JP2006266806A - Manufacturing device of coated fuel particle for high-temperature gas-cooled reactor - Google Patents

Manufacturing device of coated fuel particle for high-temperature gas-cooled reactor Download PDF

Info

Publication number
JP2006266806A
JP2006266806A JP2005083934A JP2005083934A JP2006266806A JP 2006266806 A JP2006266806 A JP 2006266806A JP 2005083934 A JP2005083934 A JP 2005083934A JP 2005083934 A JP2005083934 A JP 2005083934A JP 2006266806 A JP2006266806 A JP 2006266806A
Authority
JP
Japan
Prior art keywords
gas
reaction tube
fluidized bed
bed reaction
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005083934A
Other languages
Japanese (ja)
Other versions
JP4417871B2 (en
Inventor
Kazutoshi Okubo
和俊 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP2005083934A priority Critical patent/JP4417871B2/en
Publication of JP2006266806A publication Critical patent/JP2006266806A/en
Application granted granted Critical
Publication of JP4417871B2 publication Critical patent/JP4417871B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing device of coated fuel particles for a high-temperature gas-cooled reactor to stabilize temperature distribution in the reactor even in performing continuous production, thereby stabilizing the quality of coating layers having an important role in a fissile material containment function of a high-temperature gas-cooled reactor fuel. <P>SOLUTION: This manufacturing device is equipped with a fluidized-bed reaction tube for forming a plurality of coating layers on a surface of a fuel core obtained by sintering uranium dioxide while causing a coating gas and/or a flowing gas to flow in a heating environment and a graphite heater for heating the reaction tube. This device is further equipped with an inert gas introduction tube for introducing inert gas into an outside region of the reaction tube and a control means for controlling the pressure of the inert gas in the outside region of the reaction tube so as to be equal to or higher than the inner pressure of the reaction tube. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高温ガス炉用燃料の製造装置に関し、二酸化ウランなどウランの化合物から成る燃料核に多重の被覆層を形成して被覆燃料粒子とする流動床反応装置を備えた高温ガス炉用被覆燃料粒子の製造装置において、被覆層の特性に大きな影響を与える被覆温度の炉内分布が、繰り返し製造していても変化することなく一定であり、連続生産に適したものである。   TECHNICAL FIELD The present invention relates to an apparatus for producing a fuel for a high temperature gas reactor, and relates to a coating for a high temperature gas reactor provided with a fluidized bed reactor in which multiple coating layers are formed on a fuel core made of a uranium compound such as uranium dioxide to form coated fuel particles. In the fuel particle manufacturing apparatus, the distribution in the furnace of the coating temperature, which greatly affects the characteristics of the coating layer, remains constant even when repeatedly manufactured, and is suitable for continuous production.

高温ガス炉は、燃料を含む炉心構造を熱容量が大きく高温健全性が良好な黒鉛で構成すると共に、冷却ガスとして高温下でも化学反応が起こらないヘリウムガス(Heガス)等を用いることにより、固有の安全性が高く、高い出口温度のHeガスを取り出すことが可能であり、約900℃の高温熱は、発電はもちろんのこと水素製造や化学プラント等、幅広い分野での熱利用を可能にするものである。   The HTGR is composed of graphite with a high heat capacity and good high-temperature soundness, and helium gas (He gas) that does not cause a chemical reaction even at high temperatures. It is possible to extract He gas with high outlet temperature and high outlet temperature, and high-temperature heat of about 900 ° C enables heat utilization in a wide range of fields such as hydrogen production and chemical plants as well as power generation. Is.

高温ガス炉の燃料は、二酸化ウランをセラミックス状に焼結した直径350〜650μmの燃料核の周囲に4層の被覆を施したものである。4層の被覆の内、第1層は密度約1g/cm の低密度熱分解炭素で、ガス状の核分裂生成物(FP)のガス溜めとしての機能及び燃料核のスウェリングを吸収するバッファとしての機能を併せ持つものである。第2層は密度約1.8g/cm の高密度熱分解炭素でガス状FPの保持機能を有する。第3層は密度約3.2g/cm の炭化珪素(以下、SiCと称す)で固体FPの保持機能を有するとともに、被覆層の主要な強度部材である。第4層は、第2層と同様の密度約1.8g/cm の高密度熱分解炭素でガス状FPの保持機能とともに第3層の保護層としての機能も持っている。 The fuel of the HTGR is a fuel core having a diameter of 350 to 650 μm obtained by sintering uranium dioxide into a ceramic form and coating four layers. Of the four layers of coatings, the first layer is low density pyrolytic carbon with a density of about 1 g / cm 3 and functions as a reservoir for gaseous fission products (FP) and a buffer that absorbs fuel nuclear swelling. It also has the function as. The second layer is a high-density pyrolytic carbon having a density of about 1.8 g / cm 3 and has a function of holding a gaseous FP. The third layer is silicon carbide (hereinafter referred to as SiC) having a density of about 3.2 g / cm 3 and has a function of holding a solid FP, and is a main strength member of the coating layer. The fourth layer is a high-density pyrolytic carbon having a density of about 1.8 g / cm 3 , which is the same as that of the second layer, and has a function of holding the gaseous FP as well as a protective layer of the third layer.

一般的な被覆燃料粒子の直径は500〜1000μmである。この被覆燃料粒子は黒鉛マトリックス中に分散させた後、一定形状を持つ燃料コンパクトに成型加工される。更に、燃料コンパクトは黒鉛でできた筒に一定数量入れられ、上下に栓をして燃料棒となる。最終的に燃料棒は、六角柱型黒鉛ブロックの複数の挿入口に入れられ、高温ガス炉の燃料となる。また、この六角柱型黒鉛ブロックを多数個、ハニカム配列に複数段重ねて高温ガス炉の炉心を構成している。   Typical coated fuel particles have a diameter of 500 to 1000 μm. The coated fuel particles are dispersed in a graphite matrix and then molded into a fuel compact having a fixed shape. Furthermore, a certain amount of fuel compact is put into a cylinder made of graphite and plugged up and down to become a fuel rod. Finally, the fuel rod is inserted into a plurality of insertion ports of the hexagonal columnar graphite block, and becomes a fuel for the HTGR. Further, a large number of hexagonal columnar graphite blocks are stacked in a plurality of stages on the honeycomb array to constitute the core of the high temperature gas reactor.

このような高温ガス炉の燃料は、一般的に以下のような工程を経て製造される。まず、酸化ウラン粉末を硝酸に溶解し、硝酸ウラニル原液とする。この硝酸ウラニル原液に純水、増粘剤を加えて撹拌することにより滴下原液とする。増粘剤は、滴下された硝酸ウラニルの液滴が落下中に自身の表面張力により真球状になるように添加される。増粘剤としては、例えばポリビニルアルコール樹脂、アルカリ条件下で凝固する性質を有する樹脂、ポリエチレングリコール、メトローズなどを挙げることができる。   Such a HTGR fuel is generally manufactured through the following steps. First, uranium oxide powder is dissolved in nitric acid to obtain a uranyl nitrate stock solution. Pure water and a thickener are added to this uranyl nitrate stock solution and stirred to obtain a dripping stock solution. The thickener is added so that the dropped uranyl nitrate droplet becomes a true sphere due to its surface tension during dropping. Examples of the thickener include polyvinyl alcohol resin, resin having a property of solidifying under alkaline conditions, polyethylene glycol, and metroses.

上記のように調整された滴下原液は所定の温度に冷却され粘度を調整した後、細径の滴下ノズルを振動させることによりアンモニア水中に滴下される。液滴は、アンモニア水溶液表面に着水するまでの空間においてアンモニアガスを吹きつけて表面をゲル化させることにより、着水時の変形が防止される。アンモニア水中で硝酸ウラニルはアンモニアと充分に反応して、重ウラン酸アンモニウムの粒子となる。   The dropping stock solution adjusted as described above is cooled to a predetermined temperature to adjust the viscosity, and then dropped into ammonia water by vibrating a small-diameter dropping nozzle. The droplets are prevented from being deformed at the time of landing by spraying ammonia gas in a space until landing on the surface of the aqueous ammonia solution to gel the surface. In ammonia water, uranyl nitrate reacts sufficiently with ammonia to form particles of ammonium heavy uranate.

重ウラン酸アンモニウム粒子は、大気中で焙焼され、三酸化ウラン粒子となり、更に、還元・焼結されることにより高密度のセラミックス状二酸化ウランからなる燃料核となる。   The ammonium heavy uranate particles are roasted in the atmosphere to become uranium trioxide particles, and further reduced and sintered to become fuel nuclei made of high-density ceramic-like uranium dioxide.

この燃料核を流動床に装荷し、被覆ガスを熱分解させることにより被覆を施す。第1層の低密度炭素の場合は約1400℃でアセチレン(C)を熱分解する。第2,4層の高密度熱分解炭素の場合は約1400℃でプロピレン(C)を熱分解する。第3層のSiCの場合は約1600℃でメチルトリクロロシラン(CHSiCl)を熱分解する。 The fuel nuclei are loaded onto a fluidized bed, and coating is performed by thermally decomposing the coating gas. In the case of the low density carbon of the first layer, acetylene (C 2 H 2 ) is thermally decomposed at about 1400 ° C. In the case of the second and fourth layers of high-density pyrolytic carbon, propylene (C 3 H 6 ) is pyrolyzed at about 1400 ° C. In the case of SiC of the third layer, methyltrichlorosilane (CH 3 SiCl 3 ) is thermally decomposed at about 1600 ° C.

前述の被覆ガスを使用して各被覆層を形成させる際には、被覆層を各粒子に均一に付けるため別のガスを用いて粒子を反応管内で充分に流動させた状態で行う。これが、被覆燃料粒子の製造装置を「流動床」と呼ぶ所以である。粒子を流動させるためのガスとしては、第1、2及び4層を被覆する場合は不活性ガスの一つであるアルゴンガスを、そして第3層を被覆する際には水素ガス又は水素ガス+不活性ガスの一つであるアルゴンガスが一般的に使用されている。   When each coating layer is formed using the above-described coating gas, the particles are sufficiently flowed in the reaction tube using another gas in order to uniformly apply the coating layer to each particle. This is why the coated fuel particle production apparatus is called a “fluidized bed”. As a gas for flowing particles, argon gas, which is one of inert gases when coating the first, second and fourth layers, and hydrogen gas or hydrogen gas when coating the third layer + Argon gas, which is one of inert gases, is generally used.

また、燃料コンパクトは、黒鉛粉末、粘結剤等からなる黒鉛マトリックス材を被覆燃料粒子の表面にコーティングし、中空円筒形又は円筒形にプレス成型またはモールド成型した後、グリーンコンパクト内にバインダーとして含まれるフェノール樹脂を炭化させるために熱処理を実施し、さらにコンパクト内に含まれるガス成分を除去することを目的とした熱処理を実施して得られる(例えば、特許文献1参照)。   The fuel compact is coated with a graphite matrix material consisting of graphite powder, binder, etc. on the surface of the coated fuel particles, and is pressed or molded into a hollow cylindrical shape or cylindrical shape, and then included as a binder in the green compact. In order to carbonize the phenol resin obtained, heat treatment is carried out, and further, heat treatment aimed at removing gas components contained in the compact is carried out (for example, see Patent Document 1).

図2は従来の高温ガス炉用被覆燃料粒子の製造装置の構成を示す説明図である。高温ガス炉用被覆燃料粒子の製造装置は図2に示すように、二酸化ウランから成る燃料核22を流動床反応管25の上部窓(図示せず)から入れて、流動ガス入口26よりガス導入ノズル24及びガス噴出ノズル23を通して被覆ガスと流動ガスとを流すことにより被覆を施す流動床反応管25と、この反応管25の外周に配設され燃料核を加熱する黒鉛製のヒーター21と、同じく黒鉛製でヒーター21のさらに外周に配設される断熱材28とを備える。被覆ガスや流動ガスは廃ガス排出口27から炉外へ出され、被覆された被覆燃料粒子は流動ガス入口26から取り出される。
特開2000−284084号公報
FIG. 2 is an explanatory view showing a configuration of a conventional apparatus for producing coated fuel particles for a HTGR. As shown in FIG. 2, the apparatus for producing coated fuel particles for a high-temperature gas reactor introduces a fuel core 22 made of uranium dioxide from an upper window (not shown) of a fluidized bed reaction tube 25 and introduces gas from a fluidized gas inlet 26. A fluidized bed reaction tube 25 for coating by flowing a coating gas and a flowing gas through the nozzle 24 and the gas ejection nozzle 23; a graphite heater 21 disposed on the outer periphery of the reaction tube 25 for heating the fuel core; It is also made of graphite and is provided with a heat insulating material 28 disposed on the outer periphery of the heater 21. The coated gas and fluidized gas are discharged out of the furnace through the waste gas discharge port 27, and the coated coated fuel particles are removed from the fluidized gas inlet 26.
JP 2000-284084 A

ガス噴出ノズル23を移動させることにより被覆燃料粒子を流動床の下部側から取り出すために、ガス噴出ノズル23と反応管25は、機械的に固定されていないのが一般的である。このため、被覆ガスや流動ガスはガス噴出ノズル23と反応管25の隙間から漏れ、装置本体29内部のヒーター21や断熱材28の周りに充満することになる。   In order to remove the coated fuel particles from the lower side of the fluidized bed by moving the gas ejection nozzle 23, the gas ejection nozzle 23 and the reaction tube 25 are generally not mechanically fixed. For this reason, the coating gas or the flowing gas leaks from the gap between the gas ejection nozzle 23 and the reaction tube 25 and fills the heater 21 and the heat insulating material 28 inside the apparatus main body 29.

第1,2,4層の被覆時には問題ないが、第3層の被覆時には、流動ガスである水素ガスが漏れると、約1600℃に加熱されているため、ヒーター21や断熱材28の材料である黒鉛と水素とが反応し、炭化水素が発生する。炭化水素が発生するということはヒーター21や断熱材28の材料である黒鉛が減少することになるため、ヒーター21の場合は抵抗値が変わり、その結果、発生熱量が変わってしまう。   There is no problem when the first, second, and fourth layers are coated, but when the third layer is coated, if hydrogen gas that is a flowing gas leaks, it is heated to about 1600 ° C. Certain graphite and hydrogen react to generate hydrocarbons. The generation of hydrocarbons means that the graphite that is the material of the heater 21 and the heat insulating material 28 is reduced. Therefore, in the case of the heater 21, the resistance value changes, and as a result, the amount of generated heat changes.

また、断熱材28の場合は、黒鉛が減少した部分から熱が逃げやすくなって断熱性能が低下する。結果として、被覆層の特性に大きな影響を与える被覆温度の炉内分布が変化してしまうことになる。よって、連続して生産する場合には、バッチ毎に製造条件が変わってしまうことになるため、高温ガス炉燃料の核分裂性物質の閉じ込め作用上、非常に重要な被覆層の品質が安定しなくなってしまうという重大な問題点が生じる。   In the case of the heat insulating material 28, heat easily escapes from the portion where the graphite is reduced, and the heat insulating performance is lowered. As a result, the distribution of the coating temperature in the furnace, which greatly affects the properties of the coating layer, changes. Therefore, in the case of continuous production, the production conditions will change from batch to batch, so the quality of the coating layer, which is very important for the confinement action of the fissile material in the HTGR fuel, becomes unstable. A serious problem arises.

本発明は、連続的に生産する場合も、炉内の温度分布を安定させ、高温ガス炉燃料の核分裂性物質閉じこめ作用において重要な役割を持っている被覆層の品質を安定させることを可能にする高温ガス炉用被覆燃料粒子の製造装置を得ることを目的とする。   The present invention makes it possible to stabilize the temperature distribution in the furnace even in continuous production, and to stabilize the quality of the coating layer that plays an important role in the fissile material confinement action of the HTGR fuel. An object of the present invention is to obtain an apparatus for producing coated fuel particles for a HTGR.

請求項1に記載された発明に係る高温ガス炉用被覆燃料粒子の製造装置は、被覆ガス又は/及び流動ガスを加熱環境下で流動させて二酸化ウランを焼結した燃料核の表面に複数層の被覆層を形成する流動床反応管と、この流動床反応管を加熱する黒鉛ヒーターとを備えた高温ガス炉用被覆燃料粒子の製造装置において、
前記流動床反応管の外側領域に不活性なガスを導入する不活性ガス導入管と、
前記流動床反応管の外側領域の不活性なガス圧力を前記流動床反応管の内圧と同等以上に制御する制御手段とを備えたことを特徴とするものである。
The apparatus for producing coated fuel particles for a HTGR according to the invention described in claim 1 has a plurality of layers on the surface of a fuel core obtained by sintering a uranium dioxide by flowing a coating gas or / and a flowing gas in a heating environment. In an apparatus for producing coated fuel particles for a high temperature gas furnace, comprising a fluidized bed reaction tube for forming a coating layer of the above and a graphite heater for heating the fluidized bed reaction tube,
An inert gas introduction tube for introducing an inert gas into the outer region of the fluidized bed reaction tube;
And a control means for controlling the inert gas pressure in the outer region of the fluidized bed reaction tube to be equal to or higher than the internal pressure of the fluidized bed reaction tube.

請求項2に記載された発明に係る高温ガス炉用被覆燃料粒子の製造装置は、請求項1に記載の流動床反応管の外側領域に導入する不活性なガスがアルゴンを代表とする不活性ガスであることを特徴とするものである。   According to a second aspect of the present invention, there is provided an apparatus for producing coated fuel particles for a high temperature gas reactor, wherein the inert gas introduced into the outer region of the fluidized bed reaction tube according to the first aspect is inert, typically argon. It is characterized by being a gas.

請求項3に記載された発明に係る高温ガス炉用被覆燃料粒子の製造装置は、請求項1に記載の流動床反応管の外側領域に導入する不活性なガスが窒素ガスであることを特徴とするものである。   The apparatus for producing coated fuel particles for a HTGR according to claim 3 is characterized in that the inert gas introduced into the outer region of the fluidized bed reaction tube according to claim 1 is nitrogen gas. It is what.

請求項4に記載された発明に係る高温ガス炉用被覆燃料粒子の製造装置は、請求項1〜3の何れか1項に記載の制御手段が、流動床反応管内の外側領域に導入する不活性なガスの圧力値を被覆層に応じて制御するものであることを特徴とするものである。   According to a fourth aspect of the present invention, there is provided a manufacturing apparatus for coated fuel particles for a high temperature gas reactor, wherein the control means according to any one of the first to third aspects is not introduced into an outer region in a fluidized bed reaction tube. The pressure value of the active gas is controlled according to the coating layer.

本発明は、連続的に生産する場合も、炉内の温度分布を安定させ、高温ガス炉燃料の核分裂性物質閉じこめ作用において重要な役割を持っている被覆層の品質を安定させることを可能にする高温ガス炉用被覆燃料粒子の製造装置を得ることができるという効果がある。   The present invention makes it possible to stabilize the temperature distribution in the furnace even in continuous production, and to stabilize the quality of the coating layer that plays an important role in the fissile material confinement action of the HTGR fuel. There is an effect that an apparatus for producing coated fuel particles for a high temperature gas reactor can be obtained.

本発明においては、被覆ガス又は/及び流動ガスを加熱環境下で流動させて二酸化ウランを焼結した燃料核の表面に複数層の被覆層を形成する流動床反応管と、この流動床反応管を加熱する黒鉛ヒーターとを備えた高温ガス炉用被覆燃料粒子の製造装置において、
前記流動床反応管の外側領域に不活性なガスを導入する不活性ガス導入管と、
前記流動床反応管の外側領域の不活性なガス圧力を前記流動床反応管の内圧と同等以上に制御する制御手段とを備えたものである。これにより、連続的に生産する場合も、炉内の温度分布を安定させ、高温ガス炉燃料の核分裂性物質閉じこめ作用において重要な役割を持っている被覆層の品質を安定させることができる。
In the present invention, a fluidized bed reaction tube that forms a plurality of coating layers on the surface of a fuel core obtained by flowing a coating gas or / and a fluidized gas in a heated environment to sinter uranium dioxide, and the fluidized bed reaction tube. In an apparatus for producing coated fuel particles for a high-temperature gas reactor equipped with a graphite heater for heating
An inert gas introduction tube for introducing an inert gas into the outer region of the fluidized bed reaction tube;
And a control means for controlling the inert gas pressure in the outer region of the fluidized bed reaction tube to be equal to or greater than the internal pressure of the fluidized bed reaction tube. As a result, even in the case of continuous production, it is possible to stabilize the temperature distribution in the furnace and to stabilize the quality of the coating layer that plays an important role in the fissile material confinement action of the HTGR fuel.

即ち、本発明は、流動床反応管の外側領域をアルゴンガス等の不活性ガス又は窒素ガスで加圧して、反応管内部の圧力よりも高くすることにより、ガス噴出ノズルと反応管との隙間から被覆ガスや流動ガスの漏れを防ぐことが可能になり、ヒーターや断熱材の材料である黒鉛と水素とが反応して黒鉛が減少してしまうことを防ぐことが可能になる。   That is, the present invention provides a gap between the gas ejection nozzle and the reaction tube by pressurizing the outer region of the fluidized bed reaction tube with an inert gas such as argon gas or nitrogen gas so as to be higher than the pressure inside the reaction tube. Therefore, it is possible to prevent leakage of the coating gas and the flowing gas, and it is possible to prevent graphite and hydrogen, which are materials of the heater and the heat insulating material, from reacting and reducing graphite.

更に、ヒーターや断熱材の減少が発生しないので、連続的に生産する場合も、炉内の温度分布は変化することなく安定しているので、高温ガス炉燃料の核分裂性物質の閉じこめ作用上、非常に重要な役割を持っている被覆層の品質を安定させることが可能になる。   Furthermore, since there is no decrease in heaters and heat insulation, the temperature distribution in the furnace is stable without change even in continuous production, so the fissile material confinement action of the HTGR fuel, It becomes possible to stabilize the quality of the coating layer having a very important role.

本発明での流動床反応管の外側領域に導入する不活性なガスとしては、アルゴン、ネオン、ヘリウム等の希ガスや窒素ガス等のような他の元素と反応し難いガスを用いる。より好ましくは、流動ガスとして用いられているアルゴンガスが好適である。   As the inert gas introduced into the outer region of the fluidized bed reaction tube in the present invention, a gas that does not easily react with other elements such as a rare gas such as argon, neon, and helium, or a nitrogen gas is used. More preferably, argon gas used as a flowing gas is suitable.

本発明での制御手段は、不活性なガス圧力を流動床反応管の内圧よりも高く制御されれば、反応管内のガスが管外へ漏れ難くなるが、流動床反応管の外側領域に導入する不活性なガスの圧力が管内の圧力よりも高いと逆に不活性なガスが反応管内部に侵入して、被覆ガスと流動ガス(不活性なガスを含む)との比率を変化させるおそれがある。そのため、より好ましくは、不活性なガス圧力の制御は、流動床反応管の内圧と同等か、若干高く制御される。   If the inert gas pressure is controlled to be higher than the internal pressure of the fluidized bed reaction tube, the control means in the present invention makes it difficult for the gas in the reaction tube to leak out of the tube, but it is introduced into the outer region of the fluidized bed reaction tube. If the pressure of the inert gas is higher than the pressure in the tube, the inert gas may enter the reaction tube and change the ratio between the coating gas and the flowing gas (including inert gas). There is. Therefore, more preferably, the inert gas pressure is controlled to be equal to or slightly higher than the internal pressure of the fluidized bed reaction tube.

また、燃料核の複数層の被覆層について、各々の被覆層を形成するためには、各々の被覆層に応じ、被覆ガスと流動ガスとの流量が異なるため、反応管内部の圧力が被覆層によって異なる。そこで、好ましい態様としては、制御手段が、流動床反応管内の外側領域に導入する不活性なガスの圧力値を被覆層に応じて制御するものである。   In addition, in order to form each coating layer for a plurality of coating layers of fuel nuclei, the flow rate of the coating gas and the flowing gas differs depending on each coating layer. It depends on. Therefore, as a preferred embodiment, the control means controls the pressure value of the inert gas introduced into the outer region in the fluidized bed reaction tube according to the coating layer.

図1は本発明の一実施例の高温ガス炉用被覆燃料粒子の製造装置の構成を示す説明図である。図1に示す通り、高温ガス炉用被覆燃料粒子の製造装置は、二酸化ウランから成る燃料核12を流動床反応管15の上部窓(図示せず)から入れて、流動ガス入口16よりガス導入ノズル14及びガス噴出ノズル13を通して被覆ガスと流動ガスとを流すことにより被覆を施す流動床反応管15と、この反応管15の外周に配設され燃料核を加熱する黒鉛製のヒーター11と、同じく黒鉛製でヒーター11のさらに外周に配設される断熱材18とを備える。被覆ガスや流動ガスは廃ガス排出口17から炉外へ出され、被覆された被覆燃料粒子は流動ガス入口16から取り出される。   FIG. 1 is an explanatory view showing a configuration of a production apparatus for coated fuel particles for a HTGR according to an embodiment of the present invention. As shown in FIG. 1, the apparatus for producing coated fuel particles for a high temperature gas reactor introduces a fuel core 12 made of uranium dioxide from an upper window (not shown) of a fluidized bed reaction tube 15 and introduces gas from a fluidized gas inlet 16. A fluidized bed reaction tube 15 for coating by flowing a coating gas and a flowing gas through the nozzle 14 and the gas ejection nozzle 13; a graphite heater 11 disposed on the outer periphery of the reaction tube 15 for heating the fuel core; It is also made of graphite, and further includes a heat insulating material 18 disposed on the outer periphery of the heater 11. The coated gas and fluidized gas are discharged out of the furnace through the waste gas discharge port 17, and the coated coated fuel particles are removed from the fluidized gas inlet 16.

高温ガス炉用被覆燃料粒子の製造装置の大きさはφ約700mm×H約2200mmとし、流動床反応管の大きさはφ約200mm×H約1000mmとした。   The size of the apparatus for producing coated fuel particles for a HTGR was about 700 mm × H about 2200 mm, and the size of the fluidized bed reaction tube was about 200 mm × H about 1000 mm.

被覆燃料粒子の製造は、平均直径0.6mmの二酸化ウラン燃料核12を約3kg流動床反応管15内に入れ、約1400℃でアセチレン(C)ガスを流入して第1層の低密度炭素を被覆した。その後、約1400℃でプロピレン(C)を流入して第2層の高密度熱分解炭素を被覆した。次に、約1600℃でメチルトリクロロシラン(CHSiCl)を流入して第3層のSiC層を被覆した。最後に、約1400℃でプロピレン(C)を流入して第4層の高密度熱分解炭素を被覆した。 In the production of the coated fuel particles, uranium dioxide fuel nuclei 12 having an average diameter of 0.6 mm are placed in about 3 kg fluidized bed reaction tube 15 and acetylene (C 2 H 2 ) gas is introduced at about 1400 ° C. Low density carbon was coated. Thereafter, propylene (C 3 H 6 ) was introduced at about 1400 ° C. to coat the second layer of high-density pyrolytic carbon. Next, methyltrichlorosilane (CH 3 SiCl 3 ) was introduced at about 1600 ° C. to cover the third SiC layer. Finally, propylene (C 3 H 6 ) was introduced at about 1400 ° C. to coat the fourth layer of high-density pyrolytic carbon.

第1層〜第4層までの被覆を行う際、装置本体19と反応管15との間のヒーター11及び断熱材18が存在する領域を不活性ガス導入管10を用いてアルゴンガスで加圧する。これにより、被覆作業を繰り返し実施しても、ヒーター11及び断熱材18に炭化水素が発生した事による劣化は見られず、安定した品質の被覆燃料粒子を得ることができた。尚、不活性ガス導入管10はアルゴンガスボンベ9と導通する導通管8を備え、その導通管8の途中に装置本体19内部の圧力を所定値に制御する制御装置7を備えている。この制御装置7は、第1層〜第4層まで予め設定された圧力値に制御するようになっている。   When coating from the first layer to the fourth layer, the region where the heater 11 and the heat insulating material 18 exist between the apparatus main body 19 and the reaction tube 15 is pressurized with argon gas using the inert gas introduction tube 10. . As a result, even when the coating operation was repeatedly performed, deterioration due to the generation of hydrocarbons in the heater 11 and the heat insulating material 18 was not observed, and stable quality coated fuel particles could be obtained. The inert gas introduction pipe 10 is provided with a conducting pipe 8 that conducts with the argon gas cylinder 9, and a control device 7 that controls the pressure inside the apparatus main body 19 to a predetermined value in the middle of the conducting pipe 8. The control device 7 controls the pressure values set in advance from the first layer to the fourth layer.

被覆時の反応管内の圧力は、第3被覆時が最も高いため、反応管の外側の圧力は第3被覆時の反応管内の圧力よりも若干高い0.2MPa(ゲージ圧)とした。尚、本数値は第3層の被覆条件であるが、流量や温度に依存するものであり、被覆条件に応じて反応管の外側の圧力が内側の圧力と比較して同等以上であればよい。また、本実施例では被覆中反応管の外側の圧力を0.2MPa(ゲージ圧)で一定としたが、被覆層毎に変えてもよい。   Since the pressure in the reaction tube during coating was the highest during the third coating, the pressure outside the reaction tube was set to 0.2 MPa (gauge pressure) slightly higher than the pressure in the reaction tube during the third coating. Although this numerical value is the coating condition of the third layer, it depends on the flow rate and temperature, and the pressure on the outside of the reaction tube should be equal to or higher than the pressure on the inside depending on the coating condition. . In this embodiment, the pressure outside the reaction tube during coating is constant at 0.2 MPa (gauge pressure), but may be changed for each coating layer.

以上のように、第3層の被覆層を形成する際に流動ガスである水素ガスが、ガス噴出ノズル13と反応管15の隙間から漏れることを防ぐことができるため、ヒーター11や断熱材18の材料である黒鉛と水素が反応し、黒鉛が減少してしまうことを防ぐことが可能になる。ヒーター11や断熱材18の減少が発生しないので、連続的に生産する場合も、炉内の温度分布は変化することなく安定しているので、高温ガス炉燃料の核分裂性物質閉じこめ作用上、非常に重要な役割を持っている被覆層の品質を安定させることが可能になる。   As described above, the hydrogen gas, which is a flowing gas, can be prevented from leaking from the gap between the gas ejection nozzle 13 and the reaction tube 15 when the third coating layer is formed. It is possible to prevent graphite and hydrogen, which are the materials of the above, from reacting and reducing graphite. Since the heater 11 and the heat insulating material 18 are not reduced, the temperature distribution in the furnace is stable without change even when continuously produced. It becomes possible to stabilize the quality of the coating layer having an important role in the process.

本発明の一実施例の高温ガス炉用被覆燃料粒子の製造装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the manufacturing apparatus of the coating | coated fuel particle | grain for high temperature gas reactors of one Example of this invention. 従来の高温ガス炉用被覆燃料粒子の製造装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the manufacturing apparatus of the conventional coating | coated fuel particle | grain for high temperature gas reactors.

符号の説明Explanation of symbols

7…制御装置、
8…導通管、
9…アルゴンガスボンベ、
10…不活性ガス導入管、
11…ヒーター、
12…燃料核、
13…ガス噴出ノズル、
14…ガス導入ノズル、
15…流動床反応管、
16…流動ガス入口、
17…廃ガス排出口、
18…断熱材、
19…装置本体、
7 ... Control device,
8 ... conducting tube,
9 ... Argon gas cylinder,
10 ... inert gas introduction pipe,
11 ... Heater,
12. Fuel kernel,
13: Gas ejection nozzle,
14 ... Gas introduction nozzle,
15 ... Fluidized bed reaction tube,
16 ... Fluid gas inlet,
17 ... Waste gas outlet,
18 ... heat insulation,
19 ... the device body,

Claims (4)

被覆ガス又は/及び流動ガスを加熱環境下で流動させて二酸化ウランを焼結した燃料核の表面に複数層の被覆層を形成する流動床反応管と、この流動床反応管を加熱する黒鉛ヒーターとを備えた高温ガス炉用被覆燃料粒子の製造装置において、
前記流動床反応管の外側領域に不活性なガスを導入する管と、
前記流動床反応管の外側領域の不活性なガス圧力を前記流動床反応管の内圧と同等以上に制御する制御手段とを備えたことを特徴とする高温ガス炉用被覆燃料粒子の製造装置。
A fluidized bed reaction tube for forming a plurality of coating layers on the surface of a fuel core obtained by flowing a coating gas or / and a flowing gas in a heating environment to sinter uranium dioxide, and a graphite heater for heating the fluidized bed reaction tube In the apparatus for producing coated fuel particles for a HTGR comprising:
A tube for introducing an inert gas into the outer region of the fluidized bed reaction tube;
An apparatus for producing coated fuel particles for a HTGR, comprising a control means for controlling an inert gas pressure in an outer region of the fluidized bed reaction tube to be equal to or greater than an internal pressure of the fluidized bed reaction tube.
前記流動床反応管内の外側領域に導入する不活性なガスがアルゴンを代表とする不活性ガスであることを特徴とする請求項1に記載の高温ガス炉用被覆燃料粒子の製造装置。   2. The apparatus for producing coated fuel particles for a high temperature gas reactor according to claim 1, wherein the inert gas introduced into the outer region in the fluidized bed reaction tube is an inert gas typified by argon. 前記流動床反応管内の外側領域に導入する不活性なガスが窒素ガスであることを特徴とする請求項1に記載の高温ガス炉用被覆燃料粒子の製造装置。   2. The apparatus for producing coated fuel particles for a high temperature gas reactor according to claim 1, wherein the inert gas introduced into the outer region in the fluidized bed reaction tube is nitrogen gas. 前記制御手段が、流動床反応管内の外側領域に導入する不活性なガスの圧力値を被覆層に応じて制御するものであることを特徴とする請求項1〜3の何れか1項に記載の高温ガス炉用被覆燃料粒子の製造装置。
The said control means controls the pressure value of the inert gas introduce | transduced into the outer area | region in a fluidized-bed reaction tube according to a coating layer, The any one of Claims 1-3 characterized by the above-mentioned. Manufacturing equipment for coated fuel particles for HTGR.
JP2005083934A 2005-03-23 2005-03-23 Production equipment for coated fuel particles for HTGR Expired - Fee Related JP4417871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005083934A JP4417871B2 (en) 2005-03-23 2005-03-23 Production equipment for coated fuel particles for HTGR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005083934A JP4417871B2 (en) 2005-03-23 2005-03-23 Production equipment for coated fuel particles for HTGR

Publications (2)

Publication Number Publication Date
JP2006266806A true JP2006266806A (en) 2006-10-05
JP4417871B2 JP4417871B2 (en) 2010-02-17

Family

ID=37202954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005083934A Expired - Fee Related JP4417871B2 (en) 2005-03-23 2005-03-23 Production equipment for coated fuel particles for HTGR

Country Status (1)

Country Link
JP (1) JP4417871B2 (en)

Also Published As

Publication number Publication date
JP4417871B2 (en) 2010-02-17

Similar Documents

Publication Publication Date Title
KR102084466B1 (en) Nuclear fuel pellet having enhanced thermal conductivity and method for manufacturing the same
JP4697938B2 (en) Method for producing coated fuel particles for HTGR
JP2005308522A (en) Device for manufacturing cladding fuel particle for high-temperature gas-cooled reactor
JP4417871B2 (en) Production equipment for coated fuel particles for HTGR
JP4521763B2 (en) Production equipment for coated fuel particles for HTGR
JP4417867B2 (en) Production equipment for coated fuel particles for HTGR
JP4409460B2 (en) Production equipment for coated fuel particles for HTGR
JP4357437B2 (en) Production equipment for coated fuel particles for HTGR
JP2007147504A (en) Coated fuel particle for high-temperature gas-cooled reactor, and manufacturing method therefor
JP4417879B2 (en) Production equipment for coated fuel particles for HTGR
JP4417901B2 (en) Production equipment for coated fuel particles for HTGR
JP4685707B2 (en) Fuel compact pre-firing device and fuel compact pre-firing method
JP2007127484A (en) Fuel assembly for high-temperature gas-cooled reactor, and manufacturing method therefor
JP4409405B2 (en) Production equipment for coated fuel particles for HTGR
JP2006300547A (en) Fuel for high-temperature gas-cooled reactor
JP2007003118A (en) Gas injection nozzle deposit-removing method for manufacturing device of coated fuel particle for high-temperature gas furnace and manufacturing method of coated fuel particle for high-temperature gas furnace
JP4354905B2 (en) Fuel particle coating gas supply system for HTGR
JP4636831B2 (en) Production equipment for ammonium deuterated uranate particles
JP4354903B2 (en) Production equipment for coated fuel particles for HTGR
JP4415272B2 (en) Equipment for producing fuel particles for HTGR
JP2007107901A (en) Device for manufacturing coated fuel particle for high temperature gas furnace
JP2006242694A (en) Manufacturing device of coated fuel particle for high-temperature gas reactor
JP2006112838A (en) Method for manufacturing fuel compact for high-temperature gas-cooled reactor
JP2006300660A (en) Manufacturing method for molded fuel
JP2006064442A (en) Manufacturing device of hollow fuel compact for high-temperature gas furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151204

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees