JP2006269657A - Method for manufacturing resin bonding type permanent magnet - Google Patents

Method for manufacturing resin bonding type permanent magnet Download PDF

Info

Publication number
JP2006269657A
JP2006269657A JP2005084374A JP2005084374A JP2006269657A JP 2006269657 A JP2006269657 A JP 2006269657A JP 2005084374 A JP2005084374 A JP 2005084374A JP 2005084374 A JP2005084374 A JP 2005084374A JP 2006269657 A JP2006269657 A JP 2006269657A
Authority
JP
Japan
Prior art keywords
resin
permanent magnet
composite material
bonded permanent
feeder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005084374A
Other languages
Japanese (ja)
Other versions
JP4613658B2 (en
Inventor
Kazuhiko Inoue
和彦 井上
Tsuneki Watanabe
恒樹 渡辺
Hideaki Miura
英明 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2005084374A priority Critical patent/JP4613658B2/en
Publication of JP2006269657A publication Critical patent/JP2006269657A/en
Application granted granted Critical
Publication of JP4613658B2 publication Critical patent/JP4613658B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate bridging of a composite material within a feeder, to realize smooth filling, and, for example, enable high-speed molding. <P>SOLUTION: The method includes: supplying a mixed composite material 8 of magnetic powder and resin material into a mold cavity 2 by reciprocating movement of a feeder 6; and compressing/molding a resin bonding type permanent magnet. When supplying the composite material 8 by the reciprocating movement of the feeder 6, an intermediate rod 5 is arranged in the mold cavity 2, and it is moved up and down to insert its tip into a housing space 7 of the composite material in the feeder 6. Thus, the bridging of the composite material 8 is eliminated within the feeder 6. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、磁性粉末と樹脂材料とを混合した複合材料からなる樹脂結合型永久磁石の製造方法に関するものであり、前記複合材料の円滑な充填を実現するための技術に関する。   The present invention relates to a method for producing a resin-bonded permanent magnet made of a composite material obtained by mixing magnetic powder and a resin material, and relates to a technique for realizing smooth filling of the composite material.

磁性粉末(磁石粉末)と樹脂材料とを混合した複合材料からなる樹脂結合型永久磁石(いわゆるボンド磁石)は、焼結磁石に比べて例えば円筒形状等への成形が容易であることから、近年、家電製品や産業機器向けのモータやアクチュエータ等への利用が進んできている。特に、小型のモータやアクチュエータ等においては軽量化が進められており、前記樹脂結合型永久磁石は、この点においても焼結磁石より有利である。   In recent years, resin-bonded permanent magnets (so-called bonded magnets) made of a composite material in which magnetic powder (magnet powder) and a resin material are mixed are easier to form into, for example, a cylindrical shape than sintered magnets. The use for motors and actuators for household appliances and industrial equipment is progressing. In particular, weight reduction is being promoted in small motors, actuators, and the like, and the resin-bonded permanent magnet is advantageous over the sintered magnet in this respect as well.

ところで、樹脂結合型永久磁石においても、高性能化が進められており、磁性粉末として、従来用いられてきたフェライト磁石粉末に代わり、SmCo系磁石粉末やNdFeB系磁石粉末等の希土類系磁性粉末が使用されるようになってきている。また、さらなるモータの小型化や高性能化等が進むにつれ、使用される樹脂結合型永久磁石には、肉厚を薄くしながら高特性化することが要求されている。   By the way, even in resin-bonded permanent magnets, higher performance has been promoted, and rare earth magnetic powders such as SmCo magnetic powders and NdFeB magnetic powders are used as magnetic powders instead of ferrite magnetic powders conventionally used. It is becoming used. Further, as the motor is further reduced in size and performance, etc., the resin-bonded permanent magnet used is required to have higher characteristics while being thinner.

樹脂結合型永久磁石の高性能化には、成形密度を向上する上で有利な圧縮成形が好適であると考えられるが、成形する樹脂結合型永久磁石の肉厚が0.5mm以下になると、圧縮成形が非常に困難になる。特に、肉厚を薄くし、なおかつ比較的長尺なリング状の樹脂結合型永久磁石の成形を考えた場合、前記複合材料を円滑に充填することが難しく、磁気特性や圧環強度に優れた樹脂結合型永久磁石を作製することは難しい。   In order to improve the performance of the resin-bonded permanent magnet, compression molding advantageous for improving the molding density is considered suitable, but when the thickness of the resin-bonded permanent magnet to be molded is 0.5 mm or less, Compression molding becomes very difficult. In particular, when considering the formation of a ring-shaped resin-bonded permanent magnet with a thin wall and a relatively long length, it is difficult to smoothly fill the composite material, and the resin has excellent magnetic properties and crushing strength. It is difficult to produce a coupled permanent magnet.

このような状況から、圧縮成形に際して、金型キャビティ内に複合材料を円滑に充填するための技術が検討されている(例えば、特許文献1等を参照)。特許文献1記載の発明は、キャビティ内のブリッジングを無くし、粉末を均等に充填させる方法、及びそのプレス成形型を提供するものである。具体的には、キャビティ構成用の貫通部が形成されたダイスと、その貫通部に嵌挿して同貫通部でリング状粉末成形体用粉末のキャビティを構成する下パンチと、その下パンチに上下動可能に貫入された下部コアと、前記キャビティに嵌挿する外形を有し且つ前記下部コアを収容するガイド孔を穿設した上下動可能な上パンチとからなるプレス成形型へのリング状粉末成形体の粉末充填方法において、前記下部コアを回転及び/または上下振動させてリング状粉末成形用の粉末を充填することを特徴としている。   Under such circumstances, a technique for smoothly filling a mold cavity with a composite material during compression molding has been studied (see, for example, Patent Document 1). The invention described in Patent Document 1 provides a method of eliminating bridging in a cavity and uniformly filling a powder, and a press mold thereof. Specifically, a die in which a cavity-forming through-hole is formed, a lower punch that is inserted into the through-hole and forms a cavity for a powder for a ring-shaped powder molded body, and the lower punch is vertically Ring-shaped powder to a press mold comprising a movably inserted lower core and a vertically movable upper punch having an outer shape fitted into the cavity and having a guide hole for accommodating the lower core In the powder filling method of the molded body, the lower core is rotated and / or vertically oscillated to fill the powder for ring-shaped powder molding.

すなわち、前記特許文献1記載の発明では、キャビティ空間内で下部コアを上下動させることにより、供給される粉末がキャビティ空間内でブリッジングを起こさないようにし、キャビティ空間内に粉末が均等に充填されるようにしている。
特開平8−332597号公報
That is, in the invention described in Patent Document 1, the lower core is moved up and down in the cavity space so that the supplied powder does not cause bridging in the cavity space and the powder is evenly filled in the cavity space. To be.
JP-A-8-332597

しかしながら、本発明者らの検討によれば、前記特許文献1記載の技術は、特に高速成形時において有効に機能せず、必ずしも十分な充填速度及び充填性を実現することができないことがわかった。そして、その原因は、高速成形を行う場合、フィーダの複合材料収容空間内において複合材料にブリッジが発生することによるものと推測された。前記特許文献1記載の技術では、下部コアはキャビティ空間内で上下動されるにとどまるため、前記フィーダの複合材料収容空間内において複合材料のブリッジには有効に作用しない。   However, according to the study by the present inventors, it has been found that the technique described in Patent Document 1 does not function effectively particularly during high-speed molding, and it is not always possible to realize a sufficient filling speed and filling property. . And the cause was presumed to be caused by the occurrence of a bridge in the composite material in the composite material accommodation space of the feeder when performing high-speed molding. In the technique described in Patent Document 1, since the lower core is merely moved up and down in the cavity space, it does not effectively act on the bridge of the composite material in the composite material accommodation space of the feeder.

本発明は、このような従来技術の有する欠点を解消することを目的に提案されたものであり、フィーダの複合材料収容空間内において複合材料のブリッジを解消することができ、例えば高速成形においても良好な充填性を実現し、磁気特性や圧環強度に優れた樹脂結合型永久磁石を製造可能とする樹脂結合型永久磁石の製造方法を提供することを目的とする。   The present invention has been proposed for the purpose of eliminating the disadvantages of the prior art, and can eliminate the bridge of the composite material in the composite material accommodation space of the feeder. It is an object of the present invention to provide a method for producing a resin-bonded permanent magnet that realizes good filling properties and is capable of producing a resin-bonded permanent magnet excellent in magnetic properties and crushing strength.

前述の目的を達成するために、本発明の樹脂結合型永久磁石の製造方法は、磁性粉末と樹脂材料とを混合した複合材料をフィーダの往復運動により金型キャビティ内に供給し、圧縮成形する樹脂結合型永久磁石の製造方法であって、前記フィーダの往復運動による複合材料の供給に際し、前記金型キャビティ内に中棒を配置し、当該中棒の先端が前記フィーダの複合材料収容空間内に挿入されるように中棒を上下動させることを特徴とする。   In order to achieve the above-described object, the method for producing a resin-bonded permanent magnet according to the present invention supplies a composite material obtained by mixing magnetic powder and a resin material into a mold cavity by reciprocating motion of a feeder, and performs compression molding. A method for manufacturing a resin-bonded permanent magnet, wherein a composite rod is disposed in the mold cavity when supplying a composite material by reciprocating motion of the feeder, and a tip of the intermediate rod is located in a composite material accommodation space of the feeder. The middle rod is moved up and down so as to be inserted into the head.

本発明の樹脂結合型永久磁石の製造方法においては、磁性粉末と樹脂材料とを混合して複合材料とした後、この複合材料をフィーダの往復運動により金型キャビティ内に供給する。このとき、例えば成形速度が速くなると、フィーダの複合材料収容空間内において、複合材料のブリッジが発生し、円滑な充填の妨げになる。特に、金型キャビティの開口が狭い場合に顕著である。   In the method for producing a resin-bonded permanent magnet of the present invention, after magnetic powder and a resin material are mixed to form a composite material, this composite material is supplied into a mold cavity by reciprocating motion of a feeder. At this time, for example, when the molding speed is increased, a bridge of the composite material is generated in the composite material accommodation space of the feeder, thereby preventing smooth filling. This is particularly noticeable when the opening of the mold cavity is narrow.

そこで、本発明では、金型キャビティ内に中棒を設置し、この中棒の先端が前記フィーダの複合材料収容空間内に挿入されるように、中棒を上下動する。フィーダの複合材料収容空間内に中棒を挿入して上下動すれば、前記フィーダ内の複合材料に物理的な力が直接加わることになる。したがって、フィーダの複合材料収容空間内において、複合材料がブリッジを起こしていたとしても、前記中棒の上下動によってブリッジが速やかに解消され、金型キャビティへの複合材料の円滑な充填が実現される。   Therefore, in the present invention, an intermediate rod is installed in the mold cavity, and the intermediate rod is moved up and down so that the tip of the intermediate rod is inserted into the composite material accommodation space of the feeder. If an intermediate rod is inserted into the composite material accommodation space of the feeder and moved up and down, a physical force is directly applied to the composite material in the feeder. Therefore, even if the composite material has caused a bridge in the composite material accommodation space of the feeder, the bridge is quickly eliminated by the vertical movement of the center rod, and the smooth filling of the composite material into the mold cavity is realized. The

本発明の製造方法によれば、フィーダの複合材料収容空間内において発生した複合材料のブリッジを速やかに解消することができ、成形用の複合材料を円滑に金型キャビティ内に導くことができる。したがって、例えば高速での成形等に際しても良好な充填性を実現することが可能であり、磁気特性や圧環強度等に優れた樹脂結合型永久磁石を製造可能することが可能である。   According to the manufacturing method of the present invention, the bridge of the composite material generated in the composite material accommodation space of the feeder can be quickly eliminated, and the molding composite material can be smoothly guided into the mold cavity. Therefore, for example, it is possible to realize a good filling property even when molding at a high speed, and it is possible to manufacture a resin-bonded permanent magnet excellent in magnetic characteristics, crushing strength, and the like.

以下、本発明を適用した樹脂結合型永久磁石の製造方法について、図面を参照して詳細に説明する。   Hereinafter, a method for producing a resin-bonded permanent magnet to which the present invention is applied will be described in detail with reference to the drawings.

本発明の樹脂結合型永久磁石の製造方法において、樹脂結合型永久磁石は、所定の粒径に粉砕した磁性粉末に樹脂材料を加えて混合し、複合材料とした後、成形工程において圧縮成形することにより所定の形状に成形される。   In the method for producing a resin-bonded permanent magnet of the present invention, the resin-bonded permanent magnet is compression-molded in a molding process after a resin material is added to and mixed with a magnetic powder pulverized to a predetermined particle size to form a composite material. By this, it is formed into a predetermined shape.

ここで、用いる磁性粉末としては、フェライト磁石粉末(例えば、Sr系フェライト粉末やBa系フェライト粉末等)や、希土類金属磁石粉末(例えば、SmCo系、NdFeB系、SmFeN系等)等を挙げることができる。これらの中から要求される特性に応じて選定すればよい。特に、高性能な樹脂結合型永久磁石を作製するためには、希土類金属磁石粉末が好適である。   Here, examples of the magnetic powder to be used include ferrite magnet powder (for example, Sr-based ferrite powder and Ba-based ferrite powder) and rare earth metal magnet powder (for example, SmCo-based, NdFeB-based, SmFeN-based, etc.). it can. What is necessary is just to select according to the characteristic requested | required from these. In particular, rare earth metal magnet powder is suitable for producing a high-performance resin-bonded permanent magnet.

希土類金属磁石粉末は、希土類元素を主成分とするものであり、磁石組成としては、例えば、R−T−B(Rは希土類元素の1種又は2種以上、但し希土類元素はYを含む概念である。TはFeまたはFe及びCoを必須とする遷移金属元素の1種または2種以上であり、Bはホウ素である。)系希土類金属磁石粉末とする場合、磁気特性等の観点から、例えば希土類元素Rが10〜30原子%、ホウ素Bが2〜28原子%、残部(42〜90原子%)が遷移金属元素Tとなるような組成とすることが好ましい。ここで、Rは、希土類元素、すなわちY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb及びLuから選ばれる1種、または2種以上である。中でも、Ndは、資源的に豊富で比較的安価であることから、主成分をNdとすることが好ましい。   The rare earth metal magnet powder is mainly composed of a rare earth element, and the magnet composition is, for example, R-T-B (where R is one or more of rare earth elements, where the rare earth element includes Y). T is one or more of transition metal elements essentially containing Fe or Fe and Co, and B is boron.) In the case of a rare earth metal magnet powder, from the viewpoint of magnetic properties and the like, For example, the composition is preferably such that the rare earth element R is 10 to 30 atomic%, the boron B is 2 to 28 atomic%, and the balance (42 to 90 atomic%) is the transition metal element T. Here, R is one or more selected from rare earth elements, that is, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, and Lu. Especially, since Nd is abundant in resources and relatively inexpensive, the main component is preferably Nd.

あるいは、添加元素Mを加えて、R−T−B−M系希土類金属磁石粉末とすることも可能である。この場合、添加元素Mとしては、Al、Cr、Mn、Mg、Si、Cu、C、Nb、Sn、W、V、Zr、Ti、Mo、Bi、Ga等を挙げることができ、これらの1種または2種以上を選択して添加することができる。これら添加元素Mの添加量は、残留磁束密度等の磁気特性を考慮して、総量で10原子%以下とすることが好ましい。添加元素Mの添加量が多すぎると、磁気特性が劣化するおそれがある。   Or it is also possible to add the additive element M and to make an RTBM rare earth metal magnet powder. In this case, examples of the additive element M include Al, Cr, Mn, Mg, Si, Cu, C, Nb, Sn, W, V, Zr, Ti, Mo, Bi, and Ga. A seed | species or 2 or more types can be selected and added. The addition amount of these additive elements M is preferably 10 atomic% or less in total in consideration of magnetic characteristics such as residual magnetic flux density. If the amount of additive element M added is too large, the magnetic properties may be deteriorated.

前記磁性粉末の形態や粒径等は、任意であり、作製する樹脂結合型永久磁石の形状、寸法、さらには作製する樹脂結合型永久磁石に要求される磁気的特性や機械的特性等の性能に応じて選定すればよい。特に、磁性粉末の充填性を高め、例えばリング状に成形した場合の圧環強度を高めるためには、鱗片状の磁性粉末の使用が好ましい。鱗片状の磁性粉末は、互いに重なり合う形で充填され、優れた充填性を発揮する。また、前記磁性粉末の粒径は、平均粒径が10μm〜200μm、最大粒径が500μm以下であることが好ましい。   The form and particle size of the magnetic powder are arbitrary, and the shape and size of the resin-bonded permanent magnet to be manufactured, as well as the performance such as magnetic characteristics and mechanical characteristics required for the resin-bonded permanent magnet to be manufactured. You may choose according to. In particular, in order to increase the filling property of the magnetic powder, for example, to increase the crushing strength when it is molded into a ring shape, it is preferable to use a scaly magnetic powder. The scaly magnetic powders are filled in an overlapping manner and exhibit excellent filling properties. The magnetic powder preferably has an average particle size of 10 μm to 200 μm and a maximum particle size of 500 μm or less.

一方、樹脂材料としては、熱硬化性樹脂が好ましく、例えばエポキシ樹脂やフェノール樹脂等が好適である。勿論、これに限らず、この種の樹脂結合型永久磁石に用いられる樹脂材料として知られるものであれば、いずれも使用可能である。   On the other hand, as the resin material, a thermosetting resin is preferable, and for example, an epoxy resin or a phenol resin is preferable. Of course, the present invention is not limited to this, and any resin material known as a resin material used for this kind of resin-bonded permanent magnet can be used.

樹脂結合型永久磁石を製造するに際しては、先ず、混合工程において、前記磁性粉末と樹脂材料とを混合する。前記混合は、例えば有機溶剤によって樹脂材料を希釈し、磁性粉末と混合する、湿式混合等の方法により行えばよい。この場合、有機溶剤としては、アセトンやトルエン、メチルエチルケトン、メチルイソブチルケトン等の汎用溶剤を用いることができる。   When manufacturing a resin-bonded permanent magnet, first, the magnetic powder and the resin material are mixed in a mixing step. The mixing may be performed by a method such as wet mixing in which the resin material is diluted with an organic solvent and mixed with magnetic powder. In this case, general-purpose solvents such as acetone, toluene, methyl ethyl ketone, and methyl isobutyl ketone can be used as the organic solvent.

前記混合工程における樹脂材料の添加量としては、磁性粉末に対して樹脂材料を1.0質量%〜5.0質量%とすることが好ましい。前記範囲を超えて樹脂材料が多すぎると、相対的に磁性粉末の占める割合が減少し、十分な磁気特性が得られなくなるおそれがある。逆に、樹脂材料の添加量が少なすぎると、磁性粉末を十分に結着することができなくなる可能性があり、成形される樹脂結合型永久磁石において強度等が問題となるおそれがある。   The addition amount of the resin material in the mixing step is preferably 1.0% by mass to 5.0% by mass with respect to the magnetic powder. If the resin material is too much beyond the above range, the proportion of the magnetic powder relatively decreases, and there is a possibility that sufficient magnetic properties cannot be obtained. On the other hand, if the amount of the resin material added is too small, there is a possibility that the magnetic powder cannot be sufficiently bound, and the strength or the like may become a problem in the molded resin-bonded permanent magnet.

混合工程の終了の後、必要に応じて分級工程において、所定の粒度範囲にある成形用粉末と、これよりも粒径の大きな粗粉末とに分離する。分級範囲としては、例えば30μm〜150μm(平均粒径100μm程度)であり、粒径が150μmを超える磁性粉末を粗粉末として分離する。   After completion of the mixing step, the powder is separated into a molding powder in a predetermined particle size range and a coarse powder having a larger particle size than that in a classification step as necessary. The classification range is, for example, 30 μm to 150 μm (average particle size of about 100 μm), and magnetic powder having a particle size exceeding 150 μm is separated as a coarse powder.

成形工程では、前記所定の粒度範囲にある成形用粉末を成形材料(複合材料)とし、これを例えば金型を用いて所定の形状に圧縮成形する。このとき、成形する樹脂結合型永久磁石の形状、大きさ等は任意であり、例えば使用されるモータやアクチュエータ等の形状に沿った円筒状(リング状)、あるいは円弧面を持つ形状(瓦状)等が代表的である。特に肉厚が薄く(例えば厚さ0.5mm以下程度)で長尺(例えば長さ3.0mm以上)のリング状磁石[例えば外径寸法(直径)3mm〜5mm程度]とする場合に本発明の製造方法が有効である。   In the molding step, the molding powder in the predetermined particle size range is used as a molding material (composite material), and this is compression-molded into a predetermined shape using a mold, for example. At this time, the shape, size, etc. of the resin-bonded permanent magnet to be molded are arbitrary. For example, a cylindrical shape (ring shape) along the shape of the motor or actuator used, or a shape having a circular arc surface (tile shape) ) Etc. are typical. In particular, the present invention is used when the ring magnet is thin (for example, about 0.5 mm or less) and long (for example, 3.0 mm or more) ring-shaped magnet [for example, outer diameter (diameter) of about 3 mm to 5 mm]. This manufacturing method is effective.

成形に際して、圧縮成形圧力は、784MPa(8tf/cm)以上とすることが好ましく、980MPa(10tf/cm)以上とすることがより好ましい。圧縮成形圧力を高めることにより、樹脂結合型永久磁石の高密度化を実現することができる。 In the molding, the compression molding pressure is preferably 784 MPa (8 tf / cm 2 ) or more, and more preferably 980 MPa (10 tf / cm 2 ) or more. By increasing the compression molding pressure, it is possible to increase the density of the resin-bonded permanent magnet.

ところで、前記圧縮成形に際して、例えば肉厚が薄く長尺状のリング磁石を成形する場合、金型の成形空間(キャビティ)は、開口面積が小さなスリット状の空間となる。このような開口面積が小さいスリット状の空間に複合材料を充填することは困難である。また、これに加えて、例えば鱗片状の磁性粉末を用い、毎分60個以上、例えば毎分120個というような高速成形を行おうとする場合、複合材料を供給するフィーダの複合材料収容空間内において複合材料にブリッジが発生し、前記充填をさらに困難なものとする。   By the way, at the time of the compression molding, for example, when a long ring magnet having a small thickness is formed, the molding space (cavity) of the mold is a slit-like space having a small opening area. It is difficult to fill such a slit-like space with a small opening area with the composite material. In addition to this, when using, for example, scaly magnetic powder and performing high-speed molding such as 60 pieces per minute, for example 120 pieces per minute, in the composite material accommodation space of the feeder that supplies the composite material In this case, a bridge is generated in the composite material, which makes the filling more difficult.

そこで、本発明においては、前記成形空間(金型キャビティ)内に中棒を設置し、この中棒を利用して前記フィーダの複合材料収容空間内において複合材料のブリッジを解消するとともに、開口面積が小さな金型キャビティ内での複合材料の充填性を改良することとする。   Therefore, in the present invention, an intermediate rod is installed in the molding space (die cavity), and the bridge of the composite material is eliminated in the composite material accommodation space of the feeder using the intermediate rod, and the opening area Will improve the fillability of the composite material in a small mold cavity.

図1は、本発明の製造方法を実現するための成形装置の一例を示すものである。成形工程では、臼型と称される金型1のキャビティ2内にフィーダ内の複合材料を充填し、圧縮成形を行う。したがって、金型1のキャビティ2内には、複合材料の充填後、上下から上パンチ3及び下パンチ4が挿入され、これらによって複合材料の圧縮成形が行われる。   FIG. 1 shows an example of a molding apparatus for realizing the manufacturing method of the present invention. In the molding step, the composite material in the feeder is filled into the cavity 2 of the mold 1 called a mortar mold, and compression molding is performed. Therefore, after filling the composite material into the cavity 2 of the mold 1, the upper punch 3 and the lower punch 4 are inserted from above and below, and compression molding of the composite material is performed by these.

そして、前記下パンチ4には、これを貫通する形で中棒5が設けられ、前記金型キャビティ2内に挿入されている。この中棒5は、例えばリング状の樹脂結合型永久磁石を成形する場合には、中心孔を成形する役割を果たし、この場合には、中棒5の外径寸法をリング状樹脂結合型磁石の内径寸法に応じて設定する。   The lower punch 4 is provided with an intermediate rod 5 passing through the lower punch 4 and inserted into the mold cavity 2. For example, when forming a ring-shaped resin-bonded permanent magnet, the center rod 5 plays a role of forming a center hole. In this case, the outer diameter of the center rod 5 is set to a ring-shaped resin-bonded magnet. It is set according to the inner diameter dimension.

前記中棒5は、例えばエアシリンダ等によって下パンチ4に対して上下動自在とされており、図中矢印y方向に上下運動し、いわゆるタッピングを行うことが可能である。この中棒5の上下動の範囲は、前記金型キャビティ2の深さ範囲に止まらず、前記中棒5の先端部が臼型である金型1の上端面よりも上方で上下運動させることを可能としてある。   The middle rod 5 is movable up and down with respect to the lower punch 4 by an air cylinder or the like, for example, and can move up and down in the direction of an arrow y in the figure to perform so-called tapping. The range of the vertical movement of the center rod 5 is not limited to the depth range of the mold cavity 2, and the top end of the center bar 5 is moved up and down above the upper end surface of the mold 1 which is a mortar mold. Is possible.

一方、前記金型キャビティ2内への複合材料の供給は、図2に示すように、フィーダ6によって行われる。フィーダ6の底面は開放されており、フィーダ6を金型キャビティ2上で矢印x方向に往復動させると、この開放された底面から複合材料収容空間7内の複合材料8が金型キャビティ2内へ落下し、充填が行われる。   On the other hand, the supply of the composite material into the mold cavity 2 is performed by a feeder 6 as shown in FIG. The bottom surface of the feeder 6 is open. When the feeder 6 is reciprocated on the mold cavity 2 in the direction of the arrow x, the composite material 8 in the composite material accommodation space 7 is moved from the open bottom surface into the mold cavity 2. To fall and filling.

ただし、前記のように複合材料8がフィーダ6の複合材料収容空間7内でブリッジを形成すると、円滑な充填が難しい。そこで、図2に示すように、前記中棒5の先端部を金型キャビティ2内から飛び出させ、前記複合材料収容空間7内に入り込ませる。そして、この状態で中棒5の上下動(タッピング)を行う。これにより、前記複合材料8のブリッジが解消され、成形材料である複合材料は、速やかに金型キャビティ2内へ落下する。また、前記中棒5は、金型キャビティ2内でも上下に運動することになり、その結果、金型キャビティ2内における複合材料8の充填性改善にも寄与する。   However, if the composite material 8 forms a bridge in the composite material accommodation space 7 of the feeder 6 as described above, smooth filling is difficult. Therefore, as shown in FIG. 2, the tip of the middle rod 5 is protruded from the mold cavity 2 and enters the composite material accommodation space 7. In this state, the middle bar 5 is moved up and down (tapping). Thereby, the bridge | bridging of the said composite material 8 is eliminated, and the composite material which is a shaping | molding material falls into the mold cavity 2 rapidly. Further, the middle rod 5 moves up and down in the mold cavity 2, and as a result, contributes to improving the filling property of the composite material 8 in the mold cavity 2.

前記中棒5の上下動は、前記フィーダ6が金型キャビティ2上で往復動している間に行う必要がある。この場合、前記中棒5の上下動の回数(タッピング数)は、1〜5回とすることが好ましい。高速成形の場合、フィーダ6が金型キャビティ2上に存在する時間が短いので、この間に速やかにタッピングを行う必要がある。通常、フィーダ6はカムによってその動作が制御され、カムを1回転することで、フィーダ6による1回の充填動作が完了する。フィーダ6が金型キャビティ2上に存在するのは、カムの回転角で90°程度であり、カム1回転に対して1/4である。したがって、1分間に60個以上、例えば1分間に120個成形を行おうとする場合、前記中棒5のタッピング数/タッピング時間は、1〜5回/[(60秒/120個)/4]であり、周波数で表すと8〜40Hzということになる。   The middle rod 5 needs to be moved up and down while the feeder 6 is reciprocating on the mold cavity 2. In this case, it is preferable that the number of vertical movements (tapping number) of the middle rod 5 is 1 to 5 times. In the case of high-speed molding, since the time during which the feeder 6 exists on the mold cavity 2 is short, it is necessary to perform tapping quickly during this time. Usually, the operation of the feeder 6 is controlled by a cam, and one filling operation by the feeder 6 is completed by rotating the cam once. The feeder 6 is present on the mold cavity 2 at a cam rotation angle of about 90 °, which is 1/4 of one cam rotation. Accordingly, when molding 60 pieces or more per minute, for example, 120 pieces per minute, the number of tapping / tapping time of the middle rod 5 is 1 to 5 times / [(60 seconds / 120 pieces) / 4]. In terms of frequency, it is 8 to 40 Hz.

また、中棒5の上下動の振幅は、0.5mm〜15mmとすることが好ましい。中棒5の上下動の振幅が0.5mm未満であると、ブリッジの解消が十分に行われなくなるおそれがある。逆に、中棒5の上下動の振幅が15mmを超えると、機械的な動作が大きくなって、中棒5を上下動させる機構が大がかりとなり、また、高速成形の場合、フィーダ6の動作に追従させて高速で動作させることが難しくなるおそれがある。   Further, the amplitude of the vertical movement of the middle bar 5 is preferably 0.5 mm to 15 mm. If the amplitude of the vertical movement of the middle bar 5 is less than 0.5 mm, the bridge may not be sufficiently eliminated. On the contrary, when the amplitude of the vertical movement of the center rod 5 exceeds 15 mm, the mechanical operation becomes large, and the mechanism for moving the center rod 5 up and down becomes large. In the case of high-speed molding, the operation of the feeder 6 is increased. It may be difficult to follow and operate at high speed.

フィーダ6による複合材料8の充填の後、フィーダ6は金型キャビティ2上から退避させる。このとき、中棒5の先端部は、金型1の上面(金型キャビティ2の上面)と略同一面となるまで後退させる。次いで図3に示すように、上パンチ3と下パンチ4で充填された複合材料8を圧縮成形する。上パンチ3には中棒5の先端部が挿入できるように挿通孔(もしくは貫通孔)3aが形成されており、これにより、前記中棒5により中心孔が形成されたリング状の樹脂結合型永久磁石(リング状ボンド磁石)を成形することが可能になる。なお、上パンチ3に挿通孔(もしくは貫通孔)3aが形成されていない場合には、前記上下パンチ3,4による圧縮成形に際し、前記中棒5は上パンチ3の押圧に追従する形とし、上パンチ3の押し込みに応じて先端面が上パンチ3と接した状態で後退するようにしてもよい。これにより、挿通孔もしくは貫通孔と前記中棒5との間で複合材料8をカジる可能性が無くなり効果的な圧縮成形が可能となる。   After filling the composite material 8 with the feeder 6, the feeder 6 is retracted from the mold cavity 2. At this time, the tip of the middle bar 5 is retracted until it is substantially flush with the upper surface of the mold 1 (upper surface of the mold cavity 2). Next, as shown in FIG. 3, the composite material 8 filled with the upper punch 3 and the lower punch 4 is compression-molded. The upper punch 3 is formed with an insertion hole (or a through-hole) 3a so that the tip of the middle rod 5 can be inserted. Thereby, a ring-shaped resin-bonded mold in which a center hole is formed by the middle rod 5 Permanent magnets (ring-shaped bonded magnets) can be formed. When the insertion hole (or the through hole) 3a is not formed in the upper punch 3, the center rod 5 follows the pressing of the upper punch 3 during the compression molding by the upper and lower punches 3 and 4. As the upper punch 3 is pushed in, the tip surface may be retracted in contact with the upper punch 3. As a result, there is no possibility of the composite material 8 being squeezed between the insertion hole or the through hole and the middle rod 5, and effective compression molding becomes possible.

次に、本発明の具体的な実施例について、実験結果を基に説明する。   Next, specific examples of the present invention will be described based on experimental results.

実施例
磁性粉末としてNdFeB系希土類金属磁石粉末[短径20μm、長径100μm(最大径150μm)、厚さ5μm程度の鱗片状粉末]を用い、これにエポキシ樹脂を3質量%加えて複合材料とした。この複合材料を用いて圧縮成形を行った。成形した樹脂結合型永久磁石は、外径3.8mm、内径3.0mm、長さ6.0mmのリング状(肉厚0.4mm)である。
Example NdFeB rare earth metal magnet powder [minor axis 20 μm, major axis 100 μm (maximum diameter 150 μm), scaly powder having a thickness of about 5 μm] was used as a magnetic powder, and 3 mass% of epoxy resin was added thereto to form a composite material . Compression molding was performed using this composite material. The molded resin-bonded permanent magnet has a ring shape (thickness 0.4 mm) having an outer diameter of 3.8 mm, an inner diameter of 3.0 mm, and a length of 6.0 mm.

成形に際しては、図1から図3に示す成形装置を用い、フィーダ内に中棒の先端部を挿入し、上下動(タッピング)を行いながら複合材料の金型キャビティへの充填を行った。タッピング数は、各充填時、2回とした。その結果、毎分120個の成形が可能であった。また、表1に示すように、成形されたリング状の樹脂結合型永久磁石は、磁気特性や圧環強度、成形体密度に優れたものであった。   In molding, the molding apparatus shown in FIGS. 1 to 3 was used, and the tip portion of the center rod was inserted into the feeder, and the mold cavity was filled with the composite material while moving up and down (tapping). The number of tappings was set to twice at each filling. As a result, 120 pieces could be formed per minute. Moreover, as shown in Table 1, the molded ring-shaped resin-bonded permanent magnet was excellent in magnetic properties, crushing strength, and molded body density.

比較例1
先の実施例と同様、磁性粉末としてNdFeB系希土類金属磁石粉末[短径20μm、長径100μm(最大径150μm)、厚さ5μm程度の鱗片状粉末]を用い、これにエポキシ樹脂を3質量%加えて複合材料とした。
Comparative Example 1
As in the previous example, NdFeB rare earth metal magnet powder [minor axis 20 μm, major axis 100 μm (maximum diameter 150 μm), scaly powder having a thickness of about 5 μm] was used as the magnetic powder, and 3% by mass of epoxy resin was added thereto. Composite material.

前記中棒によるタッピングは行わず、実施例と同様の樹脂結合型永久磁石の成形を行った。ただし、充填性にほとんど問題はなく、実施例と同様に、磁気特性や圧環強度、成形体密度に優れたものを得るために成形速度は、毎分20個とした。この場合には、成形速度が遅く、生産性の悪いものであった。   Tapping with the intermediate rod was not performed, and the same resin-bonded permanent magnet as in the example was molded. However, there was almost no problem in the filling property, and the molding speed was set to 20 pieces per minute in order to obtain excellent magnetic properties, crushing strength, and compact density as in the examples. In this case, the molding speed was slow and the productivity was poor.

比較例2
前記比較例1と同様、前記中棒によるタッピングは行わず、実施例と同様の樹脂結合型永久磁石の成形を行った。成形速度は、実施例と同様、毎分120個とした。この場合には、金型キャビティへの充填が充分ではなく、変形品が多発し、正常な形態の樹脂結合型永久磁石は、ほとんど成形することができなかった。
Comparative Example 2
As in Comparative Example 1, the resin-bonded permanent magnet was molded in the same manner as in the example without performing tapping with the intermediate rod. The molding speed was 120 pieces per minute as in the example. In this case, the mold cavity was not sufficiently filled, many deformed products were generated, and the normal form of the resin-bonded permanent magnet could hardly be formed.

比較例3
金型キャビティ内でのみ中棒のタッピングを行い、他は実施例と同様に成形を行った。この場合、金型キャビティへの充填不良による各々の成形体に成形体密度のバラツキが生じ、実施例に比べて歩留まりが大きく低下した。
Comparative Example 3
The center rod was tapped only in the mold cavity, and molding was performed in the same manner as in the example. In this case, the density of the molded body was varied in each molded body due to defective filling into the mold cavity, and the yield was greatly reduced as compared with the example.

表1に、実施例及び各比較例におけるカムの回転数(1分間当たりの成形数)、タッピング回数、得られた成形体(樹脂結合型永久磁石)の製品強度、充填性、成形体密度を示す。なお、比較例2ではほとんど成形が不可能であり、各データはほとんど測定することができなかった。   Table 1 shows the number of cam rotations (number of moldings per minute), number of tappings, product strength of the obtained molded body (resin-bonded permanent magnet), fillability, and molded body density in Examples and Comparative Examples. Show. In Comparative Example 2, molding was almost impossible, and each data could hardly be measured.

Figure 2006269657
Figure 2006269657

本発明を適用した成形装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the shaping | molding apparatus to which this invention is applied. フィーダの複合材料収容空間内への中棒挿入状態を示す概略断面図である。It is a schematic sectional drawing which shows the center rod insertion state in the composite material accommodation space of a feeder. 圧縮成形状態を示す概略断面図である。It is a schematic sectional drawing which shows a compression molding state.

符号の説明Explanation of symbols

1 金型、2 金型キャビティ、3 上パンチ、4 下パンチ、5 中棒、6 フィーダ、7 複合材料収容空間、8 複合材料 1 mold, 2 mold cavity, 3 upper punch, 4 lower punch, 5 center rod, 6 feeder, 7 composite material accommodation space, 8 composite material

Claims (10)

磁性粉末と樹脂材料とを混合した複合材料をフィーダの往復運動により金型キャビティ内に供給し、圧縮成形する樹脂結合型永久磁石の製造方法であって、
前記フィーダの往復運動による複合材料の供給に際し、前記金型キャビティ内に中棒を配置し、当該中棒の先端が前記フィーダの複合材料収容空間内に挿入されるように中棒を上下動させることを特徴とする樹脂結合型永久磁石の製造方法。
A composite material in which magnetic powder and a resin material are mixed is supplied into a mold cavity by a reciprocating motion of a feeder, and is a method for manufacturing a resin-bonded permanent magnet for compression molding,
When supplying the composite material by the reciprocating motion of the feeder, an intermediate rod is disposed in the mold cavity, and the intermediate rod is moved up and down so that the tip of the intermediate rod is inserted into the composite material accommodation space of the feeder. A method for producing a resin-bonded permanent magnet.
前記中棒の上下動は、前記複合材料の供給の間に1〜5回とすることを特徴とする請求項1記載の樹脂結合型永久磁石の製造方法。   The method for producing a resin-bonded permanent magnet according to claim 1, wherein the vertical movement of the intermediate rod is performed 1 to 5 times during the supply of the composite material. 前記中棒の上下動の振幅を0.5mm〜15mmとすることを特徴とする請求項1または2記載の樹脂結合型永久磁石の製造方法。   The method for producing a resin-bonded permanent magnet according to claim 1, wherein the amplitude of the vertical movement of the center rod is 0.5 mm to 15 mm. 前記中棒の先端面が金型キャビティの上端面と略同一面となるように中棒を後退させ、前記圧縮成形を行うことを特徴とする請求項1から3のいずれか1項記載の樹脂結合型永久磁石の製造方法。   The resin according to any one of claims 1 to 3, wherein the compression molding is performed by retracting the center rod so that a tip surface of the center rod is substantially flush with an upper end surface of the mold cavity. A manufacturing method of a combined permanent magnet. 樹脂結合型永久磁石を1分間当たり60個以上の成形速度で成形することを特徴とする請求項1から4のいずれか1項記載の樹脂結合型永久磁石の製造方法。   The method for producing a resin-bonded permanent magnet according to any one of claims 1 to 4, wherein the resin-bonded permanent magnet is molded at a molding speed of 60 or more per minute. 前記磁性粉末と樹脂材料とを混合する際に加える樹脂材料の添加量が、磁性粉末に対して1.0〜5.0質量%であることを特徴とする請求項1から5のいずれか1項記載の樹脂結合型永久磁石の製造方法。   The amount of the resin material added when mixing the magnetic powder and the resin material is 1.0 to 5.0% by mass with respect to the magnetic powder. A method for producing a resin-bonded permanent magnet according to Item. 前記磁性粉末が鱗片状の粉末であることを特徴とする請求項1から6のいずれか1項記載の樹脂結合型永久磁石の製造方法。   The method for producing a resin-bonded permanent magnet according to claim 1, wherein the magnetic powder is a scaly powder. 前記磁性粉末の平均粒径が10〜200μmであることを特徴とする請求項1から7のいずれか1項記載の樹脂結合型永久磁石の製造方法。   The method for producing a resin-bonded permanent magnet according to claim 1, wherein the magnetic powder has an average particle size of 10 to 200 μm. 前記磁性粉末は、希土類磁石粉末であることを特徴とする請求項1から8のいずれか1項記載の樹脂結合型永久磁石の製造方法。   The method for producing a resin-bonded permanent magnet according to any one of claims 1 to 8, wherein the magnetic powder is a rare-earth magnet powder. 前記樹脂材料が熱硬化性樹脂であることを特徴とする請求項1から9のいずれか1項記載の樹脂結合型永久磁石の製造方法。   The method for producing a resin-bonded permanent magnet according to claim 1, wherein the resin material is a thermosetting resin.
JP2005084374A 2005-03-23 2005-03-23 Manufacturing method of resin bonded permanent magnet Expired - Fee Related JP4613658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005084374A JP4613658B2 (en) 2005-03-23 2005-03-23 Manufacturing method of resin bonded permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005084374A JP4613658B2 (en) 2005-03-23 2005-03-23 Manufacturing method of resin bonded permanent magnet

Publications (2)

Publication Number Publication Date
JP2006269657A true JP2006269657A (en) 2006-10-05
JP4613658B2 JP4613658B2 (en) 2011-01-19

Family

ID=37205314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005084374A Expired - Fee Related JP4613658B2 (en) 2005-03-23 2005-03-23 Manufacturing method of resin bonded permanent magnet

Country Status (1)

Country Link
JP (1) JP4613658B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103978208A (en) * 2014-06-04 2014-08-13 董中天 Magnetic powder feeding device of anisotropic bonded NdFeB magnetic ring one-shot forming technology
CN109923629A (en) * 2016-11-09 2019-06-21 Tdk株式会社 The manufacturing method of rare-earth magnet
WO2024058040A1 (en) * 2022-09-12 2024-03-21 ミネベアミツミ株式会社 Magnetic encoder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53563A (en) * 1976-06-24 1978-01-06 Sumitomo Electric Ind Ltd Automatic powder material supplying apparatus
JPH0381097A (en) * 1989-08-22 1991-04-05 Matsushita Electric Ind Co Ltd Powder molding machine
JPH08332597A (en) * 1995-06-06 1996-12-17 Nippon Koshuha Kogyo Kk Powder charging method for ring-shaped powder compact and press molding die therefor
JP2002141211A (en) * 2000-04-24 2002-05-17 Seiko Epson Corp Magnet powder, method of manufacturing bonded magnet, and bonded magnet
JP2003257767A (en) * 2001-12-26 2003-09-12 Sumitomo Special Metals Co Ltd Manufacturing method for permanent magnet, and pressing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53563A (en) * 1976-06-24 1978-01-06 Sumitomo Electric Ind Ltd Automatic powder material supplying apparatus
JPH0381097A (en) * 1989-08-22 1991-04-05 Matsushita Electric Ind Co Ltd Powder molding machine
JPH08332597A (en) * 1995-06-06 1996-12-17 Nippon Koshuha Kogyo Kk Powder charging method for ring-shaped powder compact and press molding die therefor
JP2002141211A (en) * 2000-04-24 2002-05-17 Seiko Epson Corp Magnet powder, method of manufacturing bonded magnet, and bonded magnet
JP2003257767A (en) * 2001-12-26 2003-09-12 Sumitomo Special Metals Co Ltd Manufacturing method for permanent magnet, and pressing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103978208A (en) * 2014-06-04 2014-08-13 董中天 Magnetic powder feeding device of anisotropic bonded NdFeB magnetic ring one-shot forming technology
CN109923629A (en) * 2016-11-09 2019-06-21 Tdk株式会社 The manufacturing method of rare-earth magnet
WO2024058040A1 (en) * 2022-09-12 2024-03-21 ミネベアミツミ株式会社 Magnetic encoder

Also Published As

Publication number Publication date
JP4613658B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
JP4732459B2 (en) Rare earth alloy binderless magnet and manufacturing method thereof
US9672980B2 (en) R-T-B-M-C sintered magnet and production method and an apparatus for manufacturing the R-T-B-M-C sintered magnet
US6423264B1 (en) Process for forming rotating electromagnets having soft and hard magnetic components
WO2015198396A1 (en) Method for manufacturing molded rare earth magnet
TW200839810A (en) Process for producing oriented object, molded object, and sintered object and process for producing permanent magnet
JP2018041777A (en) Metal bond magnet and method for manufacturing the same
JP4613658B2 (en) Manufacturing method of resin bonded permanent magnet
CN1649046A (en) Forming method in magnetic field, and method for producing rare-earth sintered magnet
JP2007129106A (en) Rare-earth alloy system binderless magnet and its manufacturing method
JP2004250781A (en) Sintered type permanent magnet, and production method therefor
JP4282016B2 (en) Manufacturing method of rare earth sintered magnet
JP2006255753A (en) Method and apparatus for supplying material
JP6513623B2 (en) Method of manufacturing isotropic bulk magnet
JP2006265574A (en) Production method of rare earth sintered magnet, compacting apparatus in magnetic field, and metal die
CN1271650C (en) Manufacturing method for permanent magnet and pressing device
JP4556238B2 (en) Manufacturing method of resin bonded permanent magnet
JP3883138B2 (en) Manufacturing method of resin bonded magnet
JPH06188136A (en) Manufacture of permanent magnet
JP7259705B2 (en) Method for manufacturing rare earth magnet
JP4506976B2 (en) Magnetic field forming method and sintered body manufacturing method
JP2017064752A (en) Powder filling device and method of manufacturing rare earth sintered magnet
JPH09148165A (en) Manufacture of radially anisotropic bonded magnet and bonded magnet
JP2008305835A (en) Magnetic powder and method of manufacturing the same, and bond magnet using the magnetic powder
JP4282013B2 (en) Manufacturing method of rare earth sintered magnet
JP2000173810A (en) Magnetic anisotropic bond magnet and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101004

R150 Certificate of patent or registration of utility model

Ref document number: 4613658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees