffusion of the metal contained in the Al pad 107 and the metal contained in the AuPd ball 113, and is a barrier region that suppresses the growth of the AuAl alloy layer 105. The Pd segregation region 106 can be formed in a layered manner. By doing so, it is possible to further reliably prevent the AuAl alloy layer 105 from growing further when heated.

以下、半導体装置100の構成をさらに具体的に説明する。
半導体装置100においては、リードフレーム121上に半導体チップ102が設けられ、これらが封止樹脂115により封止されている。リードフレーム121の側方にリードフレーム119が設けられている。リードフレーム119の一部はインナーリード117として封止樹脂115に封止されている。
Hereinafter, the configuration of the semiconductor device 100 will be described more specifically.
In the semiconductor device 100, a semiconductor chip 102 is provided on a lead frame 121 and these are sealed with a sealing resin 115. A lead frame 119 is provided on the side of the lead frame 121. A part of the lead frame 119 is sealed with a sealing resin 115 as inner leads 117.

半導体チップ102は、シリコン基板101上に、配線層と層間絶縁膜等とが積層した多層膜103が設けられた構成である。多層膜103上の所定の位置に、Alパッド107が設けられ、Alパッド107の側面全面および上面の一部をポリイミド膜109が被覆している。ポリイミド膜109からの露出部においては、Alパッド107の上面が露出している。Alパッド107の露出部とインナーリード117とが、AuPdワイヤ111により電気的に接続されている。AuPdワイヤ111の一方の端部はAuPdボール113となっており、AuPdボール113とAlパッド107とが接合されている。AuPdボール113とAlパッド107との接合領域においては、AuPdボール113の底部にAuAl合金層105が存在するとともに、AuAl合金層105の周囲、具体的にはAuAl合金層105の上部にPd偏析領域106が存在している。Alパッド107とAuPdボール113との接合部分は封止樹脂115により被覆されている。   The semiconductor chip 102 has a configuration in which a multilayer film 103 in which a wiring layer and an interlayer insulating film are stacked is provided on a silicon substrate 101. An Al pad 107 is provided at a predetermined position on the multilayer film 103, and the polyimide film 109 covers the entire side surface and a part of the upper surface of the Al pad 107. In the exposed portion from the polyimide film 109, the upper surface of the Al pad 107 is exposed. The exposed portion of the Al pad 107 and the inner lead 117 are electrically connected by the AuPd wire 111. One end of the AuPd wire 111 is an AuPd ball 113, and the AuPd ball 113 and the Al pad 107 are joined. In the bonding region between the AuPd ball 113 and the Al pad 107, the AuAl alloy layer 105 exists at the bottom of the AuPd ball 113, and the Pd segregation region around the AuAl alloy layer 105, specifically, above the AuAl alloy layer 105. 106 exists. A joint portion between the Al pad 107 and the AuPd ball 113 is covered with a sealing resin 115.

このような構成の半導体装置100において、AuPdワイヤ111およびAuPdボール113は、Auを主として含むAuPd合金により構成される。AuPd合金中のPdの含有量は、たとえば0.1質量%以上とする。こうすることで、Pd偏析領域106をさらに効果的に出現させることができる。このため、AuPdボール113とAlパッド107との接合領域におけるAuAl合金層105の成長をさらに確実に抑制することができる。また、AuPd合金中のPdの含有量は、たとえば2質量%以下とする。こうすることにより、AuAl合金層の成長を抑制する効果を充分に確保しつつ、AuPdワイヤ111の電気抵抗の増加を防ぎ、さらにAlパッド107へ深刻なダメージを与えにくくできる。AuPd合金のさらに具体的な組成としては、Au濃度が99質量%、Pd濃度が1質量%である組成が挙げられる。   In the semiconductor device 100 having such a configuration, the AuPd wire 111 and the AuPd ball 113 are made of an AuPd alloy mainly containing Au. The content of Pd in the AuPd alloy is, for example, 0.1% by mass or more. By doing so, the Pd segregation region 106 can appear more effectively. For this reason, the growth of the AuAl alloy layer 105 in the bonding region between the AuPd ball 113 and the Al pad 107 can be further reliably suppressed. Further, the content of Pd in the AuPd alloy is, for example, 2% by mass or less. By doing so, it is possible to prevent an increase in the electrical resistance of the AuPd wire 111 and to prevent serious damage to the Al pad 107 while sufficiently securing the effect of suppressing the growth of the AuAl alloy layer. A more specific composition of the AuPd alloy includes a composition having an Au concentration of 99% by mass and a Pd concentration of 1% by mass.

AuPdワイヤ111のワイヤ径φは、Alパッド107の大きさやAlパッド107の集積度等に応じて設定できる。具体的には、AuPdワイヤ111のワイヤ径を20μm以上70μm以下とすることができる。20μm以上とすることにより、Alパッド107との接続信頼性をさらに向上させることができる。また、70μm以下とすることにより、Alパッド107の配置をさらに狭ピッチ化してAlパッド107とインナーリード117とをさらに高密度で接続することができる。   The wire diameter φ of the AuPd wire 111 can be set according to the size of the Al pad 107, the degree of integration of the Al pad 107, and the like. Specifically, the wire diameter of the AuPd wire 111 can be 20 μm or more and 70 μm or less. By setting the thickness to 20 μm or more, the connection reliability with the Al pad 107 can be further improved. Further, by setting the thickness to 70 μm or less, the pitch of the Al pads 107 can be further narrowed, and the Al pads 107 and the inner leads 117 can be connected with higher density.

AuAl合金層105は、接合時の加熱によりAlパッド107中のAlとAuPdボール113中のAuとが拡散して生じた層状の領域であり、AuとAlとを主として含む。ここで、AuとAlとを主として含むとは、AuAl合金層105全体に対してAuの含有量とAlの含有量との合計が50質量%より大きいことをいう。   The AuAl alloy layer 105 is a layered region generated by the diffusion of Al in the Al pad 107 and Au in the AuPd ball 113 by heating during bonding, and mainly includes Au and Al. Here, “mainly containing Au and Al” means that the total of the Au content and the Al content is larger than 50 mass% with respect to the entire AuAl alloy layer 105.

また、Pd偏析領域106は、AuPdボール113中のPdが濃縮されて、AuPdボール113中でPd濃度が相対的に高い領域である。また、Pd偏析領域106は、AuPdワイヤ111よりもPd濃度が高い領域である。   The Pd segregation region 106 is a region where Pd in the AuPd ball 113 is concentrated and the Pd concentration is relatively high in the AuPd ball 113. The Pd segregation region 106 is a region having a higher Pd concentration than the AuPd wire 111.

なお、図2においては、AuAl合金層105およびPd偏析領域106が、AuPdボール113の底部に下からこの順に積層されている構成を例示したが、半導体装置100は、加熱によりAuPdボール113の少なくとも一部にAuAl合金層105の成長を阻害するPd偏析領域106が明確に出現するような構成であればよく、使用前の半導体装置100においては、AuAl合金層105およびPd偏析領域106が必ずしも明確な層状になっていなくてもよい。後述するように、使用前の半導体装置100中において、Pd偏析領域106が明確な層状となっていない場合にも、半導体装置100が使用されて、AuPdボール113とAlパッド107との接続領域の近傍が加熱されると、Pd偏析領域106がより一層明確に出現する。   2 exemplifies a configuration in which the AuAl alloy layer 105 and the Pd segregation region 106 are stacked in this order from the bottom on the bottom of the AuPd ball 113, the semiconductor device 100 has at least the AuPd ball 113 by heating. The Pd segregation region 106 that partially inhibits the growth of the AuAl alloy layer 105 may be configured to appear clearly. In the semiconductor device 100 before use, the AuAl alloy layer 105 and the Pd segregation region 106 are not necessarily clear. It does not have to be a layered structure. As will be described later, even in the case where the Pd segregation region 106 is not clearly layered in the semiconductor device 100 before use, the semiconductor device 100 is used and the connection region between the AuPd ball 113 and the Al pad 107 is used. When the vicinity is heated, the Pd segregation region 106 appears more clearly.

封止樹脂115は、ハロゲンおよびアンチモンを実質的に含まない樹脂組成物により構成される耐熱性の樹脂である。また、封止樹脂115中の樹脂は、分子骨格中にハロゲン基を実質的に含まない高分子化合物からなる。さらに、封止樹脂115は、樹脂以外の成分、たとえば難燃剤等の添加剤中にもハロゲン化物を含まない。このような樹脂組成物として、具体的には、金属水和物等の代替難燃剤使用樹脂を含む樹脂組成物;
溶融球状シリカ等の充填剤をたとえば80質量%以上の高い割合で含む高フィラー充填樹脂組成物;ならびに
フェノール系樹脂またはエポキシ樹脂等の難燃性骨格を有する高分子化合物を含む樹脂組成物;
が挙げられる。これらは単独で用いてもよいし、複数組み合わせて用いてもよい。
The sealing resin 115 is a heat-resistant resin composed of a resin composition substantially free of halogen and antimony. The resin in the sealing resin 115 is made of a polymer compound that does not substantially contain a halogen group in the molecular skeleton. Furthermore, the sealing resin 115 does not contain a halide in components other than the resin, for example, additives such as a flame retardant. As such a resin composition, specifically, a resin composition containing an alternative flame retardant resin such as a metal hydrate;
A high filler-filled resin composition containing a filler such as fused spherical silica in a high proportion of, for example, 80% by mass; and a resin composition containing a polymer compound having a flame-retardant skeleton such as a phenolic resin or an epoxy resin;
Is mentioned. These may be used alone or in combination.

金属水和物として、さらに具体的には、水酸化アルミニウムや水酸化マグネシウムが挙げられる。その他の代替難燃剤として、さらに具体的には、無機リンや有機リン系化合物が挙げられる。   More specifically, examples of the metal hydrate include aluminum hydroxide and magnesium hydroxide. More specifically, other alternative flame retardants include inorganic phosphorus and organic phosphorus compounds.

また、封止樹脂115が一種類の樹脂を含んでもよいし、複数種類の樹脂を含んでいてもよい。
難燃性骨格を有するフェノール系樹脂としては、たとえば、分子中にビフェニル誘導体またはナフタレン誘導体を含むノボラック構造のフェノール系樹脂が挙げられる。さらに具体的には、
フェノールビフェニレンアラルキル型樹脂、フェノールフェニレンアラルキル型樹脂、フェノールジフェニルエーテルアラルキル型樹脂等のフェノールアラルキル型樹脂;
ビスフェノールフルオレン含有フェノールノボラック型樹脂;
ビスフェノールS含有フェノールノボラック型樹脂;
ビスフェノールF含有フェノールノボラック型樹脂;
ビスフェノールA含有フェノールノボラック型樹脂;
ナフタレン含有フェノールノボラック型樹脂;
アントラセン含有フェノールノボラック型樹脂;
フルオレン含有フェノールノボラック型樹脂;および
縮合多環芳香族型フェノール系樹脂;
が挙げられる。これらは単独で用いてもよいし、複数組み合わせて用いてもよい。
Further, the sealing resin 115 may include one type of resin, or may include a plurality of types of resins.
Examples of the phenolic resin having a flame retardant skeleton include a novolac-structured phenolic resin containing a biphenyl derivative or a naphthalene derivative in the molecule. More specifically,
Phenol aralkyl type resins such as phenol biphenylene aralkyl type resins, phenol phenylene aralkyl type resins, phenol diphenyl ether aralkyl type resins;
Bisphenolfluorene-containing phenol novolac resin;
Bisphenol S-containing phenol novolac resin;
Bisphenol F-containing phenol novolac resin;
Bisphenol A-containing phenol novolac resin;
Naphthalene-containing phenol novolac resin;
Anthracene-containing phenol novolac resin;
A fluorene-containing phenol novolac resin; and a condensed polycyclic aromatic phenol resin;
Is mentioned. These may be used alone or in combination.

また、難燃性骨格を有するエポキシ樹脂としては、たとえば、分子中にビフェニル誘導体またはナフタレン誘導体を含むノボラック構造のエポキシ樹脂が挙げられる。さらに具体的には、
フェノールビフェニレンアラルキル型エポキシ樹脂、フェノールフェニレンアラルキル型エポキシ樹脂、フェノールジフェニルエーテルアラルキル型エポキシ樹脂等のフェノールアラルキル型エポキシ樹脂;
ビスフェノールフルオレン含有ノボラック型エポキシ樹脂;
ビスフェノールS含有ノボラック型エポキシ樹脂;
ビスフェノールF含有ノボラック型エポキシ樹脂;
ビスフェノールA含有ノボラック型エポキシ樹脂;
ナフタレン含有ノボラック型エポキシ樹脂;
アントラセン含有ノボラック型エポキシ樹脂;
フルオレン含有ノボラック型エポキシ樹脂;および
縮合多環芳香族型エポキシ樹脂;
が挙げられる。これらは単独で用いてもよいし、複数組み合わせて用いてもよい。
Moreover, as an epoxy resin which has a flame-retardant skeleton, the epoxy resin of the novolak structure which contains a biphenyl derivative or a naphthalene derivative in a molecule | numerator is mentioned, for example. More specifically,
Phenol aralkyl type epoxy resins such as phenol biphenylene aralkyl type epoxy resins, phenol phenylene aralkyl type epoxy resins, phenol diphenyl ether aralkyl type epoxy resins;
Bisphenolfluorene-containing novolac epoxy resin;
Bisphenol S-containing novolac epoxy resin;
Bisphenol F-containing novolac epoxy resin;
Bisphenol A-containing novolac epoxy resin;
Naphthalene-containing novolac epoxy resin;
An anthracene-containing novolac epoxy resin;
Fluorene-containing novolac epoxy resin; and condensed polycyclic aromatic epoxy resin;
Is mentioned. These may be used alone or in combination.

次に、半導体装置100の製造方法を説明する。
まず、シリコン基板101上に、配線層および層間絶縁膜等が積層した多層膜103を形成する。次に、多層膜103上の所定の位置にAlパッド107をスパッタリング法により形成する。つづいて、塗布法により、Alパッド107を覆うようにポリイミド膜109を形成する。つづいて、ポリイミド膜109をパターニングして開口部を設け、Alパッド107の一部を露出させる。こうして、半導体チップ102が得られる。
Next, a method for manufacturing the semiconductor device 100 will be described.
First, a multilayer film 103 in which a wiring layer and an interlayer insulating film are stacked is formed on a silicon substrate 101. Next, an Al pad 107 is formed at a predetermined position on the multilayer film 103 by sputtering. Subsequently, a polyimide film 109 is formed so as to cover the Al pad 107 by a coating method. Subsequently, the polyimide film 109 is patterned to provide an opening, and a part of the Al pad 107 is exposed. In this way, the semiconductor chip 102 is obtained.

得られた半導体チップ102をリードフレーム121上に設置し、Alパッド107とインナーリード117とをAuPdワイヤ111によりワイヤボンディングする。AuPdボール113はこのとき形成される。また、Pdは最初のワイヤ状態ではAuPdワイヤ111中に均一に分散しているが、ボンディングによって偏析して、接続領域近傍にPd偏析領域106が生じる。その後、リードフレーム121、半導体チップ102、AuPdワイヤ111およびインナーリード117を封止樹脂115で封止する。以上の手順により、図1および図2に示した半導体装置100が得られる。なお、得られた半導体装置100中には、図2に示したAuAl合金層105およびPd偏析領域106が存在するが、その後、半導体装置100を使用することにより、Pd偏析領域106がより一層明確に現れる。   The obtained semiconductor chip 102 is placed on the lead frame 121, and the Al pad 107 and the inner lead 117 are wire-bonded by the AuPd wire 111. The AuPd ball 113 is formed at this time. Further, although Pd is uniformly dispersed in the AuPd wire 111 in the initial wire state, it is segregated by bonding, and a Pd segregation region 106 is generated in the vicinity of the connection region. Thereafter, the lead frame 121, the semiconductor chip 102, the AuPd wire 111, and the inner lead 117 are sealed with a sealing resin 115. With the above procedure, the semiconductor device 100 shown in FIGS. 1 and 2 is obtained. In the obtained semiconductor device 100, the AuAl alloy layer 105 and the Pd segregation region 106 shown in FIG. 2 exist, but the Pd segregation region 106 is further clearly defined by using the semiconductor device 100 thereafter. Appear in

次に、半導体装置100の効果を説明する。
図1および図2に示した半導体装置100においては、Alパッド107に接続されるボンディングワイヤがAuPd合金により構成されたAuPdワイヤ111であるとともに、ハロゲンを実質的に含まない樹脂組成物により構成された封止樹脂115により接続部分が封止されている。このため、これらの相乗効果により、Alパッド107とAuPdボール113との界面におけるAuとAlの相互拡散およびそれに伴うAuAl合金層105のさらなる成長を抑制するとともに、AuAl合金層105が封止樹脂115中のハロゲンにより腐食されることが抑制される。このため、AuAl合金層105の腐食によるボイドの成長および高抵抗層の成長を抑制することができる。よって、高温動作時の接合信頼性に優れた構成となっている。
Next, effects of the semiconductor device 100 will be described.
In the semiconductor device 100 shown in FIGS. 1 and 2, the bonding wire connected to the Al pad 107 is an AuPd wire 111 made of an AuPd alloy, and is made of a resin composition substantially free of halogen. The connecting portion is sealed with the sealing resin 115. Therefore, by these synergistic effects, the interdiffusion of Au and Al at the interface between the Al pad 107 and the AuPd ball 113 and further growth of the AuAl alloy layer 105 are suppressed, and the AuAl alloy layer 105 is sealed with the sealing resin 115. Corrosion caused by halogen inside is suppressed. Therefore, the growth of voids and the growth of the high resistance layer due to corrosion of the AuAl alloy layer 105 can be suppressed. Therefore, it has a configuration with excellent bonding reliability during high-temperature operation.

この効果について、従来の構成と比較して、以下、さらに詳細に説明する。
まず、Alパッド107とAuPdボール113との界面における合金層の成長阻害抑制効果について、図3(a)および図3(b)を参照して説明する。図3(a)および図3(b)は、電極パッドとボンディングワイヤとの界面近傍の構成を示す断面図である。図3(a)は、従来の半導体装置の構成に対応し、電極パッドの材料がAlであって、ボンディングワイヤの材料が純金線(Au)である場合を示している。また、図3(b)は、図1および図2に示した半導体装置100の構成に対応し、電極パッドの材料がAlであって、ボンディングワイヤの材料が合金線(AuPd)である場合を示している。
This effect will be described in more detail below in comparison with the conventional configuration.
First, the effect of suppressing the growth inhibition of the alloy layer at the interface between the Al pad 107 and the AuPd ball 113 will be described with reference to FIGS. 3 (a) and 3 (b). FIG. 3A and FIG. 3B are cross-sectional views showing the configuration in the vicinity of the interface between the electrode pad and the bonding wire. FIG. 3A corresponds to the configuration of the conventional semiconductor device, and shows a case where the material of the electrode pad is Al and the material of the bonding wire is a pure gold wire (Au). FIG. 3B corresponds to the configuration of the semiconductor device 100 shown in FIGS. 1 and 2, and the electrode pad material is Al and the bonding wire material is an alloy wire (AuPd). Show.

図3(a)に示した構成の場合、電極パッドとボンディングワイヤとの接合界面におけるAuAl合金層の相互拡散を抑制するバリア層が形成されない。このため、上記式(1)〜式(5)の反応により、高温中で前述したAuAl合金層が成長する。   In the case of the configuration shown in FIG. 3A, a barrier layer that suppresses interdiffusion of the AuAl alloy layer at the bonding interface between the electrode pad and the bonding wire is not formed. For this reason, the AuAl alloy layer described above grows at a high temperature by the reactions of the above formulas (1) to (5).

これに対し、半導体装置100の場合、ボンディングワイヤの材料がAuPdの固溶体であるため、ワイヤボンディング時にAuAl合金層105が生成するとともに、AuPdからPdが排出されて、Pd偏析領域106が形成される。そして、図3(b)に示したように、半導体装置100を高温条件下で保存すると、AuAl合金がわずかに成長してAuAl合金層が形成されるとともに、AuAl合金層とAuPd層との間にPdが濃縮されたPd偏析領域がより一層顕著に現れる。このPd偏析領域が、Auの移動速度を低下させるバリア層として機能するため、AuAl合金層の成長が抑制される。   On the other hand, in the case of the semiconductor device 100, since the material of the bonding wire is a solid solution of AuPd, an AuAl alloy layer 105 is generated at the time of wire bonding, and Pd is discharged from AuPd to form a Pd segregation region 106. . Then, as shown in FIG. 3B, when the semiconductor device 100 is stored under high temperature conditions, the AuAl alloy grows slightly to form an AuAl alloy layer, and between the AuAl alloy layer and the AuPd layer. Further, a Pd segregation region in which Pd is concentrated appears more remarkably. Since this Pd segregation region functions as a barrier layer that lowers the moving speed of Au, the growth of the AuAl alloy layer is suppressed.

また、図4は、図3(b)に示した断面構造を有するボンディングワイヤと封止樹脂との相互作用を説明する断面図である。図4に示したように、半導体装置100では、Br等のハロゲンを実質的に含まない難燃性の封止樹脂115で装置全体が封止された構成となっている。このため、電極パッドとの接合部にわずかに存在するAuAl合金層が封止樹脂由来のBrイオンと反応して上記式(6)に示した臭素化アルミニウムが形成されることがなく、合金層の腐食が生じない。   FIG. 4 is a cross-sectional view for explaining the interaction between the bonding wire having the cross-sectional structure shown in FIG. 3B and the sealing resin. As shown in FIG. 4, the semiconductor device 100 has a configuration in which the entire device is sealed with a flame-retardant sealing resin 115 that does not substantially contain a halogen such as Br. Therefore, the AuAl alloy layer slightly present at the joint with the electrode pad does not react with the Br ion derived from the sealing resin to form the aluminum bromide shown in the above formula (6), and the alloy layer Corrosion does not occur.

このように、半導体装置100においては、ボンディングワイヤの材料として、合金成長のバリア層として機能する金属を含む金合金を用いるとともに、わずかに生成するAuAl合金のハロゲンによる腐食が抑制される構成となっているため、これらの相乗効果により、ハロゲンを含む樹脂組成物により構成される封止樹脂を用いることが前提となっていた従来の構成に対して顕著に高温長時間動作時の接続信頼性を向上された構成となっている。このため、半導体装置100は、動作温度が向上した構成となっている。   As described above, in the semiconductor device 100, a gold alloy containing a metal that functions as a barrier layer for alloy growth is used as a material for the bonding wire, and corrosion of the slightly formed AuAl alloy by halogen is suppressed. Therefore, due to these synergistic effects, the connection reliability during high-temperature and long-time operation is remarkably higher than that of the conventional configuration that is based on the premise that a sealing resin composed of a halogen-containing resin composition is used. It has an improved configuration. For this reason, the semiconductor device 100 has a configuration in which the operating temperature is improved.

図9から図23を参照して前述したように、電極パッドとボンディングワイヤとの接続不良は、上記式(1)〜式(6)に示した反応により生じ、その反応の中でも支配的な因子はワイヤ径により異なると考えられるが、半導体装置100においては、AuPdワイヤ111の径によらず、高温動作時の接合信頼性を向上させることができる。   As described above with reference to FIGS. 9 to 23, the connection failure between the electrode pad and the bonding wire is caused by the reactions shown in the above formulas (1) to (6), and is a dominant factor among the reactions. However, in the semiconductor device 100, the bonding reliability during high-temperature operation can be improved regardless of the diameter of the AuPd wire 111.

たとえば、AuPdワイヤ111のワイヤ径が20μm程度と比較的細い場合、上記式(6)で示した腐食反応で生成した臭素化アルミニウムの収縮によるボイドの発生をさらに効果的に抑制することができる。また、AuPdワイヤ111のワイヤ径が70μm程度と比較的太い場合、上記式(6)で示した腐食反応による高抵抗の臭素化アルミニウム層の成長をさらに効果的に抑制することができる。   For example, when the AuPd wire 111 has a relatively small wire diameter of about 20 μm, the generation of voids due to the shrinkage of aluminum bromide generated by the corrosion reaction represented by the above formula (6) can be more effectively suppressed. Further, when the AuPd wire 111 has a relatively large wire diameter of about 70 μm, the growth of a high-resistance aluminum bromide layer due to the corrosion reaction represented by the above formula (6) can be further effectively suppressed.

以下の実施形態においては、第一の実施形態と異なる点を中心に説明する。   In the following embodiment, it demonstrates centering on a different point from 1st embodiment.

(第二の実施形態)
第一の実施形態においては、Alパッド107に接続されるボンディングワイヤの材料がAuPd合金である場合を例に説明したが、ボンディングワイヤの材料は、これには限られず、下記式(I)で示される金属、さらに具体的には下記式(I)で示される金合金とすることができる。
AuM (I)
(ただし、上記式(I)において、Mは、Pd、Cu、AgおよびPtのうち、少なくとも一つを含む。)
AuならびにPd、Cu、AgおよびPtは、貴金属であるため、ボンディングワイヤの材料を上記式(I)で示される金属とすることにより、半導体装置100の保存安定性を向上させることができる。また、AuならびにPd、Cu、AgおよびPtは低抵抗の金属であるため、インナーリード117とAlパッド107とを効果的に電気的に接続することができる。
(Second embodiment)
In the first embodiment, the case where the material of the bonding wire connected to the Al pad 107 is an AuPd alloy has been described as an example. However, the material of the bonding wire is not limited to this, and the following formula (I) The metal shown, more specifically, a gold alloy represented by the following formula (I) can be used.
AuM (I)
(However, in the above formula (I), M includes at least one of Pd, Cu, Ag, and Pt.)
Since Au and Pd, Cu, Ag, and Pt are noble metals, the storage stability of the semiconductor device 100 can be improved by using a bonding wire made of the metal represented by the above formula (I). Moreover, since Au and Pd, Cu, Ag, and Pt are low-resistance metals, the inner leads 117 and the Al pads 107 can be effectively electrically connected.

また、ボンディングワイヤの材料を上記式(I)で示される金属とすることにより、高温動作時の電極パッドとの接合信頼性を向上させることができる。この原因は、上記式(I)においてMで示される金属が、AuAl合金層105とAuM層との界面に偏析し、このMを含む偏析領域がバリア領域として機能するためであると推察される。また、Pd、Cu、Ag、およびPtのうち、少なくとも一つを含む合金とすることにより、ボンディングワイヤの強度を向上させることができるためであると推察される。   Further, by using the bonding wire as the metal represented by the above formula (I), the bonding reliability with the electrode pad during high temperature operation can be improved. This is presumably because the metal represented by M in the above formula (I) segregates at the interface between the AuAl alloy layer 105 and the AuM layer, and the segregated region containing M functions as a barrier region. . Moreover, it is guessed that it is because the intensity | strength of a bonding wire can be improved by setting it as the alloy containing at least one among Pd, Cu, Ag, and Pt.

上記式(I)で示される金属は、Au、PdおよびCuを含むことができる。さらに具体的には、ワイヤボンディングを構成する他のAu合金として、AuPdCu合金を好適に用いることができる。AuPdCu合金の組成は、たとえばPd0.8質量%、Cu0.1質量%、Au99.1質量%とすることができる。また、他に、Au90質量%とAg10質量%とから構成されるAuAg合金を用いることもできる。   The metal represented by the above formula (I) can contain Au, Pd and Cu. More specifically, an AuPdCu alloy can be suitably used as another Au alloy constituting the wire bonding. The composition of the AuPdCu alloy can be, for example, Pd 0.8 mass%, Cu 0.1 mass%, Au 99.1 mass%. In addition, an AuAg alloy composed of 90% by mass of Au and 10% by mass of Ag can also be used.

(第三の実施形態)
以上の実施形態においては、電極パッドとインナーリードとがボンディングワイヤにより接続される構成の場合を例に説明したが、一方が電極パッドに接続されたボンディングワイヤの他端に接続される外部接続用端子の構成は、インナーリードである場合には限られず、他の部材とすることもできる。たとえば、半導体チップの電極パッドからプリント配線基板上に設けられた配線にワイヤボンディングされていてもよい。
(Third embodiment)
In the above embodiment, the case where the electrode pad and the inner lead are connected by the bonding wire has been described as an example. However, one of the electrodes is connected to the other end of the bonding wire connected to the electrode pad. The configuration of the terminal is not limited to the case of the inner lead, and may be other members. For example, wire bonding may be performed from the electrode pad of the semiconductor chip to the wiring provided on the printed wiring board.

図5は、このような構成の半導体装置の構成を示す断面図である。図5に示した半導体装置110の基本構成は図1に示した半導体装置100の構成と同様であるが、リードフレーム121およびリードフレーム119に代えて、BGA基板129が設けられている点が異なる。BGA基板129は、半導体チップ102が設置されるプリント配線基板123と、プリント配線基板123の所定の位置に設けられた配線125と、プリント配線基板123のチップ搭載面の裏面に設けられた複数のバンプ127とを有する。AuPdワイヤ111は、Alパッド107と配線125とに接続されている。プリント配線基板123のチップ搭載領域全体が封止樹脂115により封止されている。   FIG. 5 is a cross-sectional view showing the configuration of the semiconductor device having such a configuration. The basic configuration of the semiconductor device 110 shown in FIG. 5 is the same as that of the semiconductor device 100 shown in FIG. 1 except that a BGA substrate 129 is provided instead of the lead frame 121 and the lead frame 119. . The BGA substrate 129 includes a printed wiring board 123 on which the semiconductor chip 102 is installed, a wiring 125 provided at a predetermined position of the printed wiring board 123, and a plurality of pieces provided on the back surface of the chip mounting surface of the printed wiring board 123. And a bump 127. The AuPd wire 111 is connected to the Al pad 107 and the wiring 125. The entire chip mounting area of the printed wiring board 123 is sealed with a sealing resin 115.

図5に示した半導体装置110においても、Alパッド107に接続されるボンディングワイヤをAuPdワイヤ111とするとともに、ハロゲンを含まない難燃性の封止樹脂115が用いられるため、図1に示した半導体装置100と同様の効果が得られる。   Also in the semiconductor device 110 shown in FIG. 5, since the bonding wire connected to the Al pad 107 is the AuPd wire 111 and the flame-retardant sealing resin 115 containing no halogen is used, it is shown in FIG. The same effect as the semiconductor device 100 can be obtained.

以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。   As mentioned above, although embodiment of this invention was described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.

たとえば、以上の実施形態においては、電極パッドの材料がAlである場合を例に説明したが、電極パッドの材料はこれには限られず、AlSi、AlCu等のAlを主成分としSiまたはCuの少なくとも1つを含む金属;
AlSiCu等のAlを主成分としSiおよびCuを含む金属;および
Cu等の他の金属をはじめとする種々の導電材料とすることができる。
For example, in the above embodiment, the case where the material of the electrode pad is Al has been described as an example. However, the material of the electrode pad is not limited to this, and Al or Al such as AlSi or AlCu is the main component and Si or Cu is used. A metal comprising at least one;
Various conductive materials can be used, including metals containing Al as a main component such as AlSiCu and containing Si and Cu; and other metals such as Cu.

また、以上の実施形態においては、Alパッド107上にポリイミド膜109が設けられた構成の半導体装置の場合を例に説明したが、ポリイミド膜109が設けられていない構成とすることもできる。   Further, in the above embodiment, the case of the semiconductor device having the configuration in which the polyimide film 109 is provided on the Al pad 107 has been described as an example. However, a configuration in which the polyimide film 109 is not provided may be employed.

また、本発明の技術は、エポキシ樹脂等の樹脂により封止される種々の半導体パッケージに適用可能であり、BGAのパッケージ等、以上の実施形態に挙げた構成には限られないことはもちろんである。   Further, the technology of the present invention can be applied to various semiconductor packages sealed with a resin such as an epoxy resin, and is not limited to the configuration described in the above embodiments such as a BGA package. is there.

また、以上の実施形態においては、ボンディングパッドと半導体チップ中の導電部材とを接続する導電性の接続部材がボンディングワイヤである場合を例に説明したが、他に、ボールやリボン状の接続部材を用いることもできる。   In the above embodiment, the case where the conductive connection member for connecting the bonding pad and the conductive member in the semiconductor chip is a bonding wire has been described as an example. Can also be used.

以下の実験例においては、図1に示した半導体装置100および半導体装置100のボンディングワイヤの材料と封止樹脂の材料とを別の材料とした半導体装置を作製し、175℃における寿命の評価およびAuAl合金層の成長速度の比較を行った。なお、以下の実験例において、ボンディングワイヤのワイヤ径はいずれも20μmとした。
(実験例1)
ボンディングワイヤとして、AuPdワイヤ111に代えて純金線(Au)を用いた。また、封止樹脂として、臭素化エポキシ樹脂を含む樹脂組成物を用いた。
(実験例2)
ボンディングワイヤの材料をAuPdとした。AuPdワイヤ111の合金組成はPd1質量%、Au99質量%とした。また、封止樹脂として、臭素化エポキシ樹脂を含む樹脂組成物を用いた。
(実験例3)
ボンディングワイヤとして、AuPdワイヤ111に代えて純金線(Au)を用いた。また、封止樹脂115として、ハロゲンを実質的に含まない樹脂組成物を用いた。
(実験例4)
図1に示した半導体装置100を作成した。ボンディングワイヤの材料をAuPd合金とした。さらに具体的には、AuPdワイヤ111の合金組成をPd1質量%、Au99質量%とした。また、封止樹脂115として、ハロゲンを実質的に含まない樹脂組成物を用いた。
In the following experimental example, the semiconductor device 100 shown in FIG. 1 and a semiconductor device in which the material of the bonding wire of the semiconductor device 100 and the material of the sealing resin are different materials were manufactured, and the lifetime evaluation at 175 ° C. The growth rate of the AuAl alloy layer was compared. In the following experimental examples, the wire diameter of each bonding wire was 20 μm.
(Experimental example 1)
As a bonding wire, a pure gold wire (Au) was used instead of the AuPd wire 111. Moreover, the resin composition containing brominated epoxy resin was used as sealing resin.
(Experimental example 2)
The material of the bonding wire was AuPd. The alloy composition of the AuPd wire 111 was Pd 1 mass% and Au 99 mass%. Moreover, the resin composition containing brominated epoxy resin was used as sealing resin.
(Experimental example 3)
As a bonding wire, a pure gold wire (Au) was used instead of the AuPd wire 111. Further, as the sealing resin 115, a resin composition substantially free of halogen was used.
(Experimental example 4)
The semiconductor device 100 shown in FIG. 1 was produced. The material of the bonding wire was AuPd alloy. More specifically, the alloy composition of the AuPd wire 111 was Pd 1 mass% and Au 99 mass%. Further, as the sealing resin 115, a resin composition substantially free of halogen was used.

(評価)
図6は、実験例1〜実験例4の構成の半導体装置を175℃にて保存したときの推定寿命の評価結果を示す図である。図6において、推定寿命はVF(順電圧)不良が検知された時間とし、累積不良率F=10(%)とした。図6に示したように、実験例1の半導体装置に対し、実験例2および実験例3では、一定の長寿命効果が得られたものの、実験例4においては、これらの効果を加えたものを大きく上回る顕著な長寿命効果が認められた。これより、AuPdワイヤ111およびハロゲンを実質的に含まない封止樹脂をそれぞれ単独で適用した場合も、寿命に対する一定の効果は得られるものの、AuPdワイヤ111とハロゲンを実質的に含まない封止樹脂とを複合して用いることにより、これらの相乗効果によって高温保存時の寿命の長期化に対する飛躍的な効果が得られることがわかる。
(Evaluation)
FIG. 6 is a diagram showing evaluation results of estimated lifetimes when the semiconductor devices having the configurations of Experimental Examples 1 to 4 are stored at 175 ° C. In FIG. 6, the estimated life is the time when a VF (forward voltage) failure is detected, and the cumulative failure rate F = 10 (%). As shown in FIG. 6, while the semiconductor device of Experimental Example 1 has a certain long-life effect in Experimental Example 2 and Experimental Example 3, the effect is added in Experimental Example 4 A remarkable long-life effect significantly exceeding the above was observed. As a result, even when the AuPd wire 111 and the sealing resin substantially free of halogen are applied individually, a certain effect on the life can be obtained, but the AuPd wire 111 and the sealing resin substantially free of halogen are obtained. It can be seen that by using these in combination, a dramatic effect on the prolongation of the lifetime during high-temperature storage can be obtained by these synergistic effects.

また、図7は、実験例4の半導体装置の保存後のAlパッド107とAuPdボール113との接合領域周辺のSEM像および元素分析結果を示す図である。図7に示したように、多層膜103とAlパッド107との接続部の近傍に、AuPdワイヤ中のPdが濃縮されたPd偏在領域106が層状に形成されていることがわかる。また、Pd偏在領域106よりもボンディングパッド側に、Au4Al層が形成されていることがわかる。 FIG. 7 is a diagram showing an SEM image and an elemental analysis result around the junction region between the Al pad 107 and the AuPd ball 113 after storage of the semiconductor device of Experimental Example 4. As shown in FIG. 7, it can be seen that a Pd unevenly distributed region 106 enriched with Pd in the AuPd wire is formed in the vicinity of the connecting portion between the multilayer film 103 and the Al pad 107. It can also be seen that an Au 4 Al layer is formed on the bonding pad side of the Pd unevenly distributed region 106.

また、図8は、実験例2と実験例4の半導体装置について、175℃における保存時間(hr)とAuAl合金層の厚さ(μm)との関係を示す図である。図8より、ボンディングワイヤの材料をAuPdとすることにより、合金層の成長が遅くなっていることがわかる。   FIG. 8 is a diagram showing the relationship between the storage time (hr) at 175 ° C. and the thickness (μm) of the AuAl alloy layer in the semiconductor devices of Experimental Example 2 and Experimental Example 4. FIG. 8 shows that the growth of the alloy layer is slowed by using AuPd as the material of the bonding wire.

また、図20は、実験例4の半導体装置について、220℃におけるボンディング直後のAuAl合金部面積割合と寿命との関係を示す図である。AuAl合金部面積割合とは、Alパッド107とAuPdボール113との接合領域の面積に対してAuAl合金部が占める総面積の割合である。Alパッド107とAuPdボール113との接合領域の面積が100%AuAl合金部で占められている状態が理想だが、通常はAuAl合金部は部分的に形成され、ボンディング時の温度、過重、超音波のパワーなどのボンディング条件によって、その割合は変わる。図20から、AuAl合金部面積割合が50%未満では、AuAl合金部面積割合が50%以上の場合に比べ、半分程度の寿命しかないことがわかる。つまり、AuAl合金部面積割合を少なくとも50%とすることで、より寿命の長い高い半導体装置が得られる。ボンディング時の温度、過重、超音波のパワー等を調整することで、所望のAuAl合金部面積割合を得ることができる。   FIG. 20 is a diagram illustrating the relationship between the area ratio of the AuAl alloy part immediately after bonding at 220 ° C. and the lifetime of the semiconductor device of Experimental Example 4. The AuAl alloy part area ratio is the ratio of the total area occupied by the AuAl alloy part to the area of the bonding region between the Al pad 107 and the AuPd ball 113. It is ideal that the area of the bonding region between the Al pad 107 and the AuPd ball 113 is 100% AuAl alloy part, but usually the AuAl alloy part is partially formed, and the bonding temperature, overload, ultrasonic wave The ratio varies depending on bonding conditions such as power. From FIG. 20, it can be seen that when the area ratio of the AuAl alloy part is less than 50%, the lifetime is only about half that of the case where the area ratio of the AuAl alloy part is 50% or more. That is, by setting the AuAl alloy part area ratio to at least 50%, a semiconductor device having a longer life can be obtained. A desired AuAl alloy part area ratio can be obtained by adjusting the temperature at the time of bonding, excess weight, ultrasonic power, and the like.

本実施形態に係る半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device which concerns on this embodiment. 図1の半導体装置の半導体チップの構成を拡大して示す図である。It is a figure which expands and shows the structure of the semiconductor chip of the semiconductor device of FIG. 電極パッドとボンディングパッドの接合部周辺の構成を示す断面図である。It is sectional drawing which shows the structure of the junction part periphery of an electrode pad and a bonding pad. 電極パッドとボンディングパッドの接合部周辺の構成を示す断面図である。It is sectional drawing which shows the structure of the junction part periphery of an electrode pad and a bonding pad. 本実施形態に係る半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device which concerns on this embodiment. 実験例の半導体装置の構成と高温保存時の寿命を示す図である。It is a figure which shows the structure of the semiconductor device of an experiment example, and the lifetime at the time of high temperature storage. 実験例の半導体装置のSEM像と元素分析結果を示す図である。It is a figure which shows the SEM image and elemental analysis result of the semiconductor device of an experiment example. 実験例の半導体装置の保存時間とAuAl合金層の厚さとの関係を示す図である。It is a figure which shows the relationship between the storage time of the semiconductor device of an experiment example, and the thickness of an AuAl alloy layer. 従来の半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the conventional semiconductor device. 従来の半導体装置の寿命のワイブルプロットを示す図である。It is a figure which shows the Weibull plot of the lifetime of the conventional semiconductor device. 従来の半導体装置の不良発生のメカニズムを説明する図である。It is a figure explaining the mechanism of defect generation | occurrence | production of the conventional semiconductor device. 従来の半導体装置の不良発生のメカニズムを説明する図である。It is a figure explaining the mechanism of defect generation | occurrence | production of the conventional semiconductor device. 従来の半導体装置の不良発生のメカニズムを説明する図である。It is a figure explaining the mechanism of defect generation | occurrence | production of the conventional semiconductor device. 従来の半導体装置の不良発生のメカニズムを説明する図である。It is a figure explaining the mechanism of the defect generation | occurrence | production of the conventional semiconductor device. 従来の半導体装置の不良発生のメカニズムを説明する図である。It is a figure explaining the mechanism of defect generation | occurrence | production of the conventional semiconductor device. 従来の半導体装置の不良発生のメカニズムを説明する図である。It is a figure explaining the mechanism of defect generation | occurrence | production of the conventional semiconductor device. 従来の半導体装置の不良発生のメカニズムを説明する図である。It is a figure explaining the mechanism of defect generation | occurrence | production of the conventional semiconductor device. 従来の半導体装置の不良発生のメカニズムを説明する図である。It is a figure explaining the mechanism of the defect generation | occurrence | production of the conventional semiconductor device. 従来の半導体装置の不良発生のメカニズムを説明する図である。It is a figure explaining the mechanism of the defect generation | occurrence | production of the conventional semiconductor device. 実験例の半導体装置のボンディング直後のAuAl合金部面積割合と寿命との関係を示す図である。It is a figure which shows the relationship between the AuAl alloy part area ratio immediately after bonding of the semiconductor device of an experiment example, and lifetime.

符号の説明Explanation of symbols

100 半導体装置
101 シリコン基板
102 半導体チップ
103 多層膜
105 AuAl合金層
106 Pd偏析領域
107 Alパッド
109 ポリイミド膜
111 AuPdワイヤ
113 AuPdボール
115 封止樹脂
117 インナーリード
119 リードフレーム
121 リードフレーム
123 プリント配線基板
125 配線
127 バンプ
129 BGA基板
DESCRIPTION OF SYMBOLS 100 Semiconductor device 101 Silicon substrate 102 Semiconductor chip 103 Multilayer film 105 AuAl alloy layer 106 Pd segregation area 107 Al pad 109 Polyimide film 111 AuPd wire 113 AuPd ball 115 Sealing resin 117 Inner lead 119 Lead frame 121 Lead frame 123 Printed wiring board 125 Wiring 127 Bump 129 BGA substrate

Claims (11)

半導体チップと、
前記半導体チップに設けられた電極パッドと、
前記半導体チップの外部に設けられた接続端子と前記半導体チップとを接続する接続部材と、
を備え、
前記電極パッドと前記接続部材とが封止樹脂により封止された半導体装置であって、
前記接続部材が、下記式(I)で示される金属を含むとともに、
前記封止樹脂が、実質的にハロゲンを含まないことを特徴とする半導体装置。
AuM (I)
(ただし、上記式(I)において、Mは、Pd、Cu、AgおよびPtのうち、少なくとも一つを含む。)
A semiconductor chip;
An electrode pad provided on the semiconductor chip;
A connection member for connecting the semiconductor chip and a connection terminal provided outside the semiconductor chip;
With
A semiconductor device in which the electrode pad and the connection member are sealed with a sealing resin,
The connecting member contains a metal represented by the following formula (I),
The semiconductor device characterized in that the sealing resin does not substantially contain halogen.
AuM (I)
(However, in the above formula (I), M includes at least one of Pd, Cu, Ag, and Pt.)
半導体チップと、
前記半導体チップに設けられた電極パッドと、
前記半導体チップの外部に設けられた接続端子と前記半導体チップとを接続するワイヤと、
を備え、
前記電極パッドと前記ワイヤとが封止樹脂により封止された半導体装置であって、
前記ワイヤが、下記式(I)で示される金属を含むとともに、
前記封止樹脂が、実質的にハロゲンを含まないことを特徴とする半導体装置。
AuM (I)
(ただし、上記式(I)において、Mは、Pd、Cu、AgおよびPtのうち、少なくとも一つを含む。)
A semiconductor chip;
An electrode pad provided on the semiconductor chip;
A connection terminal provided outside the semiconductor chip and a wire connecting the semiconductor chip;
With
A semiconductor device in which the electrode pad and the wire are sealed with a sealing resin,
The wire includes a metal represented by the following formula (I),
The semiconductor device characterized in that the sealing resin does not substantially contain halogen.
AuM (I)
(However, in the above formula (I), M includes at least one of Pd, Cu, Ag, and Pt.)
請求項1または2に記載の半導体装置において、前記電極パッドが、Alを主成分とすることを特徴とする半導体装置。   3. The semiconductor device according to claim 1, wherein the electrode pad contains Al as a main component. 請求項3に記載の半導体装置において、前記電極パッドが、さらにSiまたはCuの少なくとも1つを含むことを特徴とする半導体装置。   4. The semiconductor device according to claim 3, wherein the electrode pad further includes at least one of Si or Cu. 請求項3に記載の半導体装置において、前記電極パッドが、さらにSiおよびCuを含むことを特徴とする半導体装置。   4. The semiconductor device according to claim 3, wherein the electrode pad further contains Si and Cu. 請求項1乃至5いずれかに記載の半導体装置において、前記金属が、AuおよびPdを含むことを特徴とする半導体装置。   6. The semiconductor device according to claim 1, wherein the metal includes Au and Pd. 請求項6に記載の半導体装置において、前記金属が、Au、PdおよびCuを含むことを特徴とする半導体装置。   The semiconductor device according to claim 6, wherein the metal includes Au, Pd, and Cu. 請求項1に記載の半導体装置において、
前記接続部材において、前記電極パッドとの接続領域の近傍に、
前記式(I)で示される金属中のMの偏在領域を有することを特徴とする半導体装置。
The semiconductor device according to claim 1,
In the connection member, in the vicinity of the connection region with the electrode pad,
A semiconductor device having an unevenly distributed region of M in the metal represented by the formula (I).
請求項8に記載の半導体装置において、
前記近傍において、前記電極パッドと前記Mの偏在領域との間に、前記電極パッド中に含まれる主成分の金属とAuとの合金層を有することを特徴とする半導体装置。
The semiconductor device according to claim 8,
In the vicinity, an alloy layer of a main component metal and Au contained in the electrode pad is provided between the electrode pad and the M unevenly distributed region.
請求項9に記載の半導体装置において、
前記電極パッドの中に含まれる主成分の金属とAuとの合金層の面積が、前記電極パッドと前記接続部材との接続部分の面積の50%以上を占めることを特徴とする半導体装置。
The semiconductor device according to claim 9.
2. The semiconductor device according to claim 1, wherein the area of the alloy layer of the main component metal and Au contained in the electrode pad occupies 50% or more of the area of the connection portion between the electrode pad and the connection member.
請求項1乃至10いずれかに記載の半導体装置において、前記封止樹脂中の樹脂が、分子骨格中にBr基を実質的に含まない高分子化合物からなることを特徴とする半導体装置。
11. The semiconductor device according to claim 1, wherein the resin in the sealing resin is made of a polymer compound that does not substantially contain a Br group in a molecular skeleton.
JP2006044854A 2005-02-22 2006-02-22 Semiconductor device Pending JP2006270075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006044854A JP2006270075A (en) 2005-02-22 2006-02-22 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005046272 2005-02-22
JP2006044854A JP2006270075A (en) 2005-02-22 2006-02-22 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2006270075A true JP2006270075A (en) 2006-10-05

Family

ID=37205633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006044854A Pending JP2006270075A (en) 2005-02-22 2006-02-22 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2006270075A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009177104A (en) * 2007-02-20 2009-08-06 Nec Electronics Corp Semiconductor device
KR100926860B1 (en) * 2007-11-30 2009-11-13 주식회사 동부하이텍 PCB Insertion type package structure and manufacturing method thereof
JP2010080655A (en) * 2008-09-25 2010-04-08 Asahi Kasei Electronics Co Ltd Semiconductor element
JP2014107418A (en) * 2012-11-28 2014-06-09 Sanken Electric Co Ltd Semiconductor device and manufacturing method of the same
JP2020512697A (en) * 2017-03-28 2020-04-23 シリコン ストーリッジ テクノロージー インコーポレイテッドSilicon Storage Technology, Inc. Sacrificial alignment ring and self-soldered vias for wafer bonding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150562A (en) * 1998-11-09 2000-05-30 Mitsubishi Materials Corp Bonding gold alloy fine wire for semiconductor device
JP2001308133A (en) * 2000-04-21 2001-11-02 Nippon Steel Corp Semiconductor device with wedge-bonded wire and gold alloy bonding wire
JP2004244601A (en) * 2003-02-17 2004-09-02 Kyocera Chemical Corp Resin composition for non-halogen flameproofing sealing and electronic part sealing device
JP2004303861A (en) * 2003-03-31 2004-10-28 Renesas Technology Corp Semiconductor device and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150562A (en) * 1998-11-09 2000-05-30 Mitsubishi Materials Corp Bonding gold alloy fine wire for semiconductor device
JP2001308133A (en) * 2000-04-21 2001-11-02 Nippon Steel Corp Semiconductor device with wedge-bonded wire and gold alloy bonding wire
JP2004244601A (en) * 2003-02-17 2004-09-02 Kyocera Chemical Corp Resin composition for non-halogen flameproofing sealing and electronic part sealing device
JP2004303861A (en) * 2003-03-31 2004-10-28 Renesas Technology Corp Semiconductor device and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009177104A (en) * 2007-02-20 2009-08-06 Nec Electronics Corp Semiconductor device
US8334596B2 (en) 2007-02-20 2012-12-18 Renesas Electronics Corporation Semiconductor device including coupling ball with layers of aluminum and copper alloys
US8395261B2 (en) 2007-02-20 2013-03-12 Renesas Electronics Corporation Semiconductor device
KR100926860B1 (en) * 2007-11-30 2009-11-13 주식회사 동부하이텍 PCB Insertion type package structure and manufacturing method thereof
JP2010080655A (en) * 2008-09-25 2010-04-08 Asahi Kasei Electronics Co Ltd Semiconductor element
JP2014107418A (en) * 2012-11-28 2014-06-09 Sanken Electric Co Ltd Semiconductor device and manufacturing method of the same
JP2020512697A (en) * 2017-03-28 2020-04-23 シリコン ストーリッジ テクノロージー インコーポレイテッドSilicon Storage Technology, Inc. Sacrificial alignment ring and self-soldered vias for wafer bonding
JP7011665B2 (en) 2017-03-28 2022-01-26 シリコン ストーリッジ テクノロージー インコーポレイテッド Sacrificial alignment rings and self-soldering vias for wafer bonding

Similar Documents

Publication Publication Date Title
US8044521B2 (en) Semiconductor device
JP5149028B2 (en) Semiconductor device
Gan et al. Technical barriers and development of Cu wirebonding in nanoelectronics device packaging
EP3029167B1 (en) Bonding wire for semiconductor device
JP5529992B1 (en) Bonding wire
WO2013018238A1 (en) Ball bonding wire
CN1531076A (en) Semiconductor device and producing method thereof
JP2006270075A (en) Semiconductor device
US20040245642A1 (en) Semiconductor device
KR20150082518A (en) Bonding wire
KR20030024616A (en) Semiconductor device
TWI244670B (en) Semiconductor device
Gan et al. Reliability challenges of Cu wire deployment in flash memory packaging
JP2005256128A (en) Plating method
JP2013048169A (en) Wire for ball bonding
JP7169039B2 (en) Wire ball bonding of semiconductor devices
JP4556436B2 (en) Semiconductor device
JP2011171395A (en) Semiconductor device
JPWO2005087980A1 (en) Semiconductor device, method for manufacturing semiconductor device, and method for manufacturing wiring board
Gallo Green molding compounds for high temperature automotive applications
Agache et al. INVESTIGATION OF THIN FILM DEPOSITION BY MEANS OF MICROSCOPY
Low et al. Cu wire bonding for fine pitch 65nm silicon integrated circuits
JP2004296667A (en) Semiconductor device and its manufacturing method
Benta et al. Intermetalic Copper Phase Characteristics and Links with the Gold Sphere in Alumina Cover Sheets

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110802