JP2006267078A - Optical measuring instrument - Google Patents

Optical measuring instrument Download PDF

Info

Publication number
JP2006267078A
JP2006267078A JP2005118884A JP2005118884A JP2006267078A JP 2006267078 A JP2006267078 A JP 2006267078A JP 2005118884 A JP2005118884 A JP 2005118884A JP 2005118884 A JP2005118884 A JP 2005118884A JP 2006267078 A JP2006267078 A JP 2006267078A
Authority
JP
Japan
Prior art keywords
cos
region
polarizer array
polarizer
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005118884A
Other languages
Japanese (ja)
Inventor
Tsutomu Aoyama
勉 青山
Naoki Hashimoto
直樹 橋本
Hiroshi Honma
洋 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Photonic Lattice Inc
Original Assignee
Japan Science and Technology Agency
Photonic Lattice Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Photonic Lattice Inc filed Critical Japan Science and Technology Agency
Priority to JP2005118884A priority Critical patent/JP2006267078A/en
Publication of JP2006267078A publication Critical patent/JP2006267078A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polarization monitor using a reduced number of inexpensive components, capable of attaining sufficient precision by a simple manufacturing process, and capable manufacturing easily the polarization monitor of high performance. <P>SOLUTION: In this polarization monitor, a parallel beam is divided into four beams by a prism, and the respective beams get incident into three or four polarizer areas having different axial azimuths formed on a sheet of substrate. The present invention uses the polarization monitor wherein a transmittance of the beam in any of the polarizer areas gets minimum or 1/2 of maximum, when the transmittance of the beam in different one of the polarizer areas gets maximum, and wherein relative angles of transmitted polarization directions in perpendicular incidence into the respective areas of a polarization array are shifted by a significant level from 0° or integer times of π/4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光ファイバー通信、光計測、光制御などの分野で用いられる光学測定器のうち,特に偏波状態を測定する光学測定器に関する。  The present invention relates to an optical measuring instrument for measuring a polarization state among optical measuring instruments used in fields such as optical fiber communication, optical measurement, and optical control.

光のパラメータとしては,波長,光パワー,偏波状態がある.そのうち通信では波長はITUなどで定められた波長を用い,パワーの大小によって信号伝達を行う.一方偏波状態は光信号波形の乱れの原因となる偏波モード分散の制御(補償)のためにモニタされることが多い.また一般的に偏波状態を測定する測定器は光パワーの測定器を兼ねるため,波長が固定されている環境下では,偏波モニタと呼ばれる光学測定器を用いれば光信号の状態を特定できる.このことから光学測定器として偏波モニタが重要であることがわかる  Optical parameters include wavelength, optical power, and polarization state. In communication, the wavelength is determined by ITU, etc., and the signal is transmitted according to the power level. On the other hand, the polarization state is often monitored for control (compensation) of polarization mode dispersion that causes disturbance of the optical signal waveform. In general, a measuring instrument that measures the polarization state also serves as an optical power measuring instrument. Therefore, in an environment where the wavelength is fixed, the state of the optical signal can be specified using an optical measuring instrument called a polarization monitor. . This shows that polarization monitoring is important as an optical measuring instrument.

従来の偏波モニタとして知られる構造は多いが、反射光を用いる構成は反射時の偏波状態変化、偏波依存性損失を伴うため正確な測定には適さない。また反射光を用いない構成としては、同一のビームを軸方位の異なる偏光子アレイ(ビームの一部は波長板も透過する)に入射する方法として特許文献1記載の構成、特許文献2記載の構成があげられる。またビームをプリズムで4分割し、その4分割されたビームを各々軸方位の異なる偏光子、偏光子と波長板の組み合わせ、または何も無い経路を経てフォトダイオード(以下PDと呼称する)に受光させ、各々のPDの受光強度から偏波状態を算出する特許文献3記載の構成が知られている。
アメリカ合衆国特許第4158506号 国際特許広報WO2004008196号広報 日本国特許第3103954号 日本国特許第3325825号 橋本 直樹,青山 勉,佐藤 尚,石川 理,川上 彰二郎,フォトニック結晶偏波モニタ,2004年秋季第65回応用物理学会学術講演会,2a−ZC−5,2004年9月2日. 谷田貝豊彦著「応用光学 光計測入門」,pp42−45,丸善株式会社,平成17年2月15日
Although there are many structures known as a conventional polarization monitor, a configuration using reflected light is not suitable for accurate measurement because it involves a change in polarization state and polarization-dependent loss during reflection. Further, as a configuration not using reflected light, a configuration described in Patent Document 1 and a method described in Patent Document 2 are methods in which the same beam is incident on a polarizer array having different axial directions (a part of the beam also passes through the wave plate). The configuration can be raised. In addition, the beam is divided into four by a prism, and each of the four divided beams is received by a photodiode (hereinafter referred to as a PD) through a polarizer having a different axial orientation, a combination of a polarizer and a wave plate, or a blank path. In addition, a configuration described in Patent Document 3 that calculates the polarization state from the received light intensity of each PD is known.
United States Patent No. 4,158,506 International patent information WO2004008196 Japanese Patent No. 3103954 Japanese Patent No. 3325825 Naoki Hashimoto, Tsutomu Aoyama, Nao Sato, Osamu Ishikawa, Shojiro Kawakami, Photonic Crystal Polarization Monitor, The 65th JSAP Autumn Meeting, 2a-ZC-5, September 2, 2004. Toyohiko Yadagai “Introduction to Applied Optical Measurement”, pp42-45, Maruzen Co., Ltd., February 15, 2005

特許文献1記載の構成では光受光部が6分割されているが、特許文献2、非特許文献1にも記載されるようにストークスパラメータ及びDOPの測定に必要なデータは4つであり過剰である。  In the configuration described in Patent Document 1, the light receiving unit is divided into six parts. However, as described in Patent Document 2 and Non-Patent Document 1, there are four pieces of data necessary for measuring Stokes parameters and DOP, which is excessive. is there.

特許文献2記載の構成では、偏光子の個別の軸調整が不要である点は優れているが、単体の受光素子に比べ高価な一体化された受光素子アレイを用いる必要があり、かつ4つの受光部の境界にビームの中心が入射するため、損失が大きいという問題がある。  The configuration described in Patent Document 2 is excellent in that the individual axis adjustment of the polarizer is unnecessary, but it is necessary to use an expensive integrated light receiving element array as compared with a single light receiving element, and four There is a problem that the loss is large because the center of the beam is incident on the boundary of the light receiving unit.

また特許文献3記載の構成では、4枚のくさびを接合して1つのプリズムを形成しているが、このようなプリズムは組み立てが困難で高価になりやすい。さらに前記特許文献1から特許文献3記載のいずれの偏波モニタにおいても偏光子間の角度は正確にπ/4(rad)の整数倍の関係を要求しているが、このような場合偏光子の個別の軸調整が必要であり、実用に適する偏光度(DOP)精度を満たすためには必要な軸あわせの精度が0.05°以下であることを考慮すれば現実的でないことがわかる。  In the configuration described in Patent Document 3, four wedges are joined to form one prism, but such a prism is difficult to assemble and tends to be expensive. Further, in any of the polarization monitors described in Patent Document 1 to Patent Document 3, the angle between the polarizers is required to be an exact integral multiple of π / 4 (rad). In order to satisfy the degree of polarization (DOP) suitable for practical use, it is not practical considering that the required alignment accuracy is 0.05 ° or less.

以上を鑑み、本発明では安価かつ少数の部品を用い、簡略な製造工程で十分な精度を得られ、高性能な偏波モニタを容易に作製できる偏波モニタの実現を目的とする。  In view of the above, an object of the present invention is to realize a polarization monitor that is inexpensive and uses a small number of components, can obtain sufficient accuracy with a simple manufacturing process, and can easily produce a high-performance polarization monitor.

本発明では、平行ビーム源、少なくとも1つのプリズムと少なくとも1枚の1/4波長板、同一の基板上に形成された偏光子アレイを含む偏波モニタであって、前記1つまたは2つのプリズムで平行ビームが4分割され、第1の分岐光路に1/4波長板と偏光子アレイの第1の領域が配置され、第2、第3、第4の光路のはそれぞれ偏光子アレイの第2、第3、第4の領域が配置され、前記偏光子アレイの各領域に対するビームの入射方向がすべて、または少なくとも2つの領域に入射するビームの入射方向がそれぞれ異なる方向であり、かついずれかの領域に対するビームの透過率が最大になるとき、異なるいずれかの領域のビームの透過率が最小または最大値の約1/2になり、前記偏光子アレイの各領域の垂直入射における透過偏光方向の相対的な角度が0度またはπ/4の整数倍から有意な程度ずれている偏波モニタを用いる。  According to the present invention, there is provided a polarization monitor including a parallel beam source, at least one prism and at least one quarter-wave plate, and a polarizer array formed on the same substrate, the one or two prisms. , The parallel beam is divided into four, the quarter wavelength plate and the first region of the polarizer array are arranged in the first branch optical path, and the second, third, and fourth optical paths are respectively in the polarizer array. The second, third, and fourth regions are arranged, and the incident directions of the beams with respect to the respective regions of the polarizer array are all different, or the incident directions of the beams incident on at least two regions are different from each other, and either When the transmission of the beam to the region of the region becomes maximum, the transmittance of the beam of any one of the different regions becomes about half of the minimum or maximum value, and the transmission polarization method at normal incidence of each region of the polarizer array Relative angular uses a polarization monitor are shifted a significant extent from an integral multiple of 0 degrees or [pi / 4.

かつ偏光子の軸の角度αn’はビームの入射角θnに対して、数1の関係を満たす偏光子アレイを用いる。  The polarizer axis angle αn ′ is a polarizer array that satisfies the relationship of Equation 1 with respect to the incident angle θn of the beam.

さらに前記偏光子アレイの各領域に対する入射角θの大きさが同一であり、かつ偏光子アレイの各領域の軸方位の間の角度が数2、数3、数4、数5の組み合わせを満たす偏光子アレイを用いることも有効である。  Further, the incident angle θ with respect to each region of the polarizer array is the same, and the angle between the axial orientations of each region of the polarizer array satisfies the combinations of Equations 2, 3, 4, and 5. It is also effective to use a polarizer array.

さらに前記偏光子アレイの各領域の軸方位の間の角度が、数6、数7、数8を満たす偏光子アレイを用いることが有効である。  Furthermore, it is effective to use a polarizer array in which the angle between the axial orientations of the respective regions of the polarizer array satisfies Equations 6, 7, and 8.

また本発明では、平行ビ−ムを互いに平行ではない5つの面を光パスとする四角錐型プリズムで4分割し、前記偏光子アレイの境界線に対して対称の位置にビームを入射させる。または2つの互いに平行ではない3つの面を光パスとする5角柱型プリズムを用いて平行ビームを4分割し、前記偏光子アレイの境界線に対して対称の位置にビームを入射させる。  Further, in the present invention, the parallel beam is divided into four by a quadrangular pyramid prism having five surfaces that are not parallel to each other as an optical path, and the beam is incident at a position symmetrical to the boundary line of the polarizer array. Alternatively, a parallel beam is divided into four using a pentagonal prism having two non-parallel three surfaces as an optical path, and the beam is incident on a position symmetrical to the boundary line of the polarizer array.

(実施例1)Example 1

本発明の第1の実施形態を図1から図3を用いて説明する。図1は本発明の第1の実施形態の構成を示す斜視図である。光ファイバ101、コリメートレンズ102、5角柱型プリズム103、5角柱型プリズム104、1/4波長板105、フォトニック結晶偏光子アレイ106、レンズ付きPD107、レンズ付きPD108、レンズ付きPD109、レンズ付きPD110からなる。  A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a perspective view showing the configuration of the first embodiment of the present invention. Optical fiber 101, collimating lens 102, pentagonal prism 103, pentagonal prism 104, quarter-wave plate 105, photonic crystal polarizer array 106, PD107 with lens, PD108 with lens, PD109 with lens, PD110 with lens Consists of.

図2は図1に光ビームの進行を加えた図である。光ファイバ101から出射した光はコリメートレンズ102で平行ビームに変換され、ビームの中心が5角柱型プリズム103の頂点に重なるよう入射し、ビームは2分割され斜め方向に出射する。ついで2つのビームの中心が5角柱型プリズム104の頂点に重なるよう入射し、個々のビームは2分割され斜め方向に出射し、併せて4分割される。その後ビーム201のみ1/4波長板105を透過したうえで、4つのビーム201〜204はフォトニック結晶偏光子アレイ106に入射する。ついで、入射偏波状態によって透過率が異なるものの各々PD107〜110に入射する。4つのPD107〜110の受光光強度を解析することで入射偏波状態を知ることができる。なお入射偏波状態のパラメータ(ストークスパラメータ)については、一般的な事柄について非特許文献1、特に偏波モニタに関する事項については非特許文献2に説明されている。  FIG. 2 is a diagram in which the progress of the light beam is added to FIG. The light emitted from the optical fiber 101 is converted into a parallel beam by the collimator lens 102, is incident so that the center of the beam overlaps the apex of the pentagonal prism 103, and the beam is divided into two and emitted in an oblique direction. Next, the two beams are incident so that the centers of the two beams overlap with the apex of the pentagonal prism 104, and the individual beams are divided into two, emitted in an oblique direction, and divided into four. Thereafter, only the beam 201 is transmitted through the quarter-wave plate 105, and the four beams 201 to 204 are incident on the photonic crystal polarizer array 106. Next, although the transmittance varies depending on the incident polarization state, the light enters the PDs 107 to 110 respectively. The incident polarization state can be known by analyzing the received light intensity of the four PDs 107 to 110. Regarding the incident polarization state parameter (Stokes parameter), non-patent document 1 describes general matters, and in particular, non-patent document 2 describes matters relating to the polarization monitor.

次にフォトニック結晶偏光子アレイ106の軸方向、透過偏光方向について説明する。図3は用いたフォトニック結晶偏光子アレイの模式図で、領域301は軸方位が0.21°、領域302は軸方位が−89.79°、領域303軸方位が45°、領域304は軸方位が−45°である。なお入射角θの大きさは各々7°である。各領域の軸方位の相対的な角度はπ/4の整数倍から有意な程度はずれているものの、光ファイバ101からの出力光の偏波状態が領域303に対して透過率が最大になる偏波状態であるとき,領域304の透過率は最小,領域302の透過率は最大値の1/2,領域301の透過率は最大値の1/2となることが特徴である。(各ビームが感じる透過偏光方向の相対的な角度は、π/4の整数倍になっている)  Next, the axial direction and transmission polarization direction of the photonic crystal polarizer array 106 will be described. FIG. 3 is a schematic diagram of the photonic crystal polarizer array used. Region 301 has an axial orientation of 0.21 °, region 302 has an axial orientation of −89.79 °, region 303 has an axial orientation of 45 °, and region 304 has The axial direction is −45 °. Each incident angle θ is 7 °. Although the relative angle of the axial direction of each region is significantly different from an integer multiple of π / 4, the polarization state of the output light from the optical fiber 101 is a deviation that maximizes the transmittance with respect to the region 303. When in a wave state, the transmittance of the region 304 is minimum, the transmittance of the region 302 is 1/2 of the maximum value, and the transmittance of the region 301 is 1/2 of the maximum value. (The relative angle of the transmitted polarization direction perceived by each beam is an integral multiple of π / 4)

ついで,より一般的な説明を行う。本実施例では4つのビームは偏光子アレイの各領域に対して各々異なる方向で各々同一の入射角にて入射する(4方向に4分岐)が、ビームの入射方向と偏光子の軸方位、実際に透過する偏光方向の間には、極角θn、方位角φn、偏光子の軸方位αn’に対して、透過偏光方向数9は関係を持つことから、数1を満たす。  Next, a more general explanation is given. In the present embodiment, the four beams are incident on the respective regions of the polarizer array in different directions at the same incident angle (four branches in four directions), but the incident direction of the beam and the axial direction of the polarizer, Since the transmission polarization direction number 9 is related to the polar angle θn, the azimuth angle φn, and the polarizer axis direction αn ′ among the polarization directions that are actually transmitted, Expression 1 is satisfied.

よって各々の光経路の透過偏光方向αn’の間の角度が0、π/4、π/2のいずれかを満たす必要がある場合であって、さらに本実施例のように極角が共通、かつ方位角が90度おきと決まっている場合には、偏光子アレイの各領域の軸方位の角度は数2、数3、数4、数5の組み合わせを満たすことが必要となるが本実施例の領域301〜304は十分な精度を持って満たしているといえる。なお本構成において偏光子アレイの各領域の番号付けは便宜的なものであり、偏光子アレイの各領域、たとえば領域302と領域304の配置を入れ替えても何ら問題がないことは当業者には容易に理解できるであろう。  Therefore, when the angle between the transmission polarization directions αn ′ of each optical path needs to satisfy any of 0, π / 4, and π / 2, and the polar angle is common as in this embodiment, If the azimuth angle is determined every 90 degrees, the axial azimuth angle of each region of the polarizer array needs to satisfy the combinations of Equation 2, Equation 3, Equation 4, and Equation 5. It can be said that the example areas 301 to 304 are filled with sufficient accuracy. In this configuration, the numbering of each region of the polarizer array is for convenience, and it will be appreciated by those skilled in the art that there is no problem even if the regions of the polarizer array, for example, the regions 302 and 304 are replaced. It will be easy to understand.

次にフォトニック結晶偏光子アレイ106の製造方法について説明する。フォトニック結晶アレイ106は特許文献2及び特許文献4に基づいて、EB描画とエッチングを組み合わせたプロセスで凹凸を形成した石英基板の上に水素化アモルファスシリコンと2酸化珪素(以下SiO2)を交互に14周期成膜した自己クローニング型2次元フォトニック結晶であり、動作波長は通信波長向けで1.55μmである。面内の0.5μmで各領域で共通で、積層周期は0.63μm、水素化アモルファスシリコンとSiO2の膜厚比は4:6である。水素化アモルファスシリコンとSiO2による周期多層膜の他に最上層と最下層にNb2O5とSiO2による反射防止膜が積層されている。消光比は50dB以上、挿入損失は0.5dB以下である。  Next, a method for manufacturing the photonic crystal polarizer array 106 will be described. Based on Patent Document 2 and Patent Document 4, the photonic crystal array 106 is formed by alternately forming amorphous silicon hydride and silicon dioxide (hereinafter referred to as SiO2) on a quartz substrate on which irregularities are formed by a process combining EB drawing and etching. It is a self-cloning type two-dimensional photonic crystal deposited in 14 cycles, and its operating wavelength is 1.55 μm for the communication wavelength. The in-plane 0.5 μm is common to each region, the stacking cycle is 0.63 μm, and the film thickness ratio between hydrogenated amorphous silicon and SiO 2 is 4: 6. In addition to the periodic multilayer film made of hydrogenated amorphous silicon and SiO2, antireflection films made of Nb2O5 and SiO2 are laminated on the uppermost layer and the lowermost layer. The extinction ratio is 50 dB or more, and the insertion loss is 0.5 dB or less.

次に光線とその他の光学部品の設計について説明する。  Next, the design of light beams and other optical components will be described.

まず5角柱型プリズム103、104の頂角は150°で中心にビームを入射したときの分離角は約14°である。本実施例では2つの5角柱型プリズムを用いているが、同様の作用を持つ四角錐(ピラミッド)型プリズムに比べ製造が容易であり、結果として安価である。ただし全体寸法が大きくなるデメリットも同時に有するが、本実施例のように2つの5角柱型プリズムを使用する程度であれば実用上問題ない。またビーム径はプリズムの稜線での散乱等による損失と全体の寸法を考慮して780μmとした。またPDは各ビームに対して1つずつ個別のPDを用いているが、前述の通り、4つのPDが一体化されたものに比べ位置あわせの許容精度が大きい。また各ビームはPDに対して斜め入射しているが、反射戻り光を排除するのに有効である。  First, the apex angle of the pentagonal prisms 103 and 104 is 150 °, and the separation angle when the beam is incident on the center is about 14 °. In this embodiment, two pentagonal prisms are used, but they are easier to manufacture and cheaper as a result than a pyramid prism having the same function. However, it also has a demerit that increases the overall size, but there is no practical problem as long as two pentagonal prisms are used as in this embodiment. The beam diameter was set to 780 μm in consideration of the loss due to scattering at the ridge line of the prism and the overall dimensions. In addition, one PD is used for each beam for each beam. However, as described above, the tolerance for alignment is larger than that in which four PDs are integrated. Each beam is obliquely incident on the PD, which is effective for eliminating reflected return light.

5角柱プリズムに求められる工作精度についてさらに説明する.5角柱型プリズム103、104の頂角の公差を±0.2°以内した場合,フォトニック結晶偏光子アレイ106の各領域に対する入射角は±0.1°の範囲でばらつくことになる.この程度の入射角のばらつきはDOP精度に影響を与えない.  The work accuracy required for the pentagonal prism is further explained. When the tolerance of the apex angles of the pentagonal prisms 103 and 104 is within ± 0.2 °, the incident angle with respect to each region of the photonic crystal polarizer array 106 varies within a range of ± 0.1 °. This variation in incident angle does not affect DOP accuracy.

本実施形態では安価な5角柱型プリズムを用いてビームを斜め方向に4分割し、偏光子アレイの軸方位をビームの入射方向に合わせ、通常の角度関係からあえてずらすことで、精度を犠牲にすることなく安価な偏波モニタが実現できる。さらに偏光子の軸あわせが不要であるため製造コストも小さい。なお波長板の軸あわせについては機構精度程度のずれ量ならばキャリブレーションで補償できるため、こちらの軸あわせの必要も特にない。さらに各5角柱型プリズム、レンズ付きPDの位置あわせについてもキャリブレーションによる補償が有効である上に十分なトレランスを確保していることから容易である。本実施例ではDOP精度1%以下を実現できる。  In this embodiment, an inexpensive pentagonal prism is used to divide the beam into four diagonal directions, align the axis direction of the polarizer array with the incident direction of the beam, and deviate from the normal angular relationship, sacrificing accuracy. An inexpensive polarization monitor can be realized without doing so. Further, since the alignment of the polarizer is unnecessary, the manufacturing cost is low. Regarding the alignment of the wave plate, since it can be compensated by calibration if the deviation is about the mechanical accuracy, there is no need for this alignment. Further, the alignment of each pentagonal prism and lens-equipped PD is easy because compensation by calibration is effective and sufficient tolerance is ensured. In this embodiment, a DOP accuracy of 1% or less can be realized.

なお、図中には記載しないが、本実施例を構成する部品を支持するホルダやケースは当然に必要であり、部品、ホルダ、ケースは各々接着剤、半田、YAG溶接などで接合される。  Although not shown in the figure, a holder and a case for supporting the parts constituting this embodiment are naturally necessary, and the parts, the holder, and the case are joined by adhesive, solder, YAG welding, and the like.

(実施例2)(Example 2)

本発明の第2の実施形態を図4及び図5を用いて説明する。図4は本発明の第2の実施形態の構成を示す斜視図である。光ファイバ401、コリメートレンズ402、5角柱型プリズム403、5角柱型プリズム404、5角柱型プリズム405、1/4波長板406、フォトニック結晶偏光子アレイ407、PD408〜411からなる。光ファイバ401、コリメートレンズ402、5角柱型プリズム403、5角柱型プリズム404は実施例1記載のものと共通で、さらに5角柱型プリズム404、5角柱型プリズム405は同一のものを用いる。  A second embodiment of the present invention will be described with reference to FIGS. FIG. 4 is a perspective view showing the configuration of the second embodiment of the present invention. The optical fiber 401, the collimating lens 402, the pentagonal prism 403, the pentagonal prism 404, the pentagonal prism 405, the quarter wavelength plate 406, the photonic crystal polarizer array 407, and PDs 408 to 411 are included. The optical fiber 401, the collimating lens 402, the pentagonal prism 403, and the pentagonal prism 404 are the same as those described in the first embodiment, and the pentagonal prism 404 and the pentagonal prism 405 are the same.

本構成では5角柱型プリズム405を透過したビームはy方向の距離は一定になるのでPD408とPD411の間隔を実施例1に比べ小さくできる。本実施例は幅(x軸方向)についてはサイズ制限が少なく、高さ(y方向)についてのサイズ制限が厳しい用途に適する。  In this configuration, since the beam transmitted through the pentagonal prism 405 has a constant distance in the y direction, the distance between the PD 408 and the PD 411 can be made smaller than in the first embodiment. This embodiment is suitable for applications in which there are few size restrictions on the width (x-axis direction) and severe size restrictions on the height (y-direction).

次にフォトニック結晶偏光子アレイ407の軸方向、透過偏光方向について説明する。図5は用いたフォトニック結晶偏光子アレイの模式図で、領域501は軸方位が0°、領域502は軸方位が0°、領域503軸方位が45.21°、領域504は軸方位が−44.79°である。なお入射角θの大きさは各々7°である。各領域の軸方位の相対的な角度はπ/4の整数倍から有意な程度はずれているものの、各ビームが感じる透過偏光方向は、π/4の整数倍になっていることが特徴である。  Next, the axial direction and transmission polarization direction of the photonic crystal polarizer array 407 will be described. FIG. 5 is a schematic diagram of the photonic crystal polarizer array used. The region 501 has an axial orientation of 0 °, the region 502 has an axial orientation of 0 °, the region 503 has an axial orientation of 45.21 °, and the region 504 has an axial orientation. -44.79 °. Each incident angle θ is 7 °. Although the relative angle of the axial direction of each region deviates from an integer multiple of π / 4, the transmitted polarization direction perceived by each beam is characterized by an integer multiple of π / 4. .

本実施例では4つのビームは偏光子アレイの各領域に対して2つづつのビームがyz平面に対して対称な異なる方向で各々同一の入射角にて入射する(2方向に4分岐)が、ビームの入射方向と偏光子の軸方位、実際に透過する偏光方向の間には、極角θn、方位角φn、偏光子の軸方位αn’に対して、透過偏光方向αnは数9の関係を持ち、各々の光経路の透過偏光方向αn’の間の角度が0、π/4、π/2のいずれかを満たす必要があることから、偏光子アレイの各領域の軸方位の間の角度が数6、数7、数8を満たす必要がある。本実施例の領域501〜504は十分な精度を持って満たしているといえる。  In this embodiment, four beams are incident on each region of the polarizer array in two different directions symmetrical with respect to the yz plane at the same incident angle (four branches in two directions). Between the incident direction of the beam and the axial direction of the polarizer and the polarization direction of the actual transmission, the transmission polarization direction αn is expressed by the following equation (9) with respect to the polar angle θn, the azimuth angle φn, and the axial direction αn ′ of the polarizer. And the angle between the transmission polarization directions αn ′ of each optical path needs to satisfy one of 0, π / 4, and π / 2. It is necessary that the angle satisfies the expressions 6, 7, and 8. It can be said that the regions 501 to 504 of this embodiment are filled with sufficient accuracy.

本実施例の従来例に対する利点及び特性は実施例1とほぼ同じであるが、部品点数分コストが上昇している代わりに必要とされるサイズが減少している。  The advantages and characteristics of the present embodiment over the conventional example are almost the same as those of the first embodiment, but the required size is reduced instead of increasing the cost by the number of parts.

(実施例3)Example 3

本発明の第3の実施形態を図6から図8を用いて説明する。図6は本発明の第3の実施形態の構成を示す斜視図である。光ファイバ″601、コリメートレンズ″602、四角錐型プリズム″603、1/4波長板″604、フォトニック結晶偏光子アレイ605、四角錐型プリズム″606、PD607〜610からなる。  A third embodiment of the present invention will be described with reference to FIGS. FIG. 6 is a perspective view showing the configuration of the third embodiment of the present invention. An optical fiber 601, a collimating lens 602, a quadrangular pyramid prism 603, a quarter wavelength plate 604, a photonic crystal polarizer array 605, a quadrangular pyramid prism 606, and PDs 607 to 610.

図7は図6に光路を加えた斜視図である。光ファイバ601から出射した光はコリメートレンズ602で平行光に変換され、ビームの中心が四角錐型プリズム603の頂点に重なるよう入射し、ビームは4分割され斜め方向に出射する。ついで四角錐型プリズム603に分割されたビームは、図7中のビーム601のみ1/4波長板604を透過したうえで、フォトニック結晶偏光子アレイ605に入射する。  FIG. 7 is a perspective view in which an optical path is added to FIG. The light emitted from the optical fiber 601 is converted into parallel light by the collimator lens 602, is incident so that the center of the beam overlaps the apex of the quadrangular pyramid prism 603, and the beam is divided into four and emitted in an oblique direction. Next, the beam divided into the quadrangular pyramid prism 603 is incident on the photonic crystal polarizer array 605 after transmitting only the beam 601 in FIG.

ついで、各々四角錐型プリズム606に入射し、4つのビームの進行方向が同一になって入射偏波状態によって透過率が異なるものの各々PD607〜610に入射する。先に述べた4つのPD607〜610の受光光強度を解析することで入射偏波状態を知ることができる。  Next, the light beams are incident on the quadrangular pyramid prism 606, and the traveling directions of the four beams are the same, and the transmittance varies depending on the incident polarization state, but the light beams are incident on the PDs 607 to 610. The incident polarization state can be known by analyzing the received light intensity of the four PDs 607 to 610 described above.

図7は図5で用いたフォトニック結晶偏光子アレイ605の正面模式図で、第1領域801は軸方位が90°、第2領域802は軸方位が−44.79°、第3領域803軸方位が90°で第1領域801と同じ、第4領域704は軸方位が44.21°であり4つの領域に分割されている。フォトニック結晶偏光子アレイ605内の各領域の軸方位については実施例1と同様に決定される。波長板を透過したビームが入射するのは第1領域801である。このフォトニック結晶偏光子アレイ605はEB描画とエッチングを組み合わせたプロセスで凹凸を形成した石英基板の上に水素化アモルファスシリコンとSiO2を交互に成膜した自己クローニング型2次元フォトニック結晶からなる。  FIG. 7 is a schematic front view of the photonic crystal polarizer array 605 used in FIG. 5. The first region 801 has an axial orientation of 90 °, the second region 802 has an axial orientation of −44.79 °, and the third region 803. The fourth region 704 has an axial orientation of 90 ° and is the same as the first region 801. The fourth region 704 has an axial orientation of 44.21 ° and is divided into four regions. The axial orientation of each region in the photonic crystal polarizer array 605 is determined in the same manner as in the first embodiment. It is in the first region 801 that the beam transmitted through the wave plate enters. This photonic crystal polarizer array 605 is composed of a self-cloning type two-dimensional photonic crystal in which hydrogenated amorphous silicon and SiO 2 are alternately formed on a quartz substrate having irregularities formed by a process combining EB drawing and etching.

次に光線の設計について説明する。まず四角錐型プリズム603、606の頂角は150°で中心にビームを入射したときの分離角は上下方向、左右方向ともに約14°(z軸に対して対称に7°ずつ)である。またビーム径はプリズムの稜線でのけられによる損失と全体の寸法を考慮して780μmとした。この場合ケラレによる損失は0.3dB以下に抑えられている。またPDは各ビームに対して1つずつ個別のPDを用いているが、入射ビームに対して各々2°程度傾けて配置し、PDとフォトニック結晶偏光子アレイ間の多重反射並びにPD反射光が他のPDに入射することを防止することも有効である。また反射光を遮断する筒をPDの周辺に付け加えることも有効である。  Next, the design of the light beam will be described. First, the apex angles of the quadrangular pyramid prisms 603 and 606 are 150 °, and the separation angle when the beam is incident on the center is about 14 ° in both the vertical and horizontal directions (7 ° symmetrically with respect to the z axis). The beam diameter was set to 780 μm in consideration of the loss due to the ridgeline of the prism and the overall dimensions. In this case, the loss due to vignetting is suppressed to 0.3 dB or less. In addition, although one PD is used for each beam, the PD is arranged with an inclination of about 2 ° with respect to the incident beam, and multiple reflections between the PD and the photonic crystal polarizer array and the PD reflected light are arranged. It is also effective to prevent the light from entering other PDs. It is also effective to add a cylinder that blocks the reflected light to the periphery of the PD.

本実施例の従来例に対する利点及び特性は実施例1とほぼ同じであるが、部品コストが上昇している代わりに必要とされるサイズが減少している。本実施形態は第1の実施形態に比べ、x方向(幅)、y方向(高さ)の寸法が小さくなる利点がある。  The advantages and characteristics of the present embodiment over the conventional example are almost the same as those of the first embodiment, but the required size is reduced instead of increasing the component cost. The present embodiment has an advantage that the dimensions in the x direction (width) and the y direction (height) are smaller than those in the first embodiment.

以上に示したように本発明によれば、高性能な偏波モニタを容易に作製できる。さらに安価な部品を用い、かつ部品点数も少ないこと、偏光子の軸あわせが不要であることから安価でもある。また以上幾つかの実施例によって本発明を説明してきたが、本発明は、その請求の範囲内において種々に変形可能であることは、当業者にとっては明らかなことである。  As described above, according to the present invention, a high-performance polarization monitor can be easily manufactured. Furthermore, it is inexpensive because it uses inexpensive parts, has a small number of parts, and does not require polarizer alignment. Although the present invention has been described with reference to several embodiments, it will be apparent to those skilled in the art that the present invention can be variously modified within the scope of the claims.

第1の実施形態の構成を示す斜視図The perspective view which shows the structure of 1st Embodiment. 図1に光ビームを加えた斜視図1 is a perspective view in which a light beam is added to FIG. フォトニック結晶偏光子アレイ106の正面図Front view of photonic crystal polarizer array 106 第2の実施形態の構成を示す斜視図The perspective view which shows the structure of 2nd Embodiment. フォトニック結晶偏光子アレイ407の正面図Front view of photonic crystal polarizer array 407 図3の実施形態の構成を示す斜視図The perspective view which shows the structure of embodiment of FIG. 図5に光ビームを加えた斜視図FIG. 5 is a perspective view in which a light beam is added. フォトニック結晶アレイ605の正面図Front view of photonic crystal array 605

Figure 2006267078
Figure 2006267078
Figure 2006267078
Figure 2006267078
Figure 2006267078
Figure 2006267078
Figure 2006267078
Figure 2006267078
Figure 2006267078
Figure 2006267078
Figure 2006267078
Figure 2006267078
Figure 2006267078
Figure 2006267078
Figure 2006267078
Figure 2006267078
Figure 2006267078
Figure 2006267078

符号の説明Explanation of symbols

101 光ファイバ
102 コリメートレンズ゛
103 角柱型プリズム
104 5角柱型プリズム104
105 1/4波長板
106 フォトニック結晶偏光子アレイ
107〜110 レンズ付きPD
201〜204 ビーム
301〜304 フォトニック結晶偏光子アレイの領域
401 光ファイバ
402 コリメートレンズ
403 5角柱型プリズム
404 5角柱型プリズム
405 5角柱型プリズム
406 1/4波長板
407 フォトニック結晶偏光子アレイ
408〜411 レンズ付きPD
501〜504 フォトニック結晶偏光子アレイの領域
601 光ファイバ
602 コリメートレンズ
603 四角錐型プリズム
604 1/4波長板
605 フォトニック結晶偏光子アレイ
606 四角錐型プリズム
607〜610 レンズ付きPD
701〜704 ビーム
801〜804 フォトニック結晶偏光子アレイの領域
101 optical fiber 102 collimating lens 103 prismatic prism 104 pentagonal prism 104
105 1/4 wavelength plate 106 Photonic crystal polarizer array 107-110 PD with lens
201 to 204 Beams 301 to 304 Photonic crystal polarizer array region 401 Optical fiber 402 Collimate lens 403 Pentagram prism 404 Penta prism 405 Penta prism 406 1/4 wavelength plate 407 Photonic crystal polarizer array 408 411 PD with lens
501 to 504 Photonic crystal polarizer array region 601 Optical fiber 602 Collimator lens 603 Square pyramidal prism 604 1/4 wavelength plate 605 Photonic crystal polarizer array 606 Quadrangular pyramid prism 607 to 610 PD with lens
701-704 Beam 801-804 Region of photonic crystal polarizer array

Claims (7)

平行ビーム源、少なくとも1つの光分岐手段と少なくとも1枚の1/4波長板、透過偏光方向の異なる少なくとも3つの領域を有する同一の基板上に形成された偏光子アレイ,4台のフォトダイオードを含む光学測定器であって、前記1つまたは2つの光分岐手段で平行ビームが4分割され、第1の分岐光路に1/4波長板と偏光子アレイの第1の領域が配置され、第2、第3、第4の光路のはそれぞれ偏光子アレイの第2、第3、第4の領域が配置され、前記偏光子アレイの各領域に対するビームの入射方向がすべて、または少なくとも2つの領域に入射するビームの入射方向がそれぞれ異なる方向であり、かついずれかの領域に対するビームの透過率が最大になるとき、異なるいずれかの領域のビームの透過率が最小または最大値の約1/2になり、前記偏光子アレイのうち少なくとも2つの領域における,垂直入射での透過偏光方向の相対的な角度が,0度またはπ/4の整数倍とは異なる角度に配置されたことを特徴とする光学測定器。  A parallel beam source, at least one light branching means and at least one quarter-wave plate, a polarizer array formed on the same substrate having at least three regions having different transmission polarization directions, and four photodiodes A parallel beam is divided into four by the one or two optical branching means, a quarter wavelength plate and a first region of a polarizer array are arranged in the first branching optical path, The second, third, and fourth optical paths are respectively provided with the second, third, and fourth regions of the polarizer array, and the incident direction of the beam with respect to each region of the polarizer array is all or at least two regions. When the incident directions of the beams incident on the beam are different from each other and the transmittance of the beam to any region is maximized, the transmittance of the beam in any region is about 1 which is the minimum or maximum value. The relative angle of the transmitted polarization direction at normal incidence in at least two regions of the polarizer array is arranged at an angle different from 0 degrees or an integral multiple of π / 4. Optical measuring instrument. 元の平行ビームの進行方向をz方向とした直交座標系において、前記偏光子アレイの各領域に対する分岐光束の入射角が極座標表示におけるφ、θであって、xy平面に投影された偏光子アレイの透過偏光方向α1〜α4が、いずれかの透過偏光方向を基準となる透過偏光方向を0として(0,π/4,3π/4,π/2)のうち基準となる透過偏光方向を含む3つまたは4つの組み合わせからなり、前記偏光子アレイの領域の垂直入射における透過偏光方向αn’(nは偏光子の領域の番号とする)がαn’=arctan[{cos(αn)cos(θn)sin(φn)+sin(αn)cos(φn)}/{cos(αn)cos(θn)cos(φn)−sin(αn)sin(φn)}]の関係を持つことを特徴とする請求項1記載の光学測定器。  In an orthogonal coordinate system in which the traveling direction of the original parallel beam is the z direction, the incident angle of the branched light flux with respect to each region of the polarizer array is φ and θ in polar coordinate display, and the polarizer array projected onto the xy plane Transmission polarization directions α1 to α4 include a transmission polarization direction serving as a reference out of (0, π / 4, 3π / 4, π / 2) with any transmission polarization direction as a reference. The transmission polarization direction αn ′ (where n is the number of the polarizer region) at normal incidence of the polarizer array region is αn ′ = arctan [{cos (αn) cos (θn ) Sin (φn) + sin (αn) cos (φn)} / {cos (αn) cos (θn) cos (φn) −sin (αn) sin (φn)}] Optical measurement according to 1 Vessel. 前記偏光子アレイの各領域に対する入射角の大きさが同一であり、かつ偏光子アレイの各領域の軸方位の間の角度が、α1’=arctan[{cos(θ)sin(φ1)+cos(φ1)}/{cos(θ)cos(φ1)−sin(φ1)}]、α2’=arctan[{cos(θ)sin(φ1)−cos(φ1)}/{cos(θ)cos(φ1)+sin(φ1)}]、α3’=−arctan[1/cos(θ)]、α4’=arctan[cos(θ)]の組み合わせを満たすことを特徴とする請求項2記載の光学測定器。  The incident angle with respect to each region of the polarizer array is the same, and the angle between the axial orientations of each region of the polarizer array is α1 ′ = arctan [{cos (θ) sin (φ1) + cos ( φ1)} / {cos (θ) cos (φ1) −sin (φ1)}], α2 ′ = arctan [{cos (θ) sin (φ1) −cos (φ1)} / {cos (θ) cos (φ1 ) + Sin (φ1)}], α3 ′ = − arctan [1 / cos (θ)], α4 ′ = arctan [cos (θ)]. 前記偏光子アレイの各領域の軸方位の間の角度が、|αn’−αn+1’|=arctan[cos(θ)]、|αn’−αn+2’|=arctan[1/cos(θ)]、|αn’−αn+3’|=0,π/2を満たすことを特徴とする請求項2記載の光学測定器。  The angle between the axial orientations of the respective regions of the polarizer array is | αn′−αn + 1 ′ | = arctan [cos (θ)], | αn′−αn + 2 ′ | = arctan [1 / cos (θ)], The optical measuring instrument according to claim 2, wherein | αn′−αn + 3 ′ | = 0, π / 2 is satisfied. 前記偏光子アレイが2次元フォトニック結晶による偏光子であり,各領域の周期方向と軸方位が直交又は平行であり,各領域の周期方向の間になす角が,請求項1から請求項4のいずれかを所定の角度に対して±0.05°の範囲で満たすことを特徴とする光学測定器  The polarizer array is a polarizer made of a two-dimensional photonic crystal, the periodic direction of each region is orthogonal or parallel to the axial direction, and an angle formed between the periodic directions of each region is defined in claims 1 to 4. Any of the above is satisfied in a range of ± 0.05 ° with respect to a predetermined angle 請求項1から請求項5記載のいずれかの光学測定器に加えて,データ入出力機構,校正用データを記録した記録媒体,演算器を含むデータ補正機構を具備することを特徴とする光学測定器  6. An optical measurement comprising a data correction mechanism including a data input / output mechanism, a recording medium on which calibration data is recorded, and an arithmetic unit in addition to the optical measuring instrument according to claim 1. vessel 平行ビームが1つ又は2つのプリズムで4分割され、かつ前記プリズムが互いに平行ではない3つの面を光パスとするプリズムまたはかつ前記プリズムが互いに平行ではない5つの面を光パスとするプリズムである、請求項1から請求項6のいずれかに記載の光学測定器。  A parallel beam is divided into four by one or two prisms, and the prism has an optical path with three surfaces that are not parallel to each other, or a prism with an optical path that has five surfaces that are not parallel to each other. The optical measuring instrument according to any one of claims 1 to 6, wherein:
JP2005118884A 2005-03-19 2005-03-19 Optical measuring instrument Pending JP2006267078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005118884A JP2006267078A (en) 2005-03-19 2005-03-19 Optical measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005118884A JP2006267078A (en) 2005-03-19 2005-03-19 Optical measuring instrument

Publications (1)

Publication Number Publication Date
JP2006267078A true JP2006267078A (en) 2006-10-05

Family

ID=37203207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005118884A Pending JP2006267078A (en) 2005-03-19 2005-03-19 Optical measuring instrument

Country Status (1)

Country Link
JP (1) JP2006267078A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018124203A (en) * 2017-02-02 2018-08-09 アンリツ株式会社 Polarized light analysis device and optical spectrum analyzer
CN110146257A (en) * 2019-05-17 2019-08-20 中国科学院上海技术物理研究所 A kind of device and method of rapid survey space laser load optical axis variation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018124203A (en) * 2017-02-02 2018-08-09 アンリツ株式会社 Polarized light analysis device and optical spectrum analyzer
CN110146257A (en) * 2019-05-17 2019-08-20 中国科学院上海技术物理研究所 A kind of device and method of rapid survey space laser load optical axis variation
CN110146257B (en) * 2019-05-17 2024-02-20 中国科学院上海技术物理研究所 Device and method for rapidly measuring change of optical axis of space laser load

Similar Documents

Publication Publication Date Title
JP4950234B2 (en) Ellipsometer
JP2007304572A (en) Laminated 1/2 wavelength plate, polarization converter, polarization illumination device and optical pickup device
JP6745516B2 (en) Optical element
JP2000028966A (en) Optical signal transmission method and optical device
WO1997007425A1 (en) Polarization-independent optical isolator
JP2010156842A (en) Optical modulator
US8451704B2 (en) Reflection type wavelength plate and optical head device
JP4714811B2 (en) Optical isolator and optical device
JPS63314502A (en) Double refractive diffraction grating type polarizing plate
JP2006267078A (en) Optical measuring instrument
CN102985870B (en) Depolarizer
JP2007225905A (en) Optical isolator and bidirectional optical transmitting/receiving apparatus
JP2012181385A (en) Polarization converter
US20110261457A1 (en) Optical device configured by bonding first and second transparent members having birefringent property
JP2007093964A (en) Polarization conversion element
JP2006301234A (en) Uniformizing optical device and parallel light source apparatus using the same
JPH087322A (en) Optically rotary element, converging/diverging optical device and optical pickup
CN1399151A (en) Optical circulator
JP4507738B2 (en) Laminated wave plate and optical pickup using the same
JP2017122582A (en) Spectroscopic instrument and spectroscopy
JP4070053B2 (en) Optical circulator
JP2009180635A (en) Optical composite part and optical measurement device
JP6195807B2 (en) Optical multiplexer and optical multiplexer manufacturing method
JP2579572B2 (en) 3-terminal optical circulator
JPWO2009107355A1 (en) Self-cloning photonic crystal for ultraviolet light