JP2006266802A - Measurement apparatus with linearizer - Google Patents

Measurement apparatus with linearizer Download PDF

Info

Publication number
JP2006266802A
JP2006266802A JP2005083785A JP2005083785A JP2006266802A JP 2006266802 A JP2006266802 A JP 2006266802A JP 2005083785 A JP2005083785 A JP 2005083785A JP 2005083785 A JP2005083785 A JP 2005083785A JP 2006266802 A JP2006266802 A JP 2006266802A
Authority
JP
Japan
Prior art keywords
value
point
calibration
linearizer
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005083785A
Other languages
Japanese (ja)
Inventor
Satsuki Hagiwara
五月 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ADC KK
Original Assignee
ADC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ADC KK filed Critical ADC KK
Priority to JP2005083785A priority Critical patent/JP2006266802A/en
Publication of JP2006266802A publication Critical patent/JP2006266802A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce an error value in a span without increasing the number of calibration points. <P>SOLUTION: The measurement apparatus with a linearizer for an object to be measured having nonlinear characteristics performs broken line approximation on a measurement range with a broken line having a plurality of folding points, performs calibration for adjusting a measured value to a true value on each folding point, sets a predetermined conversion coefficient within a span between folding points, and determines a display value by multiplying the measured value by the conversion coefficient. At part of the folding points, a calibration point and a switching point of the conversion coefficient are set to be in a dissimilar relationship. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は例えばディジタルボルトメータ等と呼ばれている測定装置に関し、特に測定対象となる電圧値と表示値とのズレを整合させるためのリニアライザを備えた測定装置に関する。   The present invention relates to a measuring device called, for example, a digital voltmeter, and more particularly to a measuring device including a linearizer for matching a deviation between a voltage value to be measured and a display value.

図5にディジタルボルトメータの概略の構成を示す。図中1Aは電圧測定端子、1Bは電流測定端子を示す。電圧測定時はスイッチ2は電圧測定端子1Aを選択し、電流測定時はスイッチ2は電流測定端子1Bを選択する。電流測定時は被測定電流を電流−電圧変換器3に入力し、被測定電流を電圧値に変換し、その電圧値をレンジ切替回路4を通じてAD変換器5に入力する。AD変換器5でAD変換された測定電圧はリニアライザ6で測定値と表示値との整合をとり、整合がとられた値がディジタル表示器7に入力されて測定値として表示される。   FIG. 5 shows a schematic configuration of the digital voltmeter. In the figure, 1A indicates a voltage measurement terminal, and 1B indicates a current measurement terminal. When measuring voltage, the switch 2 selects the voltage measuring terminal 1A, and when measuring current, the switch 2 selects the current measuring terminal 1B. At the time of current measurement, the current to be measured is input to the current-voltage converter 3, the current to be measured is converted into a voltage value, and the voltage value is input to the AD converter 5 through the range switching circuit 4. The measured voltage AD-converted by the AD converter 5 matches the measured value and the displayed value by the linearizer 6, and the matched value is input to the digital display 7 and displayed as a measured value.

ここでリニアライザの校正方法の一例を簡単に説明する。例えば交流電圧の実効値VRMSHere, an example of a linearizer calibration method will be briefly described. For example, the effective value V RMS of AC voltage is

Figure 2006266802
により求められる。
(1)式より、実効値変換後の値は図6図線Aに示すように入力電圧V(t)に対して直線でなく、二次曲線Aで表わされる。ここで仮に曲線Aの各点を微細(ほぼ連続的)に分割し、各分割点毎に校正を施すことにより変換精度の高いリニアライザを得ることができる。
Figure 2006266802
Is required.
From the equation (1), the value after the effective value conversion is represented not by a straight line but by a quadratic curve A with respect to the input voltage V (t) as shown in FIG. Here, it is possible to obtain a linearizer with high conversion accuracy by dividing each point of the curve A minutely (substantially continuously) and calibrating each divided point.

然し乍ら校正点を多数に採った場合は、校正に要する手間が多く掛りコストの上昇は避けられない。つまり、校正とは既知の値の電圧を発生することができる標準電圧源を用意し、基準電圧から曲線A上の各点に対応する電圧を発生させ、その電圧の印加状態で表示値がその入力中の電圧値となるように、リニアライザの変換係数を調整する作業を指す。リニアライザの変換係数の調整は例えば半導体基板上の抵抗体をレーザービーム等により切除する等の作業で行われる。このため、校正点の数を多く採ると、製造コストが多く掛る不都合が生じる。更に、このようなリニアライザが実現できたとしても、測定装置に組み込んだ場合、各校正点の相互間(スパン)では変換係数を定め、スパン内の被測定電圧が入力された場合はその入力された電圧に変換係数を乗算し、表示値を求めなくてはならない。この場合、どの変換係数を用いて演算を行うかを判定しなければならないから校正点が多い程、その判定のための処理に時間が掛る欠点がある。   However, when a large number of calibration points are taken, a lot of labor is required for calibration, and an increase in cost is inevitable. That is, a standard voltage source capable of generating a voltage having a known value is prepared for calibration, a voltage corresponding to each point on the curve A is generated from the reference voltage, and the displayed value is changed according to the applied state of the voltage. This refers to the work of adjusting the conversion coefficient of the linearizer so that it becomes the voltage value during input. Adjustment of the conversion coefficient of the linearizer is performed, for example, by an operation such as cutting a resistor on a semiconductor substrate with a laser beam or the like. For this reason, if a large number of calibration points are taken, there arises a disadvantage that the manufacturing cost increases. Furthermore, even if such a linearizer can be realized, when it is incorporated in a measuring device, a conversion coefficient is determined between each calibration point (span), and if a measured voltage within the span is input, it is input. The displayed value must be calculated by multiplying the measured voltage by the conversion factor. In this case, since it is necessary to determine which conversion coefficient is used for calculation, there is a disadvantage that the more calibration points, the longer the processing for the determination.

このため一般には曲線A上の代表的な電圧位置を折点と定め、折線近似により曲線Aに近い値の変換結果を得る校正方法が採られる。図6に示す曲線Aに示す点FSはフルスケール点、1/10FSはフルスケールFSの1/10の値を示す折線1/100FSはフルスケールFSの1/100の値を示す折点、zeroはゼロ点を表わす。これらの各折点FS、1/10FS、1/100FS、zeroの4点で校正を行い曲線Aを折線近似する。尚、zero点では入力電圧を0とした状態でAD変換器3から出力される測定値をオフセット電圧en(ノイズ成分)として求め記憶させ、そのオフセット電圧enを各折点毎に減算し、オフセット電圧の影響を除去する。曲線A上の各折点1/100FS、1/10FS、FSで校正を行うことにより、折点で分割される各スパンM1、M2、M3で用いられる変換係数が決定される。 Therefore, in general, a calibration method is adopted in which a representative voltage position on the curve A is defined as a break point, and a conversion result having a value close to the curve A is obtained by folding line approximation. A point FS shown in the curve A shown in FIG. 6 is a full scale point, 1/10 FS is a fold line indicating 1/10 of the full scale FS, 1/100 FS is a fold point indicating 1/100 of the full scale FS, and zero Represents the zero point. Calibration is performed at these four break points FS, 1/10 FS, 1/100 FS, and zero, and curve A is approximated by a broken line. Incidentally, the zero point is stored obtains a measurement value output from the AD converter 3 while the 0 input voltage as an offset voltage e n (noise component), subtracts the offset voltage e n for each breakpoint , Remove the effect of offset voltage. By performing calibration at each break point 1/100 FS, 1/10 FS, and FS on the curve A, conversion coefficients used in the respective spans M1, M2, and M3 divided by the break points are determined.

上述したように校正点を多く採ると、リニアライザの変換精度は向上するが校正に要する手間が多く掛るため製造コストが上昇する不具合が生じる。従って、可能な限り折線近似する折点の数(校正点の数)を少なくできると都合がよい。然し乍ら、校正点相互間のスパンを広く採ると、そのスパンの範囲内で発生する誤差値が許容値に近づいたり、許容値を超えてしまう区間が発生する率が高くなる。
図7に校正点の相互間で発生する誤差の様子を示す。この種の測定装置ではフルスケールFSから約1/20FSの間で所定の測定精度を満たせば「良し」とされている。Zero〜1/20FS間の測定領域では誤差値は大きい値でも許容される。このため図6に示した曲線AにおいてフルスケールFSから1/100FSまでの誤差の発生の様子を説明する。曲線AにおいてフルスケールFSと折点1/10FSとの間の誤差の発生はわずかであることから、ここでは折点1/10FS〜1/100FSの間のスパンで発生する誤差について説明する。図7は折点1/10FS〜1/100FSの間のスパンM2で発生する誤差を示す。折点1/10FSと1/100FSでは校正により誤差はほぼ0の状態に固定されるが、スパンM2内では図7に曲線Bで示すように誤差(ズレ)が発生する。この誤差が1/20FS付近で大きく膨らむため、許容値を超えるおそれがある。Zero〜1/20FSの間で誤差が許容値を越えたとしても、これは許容される。然し乍ら、1/20FSより大きい値の測定領域で許容値を越えることは許されない。曲線Bで示すように1/20FS付近で許容値に近い状態にあると、量産品の中で許容値を越えてしまう製品が発生する率が高くなり、歩留が悪くなる不都合が生じる。
As described above, if a large number of calibration points are used, the conversion accuracy of the linearizer is improved, but a lot of labor is required for calibration, resulting in a problem that the manufacturing cost increases. Therefore, it is convenient if the number of folding points (number of calibration points) that approximates the broken line as much as possible can be reduced. However, if a wide span is taken between the calibration points, the rate at which an error value generated within the span range approaches or exceeds the allowable value increases.
FIG. 7 shows the state of errors that occur between calibration points. In this type of measuring apparatus, it is considered “good” if a predetermined measurement accuracy is satisfied between full scale FS and about 1/20 FS. Even in the measurement region between Zero and 1 / 20FS, a large error value is allowed. For this reason, how the error occurs from the full scale FS to 1/100 FS in the curve A shown in FIG. 6 will be described. Since the occurrence of an error between the full scale FS and the break point 1/10 FS in the curve A is slight, here, an error occurring in a span between the break points 1/10 FS to 1/100 FS will be described. FIG. 7 shows an error occurring in the span M2 between the break points 1/10 FS and 1/100 FS. At the break points 1/10 FS and 1/100 FS, the error is fixed to almost zero by calibration, but an error (deviation) occurs as shown by a curve B in FIG. Since this error swells in the vicinity of 1/20 FS, it may exceed the allowable value. Even if the error exceeds the allowable value between Zero and 1/20 FS, this is allowed. However, it is not permissible to exceed the allowable value in a measurement region with a value greater than 1 / 20FS. As shown by the curve B, if it is in a state close to the allowable value near 1/20 FS, the rate of occurrence of a product that exceeds the allowable value among the mass-produced products is increased, resulting in a disadvantage that the yield is deteriorated.

このため、1/20FS付近の誤差を小さくするために例えば折点1/20FSの点を校正点に設定することが考えられる。折点1/20FSを校正点に選定すると、折点1/20FSの点の誤差はゼロになるが今度は1/20FS点からzeroの間の誤差が大きくなってしまう不都合が生じる。
図8にその様子を示す。図8に示す曲線Bはzeroと折点1/100FSと1/10FSを校正点とした場合の誤差曲線、曲線Cはzeroと、折点1/20FSと、1/10FSを校正点とした場合の誤差曲線、曲線Dはzeroと、折点1/40FSと、1/10FSを校正点とした場合の誤差曲線をそれぞれ示す。曲線CとDから明らかなように、校正点を折点1/100FSから折点1/40FS又は折点1/20FSに変更すると、折点1/10FS〜1/20FS間の誤差値は小さくできるが、折点1/20FSより小さい観測領域の誤差値が異常に大きくなってしまうことになる。
For this reason, in order to reduce the error in the vicinity of 1/20 FS, for example, it is conceivable to set the break point 1/20 FS as a calibration point. When the break point 1 / 20FS is selected as the calibration point, the error at the break point 1 / 20FS becomes zero, but this time, the error between the 1 / 20FS point and zero becomes large.
This is shown in FIG. Curve B shown in FIG. 8 is an error curve when zero and break points 1/100 FS and 1/10 FS are calibration points, and curve C is zero, when break points 1/20 FS and 1/10 FS are calibration points. The error curve, curve D, shows the error curves when zero, the break point 1/40 FS, and 1/10 FS are used as calibration points. As apparent from the curves C and D, when the calibration point is changed from the break point 1/100 FS to the break point 1/40 FS or the break point 1/20 FS, the error value between the break points 1/10 FS to 1/20 FS can be reduced. However, the error value in the observation region smaller than the break point 1 / 20FS becomes abnormally large.

Zero〜1/20FS間の誤差値は大きくても「良し」とするものの、曲線Cはzeroと、折点1/20FSと、1/10FSを校正点とした場合の誤差曲線、曲線Dはzeroと、折点1/40FSと、1/10FSを校正点とした場合の誤差曲線をそれぞれ示す。曲線CとDから明らかなように、校正点を折点1/100FSから折点1/40FS又は折点1/20FSに変更すると、折点1/10FS〜1/20FS間の誤差値は小さくできるが、折点1/20FSより小さい測定領域の誤差値が異常に大きくなってしまうことになる。
Zero〜1/20FS間の誤差値は大きくても「良し」とするものの、曲線C及びDで示す誤差値は大き過ぎる。従って、目標としては、1/10FS〜1/20FS間の誤差値は許容値より十分小さく、然もZero〜1/20FS間の誤差値も程々に小さい値を示す誤差特性を呈することが望ましい。
Although the error value between Zero and 1 / 20FS is “good” even if it is large, the curve C is zero, the error curve when the break points 1 / 20FS and 1 / 10FS are the calibration points, and the curve D is zero. And error curves when the break point 1/40 FS and 1/10 FS are set as calibration points are shown. As apparent from the curves C and D, when the calibration point is changed from the break point 1/100 FS to the break point 1/40 FS or the break point 1/20 FS, the error value between the break points 1/10 FS to 1/20 FS can be reduced. However, the error value of the measurement region smaller than the break point 1 / 20FS becomes abnormally large.
Although the error value between Zero and 1 / 20FS is “good” even if it is large, the error values shown by the curves C and D are too large. Therefore, as a target, it is desirable that the error value between 1/10 FS and 1/20 FS is sufficiently smaller than the allowable value, and the error value between Zero and 1/20 FS also exhibits an error characteristic indicating a reasonably small value.

この発明の目的は精度が要求される測定領域では誤差許容値より十分小さい誤差値に抑えられ、精度が要求されない測定領域でも程々に小さい誤差値に抑制することができるリニアライザを備えた測定装置を提案しようとするものである。   An object of the present invention is to provide a measuring apparatus including a linearizer that can be suppressed to an error value sufficiently smaller than an allowable error value in a measurement region where accuracy is required, and can be suppressed to a small error value even in a measurement region where accuracy is not required. It is what we are going to propose.

この発明によるリニアライザを備えた測定装置は非線形特性を持つ測定対象に対し、測定範囲を複数の折点を持つ非線形によって折線近似し、各折毎に測定値を真値に整合させるための校正を施すと共に、折点間のスパン内では所定の変換係数を定め、測定値に変換係数を乗算して表示値を求めるリニアライザを備え、折点の一部で校正点と変換係数の切替点とが不一致の関数に設定されていることを特徴とする。
この発明によるリニアライザを備えた測定装置は更に、折線近似した各スパン内で許容誤差値に近い誤差値又は許容誤差値を越える値の誤差値を発生するスパン長を、変換係数の切替点で定められるスパン長より短くする方向に校正点を変位させた校正としたことを特徴とする。
A measuring apparatus having a linearizer according to the present invention performs a calibration for approximating a measuring object having a nonlinear characteristic by a nonlinear curve having a plurality of bending points and matching a measured value to a true value at each folding. In addition, a linearizer that determines the specified conversion coefficient within the span between the breakpoints and multiplies the measurement value by the conversion coefficient to obtain the displayed value is provided. It is characterized by being set to a mismatch function.
The measuring apparatus having the linearizer according to the present invention further determines, at the conversion coefficient switching point, a span length that generates an error value close to or exceeding an allowable error value in each span approximated by a broken line. The calibration is characterized in that the calibration point is displaced in a direction shorter than the span length.

この発明によるリニアライザを備えた測定装置によれば校正点の数を増やすことなく、比較的大きい誤差が発生するスパン内の誤差を小さい値に抑制することができる。この結果コストの上昇を抑えながら測定精度の向上を実現できる利点が得られる。   According to the measuring apparatus including the linearizer according to the present invention, it is possible to suppress an error in a span in which a relatively large error is generated to a small value without increasing the number of calibration points. As a result, there is an advantage that improvement in measurement accuracy can be realized while suppressing an increase in cost.

この発明によるリニアライザを備えた測定装置はディジタルボルトメータに適用する実施形態が最良である。   The measuring device provided with the linearizer according to the present invention is best applied to a digital voltmeter.

図1にこの発明によるリニアライザを備えた測定装置に用いるリニアライザ校正方法の一例を示す。図中FSは測定範囲のフルスケール値、1/10FSはフルスケールFSの1/10の値に設定した折点、1/40FSはフルスケールFSの1/40の値に設定した折点、1/100FSはフルスケールFSの1/100の値に設定した変換係数切替点、Zeroはゼロ点を表わす。
つまり、この発明では各折点1/10FS〜1/100FSで分割される各スパンM1、M2、M3内で特に1/100FS〜1/10FSの間の誤差の発生を小さく抑えるために、従来は折点1/100FSを校正点としていたものを、誤差の発生を抑えたいスパンの長さを短くするために折点1/100FSから、ここでは折点1/40FSに校正点を移動させることを特徴とするものである。但し、折点1/100FSでは校正は行われず、変換係数の切替点とするものである。つまり、Zero〜1/100FSの間のスパンM1ではリニアライザの変換係数をA1、
1/100FS〜1/10FSの間のスパンM2では変換係数をA2、
1/10FS〜FSの間のスパンM3では変換係数をA3、
とするように、各スパンの変換係数を設定する。
FIG. 1 shows an example of a linearizer calibration method used in a measuring apparatus equipped with a linearizer according to the present invention. In the figure, FS is the full scale value of the measurement range, 1/10 FS is the break point set to 1/10 of the full scale FS, 1/40 FS is the break point set to 1/40 of the full scale FS, 1 / 100FS represents a conversion coefficient switching point set to 1/100 of the full scale FS, and Zero represents a zero point.
In other words, in the present invention, in order to suppress the occurrence of an error particularly between 1/100 FS and 1/10 FS in each of the spans M1, M2, and M3 divided at each break point 1/10 FS to 1/100 FS, In order to reduce the length of the span where the breakpoint 1 / 100FS was set as the calibration point, the calibration point should be moved from the breakpoint 1 / 100FS to the breakpoint 1 / 40FS in this case. It is a feature. However, calibration is not performed at the break point 1/100 FS, and is used as a conversion coefficient switching point. That is, in the span M1 between Zero and 1/100 FS, the conversion coefficient of the linearizer is A1,
In the span M2 between 1 / 100FS and 1 / 10FS, the conversion coefficient is A2,
In the span M3 between 1/10 FS and FS, the conversion coefficient is A3,
The conversion coefficient for each span is set so that

このようにして校正点と変換係数の切替点を設定すると、1/100FS〜1/10FSの間の誤差の発生は図2に曲線Eで示すように、1/40FS〜1/10FSの間の誤差値を許容値と比較して小さく抑えることができる。つまり、1/40FSを校正点としてこの1/40FSで誤差の発生をほぼゼロに抑え込むことと、1/100FS〜1/10FSのスパンが1/40FS〜1/10FSのスパンに短くなることから1/40FS〜1/10FSの間の誤差を小さくすることができる。これと共に1/100FSは校正点としないから、誤差値は図2に示すように逆極性の正側に移る。これと共に、Zero〜1/100FSの間の誤差は図7に示した従来の曲線Bの場合より大きくなるが、図8に示した曲線C及びDの場合より小さくでき、1/20FS以下の測定領域ではこの程度の誤差の発生は許容される。   When the calibration point and the conversion coefficient switching point are set in this way, an error between 1/100 FS and 1/10 FS is generated between 1/40 FS and 1/10 FS as shown by curve E in FIG. The error value can be kept small compared to the allowable value. That is, 1/40 FS is used as the calibration point, and the error generation is suppressed to almost zero at 1/40 FS, and the 1/100 FS to 1/10 FS span is shortened to the 1/40 FS to 1/10 FS span. The error between / 40FS and 1 / 10FS can be reduced. At the same time, since 1/100 FS is not a calibration point, the error value moves to the positive side of the opposite polarity as shown in FIG. At the same time, the error between Zero and 1 / 100FS becomes larger than that in the case of the conventional curve B shown in FIG. 7, but can be made smaller than those in the curves C and D shown in FIG. Such an error is allowed in the region.

図3に従来の校正方法と本発明で用いる校正点と折点(係数切替点)の関係を表にして示す。また、入力値と表示値との実測値を従来と本発明とを比較して図4に示す。
上述では実効値測定用のリニアライザを例示して説明したが、本発明はこれに限定されるものではく、他の測定用のリニアライザにも適用することができる。要は所定スパン内で誤差の発生が許容値に近い場合に、係数切替点をそのままにし、校正点のみをスパンが短くなる方向に移動させ、スパン内の誤差値を抑制した構成を備えていることを特徴とするものである。
FIG. 3 is a table showing the relationship between the conventional calibration method and the calibration points and break points (coefficient switching points) used in the present invention. FIG. 4 shows the measured values of the input value and the display value in comparison with the prior art and the present invention.
In the above description, the linearizer for measuring the effective value has been described as an example. However, the present invention is not limited to this, and can be applied to other linearizers for measurement. In short, when the error generation is close to the allowable value within the specified span, the coefficient switching point is left as it is, and only the calibration point is moved in the direction that shortens the span, and the error value within the span is suppressed. It is characterized by this.

この発明によるリニアライザ校正方法及びこの校正方法で構成したリニアライザを搭載した測定装置はディジタルボルトメータの分野で活用される。   The linearizer calibration method according to the present invention and the measuring apparatus equipped with the linearizer constructed by this calibration method are utilized in the field of digital voltmeters.

この発明によるリニアライザを備えた測定装置に用いるリニアライザの校正方法を説明するためのグラフ。The graph for demonstrating the calibration method of the linearizer used for the measuring apparatus provided with the linearizer by this invention. 図1に示したリニアライザ校正方法で構成したリニアライザの誤差発生特性を説明するためのグラフ。The graph for demonstrating the error generation characteristic of the linearizer comprised with the linearizer calibration method shown in FIG. 本発明と従来技術で用いられる校正点と係数切替点の違いを説明するための図。The figure for demonstrating the difference between the calibration point used by this invention and a prior art, and a coefficient switching point. 本発明と従来技術で得られる表示値の実測例を示す図。The figure which shows the example of an actual measurement of the display value obtained by this invention and a prior art. ディジタルボルトメータの概要を説明するためのブロック図。The block diagram for demonstrating the outline | summary of a digital voltmeter. 従来技術を説明するためのグラフ。The graph for demonstrating a prior art. 従来技術で発生する誤差の特性を説明するためのグラフ。The graph for demonstrating the characteristic of the error which generate | occur | produces by a prior art. 大きい誤差が発生するスパンにおいて校正点及び係数切替点の双方を短くした場合の不都合を説明するためのグラフ。The graph for demonstrating the inconvenience at the time of shortening both a calibration point and a coefficient switching point in the span where a big error generate | occur | produces.

符号の説明Explanation of symbols

1/10FS〜1/100FS 折点 4 レンジ切替回路
M1、M2、M3 スパン 5 AD変換器
1A 電圧測定端子 6 リニアライザ
1B 電流測定端子 7 ディジタル表示器
2 切替スイッチ
3 電流−電圧変換器
1/10 FS to 1/100 FS Breakpoint 4 Range switching circuit M1, M2, M3 Span 5 AD converter
1A Voltage measurement terminal 6 Linearizer
1B Current measurement terminal 7 Digital display
2 changeover switch
3 Current-voltage converter

Claims (2)

非線形特性を持つ測定対象に対し、測定範囲を複数の折点を持つ折線によって折線近似し、各折点毎に測定値を真値に整合させるための校正を施すと共に、折点間のスパン内では所定の変換係数を定め、測定値に変換係数を乗算して表示値を求めるリニアライザを備えた測定装置において、
上記折点の一部で校正点と変換係数の切替点とが不一致の関係に設定されていることを特徴とするリニアライザを備えた測定装置。
For a measurement object with nonlinear characteristics, the measurement range is approximated by a broken line with multiple break points, calibration is performed to match the measured value to the true value at each break point, and within the span between the break points. Then, in a measuring apparatus including a linearizer that determines a predetermined conversion coefficient and obtains a display value by multiplying the measurement value by the conversion coefficient,
A measuring apparatus provided with a linearizer, wherein a calibration point and a conversion coefficient switching point are set to be inconsistent in a part of the break point.
請求項1記載のリニアライザを備えた測定装置において、折線近似した各スパン内で許容誤差値に近い誤差値又は許容誤差値を越える値の誤差値を発生するスパン長を、変換係数の切替点で定められるスパン長より短くする方向に校正点を変位させた構成としたことを特徴とするリニアライザを備えた測定装置。












2. A measuring apparatus comprising the linearizer according to claim 1, wherein a span length that generates an error value close to or exceeding an allowable error value within each span approximated by a broken line is determined at a conversion coefficient switching point. A measuring apparatus provided with a linearizer, characterized in that the calibration point is displaced in a direction shorter than a predetermined span length.












JP2005083785A 2005-03-23 2005-03-23 Measurement apparatus with linearizer Pending JP2006266802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005083785A JP2006266802A (en) 2005-03-23 2005-03-23 Measurement apparatus with linearizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005083785A JP2006266802A (en) 2005-03-23 2005-03-23 Measurement apparatus with linearizer

Publications (1)

Publication Number Publication Date
JP2006266802A true JP2006266802A (en) 2006-10-05

Family

ID=37202950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005083785A Pending JP2006266802A (en) 2005-03-23 2005-03-23 Measurement apparatus with linearizer

Country Status (1)

Country Link
JP (1) JP2006266802A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182432A1 (en) * 2014-05-29 2015-12-03 Ntn株式会社 Sensor-equipped wheel bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182432A1 (en) * 2014-05-29 2015-12-03 Ntn株式会社 Sensor-equipped wheel bearing

Similar Documents

Publication Publication Date Title
JP2012078138A (en) High-frequency measurement device and calibration method of high-frequency measurement device
JPWO2006118244A1 (en) FET characteristics measurement system
CN109298236B (en) Measuring method of microwave power measurement linear bias meter
JP2006266802A (en) Measurement apparatus with linearizer
JP2015139224A (en) voltage current supply circuit
US20200162088A1 (en) Device, System and Method for Digital-to-Analogue Conversion
US6301550B1 (en) Phase delay correction system
CN102170121A (en) Resonance eliminator with correcting potential transformer
JP2010121956A (en) Oscilloscope
JP4648243B2 (en) AC signal measuring instrument and offset adjustment method thereof
CN113940006B (en) Analog-digital conversion device and control method of analog-digital conversion device
JP2004132797A (en) Method and apparatus for measuring internal impedance of storage battery
JP2007040819A (en) Calibration system using standard signal
JP6292871B2 (en) Power measuring device
JP6315273B2 (en) Insulation state measuring device
EP2071291A2 (en) Method of calibrating temperature compensated sensors
JP2012073723A (en) Current setting circuit
JP3083033B2 (en) measuring device
JP2012242125A (en) Waveform measuring instrument
JPH04370769A (en) Correction method of voltage and current signal by using a/d converter
JP2009002758A (en) Impedance measuring apparatus
Bishop Thermistor temperature transducer-to-ADC application
JP6294651B2 (en) Reference waveform generation circuit, apparatus, and method
KR100287917B1 (en) Method for interpolating rated voltage of the measuring instrument for power
JPWO2022014008A5 (en)

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Effective date: 20070116

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A977 Report on retrieval

Effective date: 20070718

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070731

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20080408

Free format text: JAPANESE INTERMEDIATE CODE: A02