JP2006269588A - Thick film resistor paste, thick film resistor, and manufacturing method thereof - Google Patents

Thick film resistor paste, thick film resistor, and manufacturing method thereof Download PDF

Info

Publication number
JP2006269588A
JP2006269588A JP2005083214A JP2005083214A JP2006269588A JP 2006269588 A JP2006269588 A JP 2006269588A JP 2005083214 A JP2005083214 A JP 2005083214A JP 2005083214 A JP2005083214 A JP 2005083214A JP 2006269588 A JP2006269588 A JP 2006269588A
Authority
JP
Japan
Prior art keywords
thick film
resistor
film resistor
electrodes
vgcf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005083214A
Other languages
Japanese (ja)
Inventor
Morinobu Endo
守信 遠藤
Toshiyuki Sakuma
敏幸 佐久間
Hisakazu Nagata
久和 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Shinshu University NUC
Original Assignee
Koa Corp
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp, Shinshu University NUC filed Critical Koa Corp
Priority to JP2005083214A priority Critical patent/JP2006269588A/en
Publication of JP2006269588A publication Critical patent/JP2006269588A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thick film resistor paste whose rating can be improved. <P>SOLUTION: The thick film resistor 10 is provided with a pair of electrodes 2 formed on the front side of a substrate and a resistor 1 formed between a pair of the electrodes 2. The resistor 1 is formed by baking a resistor material and thick resistor paste containing carbon nanofibers. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、厚膜抵抗体ペースト、厚膜抵抗器、より詳細にはチップ型厚膜抵抗器、特に銅を主成分とする低抵抗の抵抗体を有する厚膜抵抗器およびその製造方法に関する。 The present invention relates to a thick film resistor paste, a thick film resistor, and more particularly to a chip-type thick film resistor, and more particularly to a thick film resistor having a low resistance resistor mainly composed of copper and a method for manufacturing the same.

近年、電子部品の高密度実装の要求からチップ型厚膜抵抗器について、より小さな形状の抵抗器の開発が進められている。 高密度実装においては、小さな形状においても従来と同一以上の電力定格が求められる。このことは、抵抗体により大きな電力負荷がかけられることを意味する。
従来のチップ型厚膜抵抗器では、より高い定格に対応するため、抵抗体を構成する金属の組成を変えたり、電極構造を工夫することにより熱伝導を利用した熱の散逸を改善することにより対応しているのが現状である。
In recent years, a chip-shaped thick film resistor having a smaller shape has been developed for the demand for high-density mounting of electronic components. In high-density mounting, a power rating equal to or higher than the conventional one is required even in a small shape. This means that a large power load is applied to the resistor.
In conventional chip type thick film resistors, in order to cope with higher ratings, by changing the composition of the metal that constitutes the resistor, or by devising the electrode structure, by improving the heat dissipation using heat conduction The current situation is to support this.

従来のチップ型厚膜抵抗器においては高密度実装に対応するため、サイズの小型化と抵抗体の高定格化のため、金属抵抗材料の組成を変えさらに抵抗体パターンを最適化することが行われる。これには、経験則に基づいた多くの試作および評価が必要であり、多大の時間と労力が必要となるこという課題があった。
そこで本発明は、上記課題を解決すべくなされたものであり、その目的とするところは、定格を向上させることができる厚膜抵抗体ペースト、厚膜抵抗器およびその製造方法を提供するにある。
In order to support high-density mounting in conventional chip-type thick film resistors, the resistor pattern can be optimized by changing the composition of the metal resistance material in order to reduce the size and increase the rating of the resistor. Is called. This requires many trials and evaluations based on empirical rules, and has a problem of requiring a great deal of time and labor.
Accordingly, the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a thick film resistor paste, a thick film resistor, and a method for manufacturing the same that can improve the rating. .

本発明では、厚膜抵抗体ペーストにおいて、カーボンナノファイバーを含むことを特徴とする。
カーボンナノファイバーが、平均径が200nm以下で、長さが10〜20μmのものであることを特徴とする。
カーボンナノチューブの含有量が1wt%以下であると好適である。
また、抵抗体材料として、銅を主成分とする合金を含むことを特徴とする。
In the present invention, the thick film resistor paste includes carbon nanofibers.
The carbon nanofiber has an average diameter of 200 nm or less and a length of 10 to 20 μm.
The carbon nanotube content is preferably 1 wt% or less.
The resistor material includes an alloy mainly composed of copper.

また、本発明に係る厚膜抵抗器は、基板表面に形成した一対の電極と、該一対の電極間に形成された抵抗体とを具備する厚膜抵抗器において、前記抵抗体が、上記いずれか記載の厚膜抵抗体ペーストが焼成されることによって形成されていることを特徴とする。 The thick film resistor according to the present invention is a thick film resistor comprising a pair of electrodes formed on a substrate surface and a resistor formed between the pair of electrodes. These thick film resistor pastes are formed by firing.

また、本発明に係る厚膜抵抗器の製造方法は、基板表面に形成した一対の電極と、該一対の電極間に形成された抵抗体とを具備する厚膜抵抗器の製造方法において、前記一対の電極間に、上記いずれか記載の厚膜抵抗体ペーストを印刷し、該厚膜抵抗体ペーストを焼成することによって前記抵抗体に形成することを特徴とする。 Further, a method for manufacturing a thick film resistor according to the present invention includes a pair of electrodes formed on a substrate surface and a resistor formed between the pair of electrodes. The thick film resistor paste according to any of the above is printed between a pair of electrodes, and the thick film resistor paste is baked to form the resistor.

以上のように,この発明によれば、既存の厚膜ペーストにカーボンナノファイバーを添加することにより、厚膜印刷による厚膜抵抗体の熱伝導度を大きくし、これにより電極からの熱放散を大きくすることにより定格を向上させることができる効果がある。また、厚膜抵抗体の熱膨張係数を小さくすることにより抵抗の温度係数(TCR)を小さくすることができる。これにより、より小さなサイズで同等の定格の抵抗器が従来と同様の構造で実現できる効果がある。 As described above, according to the present invention, the carbon nanofibers are added to the existing thick film paste to increase the thermal conductivity of the thick film resistor by thick film printing, thereby reducing the heat dissipation from the electrodes. There is an effect that the rating can be improved by increasing the size. Also, the temperature coefficient of resistance (TCR) can be reduced by reducing the thermal expansion coefficient of the thick film resistor. Accordingly, there is an effect that a resistor having a smaller size and an equivalent rating can be realized with the same structure as the conventional one.

次に図面を参照して本発明による好適な実施例を説明する。
図1は、チップ型厚膜抵抗器10の説明断面図である。抵抗器10自体の構造は一般的なものであり、公知のものである。
すなわち、アルミナ基板、ガラスセラミックス基板、ガラスエポキシ基板、ポリイミド基板等の絶縁基板12の表面上に、例えば銀あるいは銀合金等により一対の表面電極2が形成され、この表面電極2間に抵抗体1が形成されている。
Next, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory sectional view of a chip-type thick film resistor 10. The structure of the resistor 10 itself is a general one and is known.
That is, a pair of surface electrodes 2 are formed of, for example, silver or a silver alloy on the surface of an insulating substrate 12 such as an alumina substrate, a glass ceramic substrate, a glass epoxy substrate, or a polyimide substrate. Is formed.

また、抵抗体1を覆って、ガラス絶縁膜等からなる第1の保護膜3が形成され、さらにこの第1の保護膜3を覆って樹脂絶縁膜等からなる第2の保護膜4が形成されている。
絶縁基板12の裏面側には裏面電極9が形成され、また、絶縁基板12の端面には、表面電極2および裏面電極9を電気的に接続するNiめっき等のめっき皮膜6が形成され、されにこのめっき皮膜6を覆ってSn等の外装めっき皮膜7が形成されて、抵抗器10に形成されている。
なお、抵抗器10の構造は上記に限定されるものではない。
Further, a first protective film 3 made of a glass insulating film or the like is formed so as to cover the resistor 1, and further, a second protective film 4 made of a resin insulating film or the like is formed so as to cover the first protective film 3. Has been.
A back electrode 9 is formed on the back side of the insulating substrate 12, and a plating film 6 such as Ni plating for electrically connecting the front electrode 2 and the back electrode 9 is formed on the end surface of the insulating substrate 12, An outer plating film 7 such as Sn is formed so as to cover the plating film 6 and formed on the resistor 10.
The structure of the resistor 10 is not limited to the above.

抵抗体1を形成するための厚膜抵抗体ペーストは、例えば次のようにして調整される。
すなわち、先ず、テキサノール等の有機溶媒中へ、エチルセルロース等の直鎖型高分子(ビヒクル)を7wt%程度溶解して高分子溶液を調整する。その後、この高分子溶液中に、カーボンナノファイバー(昭和電工製のVGCF;以下ではVGCFと略記する)を添加して超音波を印加しVGCFを分散させる。VGCFは、平均径0.2μm(200nm)以下で長さが10〜20μmのものが好適である。
The thick film resistor paste for forming the resistor 1 is adjusted as follows, for example.
That is, first, a polymer solution is prepared by dissolving about 7 wt% of a linear polymer (vehicle) such as ethyl cellulose in an organic solvent such as texanol. Thereafter, carbon nanofibers (VGCF manufactured by Showa Denko; hereinafter abbreviated as VGCF) are added to this polymer solution, and ultrasonic waves are applied to disperse the VGCF. VGCF having an average diameter of 0.2 μm (200 nm) or less and a length of 10 to 20 μm is suitable.

このように高分子溶液を調整して、この高分子溶液にVGCFを分散させる方法は、有機溶剤中にVGCFを直接添加し超音波印加による分散を行うよりもVGCFのダマ状の絡まりが少なくなり、分散の長期安定性に優れている。
テキサノールにエチルセルロースを溶解した高分子溶液にVGCFを分散させたものに、銅:57wt%、ニッケル:43wt%からなる金属(合金)粉末を入れ、混練することで厚膜印刷用ペーストを作製した。
The method of preparing a polymer solution and dispersing VGCF in this polymer solution in this way results in less tangled VGCF entanglement than when VGCF is added directly to an organic solvent and dispersed by application of ultrasonic waves. Excellent long-term stability of dispersion.
A metal film (alloy) powder composed of copper: 57 wt% and nickel: 43 wt% was placed in a polymer solution in which ethyl cellulose was dissolved in texanol, and kneaded and kneaded to prepare a thick film printing paste.

このペーストを使用して公知の厚膜印刷技術によりあらかじめ表面電極2が形成されたアルミナ基板8上に抵抗体パターンを形成した。抵抗体パターンを印刷後には、窒素中で熱処理(焼成処理)を行った。
さらに裏面電極9を厚膜印刷により形成し、必要に応じて抵抗体は公知のレーザトリミングにより抵抗値を調整したのち第1の保護膜3および第2の保護層4を形成する。
端面電極5をスパッタ法により形成した後、ニッケルおよびスズめっき層6、7を形成した構造のチップ型厚膜抵抗器10(図1)を作製した。
Using this paste, a resistor pattern was formed on the alumina substrate 8 on which the surface electrode 2 was previously formed by a known thick film printing technique. After printing the resistor pattern, heat treatment (baking treatment) was performed in nitrogen.
Further, the back electrode 9 is formed by thick film printing, and if necessary, the resistor adjusts the resistance value by known laser trimming, and then the first protective film 3 and the second protective layer 4 are formed.
After the end face electrode 5 was formed by sputtering, a chip type thick film resistor 10 (FIG. 1) having a structure in which nickel and tin plating layers 6 and 7 were formed was produced.

なお、上記において、テキサノールにエチルセルロースを溶解した高分子溶液中にVGCFを分散させたものに銅を80wt%以上とマンガンおよびFeが20wt%以下からなる金属粉末を入れ混練することで作製した厚膜印刷用ペーストを印刷しても以下で述べる特性向上は同様であった。 In the above, a thick film prepared by mixing and kneading a metal powder composed of 80 wt% or more of copper and 20 wt% or less of manganese and Fe in a polymer solution in which ethyl cellulose is dissolved in texanol and in which VGCF is dispersed. Even when the printing paste was printed, the characteristic improvement described below was the same.

図2は、抵抗体ペーストへのVGCFの添加量(0wt%、0.7 wt%、1.75 wt%)と抵抗温度係数(TCR)および線膨張係数を示す。図2から明らかなように、VGCFの添加量に対してTCRが減少していくことがわかる。また、図3は、VGCFの添加量と抵抗体の表面温度および熱伝導率の測定結果を示す。VGCFが1wt%程度までは熱伝導率が向上していることを示している。しかし、1wt%程度以上では逆に熱伝導率は減少してしまう。これは、VGCFと銅を主成分とする抵抗ペーストの濡れが悪く厚膜印刷後の熱処理時にVGCFが不均一に分布するためである。 FIG. 2 shows the amount of VGCF added to the resistor paste (0 wt%, 0.7 wt%, 1.75 wt%), the resistance temperature coefficient (TCR), and the linear expansion coefficient. As apparent from FIG. 2, it can be seen that the TCR decreases with respect to the amount of VGCF added. FIG. 3 shows the results of measurement of the amount of VGCF added, the surface temperature of the resistor, and the thermal conductivity. It shows that the thermal conductivity is improved up to about 1 wt% of VGCF. However, if it is about 1 wt% or more, the thermal conductivity decreases conversely. This is because the resistance paste containing VGCF and copper as main components is poorly wet and VGCF is unevenly distributed during the heat treatment after thick film printing.

したがって、抵抗体の定格向上のための熱伝導率向上のためにはVGCFの添加量は1wt%以下が望ましい。一方、抵抗体の表面温度はVGCFの添加量が増すにしたがって減少しており、熱の輻射放熱および熱伝導による放熱が向上していることがわかる。また、同様のことが平均径についても生じる。すなわち、平均径が0.2μmより大きくなると熱処理後にVGCFが不均一に析出しやすくなり異物として作用するため平均径については0.2μm以下が望ましい。 Therefore, the amount of VGCF added is preferably 1 wt% or less in order to improve the thermal conductivity for improving the rating of the resistor. On the other hand, the surface temperature of the resistor decreases as the amount of VGCF added increases, indicating that heat radiation and heat dissipation due to heat conduction are improved. The same thing occurs for the average diameter. That is, if the average diameter is larger than 0.2 μm, VGCF tends to precipitate non-uniformly after the heat treatment and acts as a foreign substance, so that the average diameter is preferably 0.2 μm or less.

本発明の第2の実施例としては、テキサノールにエチルセルロースを溶解した有機溶媒にVGCFを分散させる際、シェーカーによる分散を行った。これによりVGCFの添加量に対する抵抗体のTCR、熱膨張係数、表面温度、熱伝導率の関係は同等なものが得られた。ただし、シェーカーによる分散では銅を主成分とする金属粉末を加えて作製した厚膜印刷用ペーストでの印刷後熱処理でVGCFが不均一に析出しやすい傾向があり、VGCFの添加量の最大値は1重量%より小さい量が望ましい。 As a second example of the present invention, when VGCF was dispersed in an organic solvent in which ethyl cellulose was dissolved in texanol, dispersion by a shaker was performed. As a result, the same relationship was obtained between the TCR of the resistor, the thermal expansion coefficient, the surface temperature, and the thermal conductivity with respect to the added amount of VGCF. However, in the dispersion by the shaker, VGCF tends to deposit non-uniformly by post-printing heat treatment with a thick film printing paste prepared by adding metal powder mainly composed of copper, and the maximum value of VGCF added is An amount less than 1% by weight is desirable.

なお、上記では、低抵抗の抵抗体として銅を主成分とする抵抗体を例として説明したが、抵抗体はこれに限定されるものではない。抵抗体は、例えば、RuO2、SnO、ZnO、Cu2O、CuO、NiOなどの金属酸化物やTaOなどであってもよい。 In the above description, a resistor having copper as a main component is described as an example of a low-resistance resistor. However, the resistor is not limited to this. The resistor may be, for example, a metal oxide such as RuO 2 , SnO, ZnO, Cu 2 O, CuO, NiO, TaO, or the like.

角形チップ抵抗器の断面構造を示す断面図である。It is sectional drawing which shows the cross-section of a square chip resistor. VGCFの添加量(wt%)とTCRおよび線熱膨張係数の関係を示すグラフである。It is a graph which shows the relationship between the addition amount (wt%) of VGCF, TCR, and a linear thermal expansion coefficient. VGCFの添加量(wt%)と抵抗体の表面温度および熱伝導率の関係を示すグラフである。It is a graph which shows the relationship between the addition amount (wt%) of VGCF, the surface temperature of a resistor, and thermal conductivity.

符号の説明Explanation of symbols

1 抵抗体
2 表面電極
3 第1保護膜
4 第2保護膜
5 端面電極
6 ニッケルめっき層
7 スズめっき層
8 アルミナ基板
9 裏面電極
10 抵抗器

DESCRIPTION OF SYMBOLS 1 Resistor 2 Surface electrode 3 1st protective film 4 2nd protective film 5 End surface electrode 6 Nickel plating layer 7 Tin plating layer 8 Alumina substrate 9 Back surface electrode 10 Resistor

Claims (6)

厚膜抵抗体ペーストにおいて、カーボンナノファイバーを含むことを特徴とする厚膜抵抗体ペースト。   A thick film resistor paste comprising carbon nanofibers in a thick film resistor paste. カーボンナノファイバーが、平均径が200nm以下で、長さが10〜20μmのものであることを特徴とする請求項1記載の厚膜抵抗体ペースト。   The thick film resistor paste according to claim 1, wherein the carbon nanofiber has an average diameter of 200 nm or less and a length of 10 to 20 µm. カーボンナノチューブの含有量が1wt%以下であることを特徴とする請求項1または2記載の厚膜抵抗体ペースト。   The thick film resistor paste according to claim 1 or 2, wherein the carbon nanotube content is 1 wt% or less. 抵抗体材料として、銅を主成分とする合金を含むことを特徴とする請求項1〜3いずれか1項記載の厚膜抵抗体ペースト。   The thick film resistor paste according to any one of claims 1 to 3, wherein the resistor material includes an alloy mainly composed of copper. 基板表面に形成した一対の電極と、該一対の電極間に形成された抵抗体とを具備する厚膜抵抗器において、
前記抵抗体が、請求項1〜4いずれか1項記載の厚膜抵抗体ペーストが焼成されることによって形成されていることを特徴とする厚膜抵抗器。
In a thick film resistor comprising a pair of electrodes formed on a substrate surface and a resistor formed between the pair of electrodes,
A thick film resistor, wherein the resistor is formed by firing the thick film resistor paste according to any one of claims 1 to 4.
基板表面に形成した一対の電極と、該一対の電極間に形成された抵抗体とを具備する厚膜抵抗器の製造方法において、
前記一対の電極間に、請求項1〜4いずれか1項記載の厚膜抵抗体ペーストを印刷し、該厚膜抵抗体ペーストを焼成することによって前記抵抗体に形成することを特徴とする厚膜抵抗器の製造方法。
In a method of manufacturing a thick film resistor comprising a pair of electrodes formed on a substrate surface and a resistor formed between the pair of electrodes,
The thick film resistor paste according to any one of claims 1 to 4 is printed between the pair of electrodes, and the thick film resistor paste is baked to form the resistor. Method for manufacturing a membrane resistor.
JP2005083214A 2005-03-23 2005-03-23 Thick film resistor paste, thick film resistor, and manufacturing method thereof Pending JP2006269588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005083214A JP2006269588A (en) 2005-03-23 2005-03-23 Thick film resistor paste, thick film resistor, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005083214A JP2006269588A (en) 2005-03-23 2005-03-23 Thick film resistor paste, thick film resistor, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2006269588A true JP2006269588A (en) 2006-10-05

Family

ID=37205257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005083214A Pending JP2006269588A (en) 2005-03-23 2005-03-23 Thick film resistor paste, thick film resistor, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2006269588A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099638A1 (en) * 2007-02-15 2008-08-21 Nec Corporation Carbon nanotube resistor, semiconductor device, and process for producing them
KR100908609B1 (en) * 2007-07-16 2009-07-21 전자부품연구원 Thermosetting thick film resistor paste, manufacturing method thereof and thick film resistor
US20100051323A1 (en) * 2008-08-29 2010-03-04 Fujitsu Limited Printed wiring board and conductive wiring layer
JP2010108696A (en) * 2008-10-29 2010-05-13 Mitsuboshi Belting Ltd Resistive paste, and resistor
WO2012018091A1 (en) * 2010-08-06 2012-02-09 日立化成工業株式会社 Liquid composition, and resistor film, resistor element and circuit board using same
JP2016162959A (en) * 2015-03-04 2016-09-05 アルプス電気株式会社 Resistive element and variable resistor employing the resistive element
JP2021118290A (en) * 2020-01-28 2021-08-10 ジカンテクノ株式会社 Conductive electronic component using carbon material, and manufacturing method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013168655A (en) * 2007-02-15 2013-08-29 Nec Corp Carbon nano-tube resistor, semiconductor device, and method of manufacturing carbon nano-tube resistor and semiconductor device
US8101529B2 (en) 2007-02-15 2012-01-24 Nec Corporation Carbon nanotube resistor, semiconductor device, and manufacturing method thereof
WO2008099638A1 (en) * 2007-02-15 2008-08-21 Nec Corporation Carbon nanotube resistor, semiconductor device, and process for producing them
KR100908609B1 (en) * 2007-07-16 2009-07-21 전자부품연구원 Thermosetting thick film resistor paste, manufacturing method thereof and thick film resistor
US20100051323A1 (en) * 2008-08-29 2010-03-04 Fujitsu Limited Printed wiring board and conductive wiring layer
JP2010056482A (en) * 2008-08-29 2010-03-11 Fujitsu Ltd Printed wiring board and conductive material
JP2010108696A (en) * 2008-10-29 2010-05-13 Mitsuboshi Belting Ltd Resistive paste, and resistor
WO2012018091A1 (en) * 2010-08-06 2012-02-09 日立化成工業株式会社 Liquid composition, and resistor film, resistor element and circuit board using same
US9228100B2 (en) 2010-08-06 2016-01-05 Hitachi Chemical Company, Ltd. Liquid composition, and resistor film, resistor element and circuit board using same
JP6015445B2 (en) * 2010-08-06 2016-10-26 日立化成株式会社 Liquid composition, resistor film using the same, resistor film manufacturing method, resistor element, and wiring board
US9650528B2 (en) 2010-08-06 2017-05-16 Hitachi Chemical Company, Ltd. Liquid composition, and resistor film, resistor element and circuit board
JP2016162959A (en) * 2015-03-04 2016-09-05 アルプス電気株式会社 Resistive element and variable resistor employing the resistive element
JP2021118290A (en) * 2020-01-28 2021-08-10 ジカンテクノ株式会社 Conductive electronic component using carbon material, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR101883040B1 (en) Chip resistor
JP5375963B2 (en) Thermistor and manufacturing method thereof
TWI449059B (en) Metal plate resistor for current detection and manufacturing method thereof
JP2006269588A (en) Thick film resistor paste, thick film resistor, and manufacturing method thereof
JP5668837B2 (en) Electronic component mounting structure
WO2012114673A1 (en) Chip resistor and method of producing same
JP4431052B2 (en) Resistor manufacturing method
JP6391026B2 (en) Chip resistance element
JP5664760B2 (en) Electronic component mounting structure
JP2000277306A (en) Laminated chip varistor
JP3924563B2 (en) Multilayer chip varistor
US11136257B2 (en) Thick-film resistive element paste and use of thick-film resistive element paste in resistor
JP4397279B2 (en) Resistive composition and resistor using the same
JP4373968B2 (en) CERAMIC GREEN SHEET COATING AND ITS MANUFACTURING METHOD, CERAMIC GREEN SHEET, AND ELECTRONIC COMPONENT EQUIPPED WITH THE SAME
JP2006019323A (en) Resistance composition, chip resistor and their manufacturing method
TWM562484U (en) Resistance material and resistor
TWM562485U (en) Resistance material, conductive terminal material and resistor
KR101148259B1 (en) Chip resistor device and preparing method of the same
JP2004119561A (en) Resistive paste and resistor
TWI342569B (en) Esd protective materials and method for making the same
JP4257134B2 (en) Resistor composition and resistor using the same
JP2000100601A (en) Chip resistor
KR20120055254A (en) A electrode paste for chip resister and fabricating method for chip resister using thereof
JP6149649B2 (en) Ceramic electronic components
JP2006269985A (en) Multilayer chip varistor