JP6745516B2 - Optical element - Google Patents

Optical element Download PDF

Info

Publication number
JP6745516B2
JP6745516B2 JP2018503351A JP2018503351A JP6745516B2 JP 6745516 B2 JP6745516 B2 JP 6745516B2 JP 2018503351 A JP2018503351 A JP 2018503351A JP 2018503351 A JP2018503351 A JP 2018503351A JP 6745516 B2 JP6745516 B2 JP 6745516B2
Authority
JP
Japan
Prior art keywords
optical element
polarized light
light
axis
photonic crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018503351A
Other languages
Japanese (ja)
Other versions
JPWO2017150568A1 (en
Inventor
川上 彰二郎
彰二郎 川上
川嶋 貴之
貴之 川嶋
千葉 貴史
貴史 千葉
俊和 居城
俊和 居城
津田 裕之
裕之 津田
高橋 浩
浩 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AUTOCLONING TECHNOLOGY CO., LTD.
Keio University
Sophia School Corp
Photonic Lattice Inc
Original Assignee
AUTOCLONING TECHNOLOGY CO., LTD.
Keio University
Sophia School Corp
Photonic Lattice Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AUTOCLONING TECHNOLOGY CO., LTD., Keio University, Sophia School Corp, Photonic Lattice Inc filed Critical AUTOCLONING TECHNOLOGY CO., LTD.
Publication of JPWO2017150568A1 publication Critical patent/JPWO2017150568A1/en
Application granted granted Critical
Publication of JP6745516B2 publication Critical patent/JP6745516B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J4/00Measuring polarisation of light
    • G01J4/04Polarimeters using electric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • G02B1/005Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials made of photonic crystals or photonic band gap materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1833Diffraction gratings comprising birefringent materials

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Polarising Elements (AREA)
  • Optical Integrated Circuits (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

本発明は、光に屈折・分離・集光などの作用をさせる光学素子に関する。 TECHNICAL FIELD The present invention relates to an optical element that causes light to be refracted, separated, and condensed.

光の屈折、偏光分離、集光などを実現する光学素子にはレンズ、プリズムなどが極めて広汎に実用されている。それらの多くは凸レンズ凹レンズのように立体的形状をもち、1個1機能として作製されるため、集積化、小型化には困難を伴うことが多い。近年、透明な基板の表面に微細な加工を行いそれに垂直に透過する光ビームの場所ごとの位相を変化させ波面を傾けて、透過後の伝播を操作する技術(傾斜メタ表面:gradient metasurfaceと呼ばれる)が進展している。 Lenses, prisms, and the like are extremely widely used as optical elements that realize refraction of light, polarization separation, and light collection. Most of them have a three-dimensional shape like a convex lens and a concave lens, and are manufactured as one function one by one, so that integration and miniaturization are often difficult. In recent years, a technique of finely processing the surface of a transparent substrate, changing the phase of the light beam transmitted perpendicularly to it and tilting the wavefront to manipulate the propagation after transmission (called a gradient metasurface) ) Is making progress.

その際に必要な波面の変形量が波長の数倍、数十倍に上ることは珍しくない。一方、表面を通過する光の位相変化量として実用上可能なのは2πラジアンの数分の1から数倍程度なので、位相変化量を2πラジアンごとに鋸歯状波的にゼロに戻す操作が必要である。 It is not uncommon for the amount of wavefront deformation required at that time to be several times or several tens of times the wavelength. On the other hand, since the phase change amount of the light passing through the surface is practically a fraction to several times 2π radians, it is necessary to perform an operation to return the phase change amount to zero in a sawtooth wave every 2π radians. ..

位相変化量を2πラジアンごとに鋸歯状波的にゼロに戻す前述の操作はその不連続点付近で光の散乱、それに伴う振幅や位相の誤差が避けられない。
それを軽減する方法として次の手段が知られている(非特許文献1)。
即ち
(A)領域ごとに種々な方位をもつ微小な1/2波長板を基板表面に隙間なく配置する。
(B)円偏光がその領域を通過するとき受ける位相推移はある基準方向に対して主軸のなす角θの2倍に等しいという性質を利用する。
詳しく云えば、図1において入射する光の電界が、例えば
=Ecos(ωt), E=Esin(ωt)
で与えられる円偏光であるとき、図1のようにξη軸をとり、ξη軸方向に主軸を持つ1/2波長板を挿入すれば透過後の光は逆回りの円偏光となり相対位相は2θだけ変化することが知られている(非特許文献1)。
The above-described operation of returning the amount of phase change to zero in a sawtooth manner every 2π radians inevitably causes scattering of light near the discontinuity point and accompanying errors in amplitude and phase.
The following means is known as a method for reducing it (Non-Patent Document 1).
That is, minute half-wave plates having various orientations are arranged on the substrate surface without gaps in each region (A).
(B) The property that the phase shift that circularly polarized light undergoes when passing through that region is equal to twice the angle θ formed by the principal axis with respect to a certain reference direction is used.
More specifically, the electric field of the incident light in FIG. 1 is, for example, E x =E 0 cos(ωt), E y =E 0 sin(ωt)
If it is a circularly polarized light given by, the ξη axis is taken as shown in Fig. 1, and if a ½ wavelength plate having a principal axis in the ξη axis direction is inserted, the light after passing becomes circularly polarized light in the opposite direction and the relative phase is 2θ. It is known that only changes (Non-Patent Document 1).

位相推移が2πをこえて連続的に変化させる必要があるときは、例えばθを図1上部のように定義し、θをπを超えて連続的に変化させれば良く、θを連続かつ単調にπの数倍変化させれば位相角は不連続なく2πの何倍でも変化させることができる。もし仮にθが近似的にxと共に直線的に増加または減少するとき、透過する円偏光の波面はxに関して直線的な変換をうけ、プリズム作用が生ずる。 When it is necessary to change the phase transition continuously over 2π, for example, θ should be defined as shown in the upper part of Fig. 1, and θ should be continuously changed over π. The phase angle can be changed by any number of times 2π without discontinuity by changing the value by several times of π. If θ approximately linearly increases or decreases with x, the transmitted circularly polarized wavefront undergoes a linear transformation with respect to x, and a prism action occurs.

必要な「領域ごとに種々な方位をもつ微小な1/2波長板」は基板に深い溝を周期配列することにより実現される。固体表面に周期的に形成された無限長の溝列は、電界が溝に平行な偏光に対して、電界が溝に垂直な偏光に対するより大きな位相遅れを生ずる。半波長板では位相差をπに一致させることが必要で、設計上また加工上の理由から溝と溝の間隔は1/3波長から1/2波長程度となることが多く、1/4波長になることはない。 The necessary "minute half-wave plate having various orientations in each region" is realized by periodically arranging deep grooves in the substrate. An infinitely long groove array formed periodically on a solid surface causes a larger phase lag for polarized light whose electric field is parallel to the groove and polarized light whose electric field is perpendicular to the groove. In the half-wave plate, it is necessary to match the phase difference to π, and for design and processing reasons, the spacing between grooves is often about 1/3 wavelength to 1/2 wavelength, and 1/4 wavelength. Never become.

D. Lin, P. Fan, E. Hasman and M. Brongersma,”Dielectric gradient metasurface optical elements, Science, Applied Optics, 18 July 2014, pp. 298-302.D. Lin, P. Fan, E. Hasman and M. Brongersma,”Dielectric gradient metasurface optical elements, Science, Applied Optics, 18 July 2014, pp. 298-302. N. Yu and F. Capasso, “Flat optics with designer metasurfaces”, Nature materials, 23 January 2014, pp.139-149.N. Yu and F. Capasso, “Flat optics with designer metasurfaces”, Nature materials, 23 January 2014, pp.139-149.

特許3325825号「3次元周期構造体及びその作製方法並びに膜の製造方法」Japanese Patent No. 3325825 "Three-dimensional periodic structure and its manufacturing method and film manufacturing method"

上で述べた表面加工による1/2波長板を利用する方式には次の困難がある。 The above-mentioned method using the half-wave plate by surface processing has the following difficulties.

(1)溝と溝の間隔、あるいは周期溝の周期は少なくとも1/3波長以上となる。光ビームを制御するには場所ごとに精細に位相を制御したいが、波長板の溝間隔で制限される。実際にはそれ以前に溝が波長板として機能し隣接領域と異なる主軸方向をもつためには溝の長さは溝同士の間隔の少なくとも同等以上、望ましくは2倍以上であることを要し、微小領域の寸法が十分小さくなり得ない。以下説明する。図1における各領域Dのうち領域内の溝の長さが最小になるものを符号dであらわす。同様に図5においても符号dを同じく定義する。また、周期的に繰り返される溝の周期(「溝間単位周期」ともいう)を符号pで表す。半波長板として動作するためにはd/pがある程度大きいことが必要である。d/pが有限の時、その領域の複屈折による位相差はπより小さく、π(1−p/2d)程度と見積もられる。本来πであるべき位相差が、たとえば0.95π以上、または0.9π以上、または0.75π以上、または0.5π以上であるためには、dはそれぞれ10p以上、5p以上,2p以上、p以上であることが必要である。 (1) The interval between the grooves or the period of the periodic grooves is at least ⅓ wavelength or more. In order to control the light beam, it is desired to precisely control the phase for each place, but it is limited by the groove spacing of the wave plate. Actually, in order for the groove to function as a wave plate and to have a principal axis direction different from that of the adjacent region before that, it is necessary that the length of the groove is at least equal to or more than the interval between the grooves, preferably twice or more. The size of the micro area cannot be sufficiently small. This will be described below. Of the regions D in FIG. 1, the one in which the length of the groove in the region is the minimum is represented by the symbol d. Similarly, in FIG. 5, the symbol d is also defined. Further, the period of the groove that is periodically repeated (also referred to as “inter-groove unit period”) is represented by the symbol p. In order to operate as a half-wave plate, d/p needs to be large to some extent. When d/p is finite, the phase difference due to birefringence in that region is smaller than π and is estimated to be about π(1-p/2d). In order that the phase difference which should be originally π is, for example, 0.95π or more, or 0.9π or more, or 0.75π or more, or 0.5π or more, d is 10 p or more, 5 p or more, 2 p or more, respectively. It must be p or more.

逆に、高精細化のためにはdは小さく保ちたい。図1、図5のプリズムにおいてdは素子への要求により上限が定まり、それを小さくできるほど素子の性能は高まる(量子化誤差が小さいから)。一方、pはさらにそれより1桁から半桁小さいことが求められるゆえ、pを小さくできることの利益は大きい。 On the other hand, d should be kept small for higher definition. In the prisms of FIGS. 1 and 5, the upper limit of d is determined by the requirements of the element, and the smaller the value, the higher the element performance (because the quantization error is small). On the other hand, since p is required to be smaller by one digit to half digit than that, the advantage of being able to reduce p is great.

また、図2の様に溝を曲線とした場合には、等ピッチで同じ曲線を並べると垂直に近づくにつれてピッチが狭くなってしまい、溝の本数を減らす(間引く)ことで、ピッチを保つ必要がある。そうした場合でも、厳密にピッチ間隔を一定にすることはできず、ピッチ間隔が場所ごとに変動し、半波長板から位相差がずれてしまう。 Further, when the grooves are curved as shown in FIG. 2, if the same curves are arranged at equal pitches, the pitch becomes narrower as it approaches the vertical, and it is necessary to keep the pitch by reducing (thinning) the number of grooves. There is. Even in such a case, the pitch interval cannot be strictly fixed, the pitch interval varies from place to place, and the phase difference deviates from the half-wave plate.

(2)素子表面での不要な光の反射を避けるため反射防止層を表面に成膜する必要があるが表面加工による1/2波長板では成膜が困難である。 (2) It is necessary to form an antireflection layer on the surface in order to avoid unnecessary reflection of light on the element surface, but it is difficult to form the film on a half-wave plate by surface processing.

(3)通常の光産業用部材としては円偏光に対して所期の動作をする素子は使いにくく直線偏光に対して動作することが望まれる。その要求に応えるには素子の前後に1/4波長板をおいて挟み込むことが必要となり煩わしい。微小領域を敷き詰めた素子の前後に1/4波長板を一体化できれば最も使いやすい。 (3) As an ordinary member for the optical industry, it is difficult to use an element that performs a desired operation for circularly polarized light, and it is desired to operate for linearly polarized light. In order to meet the demand, it is necessary to place a quarter-wave plate in front of and behind the device, which is troublesome. It is the easiest to use if a quarter-wave plate can be integrated in front of and behind the element in which minute areas are spread.

そこで、本発明は、このような問題点に鑑みてなされたものであり、その目的は、メタ表面でなく自己クローニング形フォトニック結晶を使った体積型の光学素子を提供することである。
その効果をあらかじめ要約すると、
第1に、サブ領域境界におけるパタン不整合や間引きにおける不連続性が、光に及ぼす影響を、Z方向の伝搬に伴う回折により、平均化、平滑化できること(図6、図9)。
第2に、曲線形状や間引きにより線間ピッチに不均一、非一様性が生じても偏光間の位相差は一様性が保たれること(図3)。
第3に、後述する実施例4のごとくフォトニック結晶プリズムとフォトニック結晶レンズとを一体化する(図14)ことにより偏光純度が保たれることなどである。
Therefore, the present invention has been made in view of such problems, and an object thereof is to provide a volume type optical element using a self-cloning photonic crystal instead of a meta-surface.
To summarize the effect in advance,
First, it is possible to average and smooth the influence of pattern mismatch at the sub-region boundary and discontinuity in thinning on the light by diffraction accompanying propagation in the Z direction (FIGS. 6 and 9).
Secondly, the phase difference between polarized lights can be kept uniform even if the pitch between lines becomes non-uniform or non-uniform due to the curved shape or thinning (FIG. 3).
Thirdly, the polarization purity is maintained by integrating the photonic crystal prism and the photonic crystal lens as in Example 4 described later (FIG. 14).

本発明では、自己クローニング形フォトニック結晶による波長板を、溝と溝の間の間隔すなわち基本周期を、用いられる波長に比べて十分小さい設計条件で用いることを主眼とする。 The main purpose of the present invention is to use a wave plate made of a self-cloning photonic crystal under a design condition in which an interval between grooves, that is, a fundamental period is sufficiently smaller than a wavelength used.

本発明の第1の側面は、光学素子に関する。光学素子は、3次元空間x、y、zにおいて、xy面に形成され、z軸方向に積層されたフォトニック結晶の半波長板を備える。光学素子は、x軸方向に単一、もしくは、繰り返される一又は複数の領域を有し、前記領域は、x軸方向に、複数の帯状のサブ領域に区分される。フォトニック結晶の溝方向は、前記領域の中では、y軸方向に対する角度が0°から180°の範囲で段階的に変化し、かつ、前記サブ領域の中では、y軸方向に対する角度が一様となる。そして、光学素子は、z軸方向に入射する光を、z軸からある角度だけx軸に向かう方向の右回り円偏光と、z軸から前記ある角度と同一の角度だけ−x軸に向かう方向の左回り円偏光とに、分離および変換して出射する。 A first aspect of the present invention relates to an optical element. The optical element includes photonic crystal half-wave plates formed in the xy plane in the three-dimensional space x, y, and z and stacked in the z-axis direction. The optical element has one or a plurality of regions that are single or repeated in the x-axis direction, and the region is divided into a plurality of strip-shaped sub-regions in the x-axis direction. In the groove direction of the photonic crystal, the angle with respect to the y-axis direction changes stepwise in the range of 0° to 180° within the region, and the angle with respect to the y-axis direction within the sub-region is uniform. It will be like. Then, the optical element directs the light incident in the z-axis direction to the right-hand circularly polarized light in the direction from the z-axis toward the x-axis and the direction from the z-axis toward the −x-axis at the same angle as the certain angle. To the left-handed circularly polarized light, and is emitted after being converted and converted.

光学素子の別の実施形態について説明する。光学素子は、3次元空間x、y、zにおいて、xy面に形成され、z軸方向に積層されたフォトニック結晶の半波長板を備える。光学素子は、x軸方向に単一、もしくは、繰り返される一又は複数の領域を有する。フォトニック結晶の溝方向は、曲線であり、かつ、y軸方向に対する角度が0°から180°の範囲で連続的に変化する。そして、光学素子は、z軸方向に入射する光を、z軸から前記ある角度と同一の角度だけx軸に向かう方向の右回り円偏光と、z軸からある角度だけ−x軸に向かう方向の左回り円偏光とに、分離および変換して出射する。 Another embodiment of the optical element will be described. The optical element includes half-wave plates of photonic crystals formed on the xy plane in the three-dimensional space x, y, z and stacked in the z-axis direction. The optical element has a single or repeated region in the x-axis direction. The groove direction of the photonic crystal is a curve, and the angle with respect to the y-axis direction continuously changes in the range of 0° to 180°. The optical element directs the light incident in the z-axis direction to the x-axis by the same angle from the z-axis to the x-axis, and the direction from the z-axis to the −x-axis at the certain angle. To the left-handed circularly polarized light, and is emitted after being converted and converted.

上記した曲線型の溝をもつ光学素子は、隣り合う凸部と凹部の一方の間隔の前記領域の内部における最大値と最小値の比が4倍以内になるように、他方が分岐・合流するよう幾何学的に配置されていることが好ましい(図2等参照)。 In the optical element having the curved groove described above, the other of the convex portion and the concave portion is branched/merged so that the ratio of the maximum value and the minimum value inside the region is 4 times or less. Are preferably arranged geometrically (see FIG. 2 etc.).

上記した曲線型の溝をもつ光学素子は、領域の幅をDとした場合に、曲線が、y=(D/π)log(cos(πx/D))+定数で表されることが好ましい。 In the above-mentioned optical element having a curved groove, when the width of the region is D, the curve is preferably represented by y=(D/π)log(cos(πx/D))+constant. ..

本発明の光学素子は、フォトニック結晶の溝間単位周期が、40nm以上、かつ入射する光の波長の1/4以下であり、厚さ方向の周期が、入射する光の波長の1/4以下であることが好ましい。 In the optical element of the present invention, the inter-groove unit period of the photonic crystal is 40 nm or more and 1/4 or less of the wavelength of incident light, and the period in the thickness direction is 1/4 of the wavelength of incident light. The following is preferable.

本発明の光学素子は、片面もしくは両面にフォトニック結晶からなる1/4波長板を積層または配置し、光学素子のz軸方向から入射する光を直交する2つの直線偏光に分離することが好ましい。 In the optical element of the present invention, it is preferable that a quarter wavelength plate made of a photonic crystal is laminated or arranged on one side or both sides to separate the light incident from the z-axis direction of the optical element into two linearly polarized light beams orthogonal to each other. ..

本発明の第2の側面は、複合光学素子に関する。複合光学素子は、前記した光学素子を少なくとも2つ以上有する。二つの光学素子を、それぞれ第一の光学素子、第二の光学素子という。第一の光学素子および第二の光学素子は、がある伝搬長の間隔を設けて配置されている。第二の光学素子の後段には、1/4波長板が設けられている。1/4波長板の後段には、直線偏光を集光し、かつ、それと直交する直線偏光を発散する機能を有する一対のレンズが設けられている。これらの第一および第二の光学素子、1/4波長板、及びレンズを備えることで、第一の光学素子側から入射した光を2つの直線偏光成分に分離して集光することができる。 The second aspect of the present invention relates to a composite optical element. The composite optical element has at least two optical elements described above. The two optical elements are called a first optical element and a second optical element, respectively. The first optical element and the second optical element are arranged with an interval of a certain propagation length. A quarter wave plate is provided at the subsequent stage of the second optical element. A pair of lenses having a function of condensing the linearly polarized light and diverging the linearly polarized light orthogonal to the linearly polarized light are provided at the subsequent stage of the quarter-wave plate. By including these first and second optical elements, the quarter-wave plate, and the lens, the light incident from the first optical element side can be separated into two linearly polarized light components and condensed. ..

具体的に説明すると、本発明の第1の側面は光学素子に関する。本発明の光学素子は、主軸方位が領域ごとに異なった波長板(分割型)、または、主軸方位が連続的に変化する波長板(曲線型)であり、それぞれの領域の波長板が、面内に周期構造を持ち当該周期構造が厚さ方向に積層されたフォトニック結晶で構成されている。フォトニック結晶は、自己クローニング法(特許文献1参照)によって形成すればよい。 Specifically, the first aspect of the present invention relates to an optical element. The optical element of the present invention is a wave plate whose main axis azimuth differs for each region (divided type) or a wave plate whose main axis azimuth continuously changes (curved type), and the wave plate of each region is a surface. The photonic crystal has a periodic structure inside and is laminated in the thickness direction. The photonic crystal may be formed by the self-cloning method (see Patent Document 1).

各波長板を形成する面内の周期構造の溝間単位周期および前記波長板の厚さ方向の単位周期は、共に、光学素子に入射する光の波長の4分の1以下となる。なお、面内の周期構造の溝間単位周期40nm以上とすることが好ましく。なお、光学素子に入射する光の波長は、通常、400nm〜1800nmの間から選ばれることが想定される。 The inter-groove unit period of the in-plane periodic structure forming each wave plate and the unit period in the thickness direction of the wave plate are both ¼ or less of the wavelength of light incident on the optical element. It is preferable that the unit period between grooves of the in-plane periodic structure is 40 nm or more. The wavelength of light incident on the optical element is usually assumed to be selected from 400 nm to 1800 nm.

また、複数領域の波長板のうち、波長板溝長さの面内の最小値は溝間単位周期以上である。なお、波長板溝長さの面内の最小値の上限は溝間単位周期pの50倍以下であることが好ましい。 Further, in the wave plates of a plurality of regions, the in-plane minimum value of the wave plate groove length is not less than the inter-groove unit cycle. The upper limit of the in-plane minimum value of the wave plate groove length is preferably 50 times or less the inter-groove unit period p.

また主軸方位が連続的に変化する波長板(曲線型)の場合、凸部のピッチpが(パタンが直線であるときのピッチ)をpとすると0.5・p≦p≦2・p以内になるよう、凸部または凹部が分岐・合流するよう幾何学的に配置されることが好ましい。自己クローニング型フォトニック結晶は図3に示すように、位相差の変化が、ピッチの変動に対して変動が小さい。したがって、ピッチが変わった場合の半波長板からの位相ずれを小さくできる。In the case of a wave plate (curved type) in which the principal axis direction changes continuously, if the pitch p of the convex portions (pitch when the pattern is a straight line) is p 0 , then 0.5·p 0 ≦p≦2· It is preferable that the convex portions or the concave portions are geometrically arranged such that the convex portions or the concave portions are branched and merged so as to be within p 0 . As shown in FIG. 3, in the self-cloning photonic crystal, the change in phase difference is small with respect to the change in pitch. Therefore, it is possible to reduce the phase shift from the half-wave plate when the pitch changes.

本発明に係る光学素子の好ましい実施形態は、入射する所定の円偏光に対して動作する光学素子である。この光学素子は、それぞれの領域が1/2波長板をなし、その主軸の基準方向に対する角度がそれぞれの領域で与えるべき位相変化量の1/2である。 A preferred embodiment of the optical element according to the present invention is an optical element that operates with respect to incident predetermined circularly polarized light. In this optical element, each region forms a ½ wavelength plate, and the angle of the main axis with respect to the reference direction is ½ of the amount of phase change to be given in each region.

本発明に係る光学素子の好ましい実施形態は、透明基板の上に、フォトニック結晶からなる一様な第1の1/4波長板、前述した記載の光学素子(波面変成素子)、及びフォトニック結晶からなる一様な第2の1/4波長板がこの順に積層されている。第1の1/4波長板と第2の1/4波長板は主軸の方位が90°異なっていることが好ましい。 A preferred embodiment of the optical element according to the present invention is a uniform first quarter-wave plate made of a photonic crystal on a transparent substrate, the optical element (wavefront transformation element) described above, and a photonic. A uniform second quarter-wave plate made of crystal is laminated in this order. It is preferable that the first quarter wave plate and the second quarter wave plate have different main axis directions by 90°.

本発明の光学素子は、自己クローニング形フォトニック結晶波長板は傾斜メタ表面(たとえば非特許文献1,2:gradient metasurface)とは根本的に異なり体積形であるため、その表面とその下部に反射防止処理を行うことや、接着剤を用いることなどが容易にできる。体積形であって、積層の全厚さを保ったまま積層数を大きく、積層周期、面内周期を小さくしても特性がほぼ一定に保たれるので、構造の高精細化が可能である。 In the optical element of the present invention, the self-cloning type photonic crystal wave plate is a volume type, which is fundamentally different from an inclined meta surface (for example, non-patent documents 1 and 2; It is easy to carry out a preventive treatment and to use an adhesive. Since it is a volume type, the characteristics can be kept almost constant even if the number of layers is increased and the lamination period and the in-plane period are reduced while maintaining the total thickness of the lamination, so that the structure can be made finer. ..

本発明の光学素子のもう一つの好ましい実施形態は、ピッチの決まった平行線によって形成されているそれぞれの領域の波長板を平行線から曲線に変えて領域(サブ領域)の境目をなくすことである。曲線に変えることで量子化誤差が小さくなり、結果位相誤差が小さくでき、不要偏波の割合を小さくでき、分岐しない成分の割合を小さくすることができる。 Another preferred embodiment of the optical element of the present invention is to change the wave plate of each region formed by parallel lines having a fixed pitch from a parallel line to a curve so as to eliminate the boundary between the regions (sub-regions). is there. By changing to a curve, the quantization error can be reduced, the resulting phase error can be reduced, the proportion of unnecessary polarization can be reduced, and the proportion of components that do not branch can be reduced.

また多領域1/2波長板の両側を2枚の一様な1/4波長板で挟む構造も一貫した製膜工程で作製できるので小型化の点で優れている。 In addition, a structure in which two uniform quarter-wave plates are sandwiched on both sides of a multi-region half-wave plate can also be manufactured by a consistent film forming process, which is excellent in terms of downsizing.

また多領域1/2波長板を使って、入力光を分岐し、それぞれの光を領域分割型1/4波長板に入力して、同じ方位の直線偏光として、フォトニック結晶レンズに入力することで、集光して、不要偏波を除去することができる光学素子を一貫した成膜工程で作成できる。 In addition, the input light is split using a multi-area 1/2 wavelength plate, and each light is input to the area-division type 1/4 wavelength plate and input to the photonic crystal lens as linearly polarized light of the same direction. Thus, an optical element capable of condensing light and removing unnecessary polarized waves can be produced by a consistent film forming process.

構造の高精細化や曲線化により不連続性に由来する光散乱や不要光成分の発生を抑止することができる。また表面処理、清浄化、接着処理など加工性に優れ、部品としての体積、フットプリント、作製コストの低減が可能となる。 By making the structure finer and making it curved, it is possible to suppress light scattering and generation of unnecessary light components due to discontinuity. Further, it is excellent in workability such as surface treatment, cleaning, and adhesion treatment, and it is possible to reduce the volume, footprint, and manufacturing cost of parts.

従来技術である、傾斜メタ表面(gradient metasurface)を使って実現した偏光グレーティングである。It is a polarization grating realized by using a conventional gradient metasurface. 分割型(平行溝)と曲線型の比較を示す図である。It is a figure which shows a division type (parallel groove|channel) and a curved type comparison. フォトニック結晶の場合のピッチ変化に対する位相差の感度を示す図である。It is a figure which shows the sensitivity of the phase difference with respect to a pitch change in the case of a photonic crystal. フォトニック結晶のバンド図と高精細化したフォトニック結晶を示す図である。FIG. 3 is a diagram showing a band diagram of a photonic crystal and a photonic crystal with high definition. 第1の実施形態に係る光学素子(分割型)の一例を示す図である。It is a figure which shows an example of the optical element (divided type) which concerns on 1st Embodiment. 従来技術のメタ表面型と第1の実施形態のフォトニック結晶型の比較を示す図である。It is a figure which shows the comparison of the meta surface type of a prior art, and the photonic crystal type of 1st Embodiment. 第2の実施形態に係る光学素子(曲線型)の一例を示す図である。It is a figure which shows an example of the optical element (curved type) which concerns on 2nd Embodiment. 第1の実施形態に係る光学素子と第2の実施形態に係る光学素子の主軸方向分布の実測値示す図である。It is a figure which shows the measured value of the principal axis direction distribution of the optical element which concerns on 1st Embodiment and the optical element which concerns on 2nd Embodiment. 第1の実施形態に係る光学素子と第2の実施形態に係る光学素子の光学特性の実測値示す図である。It is a figure which shows the measured value of the optical characteristic of the optical element which concerns on 1st Embodiment and the optical element which concerns on 2nd Embodiment. 第3の実施形態に係る光学素子を示す図で、45度直線偏光が入射した場合を示す図である。It is a figure which shows the optical element which concerns on 3rd Embodiment, Comprising: It is a figure which shows the case where 45-degree linearly polarized light enters. 第3の実施形態に係る光学素子を示す図で、−45度直線偏光が入射した場合を示す図である。It is a figure which shows the optical element which concerns on 3rd Embodiment, and is a figure which shows the case where -45 degree linearly polarized light injects. 第3の実施形態に係る光学素子を示す図で、0度直線偏光が入射した場合を示す図である。It is a figure which shows the optical element which concerns on 3rd Embodiment, Comprising: It is a figure which shows the case where a 0 degree linearly polarized light enters. 第3の実施形態に係る光学素子を示す図で、任意方位の直線偏光が入射した場合を示す図である。It is a figure which shows the optical element which concerns on 3rd Embodiment, and is a figure which shows the case where the linearly polarized light of arbitrary directions injects. 第4の実施形態に係る複合光学素子の一例を示す図である。It is a figure which shows an example of the composite optical element which concerns on 4th Embodiment. 第4の実施形態に係る複合光学素子のレンズ部分と結合効率を示す図である。It is a figure which shows the lens part and coupling efficiency of the compound optical element which concerns on 4th Embodiment.

以下の本発明の実施例1、実施例2、実施例3、および実施例4について説明する。 Example 1, Example 2, Example 3, and Example 4 of the present invention will be described below.

[偏光分離素子(偏光グレーティング)]
自由空間内におかれ、z軸に平行に進む波がプリズムに入射し、xz平面内で角度αだけ屈折させるためには、光ビームに次のような位相の変化を与えればよい。図1のx=Dのところでx=0のところと位相差 2πsinα/λ を持つようにすればよく、前述の原理で半波長板の主軸がx軸に対し πsinα/λ の傾きを持つようにすればよい(λは光の波長)。
[Polarization separation element (polarization grating)]
In order for a wave traveling in the free space and traveling parallel to the z-axis to be incident on the prism and refracted by the angle α in the xz plane, the following phase change may be applied to the light beam. It is sufficient to have a phase difference of 2πsin α/λ at x=0 at x=D in FIG. 1, and the main axis of the half-wave plate has an inclination of πsin α/λ with respect to the x-axis according to the above-mentioned principle. All that needs to be done (where λ is the wavelength of light).

波長1550nmにおける設計の例を図4(a),(b),(c)を用いて示す。 An example of design at a wavelength of 1550 nm will be shown with reference to FIGS. 4(a), (b), and (c).

図4(a)は周期構造のバンド図または伝搬特性図と呼ばれ、面を垂直にz方向に貫く光の進行方向の単位長さ当たりの位相差(波数)を波長の逆数に比例する正規化周波数との関係において示す分散曲線である。Lはz方向の基本周期である(2種の透明体の厚さの和)。 FIG. 4A is called a band diagram or a propagation characteristic diagram of a periodic structure, and the phase difference (wave number) per unit length in the traveling direction of light that vertically penetrates the surface in the z direction is a normal value proportional to the reciprocal of the wavelength. It is a dispersion curve shown in relation to the conversion frequency. L is a basic period in the z direction (sum of thicknesses of two kinds of transparent bodies).

図4(b)は光通信波長帯で用いられるフォトニック結晶の代表的な構造である。
フォトニック結晶の諸元は、
高屈折率材料 Nb 厚さ120nm
低屈折率材料 SiO 厚さ120nm
x方向の周期 500nm
遅軸屈折率 1.886
速軸屈折率 1.837
1/2波長板においては積層全体の厚さ 15.8μm
である。
FIG. 4B shows a typical structure of a photonic crystal used in the optical communication wavelength band.
The specifications of the photonic crystal are
High refractive index material Nb 2 O 5 Thickness 120nm
Low refractive index material SiO 2 thickness 120 nm
Cycle in x direction 500nm
Slow axis refractive index 1.886
Fast axis refractive index 1.837
In the case of a half-wave plate, the thickness of the entire stack is 15.8 μm
Is.

図4(c)は高精細化のための設計の一例であって、材料は共通である。
フォトニック結晶の寸法は、
高屈折率材料 Nb 厚さ60nm
低屈折率材料 SiO 厚さ60nm
x方向の周期 250nm
であり、図2(b)の半分となっており、
遅軸屈折率 1.878
速軸屈折率 1.841
1/2波長板においては積層全体の厚さ 20.9μm
である。
FIG. 4C is an example of a design for high definition, and the materials are common.
The dimensions of the photonic crystal are
High refractive index material Nb 2 O 5 Thickness 60nm
Low refractive index material SiO 2 thickness 60nm
250 nm period in x direction
Which is half that of FIG. 2(b),
Slow axis refractive index 1.878
Fast axis refractive index 1.841
The thickness of the entire stack is 20.9 μm for a half-wave plate
Is.

図4(b),図4(c)の特性は共通に図4(a)の分散関係(あるいはバンド図)で示される。その使い方を説明する。図4(a)において#1で示されるのはTE第1バンド(黒丸)、TM第1バンド(白丸)である。これらのバンドは正規化周波数L/λが0以上0.24以下においてほぼ直線で示される。その意味は、たとえば正規化周波数=0.1548(上の点線)におけるTE波、TM波の実効屈折率は、半分の正規化周波数0.0774(下の点線)におけるTE波、TM波の実効屈折率とほぼ一致するということである。ゆえに構造を相似比を保ったまま任意に縮小(この例では2:1に)しても媒質としてほぼ同等の性質(たとえば複屈折)が得られる。相似形を保って立体の単位周期を小さくすれば任意に高精細化を実現できる。自己クローニング法では極めて小さいpの値までフォトニック結晶の作製ができることが見いだされており、現在p=80nmまでの製品化実績があり、それ以下もp=40nmまで可能である。 The characteristics of FIG. 4B and FIG. 4C are commonly shown by the dispersion relation (or band diagram) of FIG. 4A. I will explain how to use it. In FIG. 4A, #1 indicates the TE first band (black circle) and the TM first band (white circle). These bands are almost linear when the normalized frequency L/λ is 0 or more and 0.24 or less. The meaning is, for example, the effective refractive index of TE wave and TM wave at normalized frequency = 0.1548 (upper dotted line) is the effective refractive index of TE wave and TM wave at half normalized frequency 0.0774 (lower dotted line). That is, it is almost the same as the refractive index. Therefore, even if the structure is arbitrarily reduced while maintaining the similarity ratio (2:1 in this example), almost the same properties as the medium (for example, birefringence) can be obtained. High resolution can be realized arbitrarily by keeping the similar shape and reducing the unit period of the solid. It has been found that the self-cloning method can produce a photonic crystal up to an extremely small value of p. Currently, it has a track record of commercialization up to p=80 nm, and even below that, p=40 nm is possible.

図5は、図4(c)に示すような高精細自己クローニングフォトニック結晶で構成された階層分布位相板プリズムの表面図であり、図1に示した公知のメタ表面(metasurface)位相板とは異なる。図5のフォトニック結晶型位相板プリズムは、表面形状は定性的には図1に似ているが、実体は体積型の高精細フォトニック結晶であり新規なので注意を要する。位相面は図1では光が表面を通過するときに変換され、図5では波が体積内を伝搬しながら位相面が変化するのが相違点である。 FIG. 5 is a surface view of a hierarchical distribution phase plate prism composed of a high-definition self-cloning photonic crystal as shown in FIG. 4(c), and the known metasurface phase plate shown in FIG. Is different. The surface shape of the photonic crystal type phase plate prism of FIG. 5 is qualitatively similar to that of FIG. 1, but the substance is a volume-type high-definition photonic crystal and is novel, so caution is required. The difference is that the phase plane is converted in FIG. 1 as light passes through the surface, and the phase plane is changed while waves propagate in the volume in FIG.

図5のフォトニック結晶型位相板プリズムは、図1の先行例に比べて、
・x方向の1周期内のサブ領域の数(主軸方位の階調数)がより多く、目標の位相分布をよりただしく再現できる。
・サブ領域の幅とフォトニック結晶の溝同士の間隔(図では黒い太線同志、白い太線同志の間隔)のなす比が大きく、従って異方性がより正確に実現される。
以上の意味で高精細化される。
The photonic crystal type phase plate prism shown in FIG. 5 is different from the prior art example shown in FIG.
The number of sub-regions within one cycle in the x direction (the number of gradations in the principal axis direction) is larger, and the target phase distribution can be reproduced more properly.
The ratio between the width of the sub region and the distance between the grooves of the photonic crystal (the distance between the thick black lines and the distance between the thick white lines in the figure) is large, so that the anisotropy is more accurately realized.
High definition is achieved in the above sense.

図5において、近似的な意味で、θがxと共に直線的に増加または減少する場合その素子はプリズム効果をもつ。従って高精細化により波面の精度を高めればプリズムにおいて実現される透過光の振幅分布、位相分布の正確度が顕著に改善される。 In FIG. 5, in the approximate sense, when θ increases or decreases linearly with x, the element has a prism effect. Therefore, if the precision of the wavefront is increased by increasing the definition, the accuracy of the amplitude distribution and the phase distribution of the transmitted light realized in the prism is significantly improved.

なお、本構造において、波長をλ、領域の幅をDとすると、一つの円偏光は屈折角λ/Dラジアン、他の円偏光は逆方向に屈折角λ/Dラジアンで屈折され従って分離角は2λ/Dラジアンとなる。Dを10波長程度に選ぶと分離角は約12度と、天然結晶ルチルで得られる分離角の約2倍の顕著な大きさを示し光学機器の小型化に有用である。 In this structure, when the wavelength is λ and the width of the region is D, one circularly polarized light is refracted at a refraction angle λ/D radian, and the other circularly polarized light is refracted at a refraction angle λ/D radian in the opposite direction. Is 2λ/D radian. When D is selected to be about 10 wavelengths, the separation angle is about 12 degrees, which is about twice as large as the separation angle obtained with natural crystalline rutile, which is useful for downsizing optical equipment.

図5は、自己クローニング型高精細フォトニック結晶の構造を示している。このフォトニック結晶は、3次元空間x,y,zにおいて、xy面に周期的なパタンの凹凸をもつ基板303の上に、z方向に向かって、屈折率の異なる2種類の透明媒質が交互に積層されている。2種の透明媒質は、基板303の凹凸に対応した凹凸構造を有する。 FIG. 5 shows the structure of a self-cloning high-definition photonic crystal. In the photonic crystal, in the three-dimensional space x, y, z, two types of transparent media having different refractive indexes alternate in the z direction on a substrate 303 having periodic pattern irregularities on the xy plane. Are stacked on. The two types of transparent media have an uneven structure corresponding to the unevenness of the substrate 303.

自己クローニング型フォトニック結晶を形成する複数種類の透明体は、アモルファスシリコン、5酸化ニオブ、5酸化タンタル、酸化チタン、酸化ハフニウム、2酸化ケイ素、酸化アルミ、フッ化マグネシウムなどのフッ化物のいずれかであることが好ましい。これらの中から屈折率の異なる2ないし複数種を選択しフォトニック結晶に用いることができる。例えばアモルファスシリコンと二酸化ケイ素、5酸化ニオブと二酸化ケイ素、五酸化タンタルと二酸化ケイ素の組み合わせが望ましいが、それ以外の組み合わせでも可能である。具体的には、自己クローニング型フォトニック結晶は、高屈折率材料と低屈折率材料とをz方向に交互に積層した構造を有する。高屈折率材料は、5酸化タンタル、5酸化ニオブ、アモルファスシリコン、酸化チタン、酸化ハフニウムまたはこれら2種以上の材料を組み合わせたものであることが好ましい。低屈折率材料は、2酸化ケイ素、酸化アルミ、フッ化マグネシウムを含むフッ化物またはこれら2種以上の材料を組み合わせたものであることが好ましい。 Multiple types of transparent bodies that form self-cloning photonic crystals are amorphous silicon, niobium pentoxide, tantalum pentoxide, titanium oxide, hafnium oxide, silicon dioxide, aluminum oxide, and fluorides such as magnesium fluoride. Is preferred. Two or more of these having different refractive indexes can be selected and used for the photonic crystal. For example, a combination of amorphous silicon and silicon dioxide, niobium oxide and silicon dioxide, tantalum pentoxide and silicon dioxide is preferable, but other combinations are also possible. Specifically, the self-cloning photonic crystal has a structure in which a high refractive index material and a low refractive index material are alternately stacked in the z direction. The high refractive index material is preferably tantalum pentoxide, niobium pentoxide, amorphous silicon, titanium oxide, hafnium oxide, or a combination of two or more of these materials. The low refractive index material is preferably silicon dioxide, aluminum oxide, a fluoride containing magnesium fluoride, or a combination of two or more of these materials.

図5に示されるように、xy面内では、少なくともx軸方向に向かって複数の領域Dが周期的に繰り返して形成されている。複数の領域Dのx軸方向の長さは等しいことが好ましい。また、各領域Dは、さらにx方向に複数のサブ領域に区分されている。図5に示した例において、各領域Dは、11のサブ領域に区分されているが、11以上の領域であってもよく、例えば13、15、17、19などの奇数とすることが好ましい。各領域Dに含まれるサブ領域は、それぞれx方向に実質的に等しい幅を有していることが好ましい。「実質的に等しい幅」とは、x方向の中心に位置するサブ領域の幅を基準として、±2%の誤差を許容することを意味する。 As shown in FIG. 5, in the xy plane, a plurality of regions D are periodically and repeatedly formed in at least the x-axis direction. It is preferable that the plurality of regions D have the same length in the x-axis direction. Each area D is further divided into a plurality of sub areas in the x direction. In the example shown in FIG. 5, each region D is divided into 11 sub-regions, but may be 11 or more regions, and is preferably an odd number such as 13, 15, 17, 19 or the like. .. It is preferable that the sub regions included in each region D have substantially the same width in the x direction. The “substantially equal width” means that an error of ±2% is allowed based on the width of the sub region located in the center in the x direction.

また、各サブ領域には、複数の溝が周期的に形成されている。溝の幅は実質的に全て等しい。また、溝は、各サブ領域において、x方向の端から端まで形成されている。領域Dにおいて、x方向の中心に位置するサブ領域では、x軸方向に平行に延びる溝が、y方向に周期的に繰り返し形成されている。他方で、領域Dにおいて、x方向の左右両端に位置するサブ領域では、y方向に平行に延びる溝が形成されている。このため、中心のサブ領域に形成された溝に対して、左右両端のサブ領域に形成された溝のなす角度θは90度となる。このようなサブ領域において溝の長さは最も大きく、素子全体のy方向の有効寸法と一致する。 In addition, a plurality of grooves are periodically formed in each sub region. The widths of the grooves are substantially equal. In addition, the groove is formed from end to end in the x direction in each sub region. In the region D, in the sub region located at the center in the x direction, grooves extending parallel to the x axis direction are repeatedly formed in the y direction periodically. On the other hand, in the region D, in the sub regions located at the left and right ends in the x direction, grooves extending parallel to the y direction are formed. Therefore, the angle θ formed by the grooves formed in the left and right sub-regions is 90 degrees with respect to the groove formed in the central sub-region. In such a sub region, the length of the groove is the largest and matches the effective dimension in the y direction of the entire device.

また、中心のサブ領域と左右両端のサブ領域の間には、左右それぞれに、4つずつサブ領域が位置している。そして、これら間に位置する各サブ領域にも複数の溝がy方向に周期的に繰り返して形成されている。また、あるサブ領域に形成された溝の角度は全て等しい。ただし、間に位置する各サブ領域の溝の角度θは、中心のサブ領域から左右両端のサブ領域に近づくに連れて、徐々に90度に近づくように設定されている。例えば、前述のように、中心のサブ領域と左右両端のサブ領域の間にはそれぞれ4つのサブ領域が設けられており、中心のサブ領域の溝の角度を0度とし左右両端のサブ領域の溝の角度を90度とすると、中心のサブ領域に近い領域から順に、22.5度ずつ傾斜角θが急になっていく。このように、各領域Dでは、x方向の幅が等しい複数のサブ領域に区分され、各サブ領域には角度の等しい溝が周期的に形成され、x方向の中心に位置するサブ領域から左右両端に位置するサブ領域に向かって、溝の角度が単調増加するようになっている。 Further, between the central sub-region and the left and right sub-regions, four sub-regions are located on each of the left and right sides. A plurality of grooves are also formed periodically and repeatedly in the y direction in each sub region located between them. Further, the angles of the grooves formed in a certain sub-region are all the same. However, the angle θ of the groove of each sub-region located between them is set so as to gradually approach 90 degrees from the central sub-region toward the sub-regions at the left and right ends. For example, as described above, four sub-regions are provided between the central sub-region and the left and right end sub-regions, respectively. If the angle of the groove is 90 degrees, the inclination angle θ becomes steep by 22.5 degrees in order from the area close to the central sub area. In this way, each region D is divided into a plurality of sub-regions having the same width in the x-direction, grooves having equal angles are periodically formed in each sub-region, and the sub-regions located in the center in the x-direction are left and right. The angle of the groove monotonically increases toward the sub regions located at both ends.

このような前提の下で、各サブ領域において、周期構造の溝間単位周期p(図1参照)は、入射する光の波長(例えば400nm〜1800nmの間から選ばれる)の4分の1以下となる。なお、溝間単位周期pの下限値は40nmである。また、厚み方向(z方向)において、屈折率の異なる2種類の透明媒質の単位周期も光の波長の4分の1以下となる。なお、厚み方向の単位周期の下限値は40nmである。そして、複数の領域D全体のうち、溝の長さの面内最小値d(図5参照)が、前述した溝間単位周期pの1倍以上となる。なお、溝の長さの面内最小値dの上限値は前述した溝間単位周期pの50倍と考えられる。ここで図5に示されるように、ある領域D内に形成された複数のサブ領域のx方向の幅は全て等しいため、領域Dにおける溝の長さの面内最小値dは、基本的に、この領域Dの中心に位置するサブ領域に形成された溝の長さとなる。なお、溝の長さは、x方向の左右両側の領域の溝ほど長くなる傾向にある。 Under such a premise, in each sub-region, the inter-groove unit period p (see FIG. 1) is 1/4 or less of the wavelength of incident light (for example, selected from 400 nm to 1800 nm). Becomes The lower limit of the unit period p between grooves is 40 nm. Further, in the thickness direction (z direction), the unit period of the two types of transparent media having different refractive indexes is also ¼ or less of the wavelength of light. The lower limit of the unit period in the thickness direction is 40 nm. Then, in the entire plurality of regions D, the in-plane minimum value d of the groove length (see FIG. 5) becomes 1 time or more the inter-groove unit period p described above. The upper limit of the in-plane minimum value d of the groove length is considered to be 50 times the inter-groove unit period p described above. Here, as shown in FIG. 5, since the plurality of sub-regions formed in a certain region D have the same width in the x direction, the in-plane minimum value d of the groove length in the region D is basically The length of the groove formed in the sub region located at the center of the region D. Note that the length of the groove tends to be longer as the groove is located on both left and right sides in the x direction.

これにより、図5に示した高精細フォトニック結晶は、図1の例に比べて、x方向の1周期内のサブ領域の数(主軸方位の階調数)がより多くなっており、目標の位相分布をよりただしく再現できる。また、サブ領域の幅とフォトニック結晶の溝同士の間隔(図では黒い太線同志、白い太線同志の間隔)のなす比が大きく、従って異方性がより正確に実現される。このような意味で、図5に示したものは高精細化されている。 As a result, the high-definition photonic crystal shown in FIG. 5 has a larger number of sub-regions within one period in the x direction (the number of gradations in the main axis direction) than the example shown in FIG. The phase distribution of can be reproduced more accurately. Further, the ratio of the width of the sub region and the distance between the grooves of the photonic crystal (the distance between the thick black lines and the distance between the thick white lines in the figure) is large, so that the anisotropy is more accurately realized. In this sense, the one shown in FIG. 5 has high definition.

図6はD=5μmの偏光分離素子に円偏光のガウスビームが垂直入射した時の入射光に対する透過光(屈折光および直進光)の強度とサブ領域数の関係を表すシミュレーション結果である。この時ビームの波長は1.55μm、直径は5μmである。このグラフより公知のメタ表面型より本発明のフォトニック結晶型の方が優れた特性を持つことがわかる。図6(a)は屈折光の強度であり、大きいことが望ましい。したがって、同じサブ領域の数でも光強度が0.2〜0.3dB改善されていることがわかる。図6(b)は屈折されずに直進する光の強度であり、小さいことが望ましい。同様に、同じサブ領域の数でも3〜7dB改善されていることがわかる。さらにフォトニック結晶型は高精細にすることができるため、同じ幅Dを維持しながらサブ領域の数をメタ表面型より多くすることができる。メタ表面型に対する優位点はサブ領域数をより多くできることで透過光の振幅分布、位相分布の正確度が改善されること、また10波長程度の厚さを持つフォトニック結晶内部を進みながら徐々に位相が変化することで、サブ領域の間に生ずる位相の不連続が抑制されることに起因する。 FIG. 6 is a simulation result showing the relationship between the intensity of transmitted light (refracted light and straight light) and the number of sub-regions with respect to incident light when a circularly polarized Gaussian beam is vertically incident on a polarization separation element with D=5 μm. At this time, the beam has a wavelength of 1.55 μm and a diameter of 5 μm. From this graph, it can be seen that the photonic crystal type of the present invention has better characteristics than the known meta surface type. FIG. 6A shows the intensity of refracted light, which is preferably high. Therefore, it can be seen that the light intensity is improved by 0.2 to 0.3 dB even with the same number of sub regions. FIG. 6B shows the intensity of light that travels straight without being refracted, and is preferably small. Similarly, it can be seen that the number of sub-regions is improved by 3 to 7 dB. Further, since the photonic crystal type can be made finer, the number of sub regions can be made larger than that of the meta surface type while maintaining the same width D. The advantage over the meta-surface type is that the number of sub-regions can be increased to improve the accuracy of the amplitude distribution and phase distribution of the transmitted light, and gradually progresses inside the photonic crystal having a thickness of about 10 wavelengths. This is because the phase change suppresses the phase discontinuity that occurs between the sub regions.

[曲線型]
実施例1ではサブ領域に分割されたフォトニック結晶型偏光分離素子の優位性について示した。しかしながらサブ領域に分割することで生じる位相誤差が避けられない本質的な問題がある。また、サブ領域の数を増やすと、サブ領域内で十分な異方性が得られず、リターダンスが小さくなる問題がある。したがって大きな偏光分離角度を得るために周期を小さくするとサブ領域の数を少なくしなければならず、量子化誤差が大きくなり、偏光分離特性が悪化する問題がある。本実施例ではこの問題を解決できる方法について説明する。
[Curved type]
In Example 1, the superiority of the photonic crystal type polarization separation element divided into the sub regions was shown. However, there is an essential problem that the phase error generated by dividing into sub regions cannot be avoided. Further, when the number of sub-regions is increased, sufficient anisotropy cannot be obtained in the sub-regions, and there is a problem that retardance becomes small. Therefore, if the period is reduced to obtain a large polarization separation angle, the number of sub-regions must be reduced, which results in a large quantization error and deterioration of the polarization separation characteristic. In this embodiment, a method for solving this problem will be described.

理想的な光学軸の角度分布は1周期内で0度から180度まで変化し、その変化量はxに対して比例する分布である。この理想的な角度分布は、xが−D/2とD/2の間にあるとき、フォトニック結晶のパタン(凸部または凹部)を曲線(D/π)×log(cos(πx/D))にすることで実現できる。この曲線の接線が光学軸の角度になるため、これにより理想的な光学軸分布が得られる。以下、このような軸方位を持つ偏光分離素子を曲線型と呼ぶ。 The ideal angle distribution of the optical axis changes from 0 degree to 180 degrees within one cycle, and the amount of change is proportional to x. This ideal angular distribution is such that when x is between −D/2 and D/2, the pattern (convex or concave) of the photonic crystal is expressed as a curve (D/π)×log(cos(πx/D )) can be achieved. Since the tangent of this curve is the angle of the optical axis, this gives an ideal optical axis distribution. Hereinafter, the polarization separation element having such an axial orientation will be referred to as a curved type.

図2に本実施例の形態を示す。フォトニック結晶のパタン(凸部または凹部)を曲線状にしたことで、1周期内部で中央部ではパタンが疎になり、端に近いほど密になりパタンが破綻する。そこで中央部でのパタン間ピッチを基準に取り、それをpとする。pがある閾値ピッチ以下になった位置で2本のパタンを合流させる。合流直後のピッチは2pになるが、端にいくにほど密になるため、閾値長さ以下になったところで再度合流させる。以上の操作を繰り返すことでピッチがある範囲内で変化しながら理想的な光学軸分布を実現できる。閾値ピッチを0.5pとすると、ピッチの変化範囲は0.5p〜2.0pの間になる。すなわち、隣り合う凸部と凹部の一方の間隔の最大値と最小値の比が4倍以内になるように、他方が分岐・合流するよう幾何学的に配置されている。図2に示した例では、白色の部分が凹部となり、黒色の部分が凸部となっている。FIG. 2 shows a form of this embodiment. By making the pattern (convex portion or concave portion) of the photonic crystal into a curved shape, the pattern becomes sparse in the central portion within one cycle, and becomes closer to the edge and becomes denser and the pattern breaks down. Therefore, the pitch between patterns in the central portion is taken as a reference, and this is designated as p 0 . Two patterns are merged at a position where p 0 is below a certain threshold pitch. The pitch immediately after the merging is 2p 0 , but since the pitch becomes denser toward the end, the merging is performed again when the length becomes equal to or less than the threshold length. By repeating the above operation, it is possible to realize an ideal optical axis distribution while changing the pitch within a certain range. When the threshold pitch is 0.5p 0 , the pitch change range is between 0.5p 0 and 2.0p 0 . That is, it is geometrically arranged so that the ratio of the maximum value and the minimum value of one of the intervals between the adjacent convex portions and concave portions is within 4 times, and the other branches and merges. In the example shown in FIG. 2, the white portion is the concave portion and the black portion is the convex portion.

図3で示すように、自己クローニングフォトニック結晶ではピッチの変化に対して実効屈折率の変化が小さい。つまりピッチの変化に対してリターダンスの変化量が鈍感であるためメタ表面型に対して優位である。例えば波長1.55μm帯として好ましい基準ピッチpを600nmとし、最小ピッチ閾値を0.65pとし、最大ピッチ閾値を1.3pするとピッチは400nm〜800nmの間で変化し、リターダンスの変化量は±10%以内に収まり極めて小さい。As shown in FIG. 3, in the self-cloning photonic crystal, the change in effective refractive index is small with respect to the change in pitch. That is, since the amount of change in retardance is insensitive to the change in pitch, it is superior to the meta surface type. For example, if the reference pitch p 0 preferable for the wavelength band of 1.55 μm is 600 nm, the minimum pitch threshold is 0.65 p 0 , and the maximum pitch threshold is 1.3 p 0, the pitch changes between 400 nm and 800 nm, and the retardance changes. The amount is within ±10%, which is extremely small.

図7に成膜前の石英基板とその上に形成した自己クローニングフォトニック結晶の表面SEM像を示す。波長1.55μm帯用に設計してあり、基準ピッチは300nm、フォトニック結晶の材料はNbとSiOである。パタンを合流させる閾値ピッチは0.5pである。このSEM像より、石英基板上に曲線状のパタンを形成することでそのパタンに沿ったフォトニック結晶が形成されていることがわかる。FIG. 7 shows a surface SEM image of the quartz substrate before film formation and the self-cloning photonic crystal formed thereon. It is designed for the wavelength band of 1.55 μm, the reference pitch is 300 nm, and the photonic crystal materials are Nb 2 O 5 and SiO 2 . The threshold pitch for merging the patterns is 0.5p 0 . From this SEM image, it is understood that by forming a curved pattern on the quartz substrate, a photonic crystal is formed along the pattern.

図8にフォトニック結晶形偏光分離素子が持つ光学軸方位の測定結果を示す。測定に用いた波長は520nmであり、測定波長に合わせてフォトニック結晶の設計も変更してある。基準ピッチは300nm、フォトニック結晶の材料はNbとSiO、膜厚はそれぞれ40nmである。15周期積層し、フォトニック結晶部分の厚さは合計で1.2μmである。パタンを合流させる閾値ピッチは0.5pである。偏光分離素子の周期は6、8、10μmで作成した。また、比較のため同じ基板上にサブ領域で分割したパタンも形成し、一括で成膜してある。この測定結果より、曲線型の素子では点線で示される理想的な軸方位分布を実現できている事がわかる。一方分割型では量子化誤差によって階段状に軸方位が変化していることが見て取れる。FIG. 8 shows the measurement result of the optical axis direction of the photonic crystal type polarization separation element. The wavelength used for the measurement was 520 nm, and the design of the photonic crystal was changed according to the measured wavelength. The reference pitch is 300 nm, the photonic crystal material is Nb 2 O 5 and SiO 2 , and the film thickness is 40 nm. The layers are stacked for 15 periods, and the total thickness of the photonic crystal portion is 1.2 μm. The threshold pitch for merging the patterns is 0.5p 0 . The polarization separation element was prepared with a period of 6, 8 and 10 μm. For comparison, a pattern divided into sub-regions is also formed on the same substrate, and the films are collectively formed. From this measurement result, it is understood that the curved element can realize the ideal axial orientation distribution indicated by the dotted line. On the other hand, in the split type, it can be seen that the axis direction changes stepwise due to the quantization error.

図9に分割型と曲線型の0次光(位相誤差により発生する不要な光)の測定値を示す。これより、曲線型の方が不要な光を小さくできることがわかる。これにより曲線型が実現可能で分割型よりも高性能であることが示された。 FIG. 9 shows measured values of split type and curved type zero-order light (unnecessary light generated by a phase error). From this, it is understood that the curved type can reduce unnecessary light. This shows that the curved type is feasible and has higher performance than the split type.

[3層構造]
実施例1、実施例2のプリズムは所定の円偏光に対して動作し、出力も円偏光である。しかし通常の光学系で利用価値が高いのは直線偏光である。(たとえば光通信では、レーザ光源もPLC導波路もLN変調器もシリコンフォトニクス素子も、みな固有状態、安定動作の状態は直線偏光である。)直線偏光と円偏光とは1/4波長板に光を通すことによって相互に変換できる。故に、1/4波長板・・・図7のプリズム・・・1/4波長板という3部構成にすれば、直線偏光入力、直線偏光出力のプリズムが得られ、利用価値が高まる。
[Three-layer structure]
The prisms of the first and second embodiments operate on predetermined circularly polarized light, and the output is also circularly polarized light. However, linearly polarized light has a high utility value in an ordinary optical system. (For example, in optical communication, the laser light source, the PLC waveguide, the LN modulator, and the silicon photonics element are all in the eigenstate and in the stable operation state of linearly polarized light.) Linearly polarized light and circularly polarized light are ¼ wavelength plates. Mutual conversion is possible by passing light. Therefore, if the three-part configuration of the 1/4 wavelength plate... Prism of FIG. 7... 1/4 wavelength plate is used, a prism of linearly polarized light input and linearly polarized light output is obtained, and the utility value is increased.

自己クローニングフォトニック結晶技術では、平坦な基板上に均一な1/4波長板を形成すること、その上に実施例2で示した曲線型の主軸方位分布をもつフォトニック結晶形1/2波長板を形成すること、さらにその上に均一な1/4波長板を形成することは実行出来る(途中で表面平坦化が必要になるがそれも同一装置内のスパッタリングなどで実行出来る)。 In the self-cloning photonic crystal technique, a uniform quarter-wave plate is formed on a flat substrate, and a photonic crystal half-wave having the curved principal axis azimuth distribution shown in Example 2 is formed thereon. It is feasible to form a plate, and further to form a uniform quarter-wave plate on it (surface flattening is required on the way, but this can also be done by sputtering in the same apparatus).

詳しく説明すると、
(1−1)基板の上に、ナノインプリント法などで一様な溝列を形成
(1−2)その上に自己クローニング法により均一な1/4波長板を形成
(1−3)スパッタリング法などでその表面を平坦化
(2−1)その上に、ナノインプリント法などにより所望のパタンを形成
(2−2)その上に自己クローニング法により実施例2で示した曲線型の主軸方位分布をもつ1/2波長板を形成
(2−3)スパッタリング法などでその表面を平坦化
(3−1)その上に、ナノインプリント法などで一様な溝列を形成
(3−2)その上に自己クローニング法により均一な1/4波長板を形成
という順序を踏む。
In detail,
(1-1) Forming a uniform groove array on the substrate by nanoimprinting method (1-2) Forming a uniform quarter wave plate on it by self-cloning method (1-3) Sputtering method, etc. Then, the surface thereof is flattened (2-1), and a desired pattern is formed thereon by a nanoimprint method or the like (2-2), and the self-cloning method has the curved principal axis azimuth distribution shown in Example 2. A half-wave plate is formed (2-3) The surface is flattened by a sputtering method or the like (3-1), and a uniform groove array is formed by a nanoimprint method or the like (3-2). The order of forming a uniform quarter-wave plate by the cloning method is followed.

以下図10を参照して、3層構造の偏光分離素子の説明を述べる。基板1004上に一様な自己クローニング形フォトニック結晶からなる第1の1/4波長板1003を生成する。その上に実施例2で示した曲線型の主軸方位分布をもつ自己クローニング形フォトニック結晶からなる1/2波長板1002を生成する。なお、1/2波長板1002は、実施例1で示した分割型の主軸方位分布をもつ自己クローニング形フォトニック結晶に置き換えることもできる。その上に一様な自己クローニング形フォトニック結晶からなる第2の1/4波長板1001を生成する。直線偏光1005のように第1の1/4波長板1003の主軸に対して、45度方位で入射した直線偏光1005は左回り円偏光1006に変換される。左回り円偏光1006は主軸方位が面内で分布した1/2波長板1002により右回り円偏光1007に変換され、等位相面が傾く。その結果、右回り円偏光1007の進行方向は傾き、一様な第2の1/4波長板1001に入射し、直線偏光1008として出射する。このとき入射側と出射側の一様な第1の1/4波長板1003と、第2の1/4波長板1001の主軸の方位を90°変えておくことで、入射直線偏光1005と出射直線偏光1008の方位を同一にできる。 Hereinafter, the polarization separation element having the three-layer structure will be described with reference to FIG. A first quarter-wave plate 1003 made of a uniform self-cloning photonic crystal is formed on a substrate 1004. A half-wave plate 1002 made of a self-cloning photonic crystal having the curved principal axis orientation distribution shown in the second embodiment is formed thereon. The half-wave plate 1002 can be replaced with the self-cloning photonic crystal having the split principal axis orientation distribution shown in the first embodiment. A second quarter wave plate 1001 made of a uniform self-cloning photonic crystal is formed thereon. Like the linearly polarized light 1005, the linearly polarized light 1005 that is incident at an azimuth of 45 degrees with respect to the principal axis of the first quarter-wave plate 1003 is converted into counterclockwise circularly polarized light 1006. The left-handed circularly polarized light 1006 is converted into the right-handed circularly polarized light 1007 by the ½ wavelength plate 1002 whose principal axis directions are distributed in the plane, and the equiphase surface is inclined. As a result, the traveling direction of the right-handed circularly polarized light 1007 is tilted, enters the uniform second quarter-wave plate 1001, and exits as linearly polarized light 1008. At this time, by changing the azimuths of the principal axes of the first quarter-wave plate 1003 and the second quarter-wave plate 1001 that are uniform on the incident side and the outgoing side by 90°, the incident linearly polarized light 1005 and the outgoing light are emitted. The directions of the linearly polarized light 1008 can be made the same.

次に図11で入射直線偏光1101が図10の入射直線偏光1005と90°方位が違う場合を示す。直線偏光1101は一様な第1の1/4波長板に入射し、右回り円偏光1102に変換され、主軸方位が面内で分布した1/2波長板により左回り円偏光1103に変換され、図10の場合とは逆に等位相面が傾く。その結果、進行方向は傾き、一様な第2の1/4波長板に入射し、直線偏光1104として出射する。 Next, FIG. 11 shows a case where the incident linearly polarized light 1101 is different from the incident linearly polarized light 1005 in FIG. The linearly polarized light 1101 enters a uniform first quarter-wave plate, is converted into right-handed circularly polarized light 1102, and is converted into left-handed circularly polarized light 1103 by a half-wave plate whose principal axis direction is distributed in the plane. In contrast to the case of FIG. 10, the equiphase surface is inclined. As a result, the traveling direction is inclined and enters the uniform second quarter-wave plate, and exits as linearly polarized light 1104.

次に図12で入射直線偏光1201が一様な第1の1/4波長板の主軸と同じ方位で入射した場合を示す。直線偏光1201は一様な第1の1/4波長板に入射し、直線偏光1202となり出射する。直線偏光1202は同一振幅を持つ右回り円偏光、左回り円偏光の合成とみなすことができ、分解できる。分解した右回り円偏光、左回り円偏光は、主軸方位が面内で分布した1/2波長板によりそれぞれ図10、図11で示したように進行方向が傾き、直線偏光1203、1204のように90°方位の違う、直線偏光2つに分離される。このとき、直線偏光1203、1204の光強度は同じである。 Next, FIG. 12 shows a case where the incident linearly polarized light 1201 is incident in the same azimuth as the principal axis of the uniform first quarter-wave plate. The linearly polarized light 1201 enters the uniform first quarter-wave plate, and becomes linearly polarized light 1202 and exits. The linearly polarized light 1202 can be regarded as a combination of right-handed circularly polarized light and left-handed circularly polarized light having the same amplitude, and can be decomposed. The decomposed right-handed circularly polarized light and left-handed circularly polarized light have their traveling directions tilted as shown in FIGS. It is split into two linearly polarized lights with different 90° azimuths. At this time, the light intensities of the linearly polarized lights 1203 and 1204 are the same.

次に図13で任意方位の直線偏波1301が入射した場合を示す。任意方位の直線偏光1301は一様な第1の1/4波長板に入射し、楕円偏光1302に変換される。楕円偏光1302は振幅の違う右回り円偏光、左回り円偏光の合成とみなすことができ、分解できる。分解した右回り円偏光、左回り円偏光は、主軸方位が面内で分布した1/2波長板によりそれぞれ図10、図11で示したように進行方向が傾き、直線偏光1303、1304のように90°方位の違う、直線偏光2つに分離される。このとき、直線偏光1303、1304の光強度は直線偏光1301の方位によってバランスが変わる。(+45°成分、−45°成分) Next, FIG. 13 shows a case where a linearly polarized wave 1301 in an arbitrary direction is incident. Linearly polarized light 1301 in an arbitrary direction enters a uniform first quarter-wave plate and is converted into elliptically polarized light 1302. The elliptically polarized light 1302 can be regarded as a combination of right-handed circularly polarized light and left-handed circularly polarized light having different amplitudes, and can be decomposed. The decomposed right-handed circularly polarized light and left-handed circularly polarized light have their traveling directions inclined by the half-wave plate whose principal axis directions are distributed in the plane as shown in FIGS. It is split into two linearly polarized lights with different 90° azimuths. At this time, the balance of the light intensity of the linearly polarized light 1303, 1304 changes depending on the direction of the linearly polarized light 1301. (+45° component, -45° component)

このように入射直線偏光は、自己クローニング形フォトニック結晶を使用した曲線型の偏光分離素子(偏光グレーティング)によって偏光分離される。 In this way, the incident linearly polarized light is polarized and separated by the curved polarization separating element (polarization grating) using the self-cloning photonic crystal.

入射偏光は楕円偏光でも同様に各成分の直線偏光に偏光分離される。 Even if the incident polarized light is elliptically polarized light, it is similarly polarized and separated into linearly polarized light of each component.

ここでは、偏光分離部分に曲線型を用いているが、分割型を使用しても動作が可能である。その場合、発生する位相誤差は曲線型よりも大きい。 Here, the curved type is used for the polarized light separating portion, but it is possible to operate even if the divided type is used. In that case, the generated phase error is larger than that of the curved type.

[レンズドプリズム]
実施例2の曲線型の偏光分離素子と1/4波長板とレンズを組み合わせることで、不要偏光成分を除去しながら所望の偏光成分を集光することができる。なお、偏光分離素子は、分割型の偏光分離素子に置き換えることもできる。
[Lensed prism]
By combining the curved type polarization separation element of Example 2 with the quarter wavelength plate and the lens, it is possible to collect a desired polarization component while removing unnecessary polarization components. The polarization separation element may be replaced with a split type polarization separation element.

図14の様に入射する光は実施例2の偏光分離素子により右回り円偏光と左回り円偏光に分離され、斜め方向に伝搬する。石英層を伝番して、1つ目の偏光分離素子と分離する円偏光が逆になるように配置された2つ目の偏光分離素子により平行に伝搬するように変換される。その後90度軸方位を変えた領域分割型の1/4波長板により、それぞれ同一方向に偏光長軸を持った直線偏光(垂直偏光または水平偏光)に変換される。その後直線偏光はフォトニック結晶レンズによりそれぞれ集光される。この時、集光される光と90度偏光長軸方向が違う不要偏光がクロストークとして存在している場合、この偏光は集光しないため、偏光クロストークと出力光の偏光純度を改善することができる。 The incident light as shown in FIG. 14 is split into right-handed circularly polarized light and left-handed circularly polarized light by the polarization splitting element of Example 2, and propagates in an oblique direction. The quartz layer is transmitted and converted by the second polarization separation element arranged so that the circularly polarized light separated from the first polarization separation element is reversed, so as to propagate in parallel. After that, it is converted into linearly polarized light (vertical polarized light or horizontal polarized light) having a polarization major axis in the same direction by a region-division type quarter-wave plate whose axis orientation is changed by 90 degrees. After that, the linearly polarized light is collected by the photonic crystal lens. At this time, if unnecessary polarized light whose 90°-polarization major axis direction is different from that of the condensed light exists as crosstalk, this polarized light is not condensed, so that the polarization crosstalk and the polarization purity of the output light should be improved. You can

以下具体的なパラメータを用いてプリズム機能部分を説明する。
計算条件は以下の通りである。
・波長1.55μm
・入射光 半径2.5μmのガウスビーム(市販されている高屈折率差単一モード光ファイバのビーム半径)
・右回り円偏光
・材料(PBSとQWP) a-Si/SiO2
・PBS周期 3μm
・PBS厚さ 3.4μm
・QWP厚さ 1.7μm
・石英厚さ 50μm
BPM解析の結果、
・出力光 半径3.68μm
・波面の曲率半径 25.4μm
・ビームの分離幅 8.2μm
が得られた。
The prism function portion will be described below using specific parameters.
The calculation conditions are as follows.
・Wavelength 1.55 μm
・Gaussian beam with incident light radius of 2.5 μm (beam radius of commercially available high refractive index difference single mode optical fiber)
・Right-handed circularly polarized light ・Material (PBS and QWP) a-Si/SiO2
・PBS cycle 3μm
・PBS thickness 3.4 μm
・QWP thickness 1.7 μm
・Quartz thickness 50 μm
As a result of BPM analysis,
・Output light radius 3.68 μm
・Wave surface radius of curvature 25.4 μm
・Beam separation width 8.2 μm
was gotten.

次にレンズ機能部分を説明する。上記解析で得られるビームパラメータを入射条件として解析を行った。図15左図にレンズの概略を示す。
・レンズ厚さ 4.8μm
パタンが切り替わる半径
2.6μm、3.61μm
実効屈折率は中央部から、
2.713、2.600、2.486
とした。石英伝搬層内で集光されており、図15右図にシリコンフォトニクスのデバイス等を想定した損失見積もりを行った。一例として、接続先のデバイスが半径1.5μmのモードフィールドを持つとき、レンズドプリズムでの接続損失は0.95dB程度と見積もられる。
Next, the lens function part will be described. The beam parameters obtained by the above analysis were analyzed under the incident conditions. The left side of FIG. 15 shows an outline of the lens.
・Lens thickness 4.8μm
Radius at which the pattern switches
2.6 μm, 3.61 μm
Effective refractive index from the center,
2.713, 2.600, 2.486
And The light is condensed in the quartz propagation layer, and the loss is estimated on the right side of FIG. 15 assuming a device such as a silicon photonics device. As an example, when the connected device has a mode field with a radius of 1.5 μm, the connection loss in the lensed prism is estimated to be about 0.95 dB.

以上の様に偏光分離と集光を非常に薄い複合光学素子、この例では74μmで実現できる。これは光ファイバとシリコンフォトニクスの間に偏光分離のために石英系平面光導波路(PLC、伝搬路長さ数10mm)を用いるものに比べて、桁違いの小型化が可能である。 As described above, polarization separation and light collection can be realized with a very thin composite optical element, which is 74 μm in this example. This is an order of magnitude smaller than the one using a silica-based planar optical waveguide (PLC, propagation path length of several 10 mm) for polarization separation between an optical fiber and silicon photonics.

ここでは、偏光分離部分に曲線型を用いているが、サブ領域型を使用しても動作が可能である。その場合、発生する位相誤差は曲線型よりも大きい。 Here, the curved type is used for the polarized light separating portion, but the operation is possible even if the sub-region type is used. In that case, the generated phase error is larger than that of the curved type.

また、レンズドプリズム(複合光学素子)を構成する偏光分離素子、1/4波長板、及びレンズはすべてフォトニック結晶で形成されたものであることが好ましい。フォトニック結晶型の偏光分離素子は、前述した実施例1の分割型と実施例2の曲線型のどちらであってもよい。また、フォトニック結晶型の1/4波長板は公知である。レンズは、通常のレンズを用いることもできるが、フォトニック結晶型のレンズを用いることで、光伝搬方向の厚みを薄型化できる。 In addition, it is preferable that the polarization separation element, the quarter-wave plate, and the lens that form the lensed prism (composite optical element) are all formed of photonic crystals. The polarization splitting element of the photonic crystal type may be either the split type of the first embodiment or the curved type of the second embodiment described above. A photonic crystal type quarter-wave plate is known. As the lens, an ordinary lens can be used, but by using a photonic crystal type lens, the thickness in the light propagation direction can be reduced.

図15に示されるように、フォトニック結晶型のレンズは、3次元空間x、y、zにおいて、x軸およびy軸を複屈折の主軸とし、z方向に伸びる柱状の中央部と重なり前記中央部を囲む少なくとも1つの周辺部とを有する。中央部および周辺部は、自己クローニング型フォトニック結晶である。中央部は、周辺部よりも高い実効屈折率を持つ。中央部および周辺部の境界は、円形または方形である。フォトニック結晶型のレンズは、xまたはy方向に電界をもつ光をz方向に導き、導かれた伝搬光のスポットサイズを変換する。さらに、周辺部として、中央部を囲む第1周辺部と、第1周辺部を囲み、第1周辺部より低い実効屈折率を持つ第2周辺部とを含んでいてもよい。このように、3次元フォトニック結晶微小波長板の集合体積層することにより垂直型光導波路として機能させ、直線偏光した光を集光・発散・屈折する光素子を与える。これにより薄型平板フォトニック結晶レンズの持つ集光性をより強くすることができ、さらなる小型化、高い集光機能を持たせることができる。 As shown in FIG. 15, in the three-dimensional space x, y, and z, the photonic crystal type lens has the x-axis and the y-axis as the main axes of birefringence, and overlaps with a columnar central portion extending in the z-direction. And at least one peripheral portion surrounding the portion. The central part and the peripheral part are self-cloning photonic crystals. The central part has a higher effective refractive index than the peripheral part. The boundary between the central part and the peripheral part is circular or rectangular. The photonic crystal type lens guides light having an electric field in the x or y direction in the z direction and converts the spot size of the guided propagating light. Further, the peripheral portion may include a first peripheral portion surrounding the central portion and a second peripheral portion surrounding the first peripheral portion and having a lower effective refractive index than the first peripheral portion. In this way, by stacking an aggregate of three-dimensional photonic crystal minute wave plates, it functions as a vertical optical waveguide, and an optical element that collects, diverges and refracts linearly polarized light is provided. As a result, the light condensing property of the thin flat plate photonic crystal lens can be further strengthened, and further miniaturization and high light condensing function can be provided.

また、フォトニック結晶型のレンズは、中央部の半径又は中央部のxy面における長手方向の長さの半分の値が、伝播する光の波長の10倍以内であることが好ましい。また、その階段状の屈折率分布はxy平面内の光強度の大きい範囲で2次放物面n=q−p(x+y)を近似していることが好ましい。In the photonic crystal type lens, it is preferable that the radius of the central portion or half the length in the longitudinal direction of the xy plane of the central portion is within 10 times the wavelength of the propagating light. Further, it is preferable that the stepped refractive index distribution which approximates the quadratic parabolic n = q-p in a large range of light intensity in the xy plane (x 2 + y 2).

レンズ、プリズムはあらゆる光技術の基礎をなし、至る所で利用価値を持っている。例えば、光通信に即して云うと、
レンズは、レーザ光源の光をファイバや平面光回路(PLC)に導く部分や、平面光回路(PLC)内の光を変調器・スイッチに結合する部分などに、
プリズムは、ファイバや光回路を伝わる2種類の直線偏光(たとえば電界が基準平面に平行であるか垂直であるか)に分離する部分や、その逆に2種類の直線偏光を1本の伝送路(光ファイバなど)に束ねる部分などにおいて用いられる重要な光学素子である。
また、偏光依存性のある回路を使う際に、偏光を2つの成分に分けてそれぞれの光を2つの同じ回路に所望の光ビームの直径、所定の偏光方向にそろえて入力する、偏光ダイバーシティおよび光結合モジュールに用いられる。
なお、光の伝搬方向は可逆であるから、例えば図13の偏光分離プリズムを逆向きに用いて偏光合成プリズムに用いることができる。図14のレンズドプリズムにおいて、右端の2つのポートから所定の直線偏光を入射させ左端で合成された出力を得ることができる。
ゆえに、実施例1,2,3,4はその意味で偏光分離素子でもあり、偏光合成素子でもある。どちらの形態でも産業上の利用を行うことができる。
Lenses and prisms form the basis of all optical technologies and have utility value everywhere. For example, according to optical communication,
The lens is used to guide the light from the laser light source to the fiber or the planar optical circuit (PLC), or to couple the light in the planar optical circuit (PLC) to the modulator/switch.
The prism divides into two kinds of linearly polarized light (for example, whether the electric field is parallel or perpendicular to the reference plane) propagating through the fiber or the optical circuit, and vice versa. It is an important optical element used in a part where it is bundled (such as an optical fiber).
Further, when a circuit having polarization dependence is used, the polarization is divided into two components, and the respective lights are input to the same two circuits by aligning them with a desired light beam diameter and a predetermined polarization direction. Used for optical coupling module.
Since the propagation direction of light is reversible, the polarization splitting prism of FIG. 13 can be used in the opposite direction to be used as a polarization combining prism. In the lensed prism of FIG. 14, predetermined linearly polarized light can be made incident from the two ports at the right end, and an output combined at the left end can be obtained.
Therefore, the first, second, third, and fourth embodiments are, in that sense, a polarization separating element and a polarization combining element. Both forms can be used industrially.

Claims (7)

3次元空間x、y、zにおいて、xy面に形成され、z軸方向に積層されたフォトニック結晶の半波長板を備え、
x軸方向に単一、もしくは、繰り返される一又は複数の領域を有し、
前記領域は、x軸方向に、複数の帯状のサブ領域に区分され、
フォトニック結晶の溝方向は、
前記領域の中では、y軸方向に対する角度が0°から180°の範囲で段階的に変化し、かつ、
前記サブ領域の中では、y軸方向に対する角度が一様であり、
z軸方向に入射する光を、
z軸からある角度だけx軸に向かう方向の右回り円偏光と、
z軸から同一の角度だけ−x軸に向かう方向の左回り円偏光とに、
分離および変換して出射する
光学素子。
In the three-dimensional space x, y, z, a half-wave plate of a photonic crystal formed in the xy plane and stacked in the z-axis direction is provided,
has a single or repeated region in the x-axis direction, or
The region is divided into a plurality of strip-shaped sub-regions in the x-axis direction,
The groove direction of the photonic crystal is
Within the region, the angle with respect to the y-axis direction changes stepwise in the range of 0° to 180°, and
Within the sub-region, the angle with respect to the y-axis direction is uniform,
Light incident in the z-axis direction
right-handed circularly polarized light in the direction from the z-axis toward the x-axis at an angle,
Left-handed circularly polarized light in the direction toward the x-axis at the same angle from the z-axis,
An optical element that separates, converts, and emits light.
3次元空間x、y、zにおいて、xy面に形成され、z軸方向に積層されたフォトニック結晶の半波長板を備え、
x軸方向に単一、もしくは、繰り返される一又は複数の領域を有し、
フォトニック結晶の溝方向は、
曲線であり、かつ、
y軸方向に対する角度が0°から180°の範囲で連続的に変化し、
z軸方向に入射する光を、
z軸からある角度だけx軸に向かう方向の右回り円偏光と、
z軸から同一の角度だけ−x軸に向かう方向の左回り円偏光とに、
分離および変換して出射する
光学素子。
In the three-dimensional space x, y, z, a half-wave plate of a photonic crystal formed in the xy plane and stacked in the z-axis direction is provided,
has a single or repeated region in the x-axis direction, or
The groove direction of the photonic crystal is
Is a curve, and
The angle with respect to the y-axis direction changes continuously in the range of 0° to 180°,
Light incident in the z-axis direction
right-handed circularly polarized light in the direction from the z-axis toward the x-axis at an angle,
Left-handed circularly polarized light in the direction toward the x-axis at the same angle from the z-axis,
An optical element that separates, converts, and emits light.
請求項2に記載の光学素子であって、
隣り合う凸部と凹部の一方の間隔の前記領域の内部における最大値と最小値の比が4倍以内になるように、他方が分岐・合流するよう幾何学的に配置されている
光学素子。
The optical element according to claim 2, wherein
An optical element geometrically arranged so that the ratio between the maximum value and the minimum value in the area of one of the intervals between adjacent convex portions and concave portions is within 4 times, and the other branches and merges.
請求項3に記載の光学素子であって、
前記領域の幅をDとした場合に、
前記曲線が、y=(D/π)log(cos(πx/D))+定数で表される
光学素子。
The optical element according to claim 3, wherein
When the width of the region is D,
The optical element in which the curve is represented by y=(D/π)log(cos(πx/D))+constant.
請求項1又は請求項2に記載の光学素子であって、
フォトニック結晶の溝間単位周期が、40nm以上、かつ入射する光の波長の1/4以下であり、
厚さ方向の周期が、入射する光の波長の1/4以下である
光学素子。
The optical element according to claim 1 or 2, wherein
The unit period between grooves of the photonic crystal is 40 nm or more and 1/4 or less of the wavelength of incident light,
An optical element whose period in the thickness direction is ¼ or less of the wavelength of incident light.
請求項1又は請求項2に記載の光学素子であって、
片面もしくは両面にフォトニック結晶からなる1/4波長板を積層または配置し、
光学素子のz軸方向から入射する光を直交する2つの直線偏光に分離する
光学素子。
The optical element according to claim 1 or 2, wherein
Laying or arranging a quarter wave plate made of a photonic crystal on one side or both sides,
An optical element that splits light incident from the z-axis direction of the optical element into two linearly polarized light beams that are orthogonal to each other.
請求項1又は請求項2に記載の光学素子を二つ有し、
第一の光学素子および第二の光学素子がある伝搬長の間隔を設けて配置され、
第二の光学素子の後段に設けられた1/4波長板と、
前記1/4波長板の後段に設けられ、直線偏光を集光し、かつ、それと直交する直線偏光を発散する機能を有する一対のレンズと、を有し、
第一の光学素子側から入射した光を2つの直線偏光成分に分離して集光する
複合光学素子
It has two optical elements according to claim 1 or claim 2,
The first optical element and the second optical element are arranged at intervals of a propagation length,
A quarter-wave plate provided after the second optical element,
A pair of lenses provided on the latter stage of the quarter-wave plate for condensing linearly polarized light and diverging the linearly polarized light orthogonal to the linearly polarized light;
Composite optical element that separates the light incident from the first optical element side into two linearly polarized light components and collects them
JP2018503351A 2016-03-02 2017-02-28 Optical element Active JP6745516B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016039854 2016-03-02
JP2016039854 2016-03-02
PCT/JP2017/007958 WO2017150568A1 (en) 2016-03-02 2017-02-28 Optical element

Publications (2)

Publication Number Publication Date
JPWO2017150568A1 JPWO2017150568A1 (en) 2019-02-14
JP6745516B2 true JP6745516B2 (en) 2020-08-26

Family

ID=59744064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018503351A Active JP6745516B2 (en) 2016-03-02 2017-02-28 Optical element

Country Status (4)

Country Link
US (1) US11125925B2 (en)
JP (1) JP6745516B2 (en)
CN (1) CN109073815B (en)
WO (1) WO2017150568A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7101954B2 (en) * 2017-10-30 2022-07-19 株式会社フォトニックラティス Optical matrix switch
JP7048962B2 (en) * 2017-12-21 2022-04-06 株式会社フォトニックラティス Optical element
JP7303619B2 (en) * 2018-10-16 2023-07-05 株式会社フォトニックラティス Optical beam branching optical circuit and laser processing machine
WO2020201111A1 (en) * 2019-03-29 2020-10-08 Sony Corporation Transparent optical portion, optical device and method for manufacturing an optical device
JP6896262B1 (en) * 2019-12-16 2021-06-30 日本分光株式会社 Reflective type polarization separation diffraction element and optical measuring device equipped with this
US11860414B2 (en) 2020-12-30 2024-01-02 Globalfoundries U.S. Inc. Edge couplers including a grooved membrane
TWI829204B (en) * 2022-06-20 2024-01-11 國立中央大學 Meta-optics element
CN115128715B (en) * 2022-07-20 2023-09-22 中国人民解放军火箭军工程大学 High-efficiency light absorption configuration composite material cooperatively enhanced by resonant cavity and interference film layer

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3325825B2 (en) 1997-03-29 2002-09-17 彰二郎 川上 Three-dimensional periodic structure, method for producing the same, and method for producing film
US6952300B2 (en) * 2001-02-28 2005-10-04 Board Of Control Of Michigan Technological University Magneto-photonic crystal isolators
JP4174419B2 (en) * 2003-09-17 2008-10-29 株式会社フォトニックラティス Ellipsometer
KR100845565B1 (en) * 2003-12-01 2008-07-10 더 보드 오브 트러스티즈 오브 더 유니버시티 오브 일리노이 Methods and devices for fabricating three-dimensional nanoscale structures
CN2842451Y (en) * 2005-07-29 2006-11-29 浙江大学 Polarization beam splitter based on photon crystal positive-negative refraction
JP5234457B2 (en) * 2008-06-06 2013-07-10 国立大学法人東北大学 Laser resonator
US8363185B2 (en) * 2008-10-10 2013-01-29 Samsung Electronics Co., Ltd. Photonic crystal optical filter, transmissive color filter, transflective color filter, and display apparatus using the color filters
JP5218079B2 (en) 2009-01-15 2013-06-26 株式会社リコー Optical element, optical pickup, optical information processing apparatus, optical attenuator, polarization conversion element, projector optical system, optical equipment
WO2012067080A1 (en) * 2010-11-18 2012-05-24 日本電気株式会社 Light source unit and projection display device provided with same
JP2012159802A (en) 2011-02-02 2012-08-23 Ricoh Co Ltd Optical element, optical pickup, optical information processor, optical attenuator, polarization conversion element, projector optical system, isolator and optical instrument
US9739448B2 (en) * 2012-05-08 2017-08-22 The Hong Kong University Of Science And Technology Patterned polarization grating polarization converter
CN103389534B (en) * 2012-05-08 2016-04-13 香港科技大学 Polarization converter and polarization conversion system
US10386558B2 (en) * 2013-03-13 2019-08-20 Imagineoptix Corporation Polarization conversion systems with geometric phase holograms
US9507064B2 (en) * 2014-07-27 2016-11-29 The Board Of Trustees Of The Leland Stanford Junior University Dielectric metasurface optical elements
JP2017072526A (en) 2015-10-09 2017-04-13 株式会社ニコン Polarization measurement device, polarization measurement method, inspection device, exposure device, exposure method and device fabrication method

Also Published As

Publication number Publication date
US20190086597A1 (en) 2019-03-21
US11125925B2 (en) 2021-09-21
WO2017150568A1 (en) 2017-09-08
CN109073815A (en) 2018-12-21
JPWO2017150568A1 (en) 2019-02-14
CN109073815B (en) 2021-01-15

Similar Documents

Publication Publication Date Title
JP6745516B2 (en) Optical element
US20060126066A1 (en) Polarization analyzer
US7068903B2 (en) Optical element using one-dimensional photonic crystal and spectroscopic device using the same
US20020027655A1 (en) Optical device and spectroscopic and polarization separating apparatus using the same
JP3979097B2 (en) Optical element
US20040258355A1 (en) Micro-structure induced birefringent waveguiding devices and methods of making same
CN111133346B (en) Optical element and lightwave circuit
US20020122613A1 (en) Optical device and spectroscopic and integrated optical apparatus using the same
KR20020079499A (en) Optical device, and wavelength multiplexing optical recording head
JP3979146B2 (en) Optical element using one-dimensional photonic crystal and optical apparatus using the same
US6914715B2 (en) Optical element
JP4042426B2 (en) Optical element and spectroscopic device using the same
JP7048962B2 (en) Optical element
JP2000131522A (en) Polarizer and its production and waveguide type optical device using the same
JP7303619B2 (en) Optical beam branching optical circuit and laser processing machine
US10928701B2 (en) Large angle image steering device
WO2016181895A1 (en) Optical element
JP2002236206A (en) Optical device and spectroscopic apparatus using the same
JP3023572B2 (en) Polarizing element
JP2017156557A (en) Phase plate, lens, and polarization separating element
JP2012013931A (en) Planar waveguide
JP2004145117A (en) Optical element using linear photonic crystal and spectral device using same
JP2002182026A (en) Optical element and spectral demultiplexer using the same
JPH03259104A (en) Waveguide type te-tm mode splitter

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180830

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200728

R150 Certificate of patent or registration of utility model

Ref document number: 6745516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250