JP2000100601A - Chip resistor - Google Patents

Chip resistor

Info

Publication number
JP2000100601A
JP2000100601A JP10267892A JP26789298A JP2000100601A JP 2000100601 A JP2000100601 A JP 2000100601A JP 10267892 A JP10267892 A JP 10267892A JP 26789298 A JP26789298 A JP 26789298A JP 2000100601 A JP2000100601 A JP 2000100601A
Authority
JP
Japan
Prior art keywords
resistor
paste
copper
metal
printed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10267892A
Other languages
Japanese (ja)
Inventor
Koji Shimoyama
浩司 下山
Ryo Kimura
涼 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10267892A priority Critical patent/JP2000100601A/en
Publication of JP2000100601A publication Critical patent/JP2000100601A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a low TCR and low resistance value by paste-printing a resistance paste contg. a Cu-Ni alloy powder on a recess formed into a ceramic base and baking it in a neutral atmosphere. SOLUTION: Resistance layers 3 are printed on both sides of a square substrate 1 by a thick film forming method such as screen printing, etc., using a resistance paste. Top face electrode layers 2 are printed on a pair of opposed end faces of the substrate 1 so as to contact the resistance layers 3 plane to plane by the same material as the resistance layers 3, the resistance layers 3 and top face electrode layers 2 are baked at once in a neutral or reductive atmosphere. U-shaped end face electrode layers 4 are formed on both ends of the substrate 1. The resistance paste uses a mixture of a Cu-Ni alloy powder with a glass powder and a vehicle in which the mixture is dispersed. A terminal electrode paste uses a high-conductivity material such as commercially available metal Cu or metal Ni, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は抵抗体ペーストを用
いたチップ抵抗器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chip resistor using a resistor paste.

【0002】[0002]

【従来の技術】従来、銅−ニッケル材を用いた抵抗器
は、銅−ニッケル合金箔をアルミナなどの基材の上に張
り付けて形成する方法で実現されている。しかしながら
この方法で造られる抵抗器は合金箔作製、形状加工、組
立と材料−工程コストがかかり、また、抵抗体のパター
ン変更をするのに非常に手間がかかるものであった。さ
らに、レーザーを用いたトリミングができないため、従
来から確立されているトリミングラインを活用すること
ができないものであった。
2. Description of the Related Art Conventionally, a resistor using a copper-nickel material has been realized by a method in which a copper-nickel alloy foil is attached to a substrate such as alumina. However, the resistors manufactured by this method require the cost of alloy foil production, shape processing, assembly, material and process steps, and it takes much time and effort to change the pattern of the resistor. Furthermore, since trimming using a laser cannot be performed, a conventionally established trimming line cannot be used.

【0003】[0003]

【発明が解決しようとする課題】一方、抵抗体ペースト
を基材上に印刷、焼成して抵抗器をつくる技術として
は、特開平2−308501号公報に開示されている
が、しかしながら抵抗体膜とセラミック基材の接着や抵
抗値の調整にガラスを用いるものであり、銅、ニッケル
以外の成分の材料を多量に含むため、温度係数が銅−ニ
ッケル合金の物性値と異なってくるとともに、ガラス成
分は焼成条件によって金属成分中や焼結粒子界面への拡
散挙動が異なるため、安定した抵抗値特性が得られにく
いものであった。
On the other hand, a technique for producing a resistor by printing and baking a resistor paste on a substrate is disclosed in Japanese Patent Application Laid-Open No. 2-308501. Glass is used for adhesion and resistance adjustment of the ceramic base material and contains a large amount of components other than copper and nickel, so that the temperature coefficient differs from the physical properties of the copper-nickel alloy, Since the diffusion behavior of the components in the metal components and the interface of the sintered particles differs depending on the firing conditions, stable resistance value characteristics were hardly obtained.

【0004】また、銅−ニッケル材を用いた抵抗器は1
00mΩ以下の抵抗値レンジを扱うため、給電部の端子
電極の特性や抵抗体/電極界面の構造が抵抗器としての
特性を大きく左右し、また、10mΩ以下の超低抵抗値
レンジでは抵抗体膜厚を数十〜数百μmオーダーで形成
しなければならないという課題があった。
A resistor using a copper-nickel material is one of the following.
Since the resistance value range of 00 mΩ or less is handled, the characteristics of the terminal electrode of the power supply unit and the structure of the resistor / electrode interface greatly affect the characteristics of the resistor. In the ultra-low resistance value range of 10 mΩ or less, the resistance film is used. There was a problem that the thickness had to be formed on the order of tens to hundreds of μm.

【0005】本発明の主たる目的は、低TCR、低抵抗
値を有するチップ抵抗器を安定して製造することにあ
る。
A main object of the present invention is to stably manufacture a chip resistor having a low TCR and a low resistance value.

【0006】[0006]

【課題を解決するための手段】本発明は銅−ニッケル合
金粉末単体あるいは銅−ニッケル合金粉末とガラス粉末
を含有する混合粉体をビヒクルに分散させたものを抵抗
体ペーストとして用い、そのペーストを凹部を設けたセ
ラミック基体上の凹部に刷りきり印刷した後、中性雰囲
気中で焼成するチップ抵抗器の製造方法をとり金属成分
中へのガラス成分の拡散を最小限に抑制し、低TCR、
低抵抗値を有するチップ抵抗器を実現するものである。
According to the present invention, a copper-nickel alloy powder alone or a mixed powder containing a copper-nickel alloy powder and a glass powder dispersed in a vehicle is used as a resistor paste. After printing in the recesses on the ceramic substrate provided with the recesses, the chip resistor is manufactured by firing in a neutral atmosphere to minimize the diffusion of the glass component into the metal component, thereby achieving a low TCR,
It is intended to realize a chip resistor having a low resistance value.

【0007】[0007]

【発明の実施の形態】本発明の請求項1に記載の発明
は、片面に凹部を有するセラミック基体の凹部に銅−ニ
ッケル合金粉末含有量が97重量%より多く、550℃
未満の軟化点を有するガラス粉末を0〜3重量%未満含
有する混合粉体をビヒクルに分散させた抵抗体ペースト
を刷りきり印刷しその両端部に市販の金属銅や金属ニッ
ケルなどの高導電率を有する金属ペーストで接続して中
性雰囲気中で焼成して得られるチップ抵抗器で凹部に印
刷することによりガラス含有量が少なくても抵抗体がセ
ラミック基体から剥離することがない。またガラス成分
の金属成分中や焼結粒子界面への拡散を最小限に抑制出
来るため得られる抵抗器の、低TCR化が出来、さらに
凹部の深さを大きくすることにより厚い抵抗体膜にする
ことで低抵抗値化が出来ると共にレーザートリミング可
能な作用を有する。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention is characterized in that the content of copper-nickel alloy powder is more than 97% by weight in a concave portion of a ceramic substrate having a concave portion on one side and is 550 ° C.
A resistor paste in which a mixed powder containing a glass powder having a softening point of less than 0 to less than 3% by weight is dispersed in a vehicle is completely printed, and high-conductivity such as commercially available metallic copper or metallic nickel is applied to both ends thereof. By printing on the concave portion with a chip resistor obtained by connecting with a metal paste having the following and firing in a neutral atmosphere, the resistor does not peel off from the ceramic base even if the glass content is small. In addition, since the diffusion of the glass component into the metal component and the interface with the sintered particles can be suppressed to a minimum, the obtained resistor can have a low TCR, and the thicker resistor film can be obtained by increasing the depth of the concave portion. This has the effect of lowering the resistance value and enabling laser trimming.

【0008】請求項2に記載の発明は、両面に凹部を有
するセラミック基体の凹部に銅−ニッケル合金粉末含有
量が97重量%より多く、550℃未満の軟化点を有す
るガラス粉末を0〜3重量%未満含有する混合粉体をビ
ヒクルに分散させた抵抗体ペーストを刷りきり印刷しそ
の両端部に市販の金属銅や金属ニッケルなどの高導電率
を有する金属ペーストで接続して両面の電極を同じペー
ストで接続し中性雰囲気中で焼成して得られるチップ抵
抗器で凹部に印刷することによりガラス含有量が少なく
ても抵抗体がセラミック基体から剥離することがない。
またガラス成分の金属成分中や焼結粒子界面への拡散を
最小限に抑制出来るため得られる抵抗器の、低TCR化
が出来、さらに凹部の深さを大きくすることにより厚い
抵抗体膜にすることで低抵抗値化が出来ると共にレーザ
ートリミング可能な作用を有し、給電部を両面にするこ
とにより耐熱信頼性が高まる。
According to a second aspect of the present invention, a glass powder having a softening point of more than 97% by weight of copper-nickel alloy powder and less than 550 ° C. in a concave portion of a ceramic substrate having concave portions on both surfaces is reduced to 0 to 3%. A resistor paste in which a mixed powder containing less than 5% by weight is dispersed in a vehicle is completely printed and connected to both ends with a metal paste having a high conductivity such as commercially available metallic copper or metallic nickel to form electrodes on both sides. By printing in the recesses with a chip resistor obtained by connecting with the same paste and firing in a neutral atmosphere, the resistor does not peel off from the ceramic base even if the glass content is small.
In addition, since the diffusion of the glass component into the metal component and the interface to the sintered particle interface can be suppressed to a minimum, the resistor obtained can have a low TCR, and a thicker resistor film can be obtained by increasing the depth of the concave portion. Accordingly, the resistance value can be reduced and the laser can be trimmed. By providing the power supply portion on both sides, the heat resistance is improved.

【0009】請求項3に記載の発明は、片面に段差を有
した凹部を有するセラミック基体の凹部に銅−ニッケル
合金粉末含有量が97重量%より多く、550℃未満の
軟化点を有するガラス粉末を0〜3重量%未満含有する
混合粉体をビヒクルに分散させた抵抗体ペーストを刷り
きり印刷しその両端部に市販の金属銅や金属ニッケルな
どの高導電率を有する金属ペーストで接続して中性雰囲
気中で焼成して得られるチップ抵抗器で段差を有した凹
部に印刷することによりガラス含有量が少なくても抵抗
体がセラミック基体から剥離することがない。またガラ
ス成分の金属成分中や焼結粒子界面への拡散を最小限に
抑制出来るため得られる抵抗器の、低TCR化が出来、
さらに凹部の深さを大きくすることにより厚い抵抗体膜
にすることで低抵抗値化が出来ると共にレーザートリミ
ング可能な作用を有する。そして凹部に段差を設けるこ
とにより抵抗体の焼結による電極接合部との段差が緩和
され電極切れが起こりにくい。
A third aspect of the present invention is a glass powder having a copper-nickel alloy powder content of more than 97% by weight and a softening point of less than 550 ° C. in a concave portion of a ceramic substrate having a concave portion having a step on one surface. Of a mixed powder containing 0 to less than 3% by weight is dispersed in a vehicle and printed with a resistor paste, and connected to both ends with a commercially available metal paste having a high conductivity such as copper or nickel. By printing in a recess having a step with a chip resistor obtained by firing in a neutral atmosphere, the resistor does not peel off from the ceramic base even if the glass content is small. In addition, since the diffusion of the glass component into the metal component and the interface to the sintered particle interface can be suppressed to a minimum, the TCR of the obtained resistor can be reduced,
Further, by increasing the depth of the concave portion to form a thick resistor film, the resistance value can be reduced and laser trimming can be performed. By providing a step in the concave portion, the step with the electrode joint due to sintering of the resistor is reduced, and the electrode is less likely to break.

【0010】請求項4に記載の発明は、両面に段差を有
した凹部を有するセラミック基体の凹部に銅−ニッケル
合金粉末含有量が97重量%より多く、550℃未満の
軟化点を有するガラス粉末を0〜3重量%未満含有する
混合粉体をビヒクルに分散させた抵抗体ペーストを刷り
きり印刷しその両端部に市販の金属銅や金属ニッケルな
どの高導電率を有する金属ペーストで接続して両面の電
極を同じペーストで接続し中性雰囲気中で焼成して得ら
れるチップ抵抗器で段差を有した凹部に印刷することに
よりガラス含有量が少なくても抵抗体がセラミック基体
から剥離することがない。またガラス成分の金属成分中
や焼結粒子界面への拡散を最小限に抑制出来るため得ら
れる抵抗器の、低TCR化が出来、さらに凹部の深さを
大きくすることにより厚い抵抗体膜にすることで低抵抗
値化が出来ると共にレーザートリミング可能な作用を有
し、給電部を両面にすることにより耐熱信頼性が高ま
る。そして凹部に段差を設けることにより抵抗体の焼結
による電極接合部との段差が緩和され電極切れが起こり
にくい。
According to a fourth aspect of the present invention, there is provided a glass powder having a copper-nickel alloy powder content of more than 97% by weight and a softening point of less than 550 ° C. in a concave portion of a ceramic substrate having a concave portion having a step on both surfaces. Is printed on a resistor paste obtained by dispersing a mixed powder containing less than 0 to 3% by weight in a vehicle, and connected to both ends with a commercially available metal paste having high conductivity such as copper metal or nickel metal. By connecting the electrodes on both sides with the same paste and printing in a recess with a step with a chip resistor obtained by firing in a neutral atmosphere, the resistor can be peeled from the ceramic base even if the glass content is small. Absent. In addition, since the diffusion of the glass component into the metal component and the interface with the sintered particles can be suppressed to a minimum, the obtained resistor can have a low TCR, and the thicker resistor film can be obtained by increasing the depth of the concave portion. Accordingly, the resistance value can be reduced and the laser can be trimmed. By providing the power supply portion on both sides, the heat resistance is improved. By providing a step in the concave portion, the step with the electrode joint due to sintering of the resistor is reduced, and the electrode is less likely to break.

【0011】請求項5に記載の発明は、片面に少なくと
も電極/抵抗体接続辺が段差を有しない凹部を有するセ
ラミック基体の凹部に銅−ニッケル合金粉末含有量が9
7重量%より多く、550℃未満の軟化点を有するガラ
ス粉末を0〜3重量%未満含有する混合粉体をビヒクル
に分散させた抵抗体ペーストを刷りきり印刷しその両端
部に市販の金属銅や金属ニッケルなどの高導電率を有す
る金属ペーストで接続して中性雰囲気中で焼成して得ら
れるチップ抵抗器で段差を有しない凹部に印刷すること
によりガラス含有量が少なくても抵抗体がセラミック基
体から剥離することがない。またガラス成分の金属成分
中や焼結粒子界面への拡散を最小限に抑制出来るため得
られる抵抗器の、低TCR化が出来、さらに凹部の深さ
を大きくすることにより厚い抵抗体膜にすることで低抵
抗値化が出来ると共にレーザートリミング可能な作用を
有する。そして、凹部に段差を設けないことにより抵抗
体の焼結による電極接合部との段差が無くなり電極切れ
が起こらない。
According to a fifth aspect of the present invention, the content of the copper-nickel alloy powder is 9% in the concave portion of the ceramic substrate having the concave portion in which at least the electrode / resistor connection side has no step on one side.
A resistor paste in which a mixed powder containing a glass powder having a softening point of more than 7% by weight and less than 550 ° C and less than 0 to 3% by weight is dispersed and printed in a vehicle, and commercially available metallic copper is coated on both ends thereof A chip resistor obtained by connecting with a metal paste having a high conductivity such as nickel or metal nickel and firing in a neutral atmosphere is printed in a recess with no step, so that even if the glass content is small, the resistor can be Does not peel off from the ceramic substrate. In addition, since the diffusion of the glass component into the metal component and the interface with the sintered particles can be suppressed to a minimum, the obtained resistor can have a low TCR, and the thicker resistor film can be obtained by increasing the depth of the concave portion. This has the effect of lowering the resistance value and enabling laser trimming. Since no step is provided in the concave portion, the step with the electrode joining portion due to sintering of the resistor is eliminated, and the electrode is not cut.

【0012】請求項6に記載の発明は、両面に少なくと
も電極/抵抗体接続辺が段差を有しない段差を有しない
凹部を有するセラミック基体の凹部に銅−ニッケル合金
粉末含有量が97重量%より多く、550℃未満の軟化
点を有するガラス粉末を0〜3重量%未満含有する混合
粉体をビヒクルに分散させた抵抗体ペーストを刷りきり
印刷しその両端部に市販の金属銅や金属ニッケルなどの
高導電率を有する金属ペーストで接続して両面の電極を
同じペーストで接続し中性雰囲気中で焼成して得られる
チップ抵抗器で段差を有しない凹部に印刷することによ
りガラス含有量が少なくても抵抗体がセラミック基体か
ら剥離することがない。またガラス成分の金属成分中や
焼結粒子界面への拡散を最小限に抑制出来るため得られ
る抵抗器の、低TCR化が出来、さらに凹部の深さを大
きくすることにより厚い抵抗体膜にすることで低抵抗値
化が出来ると共にレーザートリミング可能な作用を有
し、給電部を両面にすることにより耐熱信頼性が高ま
る。そして凹部に段差を設けないことにより抵抗体の焼
結による電極接合部との段差が無くなり電極切れが起こ
らない。
According to a sixth aspect of the present invention, the content of the copper-nickel alloy powder is more than 97% by weight in the concave portion of the ceramic substrate having the concave portion without the step at least the electrode / resistor connection side on both surfaces. In many cases, a resistor paste in which a mixed powder containing a glass powder having a softening point of less than 550 ° C. less than 0 to 3% by weight is dispersed in a vehicle is printed and printed, and commercially available metal copper, metal nickel, etc. The glass content is low by connecting the electrodes on both sides with the same paste, connecting the electrodes on both sides with the same paste, and firing in a neutral atmosphere and printing in a recess without steps with a chip resistor. However, the resistor does not peel off from the ceramic substrate. In addition, since the diffusion of the glass component into the metal component and the interface with the sintered particles can be suppressed to a minimum, the obtained resistor can have a low TCR, and the thicker resistor film can be obtained by increasing the depth of the concave portion. Accordingly, the resistance value can be reduced and the laser can be trimmed. By providing the power supply portion on both sides, the heat resistance is improved. Since no step is provided in the concave portion, the step with the electrode joining portion due to the sintering of the resistor is eliminated, and the electrode is not cut off.

【0013】請求項7に記載の発明は、片面に底面が凸
凹になった凹部を有するセラミック基体の凹部に銅−ニ
ッケル合金粉末含有量が97重量%より多く、550℃
未満の軟化点を有するガラス粉末を0〜3重量%未満含
有する混合粉体をビヒクルに分散させた抵抗体ペースト
を刷りきり印刷しその両端部に市販の金属銅や金属ニッ
ケルなどの高導電率を有する金属ペーストで接続して中
性雰囲気中で焼成して得られるチップ抵抗器で底面が凸
凹になった凹部に印刷することによりガラス含有量が少
なくても抵抗体がセラミック基体から剥離することがな
く強固に接着する。またガラス成分の金属成分中や焼結
粒子界面への拡散を最小限に抑制出来るため得られる抵
抗器の、低TCR化が出来、さらに凹部の深さを大きく
することにより厚い抵抗体膜にすることで低抵抗値化が
出来ると共にレーザートリミング可能な作用を有する。
According to a seventh aspect of the present invention, the content of the copper-nickel alloy powder is more than 97% by weight and 550 ° C. in the concave portion of the ceramic base having the concave portion having the concave and convex bottom surface on one side.
A resistor paste in which a mixed powder containing a glass powder having a softening point of less than 0 to less than 3% by weight is dispersed in a vehicle is completely printed, and high-conductivity such as commercially available metallic copper or metallic nickel is applied to both ends thereof. The resistor is peeled from the ceramic base even if the glass content is small by printing on the concave part with the bottom surface uneven by a chip resistor obtained by connecting with a metal paste having It adheres firmly without any. In addition, since the diffusion of the glass component into the metal component and the interface with the sintered particles can be suppressed to a minimum, the obtained resistor can have a low TCR, and the thicker resistor film can be obtained by increasing the depth of the concave portion. This has the effect of lowering the resistance value and enabling laser trimming.

【0014】請求項8に記載の発明は、両面に底面が凸
凹になった凹部を有するセラミック基体の凹部に銅−ニ
ッケル合金粉末含有量が97重量%より多く、550℃
未満の軟化点を有するガラス粉末を0〜3重量%未満含
有する混合粉体をビヒクルに分散させた抵抗体ペースト
を刷りきり印刷しその両端部に市販の金属銅や金属ニッ
ケルなどの高導電率を有する金属ペーストで接続して両
面の電極を同じペーストで接続し中性雰囲気中で焼成し
て得られるチップ抵抗器で底面が凸凹になった凹部に印
刷することによりガラス含有量が少なくても抵抗体がセ
ラミック基体から剥離することがなく強固に接着する。
またガラス成分の金属成分中や焼結粒子界面への拡散を
最小限に抑制出来るため得られる抵抗器の、低TCR化
が出来、さらに凹部の深さを大きくすることにより厚い
抵抗体膜にすることで低抵抗値化が出来ると共にレーザ
ートリミング可能な作用を有し、給電部を両面にするこ
とにより耐熱信頼性が高まる。
According to the present invention, the content of the copper-nickel alloy powder is more than 97% by weight and 550 ° C. in the concave portion of the ceramic base having concave portions with uneven bottom surfaces on both surfaces.
A resistor paste in which a mixed powder containing a glass powder having a softening point of less than 0 to less than 3% by weight is dispersed in a vehicle is completely printed, and high-conductivity such as commercially available metallic copper or metallic nickel is applied to both ends thereof. Even if the glass content is low by printing on the concave part with the bottom surface uneven by a chip resistor obtained by connecting with a metal paste having the same and connecting the electrodes on both sides with the same paste and firing in a neutral atmosphere The resistor adheres firmly without peeling from the ceramic substrate.
In addition, since the diffusion of the glass component into the metal component and the interface with the sintered particles can be suppressed to a minimum, the obtained resistor can have a low TCR, and the thicker resistor film can be obtained by increasing the depth of the concave portion. Accordingly, the resistance value can be reduced and the laser can be trimmed. By providing the power supply portion on both sides, the heat resistance is improved.

【0015】請求項9に記載の発明は、凹部を有するセ
ラミック基体の凹部の両端を樹脂でマスキングし中央部
のみ凹部を残すし、そこへ少なくとも銅−ニッケルを含
有する合金粉末を含有する抵抗体ペーストを刷りきり印
刷、乾燥し、マスキングを除去した後市販されている金
属銅や金属ニッケルペーストを凹部に電極として刷りき
り印刷乾燥し、中性雰囲気中で焼成して抵抗体と電極を
金属結合させ金属板として基体から取り出して得られる
チップ抵抗器で、抵抗体と電極の接続を基体凹部形状、
マスキング形状によってコントロールできる。そのため
得られる抵抗器の、抵抗値、TCR特性の調整が容易に
出来る。また得られる抵抗体膜は金属箔やめっき膜にく
らべてレーザーのエネルギーを反射しにくいためレーザ
ートリミング可能な作用を有する。
According to a ninth aspect of the present invention, there is provided a resistor which masks both ends of a concave portion of a ceramic base having a concave portion with a resin to leave a concave portion only at a central portion, and contains an alloy powder containing at least copper-nickel therein. After printing and drying the paste and removing the masking, commercially available metal copper or metal nickel paste is printed as an electrode in the recess, dried and fired in a neutral atmosphere, and the resistor and electrode are metal-bonded. A chip resistor obtained by taking out from the substrate as a metal plate, connecting the resistor and the electrode to the concave shape of the substrate,
It can be controlled by the masking shape. Therefore, the resistance value and the TCR characteristic of the obtained resistor can be easily adjusted. The obtained resistor film is less likely to reflect laser energy than a metal foil or a plating film, and thus has an effect capable of laser trimming.

【0016】請求項10に記載の発明は、銅−ニッケル
合金粉末含有量が97重量%より多く、550℃未満の
軟化点を有するガラス粉末を0〜3重量%未満含有する
混合粉体をビヒクルに分散させた抵抗体ペーストを、セ
ラミック基体片面の凹部に刷りきり印刷、乾燥した後、
その両端部に市販されている金属銅ペーストを下層電極
として印刷乾燥し、次に下層電極の上に金属ニッケルペ
ーストを上層電極として印刷乾燥し中性雰囲気中で焼成
して、焼結時に生じる抵抗体膜内部応力による基体との
剥離を基体に凹部を設けることで緩和しまたガラス成分
を数%とする事でガラス成分の金属成分中や焼結粒子界
面への拡散を最小限に抑制出来、抵抗体と電極の接続を
印刷パターンによってコントロールできる。そのため得
られる抵抗器の、低抵抗化、低TCR化が出来る。また
得られる抵抗体膜は金属箔やめっき層にくらべてレーザ
ーのエネルギーを反射しにくいためレーザートリミング
可能な作用を有する。さらに電極を銅−ニッケルの混合
体とすることによって電極成分の抵抗体層の拡散による
抵抗体成分への組成変化を抑制する作用を有する。
According to a tenth aspect of the present invention, a mixed powder containing a glass powder having a copper-nickel alloy powder content of more than 97% by weight and a softening point of less than 550 ° C of less than 0 to 3% by weight is provided as a vehicle. After the resistor paste dispersed in the recesses on one side of the ceramic substrate is completely printed and dried,
A commercially available metal copper paste is printed and dried on both ends as a lower electrode, and then a metal nickel paste is printed and dried on the lower electrode as an upper electrode and baked in a neutral atmosphere. Detachment from the substrate due to the internal stress of the body film can be mitigated by providing recesses in the substrate, and by making the glass component a few percent, the diffusion of the glass component into the metal component and the interface to the sintered particles can be suppressed to a minimum. The connection between the resistor and the electrode can be controlled by the printing pattern. Therefore, the obtained resistor can have low resistance and low TCR. Further, the obtained resistor film is less likely to reflect laser energy as compared with a metal foil or a plating layer, and thus has an effect capable of laser trimming. Further, by using a mixture of copper and nickel for the electrode, the electrode component has an effect of suppressing a change in composition of the electrode component into a resistor component due to diffusion of the resistor layer.

【0017】請求項11に記載の発明は、銅−ニッケル
合金粉末含有量が97重量%より多く、550℃未満の
軟化点を有するガラス粉末を0〜3重量%未満含有する
混合粉体をビヒクルに分散させた抵抗体ペーストを、セ
ラミック基体両面の凹部に刷りきり印刷、乾燥した後、
その両端部に市販されている金属銅ペーストを下層電極
として印刷乾燥し、次に下層電極の上に金属ニッケルペ
ーストを上層電極として印刷乾燥し、基体側面部で両面
の電極を上層電極と同じペーストで接続し、中性雰囲気
中で焼成して、焼結時に生じる抵抗体膜内部応力による
基体との剥離を基体に凹部を設けることで緩和し、また
ガラス成分を数%とする事でガラス成分の金属成分中や
焼結粒子界面への拡散を最小限に抑制出来、抵抗体と電
極の接続を印刷パターンによってコントロールできる。
そのため得られる抵抗器の、低抵抗化、低TCR化が出
来る。さらに両面に抵抗体膜を形成し給電部を両面に設
けることによってさらなる低抵抗値化と耐電力化が可能
である。また得られる抵抗体膜は金属箔やめっき層にく
らべてレーザーのエネルギーを反射しにくいためレーザ
ートリミング可能な作用を有する。さらに電極を銅−ニ
ッケルの混合体とすることによって電極成分の抵抗体層
の拡散による抵抗体成分への組成変化を抑制する作用を
有する。
[0017] According to the present invention, a mixed powder containing a glass powder having a copper-nickel alloy powder content of more than 97% by weight and a softening point of less than 550 ° C of less than 0 to 3% by weight is provided as a vehicle. After the resistor paste dispersed in the recesses on both sides of the ceramic substrate is printed and dried,
A commercially available metal copper paste is printed and dried on both ends as a lower electrode, and then a metal nickel paste is printed and dried on the lower electrode as an upper electrode. And baking in a neutral atmosphere to alleviate the separation from the substrate due to the internal stress of the resistor film generated during sintering by providing recesses in the substrate, and reducing the glass component to several percent to reduce the glass component Can be minimized in the metal component and at the interface of the sintered particles, and the connection between the resistor and the electrode can be controlled by the printing pattern.
Therefore, the obtained resistor can have low resistance and low TCR. Further, by forming a resistor film on both sides and providing a power supply portion on both sides, it is possible to further reduce the resistance value and to withstand electric power. Further, the obtained resistor film is less likely to reflect laser energy as compared with a metal foil or a plating layer, and thus has an effect capable of laser trimming. Further, by using a mixture of copper and nickel for the electrode, the electrode component has an effect of suppressing a change in composition of the electrode component into a resistor component due to diffusion of the resistor layer.

【0018】請求項12に記載の発明は、銅−ニッケル
合金粉末含有量が97重量%より多く、550℃未満の
軟化点を有するガラス粉末を0〜3重量%未満含有する
混合粉体をビヒクルに分散させた抵抗体ペーストを、セ
ラミック基体片面の凹部に刷りきり印刷、乾燥した後、
その両端部に市販されている金属ニッケルペーストを下
層電極として印刷乾燥し、次に下層電極の上に金属銅ペ
ーストを上層電極として印刷乾燥し中性雰囲気中で焼成
して、焼結時に生じる抵抗体膜内部応力による基体との
剥離を基体に凹部を設けることで緩和しまたガラス成分
を数%とする事でガラス成分の金属成分中や焼結粒子界
面への拡散を最小限に抑制出来、抵抗体と電極の接続を
印刷パターンによってコントロールできる。そのため得
られる抵抗器の、低抵抗化、低TCR化が出来る。また
得られる抵抗体膜は金属箔やめっき層にくらべてレーザ
ーのエネルギーを反射しにくいためレーザートリミング
可能な作用を有する。さらに電極を銅−ニッケルの混合
体とすることによって電極成分の抵抗体層の拡散による
抵抗体成分への組成変化を抑制する作用を有する。
According to a twelfth aspect of the present invention, a mixed powder containing a copper-nickel alloy powder content of more than 97% by weight and a glass powder having a softening point of less than 550 ° C of less than 0 to 3% by weight is provided as a vehicle. After the resistor paste dispersed in the recesses on one side of the ceramic substrate is completely printed and dried,
A commercially available metal nickel paste is printed and dried on both ends thereof as a lower electrode, and then a metal copper paste is printed and dried on the lower electrode as an upper electrode and baked in a neutral atmosphere. Detachment from the substrate due to the internal stress of the body film can be mitigated by providing recesses in the substrate, and by making the glass component a few percent, the diffusion of the glass component into the metal component and the interface to the sintered particles can be suppressed to a minimum. The connection between the resistor and the electrode can be controlled by the printing pattern. Therefore, the obtained resistor can have low resistance and low TCR. Further, the obtained resistor film is less likely to reflect laser energy as compared with a metal foil or a plating layer, and thus has an effect capable of laser trimming. Further, by using a mixture of copper and nickel for the electrode, the electrode component has an effect of suppressing a change in composition of the electrode component into a resistor component due to diffusion of the resistor layer.

【0019】請求項13に記載の発明は、銅−ニッケル
合金粉末含有量が97重量%より多く、550℃未満の
軟化点を有するガラス粉末を0〜3重量%未満含有する
混合粉体をビヒクルに分散させた抵抗体ペーストを、セ
ラミック基体片面の凹部に刷りきり印刷、乾燥した後、
その両端部に市販されている金属ニッケルペーストを下
層電極として印刷乾燥し、次に下層電極の上に金属銅ペ
ーストを上層電極として印刷乾燥し、基体側面部で両面
の電極を上層電極と同じペーストで接続し、中性雰囲気
中で焼成して、焼結時に生じる抵抗体膜内部応力による
基体との剥離を基体に凹部を設けることで緩和し、また
ガラス成分を数%とする事でガラス成分の金属成分中や
焼結粒子界面への拡散を最小限に抑制出来、抵抗体と電
極の接続を印刷パターンによってコントロールできる。
そのため得られる抵抗器の、低抵抗化、低TCR化が出
来る。さらに両面に抵抗体膜を形成し給電部を両面に設
けることによってさらなる低抵抗値化と耐電力化が可能
である。また得られる抵抗体膜は金属箔やめっき層にく
らべてレーザーのエネルギーを反射しにくいためレーザ
ートリミング可能な作用を有する。さらに電極を銅−ニ
ッケルの混合体とすることによって電極成分の抵抗体層
の拡散による抵抗体成分への組成変化を抑制する作用を
有する。
According to a thirteenth aspect of the present invention, a mixed powder containing a glass powder having a copper-nickel alloy powder content of more than 97% by weight and a softening point of less than 550 ° C. of less than 0 to 3% by weight is provided as a vehicle. After the resistor paste dispersed in the recesses on one side of the ceramic substrate is completely printed and dried,
A commercially available metal nickel paste is printed and dried on both ends as a lower electrode, and then a metal copper paste is printed and dried on the lower electrode as an upper electrode. And baking in a neutral atmosphere to alleviate the separation from the substrate due to the internal stress of the resistor film generated during sintering by providing recesses in the substrate, and reducing the glass component to several percent to reduce the glass component Can be minimized in the metal component and at the interface of the sintered particles, and the connection between the resistor and the electrode can be controlled by the printing pattern.
Therefore, the obtained resistor can have low resistance and low TCR. Further, by forming a resistor film on both sides and providing a power supply portion on both sides, it is possible to further reduce the resistance value and to withstand electric power. Further, the obtained resistor film is less likely to reflect laser energy than a metal foil or a plating layer, and thus has an effect capable of laser trimming. Further, by using a mixture of copper and nickel for the electrode, the electrode component has an effect of suppressing a change in composition of the electrode component into a resistor component due to diffusion of the resistor layer.

【0020】(実施の形態1)図1は本発明の第1の実
施の形態におけるチップ抵抗器の断面模式図である。図
において3は抵抗層であり、方形の基板1の両面に(表
1)に示すような合金組成よりなる抵抗体ペーストを用
いてスクリーン印刷などの厚膜形成技術により印刷形成
している。
(Embodiment 1) FIG. 1 is a schematic cross-sectional view of a chip resistor according to a first embodiment of the present invention. In the drawing, reference numeral 3 denotes a resistance layer, which is formed by printing on both sides of a rectangular substrate 1 by a thick film forming technique such as screen printing using a resistor paste having an alloy composition as shown in (Table 1).

【0021】次に基板1に対向する一対の両端部に抵抗
層3と面接触するように上面電極層2を抵抗層3と同じ
方法で印刷形成し、この抵抗層3と上面電極層2とを中
性雰囲気もしくは還元雰囲気中にて同時焼成している。
次に基板1の両端部にコ字状の端面電極層4を形成して
いる。
Next, an upper surface electrode layer 2 is formed by printing in the same manner as that of the resistance layer 3 so as to be in surface contact with the resistance layer 3 at a pair of opposite ends facing the substrate 1. Are simultaneously fired in a neutral atmosphere or a reducing atmosphere.
Next, U-shaped end face electrode layers 4 are formed on both ends of the substrate 1.

【0022】以下に抵抗体ペーストの作製方法について
示す。銅−ニッケル系合金粉は平均粒子径2μmのアト
マイズ粉を用い、これにガラスを添加した混合粉体を無
機組成物とした。また、ビヒクルには有機バインダであ
るエチルセルロースをターピネオールで溶かしたものを
用い、これを有機組成物とした。これらの無機組成物と
有機組成物を三本ロールにて混練し厚膜抵抗体ペースト
とした。
The method for producing the resistor paste will be described below. As the copper-nickel alloy powder, atomized powder having an average particle diameter of 2 μm was used, and a mixed powder obtained by adding glass thereto was used as an inorganic composition. In addition, as a vehicle, a solution obtained by dissolving ethyl cellulose as an organic binder with terpineol was used as an organic composition. These inorganic composition and organic composition were kneaded with a three-roll mill to obtain a thick film resistor paste.

【0023】次に上面電極ペーストの作製方法を示す。
銅粉は平均粒子径2μmの粉を用いこれを無機組成物と
した。また、ビヒクルには有機バインダであるエチルセ
ルロースをターピネオールで溶かしたものを用い、これ
を有機組成物とした。これらの無機組成物と有機組成物
を三本ロールにて混練し端子電極ペーストとした。
Next, a method for producing the upper electrode paste will be described.
As the copper powder, a powder having an average particle diameter of 2 μm was used as an inorganic composition. In addition, as a vehicle, a solution obtained by dissolving ethyl cellulose as an organic binder with terpineol was used as an organic composition. These inorganic composition and organic composition were kneaded with a three-roll mill to obtain a terminal electrode paste.

【0024】以下にチップ抵抗器の作製方法について示
す。まず抵抗体ペーストを基板(96%アルミナ基板
6.4×3.2mm)両面に印刷し、100℃の温度で1
0分間乾燥させた。上面電極ペーストを前記抵抗体の上
面に面接触する構造になるようにスクリーン印刷形成し
乾燥させる。ついで端子電極として市販の銅電極ペース
トを用いて端面に膜厚約50〜100μmになるように
塗布し、窒素雰囲気にて900℃〜10分間焼成しチッ
プ抵抗器を作製した。
Hereinafter, a method of manufacturing a chip resistor will be described. First, a resistor paste is printed on both sides of the substrate (a 96% alumina substrate 6.4 × 3.2 mm), and the paste is printed at a temperature of 100 ° C.
Dry for 0 minutes. An upper electrode paste is screen-printed and dried so as to have a structure in which the upper electrode paste comes into surface contact with the upper surface of the resistor. Next, a commercially available copper electrode paste was applied as a terminal electrode to the end face so as to have a thickness of about 50 to 100 μm, and baked in a nitrogen atmosphere at 900 ° C. for 10 minutes to produce a chip resistor.

【0025】チップ抵抗器の評価方法について示す。チ
ップ抵抗器の端子間電極距離は4.0mmとし、抵抗体焼
結膜幅は2.5mmで形成し、端子電極部にプローブを固
定して4端子法で端子間抵抗値を求めた。TCR特性は
チップ抵抗器を恒温槽に入れ25℃と125℃の抵抗値
を測定しその変化率を求めた。高温放置における抵抗値
変化は焼結抵抗体膜に図7,8に示すように保護膜層5
をコートし、160℃で1000時間放置したときの抵
抗値変化率を求めた。
An evaluation method of the chip resistor will be described. The inter-terminal electrode distance of the chip resistor was 4.0 mm, the resistor sintered film width was 2.5 mm, the probe was fixed to the terminal electrode portion, and the inter-terminal resistance was determined by a four-terminal method. For the TCR characteristics, the chip resistor was placed in a thermostat and the resistance values at 25 ° C. and 125 ° C. were measured to determine the rate of change. As shown in FIGS. 7 and 8, the change in the resistance value when left at a high temperature is applied to the protective film layer 5 as shown in FIGS.
And the resistance change rate when left at 160 ° C. for 1000 hours was determined.

【0026】作製したチップ抵抗器の断面部を走査電子
顕微鏡、電子線マイクロアナライザ、X線微小回折計を
用いて構造を明らかにした。
The structure of the cross section of the fabricated chip resistor was clarified using a scanning electron microscope, an electron beam microanalyzer, and an X-ray micro diffractometer.

【0027】結果を(表1)に示す。The results are shown in (Table 1).

【0028】[0028]

【表1】 [Table 1]

【0029】(表1)より明らかなように、本実施の形
態で得られたチップ抵抗器は上面電極層2を抵抗層3上
に金属結合させ、抵抗層3を基板1の両面に形成するこ
とによって、低抵抗値、低TCR、高信頼性のチップ抵
抗器が得られることが分かる。
As is clear from Table 1, in the chip resistor obtained in this embodiment, the upper electrode layer 2 is metal-bonded on the resistance layer 3 and the resistance layer 3 is formed on both sides of the substrate 1. This shows that a chip resistor having a low resistance value, a low TCR, and a high reliability can be obtained.

【0030】なお、上記のようなチップ抵抗器を作製す
る場合、要求される抵抗値にあわせてトリミングを行わ
なければならないが、通常YAGレーザーを用いて行わ
れているが、抵抗体層の焼成粒子径が40μm、層厚が
30μmよりも大きなものはYAGレーザーによるトリ
ミングを行うことができず、また金属箔や金属線もレー
ザーのエネルギーを反射するためレーザートリミングを
行うことができないが、本発明のチップ抵抗器はレーザ
ートリミング可能である。
When the chip resistor as described above is manufactured, trimming must be performed in accordance with a required resistance value. Usually, the trimming is performed using a YAG laser. Particles having a particle diameter of greater than 40 μm and a layer thickness of greater than 30 μm cannot be trimmed by a YAG laser, and metal foils and wires cannot be laser trimmed because they reflect laser energy. The chip resistors are laser-trimmable.

【0031】(実施の形態2)図2は本発明の第2の実
施の形態におけるチップ抵抗器の断面模式図である。図
において3は抵抗層であり、8は(表2)に記載の金属
箔(6.4×3.2mm厚さ=0.04mm)である。金属
箔8上に厚膜抵抗体ペーストを印刷し、100℃の温度
で10分間乾燥させた。そして、これを中性雰囲気もし
くは還元雰囲気中にて焼成した。
(Embodiment 2) FIG. 2 is a schematic sectional view of a chip resistor according to a second embodiment of the present invention. In the drawing, 3 is a resistance layer, and 8 is a metal foil (6.4 × 3.2 mm thickness = 0.04 mm) described in (Table 2). The thick film resistor paste was printed on the metal foil 8 and dried at a temperature of 100 ° C. for 10 minutes. Then, this was fired in a neutral atmosphere or a reducing atmosphere.

【0032】厚膜抵抗体ペーストの作製は銅−ニッケル
系合金粉は平均粒子径2μmのアトマイズ粉を用い、こ
れを無機組成物とした。また、ビヒクルには有機バイン
ダであるエチルセルロースをターピネオールで溶かした
ものを用い、これを有機組成物とした。これらの無機組
成物と有機組成物を三本ロールにて混練し厚膜抵抗体ペ
ーストとした。
For the preparation of the thick film resistor paste, an atomized powder having an average particle diameter of 2 μm was used as the copper-nickel alloy powder, and this was used as an inorganic composition. In addition, as a vehicle, a solution obtained by dissolving ethyl cellulose as an organic binder with terpineol was used as an organic composition. These inorganic composition and organic composition were kneaded with a three-roll mill to obtain a thick film resistor paste.

【0033】以下にチップ抵抗器の作製方法について示
す。まず厚膜抵抗体ペーストを金属箔8に印刷し、10
0℃の温度で10分間乾燥させた。次に窒素雰囲気にて
900℃−10分間焼成し、チップ抵抗器を作製した。
A method for manufacturing a chip resistor will be described below. First, a thick film resistor paste is printed on the metal foil 8 and
Dry at a temperature of 0 ° C. for 10 minutes. Next, baking was performed at 900 ° C. for 10 minutes in a nitrogen atmosphere to produce a chip resistor.

【0034】チップ抵抗器の評価方法について示す。チ
ップ抵抗器の端子間電極距離は4.0mmとし、抵抗体焼
結膜幅は2.5mmで形成し、端子電極部にプローブを固
定して4端子法で端子間抵抗値を求めた。TCR特性は
チップ抵抗器を恒温槽に入れ25℃と125℃の抵抗値
を測定しその変化率を求めた。高温放置における抵抗値
変化は焼結抵抗体膜に図9に示すように保護膜層5をコ
ートし、160℃で1000時間放置したときの抵抗値
変化率を求めた。
An evaluation method of the chip resistor will be described. The inter-terminal electrode distance of the chip resistor was 4.0 mm, the resistor sintered film width was 2.5 mm, the probe was fixed to the terminal electrode portion, and the inter-terminal resistance was determined by a four-terminal method. For the TCR characteristics, the chip resistor was placed in a thermostat and the resistance values at 25 ° C. and 125 ° C. were measured to determine the rate of change. As shown in FIG. 9, the change in the resistance value when left at a high temperature was obtained by coating the sintered resistor film with a protective film layer 5 as shown in FIG.

【0035】作製したチップ抵抗器の断面部を走査電子
顕微鏡、電子線マイクロアナライザ、X線微小回折計を
用いて構造を明らかにした。
The structure of the cross section of the manufactured chip resistor was clarified using a scanning electron microscope, an electron beam microanalyzer, and an X-ray micro diffractometer.

【0036】結果を(表2)に示す。The results are shown in (Table 2).

【0037】[0037]

【表2】 [Table 2]

【0038】(表2)より明らかなように、本実施の形
態で得られたチップ抵抗器は抵抗層3を金属箔8上に金
属結合させることによって、低抵抗値、低TCR、高信
頼性のチップ抵抗器が得られることが分かる。
As is clear from Table 2, the chip resistor obtained in the present embodiment has a low resistance value, a low TCR, and high reliability by bonding the resistance layer 3 to the metal foil 8 with metal. It can be seen that the chip resistor of No. is obtained.

【0039】なお、上記のようなチップ抵抗器を作製す
る場合、要求される抵抗値にあわせてトリミングを行わ
なければならないが、通常YAGレーザーを用いて行わ
れているが、抵抗体層の焼成粒子径が40μm、層厚が
30μmよりも大きなものはYAGレーザーによるトリ
ミングを行うことができず、また金属箔や金属線もレー
ザーのエネルギーを反射するためレーザートリミングを
行うことができないが、本発明のチップ抵抗器はレーザ
ートリミング可能であり、さらに作製工程が少なくて安
価に抵抗器が得られる。
When the above-described chip resistor is manufactured, trimming must be performed in accordance with a required resistance value. Usually, the trimming is performed using a YAG laser. Particles having a particle diameter of greater than 40 μm and a layer thickness of greater than 30 μm cannot be trimmed by a YAG laser, and metal foils and wires cannot be laser trimmed because they reflect laser energy. The chip resistor can be laser-trimmed, and the resistor can be obtained inexpensively with less production steps.

【0040】(実施の形態3)図3は本発明の第3の実
施の形態におけるチップ抵抗器の断面模式図である。図
において3は抵抗層で、8は金属箔であり、方形の基板
1の片面に(表3)に示すような合金組成よりなる抵抗
体ペーストを用いてスクリーン印刷などの厚膜形成技術
により印刷形成している。
(Embodiment 3) FIG. 3 is a schematic sectional view of a chip resistor according to a third embodiment of the present invention. In the figure, reference numeral 3 denotes a resistance layer, and 8 denotes a metal foil, which is printed on one surface of the rectangular substrate 1 by a thick film forming technique such as screen printing using a resistor paste having an alloy composition as shown in (Table 3). Has formed.

【0041】次に基板1の両端部に抵抗層3と面接触す
るように上面電極層2を抵抗層3と同じ方法で印刷形成
し、この抵抗層3と上面電極層2とを中性雰囲気もしく
は還元雰囲気中にて同時焼成している。次に基板1の両
端部にコ字状の端面電極層4を形成している。
Next, the upper electrode layer 2 is printed and formed on both ends of the substrate 1 in the same manner as the resistance layer 3 so as to be in surface contact with the resistance layer 3, and the resistance layer 3 and the upper electrode layer 2 are placed in a neutral atmosphere. Alternatively, they are fired simultaneously in a reducing atmosphere. Next, U-shaped end face electrode layers 4 are formed on both ends of the substrate 1.

【0042】抵抗体ペーストの作製方法については実施
の形態1と同様である。上面電極ペーストの作製方法は
実施の形態1と同様である。
The method of producing the resistor paste is the same as in the first embodiment. The method for producing the upper surface electrode paste is the same as that in Embodiment 1.

【0043】以下にチップ抵抗器の作製方法について示
す。まず基板1(96%アルミナ基板6.4×3.2m
m)上に金属箔8(3.8×2.3mm 厚さ=0.02m
m)を置き、その上に抵抗体ペーストを印刷し、100
℃の温度で10分間乾燥させた。上面電極ペーストを図
3に示すように前記抵抗体の上面に面接触する構造にな
るようにスクリーン印刷形成し乾燥させる。次に端子電
極として市販の銅電極ペーストを用いて端面に膜厚約5
0〜100μmになるように塗布し、窒素雰囲気にて9
00℃〜10分間焼成しチップ抵抗器を作製した。
Hereinafter, a method of manufacturing a chip resistor will be described. First, the substrate 1 (96% alumina substrate 6.4 × 3.2 m
m) on the metal foil 8 (3.8 × 2.3 mm thickness = 0.02 m)
m), print the resistor paste on it,
Dry for 10 minutes at a temperature of ° C. The upper surface electrode paste is screen-printed and dried so as to have a structure in which it is in surface contact with the upper surface of the resistor as shown in FIG. Next, using a commercially available copper electrode paste as a terminal electrode, a film thickness of about 5
Coated to a thickness of 0 to 100 μm and 9 in a nitrogen atmosphere
Baking was performed at 00 ° C. for 10 minutes to produce a chip resistor.

【0044】チップ抵抗器の評価方法について示す。チ
ップ抵抗器の端子間電極距離は4.0mmとし、抵抗体焼
結膜幅は2.5mmで形成し、端子電極部にプローブを固
定して4端子法で端子間抵抗値を求めた。TCR特性は
チップ抵抗器を恒温槽に入れ25℃と125℃の抵抗値
を測定しその変化率を求めた。高温放置における抵抗値
変化は焼結抵抗体膜に図10に示すように保護膜層5を
コートし、160℃で1000時間放置したときの抵抗
値変化率を求めた。
The evaluation method of the chip resistor will be described. The inter-terminal electrode distance of the chip resistor was 4.0 mm, the resistor sintered film width was 2.5 mm, the probe was fixed to the terminal electrode portion, and the inter-terminal resistance was determined by a four-terminal method. For the TCR characteristics, the chip resistor was placed in a thermostat and the resistance values at 25 ° C. and 125 ° C. were measured to determine the rate of change. As shown in FIG. 10, the change in resistance value when left at high temperature was obtained by coating the sintered resistor film with a protective film layer 5 as shown in FIG.

【0045】作製したチップ抵抗器の断面部を走査電子
顕微鏡、電子線マイクロアナライザ、X線微小回折計を
用いて構造を明らかにした。
The structure of the cross section of the fabricated chip resistor was clarified using a scanning electron microscope, an electron beam microanalyzer, and an X-ray micro diffractometer.

【0046】結果を(表3)に示す。The results are shown in (Table 3).

【0047】[0047]

【表3】 [Table 3]

【0048】(表3)より明らかなように、本実施の形
態で得られたチップ抵抗器は上面電極層2を抵抗層3上
に金属結合させることによって低抵抗値、低TCR、高
信頼性のチップ抵抗器が得られることが分かる。
As is clear from Table 3, the chip resistor obtained in the present embodiment has a low resistance value, a low TCR, and a high reliability by metal-bonding the upper electrode layer 2 on the resistance layer 3. It can be seen that the chip resistor of No. is obtained.

【0049】なお、上記のようなチップ抵抗器を作製す
る場合、要求される抵抗値にあわせてトリミングを行わ
なければならないが、通常YAGレーザーを用いて行わ
れているが、抵抗体層の焼成粒子径が40μm、層厚が
30μmよりも大きなものはYAGレーザーによるトリ
ミングを行うことができず、また金属箔や金属線もレー
ザーのエネルギーを反射するためレーザートリミングを
行うことができないが、本発明のチップ抵抗器はレーザ
ートリミング可能であり、さらに基板を用いることによ
り部品の放熱性が良くなる。
When the chip resistor as described above is manufactured, trimming must be performed in accordance with a required resistance value. Usually, the trimming is performed using a YAG laser. Particles having a particle diameter of greater than 40 μm and a layer thickness of greater than 30 μm cannot be trimmed by a YAG laser, and metal foils and wires cannot be laser trimmed because they reflect laser energy. The chip resistor can be laser-trimmed, and the use of a substrate improves heat radiation of components.

【0050】(実施の形態4)図4は本発明の第4の実
施の形態におけるチップ抵抗器の断面模式図である。図
において3は抵抗層で、9は金属線であり、方形の基板
1の両面に(表4)に示すような合金組成よりなる抵抗
体ペーストを用いてスクリーン印刷などの厚膜形成技術
により印刷形成している。次に基板1の両端部に抵抗層
3と面接触するように上面電極層2を抵抗層3と同じ方
法で印刷形成し、この抵抗層3と上面電極層2とを中性
雰囲気もしくは還元雰囲気中にて同時焼成している。次
に基板1の両端部にコ字状の端面電極層4を形成してい
る。
(Embodiment 4) FIG. 4 is a schematic sectional view of a chip resistor according to a fourth embodiment of the present invention. In the figure, 3 is a resistance layer, 9 is a metal wire, and is printed on both surfaces of the rectangular substrate 1 by a thick film forming technique such as screen printing using a resistor paste having an alloy composition as shown in (Table 4). Has formed. Next, the upper electrode layer 2 is printed and formed on both ends of the substrate 1 in the same manner as the resistance layer 3 so as to be in surface contact with the resistance layer 3, and the resistance layer 3 and the upper electrode layer 2 are formed in a neutral atmosphere or a reducing atmosphere. Co-fired inside. Next, U-shaped end face electrode layers 4 are formed on both ends of the substrate 1.

【0051】抵抗体ペーストの作製方法については実施
の形態1と同様である。上面電極ペーストの作製方法は
実施の形態1と同様である。
The method of producing the resistor paste is the same as in the first embodiment. The method for producing the upper surface electrode paste is the same as that in Embodiment 1.

【0052】以下にチップ抵抗器の作製方法について示
す。まず基板1(96%アルミナ基板6.4×3.2m
m)上に金属線9(直径=0.6mm 長さ=3.8mm)
を置きその上に抵抗体ペーストを印刷し、100℃の温
度で10分間乾燥させた。上面電極ペーストを前記抵抗
体の上面に面接触する構造になるようにスクリーン印刷
形成し乾燥させる。次に端子電極として市販の銅電極ペ
ーストを用いて端面に膜厚約50〜100μmになるよ
うに塗布し、窒素雰囲気にて900℃−10分間焼成し
てチップ抵抗器を作製した。
Hereinafter, a method for manufacturing a chip resistor will be described. First, the substrate 1 (96% alumina substrate 6.4 × 3.2 m
m) On top of metal wire 9 (diameter = 0.6mm length = 3.8mm)
Was placed and a resistor paste was printed thereon and dried at a temperature of 100 ° C. for 10 minutes. An upper electrode paste is screen-printed and dried so as to have a structure in which the upper electrode paste comes into surface contact with the upper surface of the resistor. Next, using a commercially available copper electrode paste as a terminal electrode, it was applied to the end face so as to have a thickness of about 50 to 100 μm, and baked in a nitrogen atmosphere at 900 ° C. for 10 minutes to produce a chip resistor.

【0053】チップ抵抗器の評価について示す。チップ
抵抗器の端子間電極距離は4.0mmとし、抵抗体焼結膜
幅は2.5mmで形成し、端子電極部にプローブを固定し
て4端子法で端子間抵抗値を求めた。TCR特性はチッ
プ抵抗器を恒温槽に入れ25℃と125℃の抵抗値を測
定しその変化率を求めた。高温放置における抵抗値変化
は焼結抵抗体膜に保護樹脂をコートし、160℃で10
00時間放置したときの抵抗値変化率を求めた。
The evaluation of the chip resistor will be described. The inter-terminal electrode distance of the chip resistor was 4.0 mm, the resistor sintered film width was 2.5 mm, the probe was fixed to the terminal electrode portion, and the inter-terminal resistance was determined by a four-terminal method. For the TCR characteristics, the chip resistor was placed in a thermostat and the resistance values at 25 ° C. and 125 ° C. were measured to determine the rate of change. The resistance change during high-temperature storage is as follows.
The resistance value change rate when left for 00 hours was determined.

【0054】作製したチップ抵抗器の断面部を走査電子
顕微鏡、電子線マイクロアナライザ、X線微小回折計を
用いて構造を明らかにした。
The cross section of the manufactured chip resistor was clarified by using a scanning electron microscope, an electron beam microanalyzer, and an X-ray micro diffractometer.

【0055】結果を(表4)に示す。The results are shown in (Table 4).

【0056】[0056]

【表4】 [Table 4]

【0057】(表4)より明らかなように、本実施の形
態で得られたチップ抵抗器は上面電極層2を抵抗層3上
に金属結合させることによって、低抵抗値、低TCR、
高信頼性のチップ抵抗器が得られることが分かる。
As is clear from Table 4, the chip resistor obtained in the present embodiment has a low resistance value, a low TCR, and a high resistance by connecting the upper electrode layer 2 to the resistance layer 3 with a metal.
It can be seen that a highly reliable chip resistor can be obtained.

【0058】なお、上記のようなチップ抵抗器を作製す
る場合、要求される抵抗値にあわせてトリミングを行わ
なければならないが、通常YAGレーザーを用いて行わ
れているが、抵抗体層の焼成粒子径が40μm、層厚が
30μmよりも大きなものはYAGレーザーによるトリ
ミングを行うことができず、また金属箔や金属線もレー
ザーのエネルギーを反射するためレーザートリミングを
行うことができないが、本発明のチップ抵抗器はレーザ
ートリミング可能であり、さらに金属線を用いることに
より基板上にスリット等を形成することによって固定で
きるため生産性が良い。
When the above-described chip resistor is manufactured, trimming must be performed in accordance with a required resistance value. Usually, the trimming is performed using a YAG laser. Particles having a particle diameter of greater than 40 μm and a layer thickness of greater than 30 μm cannot be trimmed by a YAG laser, and metal foils and wires cannot be laser trimmed because they reflect laser energy. The chip resistor can be laser-trimmed, and can be fixed by forming a slit or the like on a substrate by using a metal wire, so that productivity is good.

【0059】(実施の形態5)図5は本発明の第5の実
施の形態におけるチップ抵抗器の断面模式図である。図
において3は抵抗層で、8は(表5)に示す金属箔であ
り、方形の基板1の片面に(表5)に示すような合金組
成よりなる抵抗体ペーストを用いてスクリーン印刷など
の厚膜形成技術により印刷形成している。次に基板1の
両端部に抵抗層3と面接触するように上面電極層2を抵
抗層3と同じ方法で印刷形成し、この抵抗層3と上面電
極層2とを中性雰囲気もしくは還元雰囲気中にて同時焼
成している。次に基板1の両端部にコ字状の端面電極層
4を形成している。抵抗体ペーストの作製方法について
は実施の形態1と同様である。
(Fifth Embodiment) FIG. 5 is a schematic sectional view of a chip resistor according to a fifth embodiment of the present invention. In the figure, 3 is a resistance layer, 8 is a metal foil shown in (Table 5), and screen printing or the like using a resistor paste having an alloy composition as shown in (Table 5) on one surface of the rectangular substrate 1. It is formed by printing using thick film forming technology. Next, the upper electrode layer 2 is printed and formed on both ends of the substrate 1 in the same manner as the resistance layer 3 so as to be in surface contact with the resistance layer 3, and the resistance layer 3 and the upper electrode layer 2 are formed in a neutral atmosphere or a reducing atmosphere. Co-fired inside. Next, U-shaped end face electrode layers 4 are formed on both ends of the substrate 1. The method for producing the resistor paste is the same as in the first embodiment.

【0060】上面電極ペーストの作製方法は実施の形態
1と同様である。以下にチップ抵抗器の作製方法につい
て示す。まず基板1(96%アルミナ基板6.4×3.
2mm)の片面に金属箔8(6.4×2.5mm 厚さ=
0.1mm)を固定する。抵抗体ペーストを基板金属箔と
反対の面に印刷し、100℃の温度で10分間乾燥させ
る。上面電極ペーストを前記抵抗体の上面に面接触する
構造になるようにスクリーン印刷形成し乾燥させる。
The method for producing the upper electrode paste is the same as in the first embodiment. Hereinafter, a method of manufacturing a chip resistor will be described. First, the substrate 1 (96% alumina substrate 6.4 × 3.
Metal foil 8 (6.4 × 2.5 mm thickness = 2 mm)
0.1 mm). The resistor paste is printed on the surface opposite to the substrate metal foil and dried at a temperature of 100 ° C. for 10 minutes. An upper electrode paste is screen-printed and dried so as to have a structure in which the upper electrode paste comes into surface contact with the upper surface of the resistor.

【0061】ついで端子電極として市販の銅電極ペース
トを用いて端面に膜厚約50〜100μmになるように
塗布し、窒素雰囲気にて900℃−10分間焼成してチ
ップ抵抗器を作製した。
Then, a commercially available copper electrode paste was applied as a terminal electrode to the end face so as to have a thickness of about 50 to 100 μm, and baked in a nitrogen atmosphere at 900 ° C. for 10 minutes to produce a chip resistor.

【0062】チップ抵抗器の評価方法について示す。チ
ップ抵抗器の端子間電極距離は4.0mmとし、抵抗体焼
結膜幅は2.5mmで形成し、端子電極部にプローブを固
定して4端子法で端子間抵抗値を求めた。TCR特性は
チップ抵抗器を恒温槽に入れ25℃と125℃の抵抗値
を測定しその変化率を求めた。高温放置における抵抗値
変化は焼結抵抗体膜に保護樹脂をコートし、160℃で
1000時間放置したときの抵抗値変化率を求めた。
A method for evaluating a chip resistor will be described. The inter-terminal electrode distance of the chip resistor was 4.0 mm, the resistor sintered film width was 2.5 mm, the probe was fixed to the terminal electrode portion, and the inter-terminal resistance was determined by a four-terminal method. For the TCR characteristics, the chip resistor was placed in a thermostat and the resistance values at 25 ° C. and 125 ° C. were measured to determine the rate of change. The change in resistance value when left at high temperature was obtained by coating the sintered resistor film with a protective resin, and then determining the rate of change in resistance value when left at 160 ° C. for 1000 hours.

【0063】作製したチップ抵抗器の断面部を走査電子
顕微鏡、電子線マイクロアナライザ、X線微小回折計を
用いて構造を明らかにした。
The structure of the cross section of the manufactured chip resistor was clarified using a scanning electron microscope, an electron beam microanalyzer, and an X-ray micro diffractometer.

【0064】結果を(表5)に示す。The results are shown in (Table 5).

【0065】[0065]

【表5】 [Table 5]

【0066】(表5)より明らかなように、本実施の形
態で得られたチップ抵抗器は上面電極層2を抵抗層3上
に金属結合させることによって、低抵抗値、低TCR、
高信頼性のチップ抵抗器が得られることが分かる。
As is clear from Table 5, the chip resistor obtained in the present embodiment has a low resistance value, a low TCR, and a low resistance by bonding the upper electrode layer 2 to the resistance layer 3 with metal.
It can be seen that a highly reliable chip resistor can be obtained.

【0067】なお、上記のようなチップ抵抗器を作製す
る場合、要求される抵抗値にあわせてトリミングを行わ
なければならないが、通常YAGレーザーを用いて行わ
れているが、抵抗体層の焼成粒子径が40μm、層厚が
30μmよりも大きなものはYAGレーザーによるトリ
ミングを行うことができず、また金属箔や金属線もレー
ザーのエネルギーを反射するためレーザートリミングを
行うことができないが、本発明のチップ抵抗器はレーザ
ートリミング可能であり、さらに金属箔を用いることに
よってさらなる低抵抗化が可能である。
When the chip resistor as described above is manufactured, trimming must be performed in accordance with a required resistance value. Usually, the trimming is performed using a YAG laser. Particles having a particle diameter of greater than 40 μm and a layer thickness of greater than 30 μm cannot be trimmed by a YAG laser, and metal foils and wires cannot be laser trimmed because they reflect laser energy. The chip resistor can be laser-trimmed, and the resistance can be further reduced by using a metal foil.

【0068】(実施の形態6)図6は本発明の第6の実
施の形態におけるチップ抵抗器の断面模式図である。図
において3は抵抗層で、9は(表6)に示す金属線であ
り、方形の基板1の両面に(表9)に示すような合金組
成よりなる抵抗体ペーストを用いてスクリーン印刷など
の厚膜形成技術により印刷形成している。次に基板1の
両端部に抵抗層3と面接触するように上面電極層2を抵
抗層3と同じ方法で印刷形成し、この抵抗層3と上面電
極層2とを中性雰囲気もしくは還元雰囲気中にて同時焼
成している。次に基板1の両端部にコ字状の端面電極層
4を形成している。抵抗体ペーストの作製方法について
は実施の形態1と同様である。
(Embodiment 6) FIG. 6 is a schematic sectional view of a chip resistor according to a sixth embodiment of the present invention. In the figure, 3 is a resistance layer, 9 is a metal wire shown in (Table 6), and screen printing or the like is performed on both surfaces of the rectangular substrate 1 by using a resistor paste having an alloy composition shown in (Table 9). It is formed by printing using thick film forming technology. Next, the upper electrode layer 2 is printed and formed on both ends of the substrate 1 in the same manner as the resistance layer 3 so as to be in surface contact with the resistance layer 3, and the resistance layer 3 and the upper electrode layer 2 are formed in a neutral atmosphere or a reducing atmosphere. Co-fired inside. Next, U-shaped end face electrode layers 4 are formed on both ends of the substrate 1. The method for producing the resistor paste is the same as in the first embodiment.

【0069】上面電極ペーストの作製方法は実施の形態
1と同様である。以下にチップ抵抗器の作製方法につい
て示す。まず基板1(96%アルミナ基板6.4×3.
2mm)の片面に金属線9(直径=0.6mm 長さ=3.
8mm)を固定する。抵抗体ペーストを基板1の両面に印
刷し、100℃の温度で10分間乾燥させた。上面電極
ペーストを前記抵抗体の上面に面接触する構造になるよ
うにスクリーン印刷形成し乾燥させる。
The method for producing the upper electrode paste is the same as in the first embodiment. Hereinafter, a method of manufacturing a chip resistor will be described. First, the substrate 1 (96% alumina substrate 6.4 × 3.
Metal wire 9 (diameter = 0.6 mm, length = 3.
8mm). The resistor paste was printed on both sides of the substrate 1 and dried at a temperature of 100 ° C. for 10 minutes. An upper electrode paste is screen-printed and dried so as to have a structure in which the upper electrode paste comes into surface contact with the upper surface of the resistor.

【0070】ついで端子電極として市販の銅電極ペース
トを用いて端面に膜厚約50〜100μmになるように
塗布し、窒素雰囲気にて900℃−10分間焼成し、チ
ップ抵抗器を作製した。
Then, a commercially available copper electrode paste was applied as a terminal electrode to the end face so as to have a thickness of about 50 to 100 μm, and baked in a nitrogen atmosphere at 900 ° C. for 10 minutes to produce a chip resistor.

【0071】チップ抵抗器の評価方法について示す。チ
ップ抵抗器の端子間電極距離は4.0mmとし、抵抗体焼
結膜幅は2.5mmで形成し、端子電極部にプローブを固
定して4端子法で端子間抵抗値を求めた。TCR特性は
チップ抵抗器を恒温槽に入れ25℃と125℃の抵抗値
を測定しその変化率を求めた。高温放置における抵抗値
変化は焼結抵抗体膜に図11に示すように保護膜層5を
コートし、160℃で1000時間放置したときの抵抗
値変化率を求めた。
An evaluation method of the chip resistor will be described. The inter-terminal electrode distance of the chip resistor was 4.0 mm, the resistor sintered film width was 2.5 mm, the probe was fixed to the terminal electrode portion, and the inter-terminal resistance was determined by a four-terminal method. For the TCR characteristics, the chip resistor was placed in a thermostat and the resistance values at 25 ° C. and 125 ° C. were measured to determine the rate of change. As shown in FIG. 11, the change in the resistance value when left at a high temperature was obtained by coating the sintered resistor film with a protective film layer 5 as shown in FIG.

【0072】作製したチップ抵抗器の断面部を走査電子
顕微鏡、電子線マイクロアナライザ、X線微小回折計を
用いて構造を明らかにした。
The structure of the cross section of the manufactured chip resistor was clarified by using a scanning electron microscope, an electron beam microanalyzer, and an X-ray micro diffractometer.

【0073】結果を(表6)に示す。The results are shown in (Table 6).

【0074】[0074]

【表6】 [Table 6]

【0075】(表6)より明らかなように、本実施の形
態で得られたチップ抵抗器は上面電極層2を抵抗層3上
に金属結合させ、抵抗層3を基板1の両面に形成するこ
とによって低抵抗値、低TCR、高信頼性のチップ抵抗
器が得られることが分かる。
As is clear from Table 6, in the chip resistor obtained in this embodiment, the upper electrode layer 2 is metal-bonded on the resistance layer 3 and the resistance layer 3 is formed on both sides of the substrate 1. This shows that a chip resistor having a low resistance value, a low TCR, and a high reliability can be obtained.

【0076】なお、上記のようなチップ抵抗器を作製す
る場合、要求される抵抗値にあわせてトリミングを行わ
なければならないが、通常YAGレーザーを用いて行わ
れているが、抵抗体層の焼成粒子径が40μm、層厚が
30μmよりも大きなものはYAGレーザーによるトリ
ミングを行うことができず、また金属箔や金属線もレー
ザーのエネルギーを反射するためレーザートリミングを
行うことができないが、本発明のチップ抵抗器はレーザ
ートリミング可能であり、さらに金属線を用いることに
よってさらなる低抵抗化が可能であると共に、基板上に
スリット等を形成することによって固定できるため生産
性が良い。
When the above-described chip resistor is manufactured, trimming must be performed in accordance with a required resistance value. Usually, the trimming is performed using a YAG laser. Particles having a particle diameter of greater than 40 μm and a layer thickness of greater than 30 μm cannot be trimmed by a YAG laser, and metal foils and wires cannot be laser trimmed because they reflect laser energy. The chip resistor can be laser-trimmed, can further reduce resistance by using a metal wire, and can be fixed by forming a slit or the like on a substrate, so that productivity is good.

【0077】なお、本実施の形態では端子電極層で上裏
面抵抗体の導通をとる例について示したが、セラミック
基体にスルーホール等を形成し、金属ペーストや金属を
埋めて導通させて低抵抗チップ抵抗器を形成することも
可能である。また、金属箔あるいは金属線を用いる場合
はセラミック基体に凹凸(スリット)をつけて凹部に金
属箔、金属線を固定した後に抵抗器を形成することが望
ましい。また保護樹脂を用いない場合高温放置による抵
抗値変化率は用いた場合よりも高くなる。
In this embodiment, an example in which the terminal electrode layer conducts the upper and lower surface resistors is shown. However, a through hole or the like is formed in the ceramic base, and a metal paste or metal is buried to conduct the conduction, thereby reducing the resistance. It is also possible to form chip resistors. When a metal foil or a metal wire is used, it is desirable to form a resistor after forming a concave and convex (slit) on the ceramic base and fixing the metal foil and the metal wire to the concave portion. Further, when the protective resin is not used, the rate of change in resistance value when left at a high temperature is higher than when the protective resin is used.

【0078】[0078]

【発明の効果】以上のように本発明によれば、低TC
R、低抵抗値、高信頼性を有する抵抗器を厚膜形成法で
形成できるとともに、レーザートリミングを用いた抵抗
値調整が可能な生産性の良いプロセスを提供できる。
As described above, according to the present invention, a low TC
A resistor with low R, low resistance and high reliability can be formed by a thick film forming method, and a process with good productivity in which resistance can be adjusted using laser trimming can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1の模式断面図FIG. 1 is a schematic sectional view of Embodiment 1 of the present invention.

【図2】本発明の実施の形態2の模式断面図FIG. 2 is a schematic sectional view of Embodiment 2 of the present invention.

【図3】本発明の実施の形態3の模式断面図FIG. 3 is a schematic sectional view of Embodiment 3 of the present invention.

【図4】本発明の実施の形態4の模式断面図FIG. 4 is a schematic sectional view of Embodiment 4 of the present invention.

【図5】本発明の実施の形態5の模式断面図FIG. 5 is a schematic sectional view of a fifth embodiment of the present invention.

【図6】本発明の実施の形態6の模式断面図FIG. 6 is a schematic sectional view of Embodiment 6 of the present invention.

【図7】本発明の実施の形態1の斜視図FIG. 7 is a perspective view of the first embodiment of the present invention.

【図8】本発明の実施の形態1の模式断面図FIG. 8 is a schematic sectional view of Embodiment 1 of the present invention.

【図9】本発明の実施の形態2の模式断面図FIG. 9 is a schematic sectional view of Embodiment 2 of the present invention.

【図10】本発明の実施の形態3の模式断面図FIG. 10 is a schematic sectional view of Embodiment 3 of the present invention.

【図11】本発明の実施の形態6の模式断面図FIG. 11 is a schematic sectional view of Embodiment 6 of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 上面電極層 3 抵抗層 4 端面電極層 5 保護膜層 DESCRIPTION OF SYMBOLS 1 Substrate 2 Upper electrode layer 3 Resistance layer 4 End electrode layer 5 Protective film layer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5E032 BA07 BB01 BB13 CA02 CC06 CC18 5E033 AA18 AA22 BA03 BD12 BE01 BE04 BF05 BG02 BH02  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5E032 BA07 BB01 BB13 CA02 CC06 CC18 5E033 AA18 AA22 BA03 BD12 BE01 BE04 BF05 BG02 BH02

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 片面に凹部を有するセラミック基体の凹
部に少なくとも銅−ニッケル合金粉末を含有する抵抗体
ペーストを印刷しその両端部に銅−ニッケル合金より高
導電率を有する金属あるいは金属ペーストで接続し中性
雰囲気中で焼成して得られるチップ抵抗器。
1. A resistor paste containing at least a copper-nickel alloy powder is printed in a concave portion of a ceramic substrate having a concave portion on one side, and both ends thereof are connected with a metal or a metal paste having higher conductivity than the copper-nickel alloy. A chip resistor obtained by firing in a neutral atmosphere.
【請求項2】 両面に凹部を有するセラミック基体の凹
部に少なくとも銅−ニッケル合金粉末を含有する抵抗体
ペーストを印刷しその両端部に銅−ニッケル合金より高
導電率を有する金属あるいは金属ペーストで接続し中性
雰囲気中で焼成して得られるチップ抵抗器。
2. A resistive paste containing at least a copper-nickel alloy powder is printed in a concave portion of a ceramic substrate having concave portions on both sides, and both ends thereof are connected with a metal or a metal paste having higher conductivity than the copper-nickel alloy. A chip resistor obtained by firing in a neutral atmosphere.
【請求項3】 片面に段差を有した凹部を有するセラミ
ック基体の凹部に少なくとも銅−ニッケル合金粉末を含
有する抵抗体ペーストを印刷しその両端部に銅−ニッケ
ル合金より高導電率を有する金属あるいは金属ペースト
で接続し中性雰囲気中で焼成して得られるチップ抵抗
器。
3. A resistor paste containing at least a copper-nickel alloy powder is printed in a recess of a ceramic substrate having a recess having a step on one surface, and a metal having higher conductivity than the copper-nickel alloy is printed on both ends thereof. Chip resistor obtained by connecting with a metal paste and firing in a neutral atmosphere.
【請求項4】 両面に段差を有した凹部を有するセラミ
ック基体の凹部に少なくとも銅−ニッケル合金粉末を含
有する抵抗体ペーストを印刷しその両端部に銅−ニッケ
ル合金より高導電率を有する金属あるいは金属ペースト
で接続し中性雰囲気中で焼成して得られるチップ抵抗
器。
4. A resistor having at least copper-nickel alloy powder is printed in a recess of a ceramic substrate having a recess having a step on both surfaces, and a metal having a higher conductivity than the copper-nickel alloy on both ends thereof. Chip resistor obtained by connecting with a metal paste and firing in a neutral atmosphere.
【請求項5】 片面に少なくとも2辺が段差を有しない
凹部を有するセラミック基体の凹部に少なくとも銅−ニ
ッケル合金粉末を含有する抵抗体ペーストを印刷しその
両端部に銅−ニッケル合金より高導電率を有する金属あ
るいは金属ペーストで接続し中性雰囲気中で焼成して得
られるチップ抵抗器。
5. A resistor paste containing at least a copper-nickel alloy powder is printed in a concave portion of a ceramic substrate having a concave portion having at least two sides having no step on one side, and a higher conductivity than the copper-nickel alloy is applied to both ends thereof. A chip resistor obtained by connecting with a metal or a metal paste having the above and firing in a neutral atmosphere.
【請求項6】 両面に少なくとも2辺が段差を有しない
凹部を有するセラミック基体の凹部に少なくとも銅−ニ
ッケル合金粉末を含有する抵抗体ペーストを印刷しその
両端部に銅−ニッケル合金より高導電率を有する金属あ
るいは金属ペーストで接続し中性雰囲気中で焼成して得
られるチップ抵抗器。
6. A resistor paste containing at least a copper-nickel alloy powder is printed in a concave portion of a ceramic substrate having a concave portion having at least two sides having no steps on both surfaces, and a higher conductivity than the copper-nickel alloy is applied to both ends thereof. A chip resistor obtained by connecting with a metal or a metal paste having the above and firing in a neutral atmosphere.
【請求項7】 片面に底面が凸凹になった凹部を有する
セラミック基体の凹部に少なくとも銅−ニッケル合金粉
末を含有する抵抗体ペーストを印刷しその両端部に銅−
ニッケル合金より高導電率を有する金属あるいは金属ペ
ーストで接続し中性雰囲気中で焼成して得られるチップ
抵抗器。
7. A resistor paste containing at least a copper-nickel alloy powder is printed on a concave portion of a ceramic substrate having a concave portion having a concave and convex bottom surface on one side, and copper paste is printed on both ends thereof.
A chip resistor obtained by connecting with a metal or metal paste having higher conductivity than nickel alloy and firing in a neutral atmosphere.
【請求項8】 両面に底面が凸凹になった凹部を有する
セラミック基体の凹部に少なくとも銅−ニッケル合金粉
末を含有する抵抗体ペーストを印刷しその両端部に銅−
ニッケル合金より高導電率を有する金属あるいは金属ペ
ーストで接続し中性雰囲気中で焼成して得られるチップ
抵抗器。
8. A resistor paste containing at least a copper-nickel alloy powder is printed in a concave portion of a ceramic substrate having concave portions having a concave and convex bottom surface on both sides, and copper-containing paste is applied to both ends thereof.
A chip resistor obtained by connecting with a metal or metal paste having higher conductivity than nickel alloy and firing in a neutral atmosphere.
【請求項9】 凹部を有するセラミック基体の凹部の両
端をマスキングし少なくとも銅−ニッケルを含有する合
金粉末を含有する抵抗体ペーストを印刷し、マスキング
を除去した後銅−ニッケル合金より高導電率を有する金
属ペーストを印刷して中性雰囲気中で焼成して得られる
チップ抵抗器。
9. Masking both ends of a concave portion of a ceramic substrate having a concave portion, printing a resistor paste containing an alloy powder containing at least copper-nickel, removing the masking, and having a higher conductivity than the copper-nickel alloy. A chip resistor obtained by printing a metal paste having the composition and firing it in a neutral atmosphere.
【請求項10】 片面に凹部を有するセラミック基体の
凹部に少なくとも銅−ニッケル合金粉末を含有する抵抗
体ペーストを印刷しその両端部に下層銅−上層ニッケル
ペーストで接続し中性雰囲気中で焼成して得られるチッ
プ抵抗器。
10. A resistive paste containing at least a copper-nickel alloy powder is printed in a concave portion of a ceramic substrate having a concave portion on one side, and a lower copper-upper nickel paste is connected to both ends of the resistor paste and fired in a neutral atmosphere. Chip resistor obtained by:
【請求項11】 両面に凹部を有するセラミック基体の
凹部に少なくとも銅−ニッケル合金粉末を含有する抵抗
体ペーストを印刷しその両端部に下層銅−上層ニッケル
ペーストで接続し中性雰囲気中で焼成して得られるチッ
プ抵抗器。
11. A resistor paste containing at least a copper-nickel alloy powder is printed in a concave portion of a ceramic substrate having concave portions on both sides, and a lower copper-upper nickel paste is connected to both ends thereof and fired in a neutral atmosphere. Chip resistor obtained by:
【請求項12】 片面に凹部を有するセラミック基体の
凹部に少なくとも銅−ニッケル合金粉末を含有する抵抗
体ペーストを印刷しその両端部に下層ニッケル−上層銅
ペーストで接続し中性雰囲気中で焼成して得られるチッ
プ抵抗器。
12. A resistor paste containing at least a copper-nickel alloy powder is printed in a concave portion of a ceramic base having a concave portion on one side, and a lower layer nickel-upper layer copper paste is connected to both ends thereof and fired in a neutral atmosphere. Chip resistor obtained by:
【請求項13】 両面に凹部を有するセラミック基体の
凹部に少なくとも銅−ニッケル合金粉末を含有する抵抗
体ペーストを印刷しその両端部に下層ニッケル−上層銅
ペーストで接続し中性雰囲気中で焼成して得られるチッ
プ抵抗器。
13. A resistive paste containing at least a copper-nickel alloy powder is printed in a concave portion of a ceramic base having concave portions on both surfaces, connected to both ends with a lower nickel-upper copper paste and fired in a neutral atmosphere. Chip resistor obtained by:
JP10267892A 1998-09-22 1998-09-22 Chip resistor Pending JP2000100601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10267892A JP2000100601A (en) 1998-09-22 1998-09-22 Chip resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10267892A JP2000100601A (en) 1998-09-22 1998-09-22 Chip resistor

Publications (1)

Publication Number Publication Date
JP2000100601A true JP2000100601A (en) 2000-04-07

Family

ID=17451082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10267892A Pending JP2000100601A (en) 1998-09-22 1998-09-22 Chip resistor

Country Status (1)

Country Link
JP (1) JP2000100601A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044809A1 (en) * 2001-11-15 2003-05-30 Vishay Intertechnology, Inc. Surge current chip resistor
KR20130070682A (en) * 2011-12-19 2013-06-28 삼성전기주식회사 Chip resistor and fabricating method thereof
US9793232B1 (en) 2016-01-05 2017-10-17 International Business Machines Corporation All intermetallic compound with stand off feature and method to make
CN107705952A (en) * 2017-09-25 2018-02-16 江苏时瑞电子科技有限公司 A kind of preparation method of thermistor CuO GO self assembly hydrogen reducing combination electrodes

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044809A1 (en) * 2001-11-15 2003-05-30 Vishay Intertechnology, Inc. Surge current chip resistor
GB2396749A (en) * 2001-11-15 2004-06-30 Vishay Intertechnology Inc Surge current chip resistor
GB2396749B (en) * 2001-11-15 2005-09-21 Vishay Intertechnology Inc Surge current chip resistor
KR20130070682A (en) * 2011-12-19 2013-06-28 삼성전기주식회사 Chip resistor and fabricating method thereof
KR101892750B1 (en) * 2011-12-19 2018-08-29 삼성전기주식회사 chip resistor and fabricating method thereof
US9793232B1 (en) 2016-01-05 2017-10-17 International Business Machines Corporation All intermetallic compound with stand off feature and method to make
CN107705952A (en) * 2017-09-25 2018-02-16 江苏时瑞电子科技有限公司 A kind of preparation method of thermistor CuO GO self assembly hydrogen reducing combination electrodes
CN107705952B (en) * 2017-09-25 2019-06-14 江苏时恒电子科技有限公司 A kind of preparation method of thermistor CuO-GO self assembly hydrogen reducing combination electrode

Similar Documents

Publication Publication Date Title
EP0829886B1 (en) Chip resistor and a method of producing the same
JPS62265796A (en) Ceramic multilayer interconnection board and manufacture of the same
EP1734788B1 (en) Ceramic-metal assembly and ceramic heater
JP4431052B2 (en) Resistor manufacturing method
JPH03148813A (en) Formation of conducting terminal to ceramic parts
JP2000100601A (en) Chip resistor
JP2002026528A (en) Conductive paste and multilayer ceramic substrate
KR20080010894A (en) Ceramic component and method for the same
JPS6342879B2 (en)
JP2000182883A (en) Manufacture of laminated ceramic electronic component
JP3642100B2 (en) Chip resistor and manufacturing method thereof
JP3915188B2 (en) Chip resistor and manufacturing method thereof
US11551872B2 (en) Multilayer ceramic capacitor
US6690558B1 (en) Power resistor and method for making
JP3791085B2 (en) Resistor paste, resistor using the same, and manufacturing method thereof
JP3740374B2 (en) Multiple wiring board
JP2001057301A (en) Resistor and its manufacture
JP2816742B2 (en) Circuit board
JP2005285957A (en) Conductive paste and ceramic multilayered circuit board using the same
KR20180072489A (en) Methods of Fabricating Chip Resistors Using Aluminum Terminal Electrodes
JP2000106301A (en) Chip resistor and its manufacture
TW201837927A (en) Method for manufacturing high-conductive base metal electrode or alloy low-ohm chip resistor capable of reducing manufacturing cost of the base metal or alloy and dramatically improving the efficiency of technical level by combining the manufacturing methods of thick film printing
JP3353037B2 (en) Chip resistor
JP3685623B2 (en) Ceramic heater
JP2001291604A (en) Chip-type laminated thermistor and its manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment

Free format text: PAYMENT UNTIL: 20080222

Year of fee payment: 6

FPAY Renewal fee payment

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100222

LAPS Cancellation because of no payment of annual fees