JP2006266664A - Ceiling embedded air conditioner - Google Patents

Ceiling embedded air conditioner Download PDF

Info

Publication number
JP2006266664A
JP2006266664A JP2005334856A JP2005334856A JP2006266664A JP 2006266664 A JP2006266664 A JP 2006266664A JP 2005334856 A JP2005334856 A JP 2005334856A JP 2005334856 A JP2005334856 A JP 2005334856A JP 2006266664 A JP2006266664 A JP 2006266664A
Authority
JP
Japan
Prior art keywords
motor
ceiling
air conditioner
top plate
hub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005334856A
Other languages
Japanese (ja)
Other versions
JP4684085B2 (en
Inventor
Hisafumi Ikeda
尚史 池田
Atsushi Edayoshi
敦史 枝吉
Kazutaka Suzuki
一隆 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005334856A priority Critical patent/JP4684085B2/en
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to CN2006800001629A priority patent/CN1942716B/en
Priority to ES11177128.3T priority patent/ES2623875T3/en
Priority to PCT/JP2006/301829 priority patent/WO2006090564A1/en
Priority to EP06712972A priority patent/EP1873461B1/en
Priority to CN2010102717631A priority patent/CN101907325B/en
Priority to EP10009996.9A priority patent/EP2273207B1/en
Priority to EP11177128.3A priority patent/EP2390590B1/en
Priority to ES10009996.9T priority patent/ES2623606T3/en
Publication of JP2006266664A publication Critical patent/JP2006266664A/en
Application granted granted Critical
Publication of JP4684085B2 publication Critical patent/JP4684085B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • F04D25/082Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation the unit having provision for cooling the motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0033Indoor units, e.g. fan coil units characterised by fans having two or more fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0047Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in the ceiling or at the ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • F24F2013/0616Outlets that have intake openings

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceiling embedded air conditioner of high reliability and low noise preventing the failure of a motor by the improvement of motor cooling efficiency. <P>SOLUTION: The motor side of a hub 3c of downward projecting shape covering the motor 4 and fixing a rotating shaft 4a of the motor 4 is provided with an air guide cover 18 forming a motor side air course 3f between itself and the motor 4 and guiding air flowing into the motor side air course 3f from a clearance formed between a casing top plate 1b and a main plate 3b, toward the motor 4. The air guide cover 18 comprises a peripheral surface part 18c extended downward from the main plate 3b side and is formed such that the height position of a lower end opening 18b of the peripheral surface part 18c is located below a lower end surface 4b of the motor 4. The hub 3c has a plurality of openings 3d allowing air flowing into the motor side air course 3f from the clearance, flowing out of the lower end opening 18b of the air guide cover 18 and flowing into a clearance between the air guide cover 18 and the hub 3c, to flow out to a fan internal air course 3e. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、天井埋込型空気調和機に関し、特に、モータ冷却性能向上、低騒音化を図るための装置構造に関する。   The present invention relates to a ceiling-embedded air conditioner, and more particularly to an apparatus structure for improving motor cooling performance and reducing noise.

従来の天井埋込型空気調和機は、筐体天板を有する天井埋込型空気調和機本体と、天井埋込型空気調和機本体内に筐体天板に回転軸が直交するように配置されるモータと、モータを覆い前記モータの回転軸を固定する下に凸形状のハブと、ハブの上部開口面周囲から天板に対向するように延出され、筐体天板と対向する面とは反対側の面に複数枚の翼が取り付けられた主板と、主板に対向し前記翼の案内流路を構成するシュラウドと、前記ハブ、前記主板及び前記シュラウドによって構成され、前記ハブの前記モータ側に形成されたモータ側風路と、その反対側に形成されたファン内部風路とを有し、前記シュラウド側から吸い込んだ空気を、前記ファン内部風路を介して吹き出すターボファンとを備えたものがある(従来技術1)。この天井埋込型空気調和機では、ターボファンから吹き出した空気の一部を、筐体天板と主板との隙間を介してハブ内側のモータ側風路に導入してモータを冷却し、その冷却後の空気を、ハブのモータ側面近傍に設けた開口穴からハブ外側のファン内部風路に放出するようにしている。   A conventional ceiling-embedded air conditioner is arranged in a ceiling-embedded air conditioner body having a housing top plate, and in the ceiling-embedded air conditioner body so that the rotation axis is orthogonal to the housing top plate. A motor that covers the motor and has a lower convex hub that fixes the rotation shaft of the motor, and a surface that extends from the periphery of the upper opening surface of the hub to face the top plate and faces the top plate of the housing A main plate having a plurality of blades attached to a surface opposite to the main plate, a shroud that faces the main plate and constitutes a guide flow path of the blades, the hub, the main plate, and the shroud. A turbo fan that has a motor side air passage formed on the motor side and a fan internal air passage formed on the opposite side, and blows out the air sucked from the shroud side through the fan internal air passage. There is what it has (Prior Art 1). In this ceiling-embedded air conditioner, a part of the air blown out from the turbofan is introduced into the motor side air passage inside the hub through the gap between the housing top plate and the main plate to cool the motor. The cooled air is discharged from the opening hole provided near the motor side surface of the hub to the fan internal air passage outside the hub.

また、上記の天井埋込型空気調和機の構成において、ハブの開口穴の位置をモータ側面近傍に代えてハブの下側(モータ回転軸とハブとの固定部近傍)にするとともに、複数の羽根を備えた補助ファンをハブの外側に下側開口穴を覆うように設けたものがある(従来技術2)(特許文献1参照)。この天井埋込型空気調和機では、補助ファンを設けることで、モータの周囲を流れる空気量を増大させてモータの冷却率を高めるとともに、補助ファンで下側開口穴を覆うことで下側開口穴から漏れるモータの運転音を低減するようにしている。   Further, in the configuration of the above-described ceiling-embedded air conditioner, the position of the opening hole of the hub is changed to the lower side of the hub (near the fixing portion between the motor rotation shaft and the hub) instead of the vicinity of the motor side surface, and a plurality of There is an auxiliary fan provided with blades provided outside the hub so as to cover the lower opening hole (prior art 2) (see Patent Document 1). In this ceiling-embedded air conditioner, by providing an auxiliary fan, the amount of air flowing around the motor is increased to increase the cooling rate of the motor, and the lower opening is covered by covering the lower opening hole with the auxiliary fan. The operation sound of the motor leaking from the hole is reduced.

また、上記の従来技術2の構成において、ハブに設ける開口穴を、下側開口穴に代えてモータの側面近傍の側面開口穴とするとともに、前記補助ファンに代えて、ハブに略沿うように下に凸形状に形成された補助ハブをハブの外側に側面開口穴を覆うように設けたものがある(従来技術3)(特許文献2参照)。
特許第3270567号公報 特許第3275474号公報
In the configuration of the prior art 2, the opening hole provided in the hub is a side opening hole in the vicinity of the side surface of the motor instead of the lower opening hole, and is substantially along the hub instead of the auxiliary fan. There is one in which an auxiliary hub formed in a convex shape is provided on the outside of the hub so as to cover a side opening hole (Prior Art 3) (see Patent Document 2).
Japanese Patent No. 3270567 Japanese Patent No. 3275474

上記従来技術1では、モータを冷却後の空気がハブの側面開口穴からファン内部風路に流出するが、このとき、側面開口穴から噴流状にファン内部風路に放出される。そのため、翼が噴流乱れの中を通過することになり圧力変動を受けて騒音が悪化するという問題があった。また、側面開口穴から放出する噴流状の流れが、ターボファンの吸込流れと干渉してしまう。その結果、ターボファンからの実際の吹出流れの流量が減って送風効率が悪化し、風量に対する騒音値が悪化してしまうという問題点があった。また、開口穴がハブの側面に設けられているため、モータの下端表面まで十分に風が流れず、有効にモータ冷却できずに発熱によるモータの破損が発生する可能性があった。   In the prior art 1, the air after cooling the motor flows out from the side opening hole of the hub to the fan internal air passage. At this time, the air is discharged from the side opening hole into the fan internal air passage. For this reason, the blades pass through the turbulence of the jet flow, and there is a problem that noise is deteriorated due to pressure fluctuation. Further, the jet-like flow discharged from the side opening hole interferes with the suction flow of the turbo fan. As a result, there is a problem that the flow rate of the actual blown flow from the turbofan is reduced, the blowing efficiency is deteriorated, and the noise value with respect to the air volume is deteriorated. Further, since the opening hole is provided in the side surface of the hub, the wind does not sufficiently flow to the lower end surface of the motor, and the motor cannot be effectively cooled, and the motor may be damaged due to heat generation.

また、従来技術2及び従来技術3では、ハブに設けた開口穴を補助ファン又は補助ハブで覆っているが、ハブの全体を覆うものではなく一部しか覆っていない。そのため上記従来技術1と同様に開口穴からの放出流れがターボファンの吸込流れと干渉して騒音悪化の可能性があった。   Moreover, in the prior art 2 and the prior art 3, although the opening hole provided in the hub is covered with the auxiliary fan or the auxiliary hub, it does not cover the whole hub but covers only a part. For this reason, as in the case of the prior art 1, the discharge flow from the opening hole interferes with the suction flow of the turbofan, which may cause noise deterioration.

また、空気調和機本体をトラック等で輸送時、この輸送時の振動でターボファンが振れ、ターボファンの外周端が空気調和機本体の筐体天板に点接触で衝突し、応力集中した衝撃で最悪ターボファンが破壊されてしまう恐れがあり信頼性が低下するという問題点があった。   In addition, when transporting the air conditioner body by truck, the turbo fan vibrates due to vibration during transportation, and the outer peripheral edge of the turbo fan collides with the top plate of the air conditioner body by point contact, and stress is concentrated. However, there is a problem that the worst turbofan may be destroyed and reliability is lowered.

本発明は、上述のような課題を解消するためになされたもので、モータ冷却効率向上によりモータの故障を防止することできて信頼性が高く、また、低騒音の天井埋込型空気調和機を得ることを第1の目的とする。   The present invention has been made to solve the above-described problems, and is capable of preventing motor failure by improving motor cooling efficiency, and is highly reliable, and has a low noise and is embedded in a ceiling. The first object is to obtain the above.

また、第2の目的は、製品輸送時のファンの破損を防止することができ、製品信頼性の高い天井埋込型空気調和機を得るものである。   The second object is to obtain a ceiling-embedded air conditioner that can prevent the fan from being damaged during product transportation and has high product reliability.

本発明に係る天井埋込型空気調和機は、(a)筐体天板を有する天井埋込型空気調和機本体と、(b)天井埋込型空気調和機本体内に筐体天板に回転軸が直交するように配置されるモータと、(c)モータを覆いモータの回転軸を固定する下に凸形状のハブと、ハブの上部開口面周囲から天板に対向するように延出され、筐体天板と対向する面とは反対側の面に複数枚の翼が取り付けられた主板と、主板に対向し翼の案内流路を構成するシュラウドとを有し、シュラウド側から吸い込んだ空気を、ハブのモータ側と反対側に形成されたファン内部風路を介して吹き出すターボファンと、(d)ハブのモータ側に設けられ、モータとの間にモータ側風路を形成し、筐体天板と主板との間に形成された隙間からモータ側風路に流れ込んだ空気を、モータに向けて導風する導風カバーとを備え、導風カバーは、主板側から下方に向かって延出された周面部を備え、周面部の下端開口の高さ位置がモータの下端表面よりも下方に位置するように形成されており、ハブは、隙間からモータ側風路に流れ込み、導風カバーの下端開口から流れ出て導風カバーとハブとの隙間に流入した空気をファン内部風路に流出させる開口穴を複数有するものである。   The ceiling-embedded air conditioner according to the present invention includes (a) a ceiling-embedded air conditioner body having a housing top panel, and (b) a housing top panel in the ceiling-embedded air conditioner body. A motor arranged so that the rotation axes are orthogonal to each other; (c) a lower convex hub that covers the motor and fixes the rotation axis of the motor; and extends from the periphery of the upper opening surface of the hub to face the top plate A main plate having a plurality of blades attached to a surface opposite to the surface facing the housing top plate, and a shroud that opposes the main plate and forms a guide flow path for the blades, and sucks from the shroud side. A turbo fan that blows air through a fan internal air passage formed on the opposite side of the hub from the motor side, and (d) a motor side air passage formed between the motor and the hub. , The air flowing into the motor side air passage from the gap formed between the housing top plate and the main plate, An air guide cover that guides air toward the motor, and the air guide cover includes a peripheral surface portion extending downward from the main plate side, and a height position of a lower end opening of the peripheral surface portion is a lower end surface of the motor. The hub flows into the motor side air passage from the gap, flows out from the lower end opening of the wind guide cover, and flows into the gap between the wind guide cover and the hub. It has a plurality of opening holes that allow it to flow out into the road.

また、本発明に係る天井埋込型空気調和機は、(a)筐体天板を有する天井埋込型空気調和機本体と、(b)天井埋込型空気調和機本体の内部に設けられ、送風を行うターボファンと、(c)天井埋込型空気調和機本体内に 筐体天板に回転軸が直交するように配置され、ターボファンを駆動するモータと、(d)ターボファンを囲むように立設された熱交換器と、(e)筐体天板において熱交換器の内側に相当する領域内に、モータと対向する領域の外周部分から放射状にかつ本体内部側へ突出して形成された複数の補強リブと、(f)筐体天板の内側に設けられた天板側断熱材とを備え、天板側断熱材は、略全体が各補強リブの突出面に沿うよう形成され、かつ筐体天板の各補強リブ以外の各放射配置領域に対しては一部又は全部に沿うように形成され、放射配置領域に沿うように構成された部分によって、ターボファンからの吹き出し流れの一部をモータへ導風する放射配置導風路を構成したものである。   The ceiling-embedded air conditioner according to the present invention is provided in (a) a ceiling-embedded air conditioner body having a housing top plate, and (b) a ceiling-embedded air conditioner body. A turbofan that blows air, (c) a motor that drives the turbofan, and is arranged in the ceiling-embedded air conditioner body so that the rotation axis is orthogonal to the casing top plate; and (d) the turbofan A heat exchanger erected so as to surround, and (e) in a region corresponding to the inside of the heat exchanger in the housing top plate, projecting radially from the outer peripheral portion of the region facing the motor to the inside of the main body A plurality of reinforcing ribs formed, and (f) a top plate-side heat insulating material provided inside the housing top plate, the top plate-side heat insulating material being substantially entirely along the protruding surface of each reinforcing rib. Formed and partially or entirely along each radiation arrangement area other than each reinforcing rib of the housing top plate It is urchin formed by portion configured along the radiation arrangement region, which is constituted of the balloon radiation disposed air guide path for the air guide part of the flow to the motor from the turbo fan.

また、本発明に係る天井埋込型空気調和機は、(a)筐体天板を有する天井埋込型空気調和機本体と、(b)天井埋込型空気調和機本体の内部に設けられ、送風を行うターボファンと、(c)ターボファンを駆動するモータと、(d)ターボファンを囲むように立設された熱交換器と、(e)筐体天板において熱交換器の内側に相当する領域内に、モータと対向する領域の外周部分から放射状にかつ本体外部側へ突出して形成された複数の補強リブと、(f)筐体天板の内側に設けられた天板側断熱材とを備え、天板側断熱材は、略全体が各補強リブ以外の面に沿うよう形成され、かつ筐体天板の各補強リブ部分に対しては一部又は全部に沿うように形成され、各補強リブ部分に沿うように形成された部分によって、ターボファンからの吹き出し流れの一部をモータへ導風する放射配置導風路を構成したものである。   The ceiling-embedded air conditioner according to the present invention is provided in (a) a ceiling-embedded air conditioner body having a housing top plate, and (b) a ceiling-embedded air conditioner body. A turbo fan for blowing air, (c) a motor for driving the turbo fan, (d) a heat exchanger erected so as to surround the turbo fan, and (e) an inside of the heat exchanger in the casing top plate A plurality of reinforcing ribs formed radially and projecting from the outer peripheral portion of the region facing the motor to the outside of the main body, and (f) the top plate side provided inside the case top plate The top plate side heat insulating material is formed so that substantially the whole is along the surface other than each reinforcing rib, and so that it is along part or all of each reinforcing rib portion of the housing top plate. The part formed along each reinforcing rib part is blown from the turbofan. And it is obtained by constituting the radiation arrangement air guide path for the air guide part of the flow to the motor.

本発明は、ハブの内側に導風カバーを設け、この導風カバーを、周面部の下端開口の高さ位置がモータの下端表面よりも下方に位置するように形成したので、モータ側風路に流入した空気を、モータの下端表面まで確実に導風することができる。これにより、モータの全体表面を冷却することができる。その結果、モータ冷却効率が向上し、発熱によるモータの故障を防止することできて信頼性の高い天井埋込型空気調和機を得ることができる。   In the present invention, the wind guide cover is provided inside the hub, and the wind guide cover is formed so that the height position of the lower end opening of the peripheral surface portion is located below the lower end surface of the motor. The air that has flowed into the motor can be reliably guided to the lower end surface of the motor. Thereby, the whole surface of a motor can be cooled. As a result, the motor cooling efficiency is improved, the motor failure due to heat generation can be prevented, and a highly reliable ceiling-embedded air conditioner can be obtained.

また、ファン内部風路に空気を放出する開口穴を、ハブの周面部の主板近傍に設けたため、開口穴からファン内部風路に流出する空気が、ファン吸込流れと干渉するのを防止できる。このため、ファン吸込流れのせん断乱れが抑制され、乱流中を翼が通過することによる騒音を低減できる。また、ファン吸込流れと干渉することに起因した送風効率の悪化に伴う騒音増大を防止できる。   Moreover, since the opening hole which discharges | releases air to a fan internal air path is provided in the main plate vicinity of the peripheral surface part of a hub, it can prevent that the air which flows out into a fan internal air path from an opening hole interferes with a fan suction flow. For this reason, the shear disturbance of the fan suction flow is suppressed, and the noise caused by the blades passing through the turbulent flow can be reduced. Further, it is possible to prevent an increase in noise due to deterioration of the blowing efficiency due to interference with the fan suction flow.

また、ハブは、実質、全体的に2重構造で、しかも、開口穴はハブの周面部の主板近傍に設けられているため、上述したようにハブのモータ側風路からファン内部風路までの距離が延長され、騒音が減衰する。その結果、モータから発せられる電磁異常音や軸受回転音等のモータ運転音が外部に漏れるのを低減できる。また、低騒音で居住者が快適な環境を得られる天井埋込型空気調和機を得ることができる。   In addition, the hub has a substantially double structure, and the opening hole is provided in the vicinity of the main plate on the peripheral surface portion of the hub. As described above, from the motor side air passage of the hub to the fan internal air passage. The distance is extended and the noise is attenuated. As a result, it is possible to reduce the leakage of motor operation sound such as electromagnetic abnormal sound and bearing rotation sound emitted from the motor to the outside. Moreover, it is possible to obtain a ceiling-embedded air conditioner that can provide a comfortable environment for the resident with low noise.

また、騒音の減衰と同様、開口穴からファン内部風路に流出する空気の流速も減衰するので、ファン吹出流れの流量低減を確実に防止でき、送風効率の悪化に伴う騒音増大を防止できる。また、ファン吹出流れの流量低減防止効果により、モータ冷却用空気量を十分に確保でき効果的にモータを冷却することも可能となる。   Further, similarly to the attenuation of noise, the flow velocity of the air flowing out from the opening hole into the fan internal air passage is also attenuated, so that it is possible to reliably prevent a decrease in the flow rate of the fan blowing flow and to prevent an increase in noise due to the deterioration of the blowing efficiency. In addition, due to the effect of reducing the flow rate of the fan blowing flow, a sufficient amount of motor cooling air can be secured and the motor can be effectively cooled.

また、本発明は、筐体天板に補強リブを設けるとともに、筐体天板の内側に設けた天板側断熱材と補強リブとによって、ターボファンからの吹き出し流れの一部をモータへ導風する放射配置導風路を形成したので、まず、補強リブにより筐体天板を強度増加できて筐体天板1bの薄肉化・軽量化が可能となり、また、放射配置導風路によりモータへの空気の流量を増加でき、冷却効率の向上が可能となってモータの破損を防止することが可能となる。   In addition, the present invention provides a reinforcing rib on the casing top plate and guides part of the blowout flow from the turbo fan to the motor by the top plate side heat insulating material and the reinforcing rib provided inside the casing top plate. Since the radiating arrangement air guide passage is formed, first, the strength of the casing top plate can be increased by the reinforcing rib, so that the casing top board 1b can be thinned and lightened. As a result, the air flow rate can be increased, the cooling efficiency can be improved, and the motor can be prevented from being damaged.

実施の形態1.
以下、本発明に係る実施の形態1における天井埋込型空気調和機を図1〜図7を用いて説明する。
図1は本発明の空気調和機の外観斜視図、図2は図1の空気調和機の内部を示す縦断面図、図3は図1の空気調和機本体1の内部を示し天板側から見た時の図2のX−Xにおける水平断面図、図4は図2のターボファン3付近での断面拡大図、図5は本発明の天井埋込型空気調和機1に搭載されるターボファン3の斜視図、図6は図5のターボファン3を上下逆にした状態の斜視図、図7はターボファン3に配設される導風カバー18の斜視図である。
Embodiment 1 FIG.
Hereinafter, a ceiling-embedded air conditioner according to Embodiment 1 of the present invention will be described with reference to FIGS.
1 is an external perspective view of the air conditioner of the present invention, FIG. 2 is a longitudinal sectional view showing the inside of the air conditioner of FIG. 1, and FIG. 3 shows the inside of the air conditioner main body 1 of FIG. 2 is a horizontal sectional view taken along line XX in FIG. 2, FIG. 4 is an enlarged sectional view in the vicinity of the turbo fan 3 in FIG. 2, and FIG. 5 is a turbo mounted in the ceiling-embedded air conditioner 1 of the present invention. FIG. 6 is a perspective view of the fan 3, FIG. 6 is a perspective view of the turbo fan 3 of FIG. 5 turned upside down, and FIG. 7 is a perspective view of the air guide cover 18 disposed on the turbo fan 3.

図1において、天井埋込型空気調和機本体1は、部屋15の天井に、天井埋込型空気調和機本体1の下方に設けられた略四角形状の化粧パネル2が見える状態で埋設されている。化粧パネル2の中央付近には天井埋込型空気調和機本体1への空気の吸込口11a(図2参照)へ連通する略四角形の吸込グリル2aと、化粧パネル2の各辺に沿って形成された本体吹出口16a(図2参照)と連通するパネル吹出口2bを有し、さらに各パネル吹出口2bには風向ベーン2cを備えて天井埋込型空気調和機を成している。   In FIG. 1, a ceiling-embedded air conditioner body 1 is embedded in a ceiling of a room 15 in a state where a substantially rectangular decorative panel 2 provided below the ceiling-embedded air conditioner body 1 is visible. Yes. Near the center of the decorative panel 2 is formed along a substantially rectangular suction grille 2a communicating with an air suction port 11a (see FIG. 2) to the ceiling-embedded air conditioner body 1 and each side of the decorative panel 2. The panel outlet 2b communicates with the main body outlet 16a (see FIG. 2), and each panel outlet 2b includes a wind vane 2c to form a ceiling-embedded air conditioner.

また、図2、図3に示すように、空気調和機本体1の筐体は、筐体側板1aと筐体側板1aで囲まれた部分に取り付けられた筐体天板1bとから形成され、筐体側板1a及び筐体天板1bは板金部材で構成されている。また、筐体側板1aおよび筐体天板1bの少なくとも一部の空気調和機本体1内側の面には断熱材1cが貼り付けられており、風路壁面を構成している。空気調和機本体1の内部には、筐体天板1bに回転軸4aが直交するように配置されるモータ4と、モータ4により回転駆動されるターボファン3を備えた遠心送風機と、ターボファン3を囲むように立設された略C字形状の熱交換器6とを備えている。   As shown in FIGS. 2 and 3, the casing of the air conditioner body 1 is formed of a casing side plate 1a and a casing top plate 1b attached to a portion surrounded by the casing side plate 1a. The case side plate 1a and the case top plate 1b are made of sheet metal members. Moreover, the heat insulating material 1c is affixed on the surface inside the air conditioner main body 1 of at least a part of the case side plate 1a and the case top plate 1b, thereby constituting an air passage wall surface. Inside the air conditioner main body 1, a centrifugal fan provided with a motor 4 disposed so that the rotation shaft 4 a is orthogonal to the casing top plate 1 b, a turbo fan 3 driven to rotate by the motor 4, and a turbo fan 3 and a substantially C-shaped heat exchanger 6 erected so as to surround 3.

熱交換器6の下部には発泡材で形成されたドレンパン12と制御基板等の電子部品を収納する電気品箱13とが配設されている。また、略C字形状の熱交換器6の2つの端部6aは熱交換器連結板7で連結され全体として略四角形状に形成されている。熱交換器連結板7の外側(筐体側板1a側)には、図3に示すように側板側断熱材1dとの間に隙間が形成されており、その隙間の上下が筐体天板1bとドレンパン12とによって塞がれて配管収納スペース10が構成されている。この配管収納スペース10内には、2つの端部6aのうちの一方の端部6aから伸びた伝熱管6bに接続されたヘッダー8と分配器9とが配置されている。   Under the heat exchanger 6, a drain pan 12 formed of a foam material and an electrical component box 13 for storing electronic components such as a control board are disposed. Further, the two end portions 6a of the substantially C-shaped heat exchanger 6 are connected by a heat exchanger connecting plate 7 and are formed in a substantially rectangular shape as a whole. As shown in FIG. 3, a gap is formed between the heat exchanger connecting plate 7 and the side plate-side heat insulating material 1d on the outer side (the case side plate 1a side). And a drain pan 12 to form a pipe storage space 10. In the pipe storage space 10, a header 8 and a distributor 9 connected to a heat transfer tube 6b extending from one end 6a of the two ends 6a are arranged.

遠心送風機は、ターボファン3と、ターボファン3への吸込風路23aを形成するベルマウス5とにより構成される。ターボファン3は、モータ4を覆いモータ4の回転軸4aを固定する下に凸形状のハブ3cと、ハブ3cの上部開口面周囲から筐体天板1bに対向するように延出され、筐体天板1bと対向する面とは反対側の面に複数枚の翼3aが取り付けられた略リング状の主板3bと、主板3bに対向し前記翼3aへの案内流路を構成するシュラウド3gとを備えている。ハブ3cは、上端が主板3bと一体に形成され、下端がモータ4の回転軸4aに固定されている。ここで、ハブ3cは、主板3bの内周部から下方に向かうに従って縮径された中空の円錐筒状の周面部3caと、周面部3caの下端開口からモータ軸4aに向かって延びる平面部3cbと、平面部3cbの内周からモータ軸4a方向に延びる円筒部3ccとが一体に形成された構成となっている。また、周面部3caには、主板3b近傍の同心円上の位置に複数の開口穴3dが形成されている。かかる構成のハブ3cは、円筒部3ccでモータ回転軸4aに固定されており、この固定状態において、ハブ3cに一体形成された主板3bと天板側断熱材1eとの隙間E1が所定の間隔となるように寸法設計されている。   The centrifugal blower includes a turbo fan 3 and a bell mouth 5 that forms a suction air passage 23 a to the turbo fan 3. The turbo fan 3 covers the motor 4 and extends downward from the periphery of the upper opening surface of the hub 3c so as to face the housing top plate 1b. A substantially ring-shaped main plate 3b having a plurality of blades 3a attached to the surface opposite to the surface facing the body top plate 1b, and a shroud 3g that faces the main plate 3b and constitutes a guide flow path to the blade 3a. And. The hub 3 c has an upper end formed integrally with the main plate 3 b and a lower end fixed to the rotating shaft 4 a of the motor 4. Here, the hub 3c includes a hollow conical cylindrical peripheral surface portion 3ca that is reduced in diameter from the inner peripheral portion of the main plate 3b and a flat surface portion 3cb that extends from the lower end opening of the peripheral surface portion 3ca toward the motor shaft 4a. And a cylindrical portion 3cc extending in the direction of the motor shaft 4a from the inner periphery of the plane portion 3cb. In addition, a plurality of opening holes 3d are formed in the circumferential surface portion 3ca at concentric positions near the main plate 3b. The hub 3c having such a configuration is fixed to the motor rotating shaft 4a by the cylindrical portion 3cc. In this fixed state, the gap E1 between the main plate 3b and the top plate-side heat insulating material 1e formed integrally with the hub 3c is a predetermined distance. The dimensions are designed to be

さらに、ターボファン3のハブ3cの内側(モータ4側)には導風カバー18が設けられている。導風カバー18は、モータ4との間にモータ側風路3fを形成し、筐体天板1bと主板3bとの間に形成された隙間E1からモータ側風路fに流れ込んだ空気を、モータ4に向けて導風するものであり、図7に示すように、リング状の鍔部18aと、鍔部18aの内周部から下端の開口18bに向かうに従ってモータ側風路3fの断面積が小さくなるように縮径された中空の円錐筒状の周面部18cとから構成されている。周面部18cは、ハブ3cの周面部3caとほぼ同じ傾斜に形成されており、ハブ3cの周面部3caとの間の隙間E2が、所定の間隔となるように配置されている。また、導風カバー18は、周面部18cの下端開口18bの高さ位置がモータ4の下端表面4bよりも下方に位置するように形成されており、モータ側風路3fに流入した空気を、モータ4全体に導風する構成となっている。かかる構成の導風カバー18は、アルミニウムやメッキ鋼板等の熱伝導性の高い金属部材にて構成されており、また、鍔部18aで主板3bに溶着等により吊設固着されており、モータ4の回転によりターボファン3と共に一体的に回転するようになっている。   Further, an air guide cover 18 is provided inside the hub 3c of the turbo fan 3 (on the motor 4 side). The air guide cover 18 forms a motor side air passage 3f between the motor 4 and the air flowing into the motor side air passage f from the gap E1 formed between the housing top plate 1b and the main plate 3b. As shown in FIG. 7, the cross-sectional area of the motor-side air passage 3f is directed from the inner peripheral portion of the flange portion 18a toward the lower end opening 18b, as shown in FIG. And a hollow conical cylinder-shaped peripheral surface portion 18c reduced in diameter so as to be small. The peripheral surface portion 18c is formed with substantially the same inclination as the peripheral surface portion 3ca of the hub 3c, and the gap E2 between the peripheral surface portion 3ca and the peripheral surface portion 3ca of the hub 3c is arranged at a predetermined interval. The air guide cover 18 is formed such that the height position of the lower end opening 18b of the peripheral surface portion 18c is located below the lower end surface 4b of the motor 4, and the air flowing into the motor side air passage 3f is The configuration is such that the air is guided to the entire motor 4. The air guide cover 18 having such a configuration is made of a metal member having high thermal conductivity such as aluminum or plated steel plate, and is suspended and fixed to the main plate 3b by a flange portion 18a by welding or the like. Is rotated together with the turbo fan 3.

次に、以上のように構成された天井埋込型空気調和機の運転時の動作について説明する。
空気調和機運転時、モータ4が駆動されてターボファン3が矢印A(図3、5、6参照)に回転すると、部屋15の空気が吸込グリル2aから矢印Bのように吸い込まれ、フィルタ14でホコリ等除去された後、ベルマウス5を通りターボファン3へ吸い込まれる。その後、ターボファン3の吹出口3iから吹出された空気C1は熱交換器6を通過しながら加熱または冷却され、図示しないベーンモータにより回動される風向ベーン2cにより空気の流れ方向を制御されつつパネル吹出口2bから部屋15へ吹出し空調される。冷房時には、熱交換器6にて部屋15の空気が凝縮し生成された凝縮水はドレンポンプ17にて空気調和機本体1の外部へ排出される。
Next, the operation at the time of operation of the ceiling-embedded air conditioner configured as described above will be described.
When the air conditioner is operated, when the motor 4 is driven and the turbo fan 3 rotates in the direction of arrow A (see FIGS. 3, 5 and 6), the air in the room 15 is sucked in from the suction grill 2a as indicated by the arrow B, and the filter 14 Then, after dust and the like are removed, it passes through the bell mouth 5 and is sucked into the turbo fan 3. Thereafter, the air C1 blown from the blower outlet 3i of the turbo fan 3 is heated or cooled while passing through the heat exchanger 6, and the air flow direction is controlled by a wind vane 2c rotated by a vane motor (not shown) while the air flow direction is controlled. Air-conditioning is performed from the outlet 2b to the room 15. During cooling, the condensed water generated by the condensation of the air in the room 15 by the heat exchanger 6 is discharged to the outside of the air conditioner body 1 by the drain pump 17.

また、図4のターボファン3付近の拡大図において、ターボファン3に吸込まれた流れBは、ターボファン3から熱交換器6へ向け流れる流れC1と、主板3bと天板側断熱材1eとの隙間E1を通り、モータ側風路3fに流入してモータ4の周囲を流れ、導風カバー18の下端開口18bを通過後、ハブ3cと導風カバー18との隙間E2を通り開口穴3dからファン内部風路3eへ向け放出され、ファン吸込流れBと合流する流れC2となる。   4, the flow B sucked into the turbo fan 3 includes a flow C1 flowing from the turbo fan 3 toward the heat exchanger 6, a main plate 3b, a top plate side heat insulating material 1e, 3d, flows into the motor-side air passage 3f, flows around the motor 4, passes through the lower end opening 18b of the air guide cover 18, and then passes through the gap E2 between the hub 3c and the air guide cover 18 to open the hole 3d. Is discharged toward the fan internal air passage 3e and becomes a flow C2 that merges with the fan suction flow B.

この流れC2において、まず、隙間E1を通過して導風カバー18内側のモータ側風路3f(モータ4側)に流入した空気は、下端開口18bに向かう気流となる。ここで、導風カバー18は、周面部18cの下端開口18bの高さ位置がモータ4の下端表面よりも下方に位置するように形成されているため、モータ側風路3fに流入した空気を、モータ4の下端表面4bまで確実に導風することができる。これにより、モータ4の全体表面を冷却することができ、モータ4内部の巻線温度や素子の熱を放熱することができる。   In this flow C2, first, the air that passes through the gap E1 and flows into the motor side air passage 3f (motor 4 side) inside the air guide cover 18 becomes an air flow toward the lower end opening 18b. Here, since the air guide cover 18 is formed so that the height position of the lower end opening 18b of the peripheral surface portion 18c is located below the lower end surface of the motor 4, the air flowing into the motor side air passage 3f is removed. The air can be surely guided to the lower end surface 4b of the motor 4. Thereby, the whole surface of the motor 4 can be cooled, and the winding temperature inside the motor 4 and the heat of the element can be radiated.

そして、モータ4表面を冷却した空気は、導風カバー18の下端開口18bから流出し、ハブ3cの平面部3cbに接触した後、隙間E2を通って上方へと導かれ、開口穴3dからファン内部風路3eへ向けて放出される。ここで、開口穴3dは、ハブ3cの周面部3caの主板3b側(主板3b近傍)に設けられているため、開口穴3dからファン内部風路3eに流出する空気が、ファン吸込流れBと干渉するのを防止できる。このため、ファン吸込流れBのせん断乱れが抑制され、乱流中を翼3aが通過することによる騒音を低減できる。また、ファン吸込流れBと干渉することに起因した送風効率の悪化に伴う騒音増大を防止できる。   The air that has cooled the surface of the motor 4 flows out from the lower end opening 18b of the air guide cover 18, contacts the flat surface portion 3cb of the hub 3c, is guided upward through the gap E2, and is fanned from the opening hole 3d. It is discharged toward the internal air passage 3e. Here, since the opening hole 3d is provided on the main plate 3b side (near the main plate 3b) of the peripheral surface portion 3ca of the hub 3c, the air flowing out from the opening hole 3d to the fan internal air passage 3e is separated from the fan suction flow B. Interference can be prevented. For this reason, the shear disturbance of the fan suction flow B is suppressed, and the noise caused by the blade 3a passing through the turbulent flow can be reduced. Further, it is possible to prevent an increase in noise due to the deterioration of the blowing efficiency due to the interference with the fan suction flow B.

また、ハブ3cは、実質、全体的に2重構造であり、しかも開口穴3dはハブ3cの周面部3caの主板3b側に設けられているため、ハブが1重でハブ内側の空気を外部に放出する開口穴がモータの側面近傍に設けられていたり、ハブが一部2重構造で開口穴を設ける高さ位置が低い場合に比べて、ハブ3cのモータ側風路3fからファン内部風路3eまでの風路が長い。このため、騒音が減衰し、モータ4から発せられる電磁異常音や軸受回転音等の運転音を低減できる。   Further, the hub 3c has a substantially double structure, and the opening hole 3d is provided on the main plate 3b side of the peripheral surface portion 3ca of the hub 3c. Compared to the case where the opening hole that discharges to the side of the motor is provided near the side surface of the motor or the hub is partly double-structured and the height position where the opening hole is provided is low, the fan internal airflow The air path to the road 3e is long. For this reason, noise is attenuated, and driving noise such as electromagnetic abnormal noise and bearing rotation noise generated from the motor 4 can be reduced.

また、騒音の減衰と同様、開口穴3dからファン内部風路3eに流出する空気の流速も減衰する。よって、開口穴3dからファン内部風路3eに流出する空気がファン吸入流れBに干渉することに起因するファン吹出流れC1の流量低減を確実に防止でき、送風効率の悪化に伴う騒音増大を防止できる。また、ファン吹出流れC1の流量低減防止効果により、モータ冷却用空気量を十分に確保でき効果的にモータ4を冷却することも可能となる。   Further, similarly to the attenuation of noise, the flow velocity of the air flowing out from the opening hole 3d to the fan internal air passage 3e is also attenuated. Therefore, it is possible to reliably prevent a reduction in the flow rate of the fan blowing flow C1 caused by the air flowing out from the opening hole 3d into the fan internal air passage 3e interfering with the fan suction flow B, and to prevent an increase in noise due to a deterioration in the blowing efficiency. it can. In addition, due to the effect of reducing the flow rate of the fan blow-off flow C1, a sufficient amount of motor cooling air can be secured and the motor 4 can be effectively cooled.

次に、モータ4の冷却効果や騒音低減効果を十分に発揮できる、ターボファン3の各部の寸法設計について次の図8〜図12を用いて説明する。なお、導風カバー18とモータ4下端との最小隙間間隔(モータ4の下端から導風カバー18の周面部18cの表面向かって下ろした垂線においてモータ4の下端と周面部18cの表面との距離)k、ターボファン3の吹出口3iの面積G5、導風カバー18とハブ3cとの間隔E2での周状開口面積G1(導風カバー18及びハブ3cを周面部3caに垂直な平面で周状に切ったときの開口面積)、開口穴3dの全開口面積G4(各開口穴3dの合計面積)とする。   Next, the dimensional design of each part of the turbofan 3 that can sufficiently exhibit the cooling effect and noise reduction effect of the motor 4 will be described with reference to FIGS. Note that the minimum gap distance between the wind guide cover 18 and the lower end of the motor 4 (the distance between the lower end of the motor 4 and the surface of the peripheral surface portion 18c in the perpendicular line extending from the lower end of the motor 4 toward the surface of the peripheral surface portion 18c of the wind guide cover 18). ) K, the area G5 of the blower outlet 3i of the turbo fan 3, the circumferential opening area G1 at the interval E2 between the air guide cover 18 and the hub 3c (the air guide cover 18 and the hub 3c are surrounded by a plane perpendicular to the peripheral surface portion 3ca). The opening area when cutting into a shape), and the total opening area G4 of the opening hole 3d (the total area of each opening hole 3d).

図8は、導風カバー18とモータ4下端との最小隙間間隔kとモータ冷却効率との関係を示す図である。なお、モータ冷却効率は、開口穴3dが有る場合のモータ温度h1、開口穴3dが無い場合のモータ温度h2とするとき、(h1−h2)とh1との比率である。
図8より、最小隙間間隔kを、輸送時等でモータ回転軸4aを始点に横揺れしたときに導風カバー18がモータ4と衝突しない8mm以上で、かつモータ冷却効率が急激に悪化傾向となる25mm以下とすることが好ましいことがわかる。この寸法とすることにより、モータ表面に十分空気が流れ、安定したモータ冷却効率を得ることができ、モータ発熱による破損も防止することが可能となる。
FIG. 8 is a diagram showing the relationship between the minimum clearance gap k between the air guide cover 18 and the lower end of the motor 4 and the motor cooling efficiency. The motor cooling efficiency is a ratio between (h1−h2) and h1 when the motor temperature h1 when there is an opening hole 3d and the motor temperature h2 when there is no opening hole 3d.
From FIG. 8, the minimum gap interval k is 8 mm or more at which the air guide cover 18 does not collide with the motor 4 when the motor rotation shaft 4a is swayed at the starting point during transportation, and the motor cooling efficiency tends to deteriorate rapidly. It can be seen that the thickness is preferably 25 mm or less. By adopting this size, sufficient air flows on the motor surface, stable motor cooling efficiency can be obtained, and damage due to motor heat generation can be prevented.

図9は、G4/G1(全開口面積G4と周状開口面積G1との比率)とモータ冷却効率との関係を示す図である。
図9より、G4/G1が40%以上であれば、導風カバー18とハブ3cとの隙間E2からハブ3cの開口穴3dへの流路での通風抵抗が大きすぎず空気が最低限流れ、モータ冷却効率が安定して高く得られ、モータ4の発熱による破損を防止できる。
FIG. 9 is a diagram showing a relationship between G4 / G1 (ratio of the total opening area G4 and the circumferential opening area G1) and the motor cooling efficiency.
As shown in FIG. 9, if G4 / G1 is 40% or more, the ventilation resistance in the flow path from the gap E2 between the air guide cover 18 and the hub 3c to the opening hole 3d of the hub 3c is not too large, and the air flows at the minimum. The motor cooling efficiency can be obtained stably and high, and the motor 4 can be prevented from being damaged by heat generation.

図10(a)は、G4/G5(ターボファン吹出口面積G5と全開口面積G4との比率)と騒音値との関係を示す図、図10(b)は、G4/G5(ターボファン吹出口面積G5と全開口穴面積G4との比率)とモータ冷却効率との関係を示す図である。
図10(a)より、G4/G5が10%以下であれば、開口穴3dからの放出流れが吸込流れBと干渉せず騒音値が低いことがわかる。また、図10(b)より、G4/G5が0.5%以上であればモータ冷却効率が安定して得られることがわかる。これにより、G4/G5を0.5%以上10%以下に設定すれば、低騒音でモータ冷却効率も安定して得られることになる。
FIG. 10A is a diagram showing the relationship between G4 / G5 (the ratio between the turbo fan outlet area G5 and the total opening area G4) and the noise value, and FIG. 10B is the diagram showing G4 / G5 (turbo fan blowing area). It is a figure which shows the relationship between a motor cooling efficiency and the ratio of the exit area G5 and the total opening hole area G4.
From FIG. 10A, it can be seen that if G4 / G5 is 10% or less, the discharge flow from the opening hole 3d does not interfere with the suction flow B and the noise level is low. Further, FIG. 10B shows that the motor cooling efficiency can be stably obtained when G4 / G5 is 0.5% or more. Thereby, if G4 / G5 is set to 0.5% or more and 10% or less, the motor cooling efficiency can be stably obtained with low noise.

以上のように該当の各構成部間(導風カバー18とモータ4、導風カバー18とハブ3c、開口穴3dとファン吹出口3i)の関係を保つ寸法設計とすることにより、低騒音でモータ4の発熱による破損を防止でき、静粛で高品質な天井埋込型空気調和機を得ることが可能となる。   As described above, by adopting a dimensional design that maintains the relationship between the corresponding components (the air guide cover 18 and the motor 4, the air guide cover 18 and the hub 3c, the opening hole 3d and the fan outlet 3i), the noise can be reduced. Damage to the motor 4 due to heat generation can be prevented, and a quiet and high-quality ceiling-embedded air conditioner can be obtained.

図11は本発明の空気調和機の運転時における周波数特性図で、従来との比較結果を示している。横軸に周波数、縦軸に騒音値SPLを取って示している。実験結果は、本発明の構成と、従来の構成(ハブが1重構造で、ハブ内側の空気をハブ外側に放出する開口穴をハブのモータ側面近傍に設けたもの)と比較した結果である。図11より、モータ4から発せられる電磁異常音や軸受回転音等を低減できることが確認できる。   FIG. 11 is a frequency characteristic diagram during operation of the air conditioner of the present invention, and shows a comparison result with the conventional one. The horizontal axis represents frequency, and the vertical axis represents noise value SPL. The experimental results are a result of comparison between the configuration of the present invention and the conventional configuration (having a single hub structure and an opening hole in the vicinity of the motor side surface of the hub for releasing air inside the hub to the outside of the hub). . From FIG. 11, it can be confirmed that electromagnetic noise generated from the motor 4, bearing rotation noise, and the like can be reduced.

図12は、本発明の空気調和機の運転時における送風量と騒音との関係図で、従来との比較結果を示している。横軸に送風量、縦軸に騒音値を取って示している。
図12より、同じ送風量であるとき、本発明の構成の方が従来の構成(ハブが1重構造で、ハブ内側の空気をハブ外側に放出する開口穴をハブのモータ側面近傍に設けたもの)に比べて騒音を低減できることが確認できた。
FIG. 12 is a relationship diagram between the air flow rate and noise during operation of the air conditioner of the present invention, and shows a comparison result with the prior art. The abscissa indicates the air flow rate and the ordinate indicates the noise value.
From FIG. 12, when the air flow rate is the same, the configuration of the present invention is the conventional configuration (the hub has a single structure, and an opening hole for releasing the air inside the hub to the outside of the hub is provided near the side of the motor of the hub. It was confirmed that noise could be reduced compared to

このように本実施の形態1によれば、ハブ3cの内側(モータ4側)に導風カバー18を設け、この導風カバー18を、周面部18cの下端開口18bの高さ位置がモータ4の下端表面4bよりも下方に位置するように形成したので、モータ側風路3fに流入した空気を、モータ4の下端表面4bまで確実に導風することができる。これにより、モータ4の全体表面を冷却することができ、モータ4内部の巻線温度や素子の熱を放熱することができる。その結果、モータ冷却効率が向上し、発熱によるモータの故障を防止することできて信頼性の高い天井埋込型空気調和機を得ることができる。   As described above, according to the first embodiment, the air guide cover 18 is provided on the inner side (motor 4 side) of the hub 3c, and the height position of the lower end opening 18b of the peripheral surface portion 18c is the motor 4 in the air guide cover 18. Therefore, the air flowing into the motor-side air passage 3f can be reliably guided to the lower end surface 4b of the motor 4. Thereby, the whole surface of the motor 4 can be cooled, and the winding temperature inside the motor 4 and the heat of the element can be radiated. As a result, the motor cooling efficiency is improved, the motor failure due to heat generation can be prevented, and a highly reliable ceiling-embedded air conditioner can be obtained.

また、ファン内部風路3eに空気を放出する開口穴3dを、ハブ3cの周面部3caの主板3b側に設けたため、開口穴3dからファン内部風路3eに流出する空気が、ファン吸込流れBと干渉するのを防止できる。このため、ファン吸込流れBのせん断乱れが抑制され、乱流中を翼3aが通過することによる騒音を低減できる。また、ファン吸込流れBと干渉することに起因した送風効率の悪化に伴う騒音増大を防止できる。   Further, since the opening hole 3d for releasing air to the fan internal air passage 3e is provided on the main plate 3b side of the peripheral surface portion 3ca of the hub 3c, the air flowing out from the opening hole 3d to the fan internal air passage 3e becomes the fan suction flow B. Can be prevented from interfering with. For this reason, the shear disturbance of the fan suction flow B is suppressed, and the noise caused by the blade 3a passing through the turbulent flow can be reduced. Further, it is possible to prevent an increase in noise due to the deterioration of the blowing efficiency due to the interference with the fan suction flow B.

また、ハブ3cは、実質、全体的に2重構造で、しかも、開口穴3dはハブ3cの周面部3caの主板3b側に設けられているため、上述したようにハブ3cのモータ側風路3fからファン内部風路3eまでの距離が延長され、騒音が減衰する。その結果、ハブが1重構造のものや、一部2重構造のものと比べてモータ4から発せられる電磁異常音や軸受回転音等のモータ運転音が外部に漏れるのを低減できる。その結果、低騒音で居住者が快適な環境を得られる天井埋込型空気調和機を得ることができる。   Further, the hub 3c has a substantially double structure as a whole, and the opening hole 3d is provided on the main plate 3b side of the peripheral surface portion 3ca of the hub 3c, so that the motor side air passage of the hub 3c as described above. The distance from 3f to the fan internal air passage 3e is extended, and the noise is attenuated. As a result, it is possible to reduce the leakage of motor operation noise such as electromagnetic noise generated from the motor 4 and bearing rotation noise from the motor 4 as compared with a hub having a single structure or partly having a double structure. As a result, it is possible to obtain a ceiling-embedded air conditioner that can provide a comfortable environment for the occupants with low noise.

また、騒音の減衰と同様、開口穴3dからファン内部風路3eに流出する空気の流速も減衰する。よって、開口穴3dからファン内部風路3eに流出する空気がファン吸入流れBに干渉することに起因するファン吹出流れC1の流量低減を確実に防止でき、送風効率の悪化に伴う騒音増大を防止できる。また、ファン吹出流れC1の流量低減防止効果により、モータ冷却用空気量を十分に確保でき効果的にモータ4を冷却することも可能となる。   Further, similarly to the attenuation of noise, the flow velocity of the air flowing out from the opening hole 3d to the fan internal air passage 3e is also attenuated. Therefore, it is possible to reliably prevent a reduction in the flow rate of the fan blowing flow C1 caused by the air flowing out from the opening hole 3d into the fan internal air passage 3e interfering with the fan suction flow B, and to prevent an increase in noise due to a deterioration in the blowing efficiency. it can. In addition, due to the effect of reducing the flow rate of the fan blow-off flow C1, a sufficient amount of motor cooling air can be secured and the motor 4 can be effectively cooled.

また、導風カバー18の周面部18cを、下端の開口18bに向かうに従ってモータ側風路3fの断面積が小さくなるように縮径された中空の円錐筒状としたので、モータ側風路3f内の空気流は、下端開口18bに向かうにしたがって上昇する。この結果、モータ4の上部から、従来冷却が不十分であったモータ4の下端表面4bに至るまで全体的に効果的に冷却することが可能となる。   Further, since the peripheral surface portion 18c of the air guide cover 18 is formed in a hollow conical cylindrical shape whose diameter is reduced so that the cross-sectional area of the motor side air passage 3f becomes smaller toward the lower end opening 18b, the motor side air passage 3f. The air flow inside rises toward the lower end opening 18b. As a result, it is possible to effectively cool the whole from the upper part of the motor 4 to the lower end surface 4b of the motor 4 that has been insufficiently cooled.

また、最小隙間間隔kが8mm以上25mm以下で、かつG4/G1が40%以上で、さらにG4/G5が0.5%以上10%以下となるように該当の各構成部を設計することにより、低騒音でモータ4の発熱による破損が防止でき、静粛で高品質な天井埋込型空気調和機を得ることができる。   In addition, by designing the corresponding components so that the minimum gap k is 8 mm or more and 25 mm or less, G4 / G1 is 40% or more, and G4 / G5 is 0.5% or more and 10% or less. In addition, it is possible to prevent damage due to heat generation of the motor 4 with low noise, and it is possible to obtain a quiet and high-quality ceiling-embedded air conditioner.

さらに、導風カバー18がアルミニウムやメッキ鋼板等の熱伝導性の高い金属部材で構成されているため、モータ周囲の発熱空気の熱が導風カバー18へと伝達され、また、導風カバー18はターボファン3と一体に回転するため、仮に導風カバー18を回転しないように設けた場合に比べて導風カバー18表面に接触しながら通過する空気量が増し、放熱が促進される。よって、モータ4の高い冷却効果を得ることができる。その結果、モータ4の発熱による故障を更に防止でき、信頼性の高い天井埋込型空気調和機を得ることができる。   Further, since the wind guide cover 18 is made of a metal member having high thermal conductivity such as aluminum or plated steel plate, the heat of the heated air around the motor is transmitted to the wind guide cover 18, and the wind guide cover 18. Since it rotates integrally with the turbo fan 3, the amount of air passing through it while contacting the surface of the wind guide cover 18 is increased compared to the case where the wind guide cover 18 is provided so as not to rotate, and heat dissipation is promoted. Therefore, a high cooling effect of the motor 4 can be obtained. As a result, failure due to heat generation of the motor 4 can be further prevented, and a highly reliable ceiling-embedded air conditioner can be obtained.

また、モータ4との固定部材に設けられる開口穴、すなわちハブ3cの開口穴3dを円錐台状の頂点側ではなく底辺側(すなわち主板3b側)に配設しているので、同一開口面積の開口穴3dを従来のハブの下方側面や下端近傍で確保しようとする場合に比べ、隣接する開口穴3d間の部材(ハブ3c)の面積が大きく取れるのでモータ4の回転トルクに対する高い強度を得ることができる。   Further, since the opening hole provided in the fixing member for the motor 4, that is, the opening hole 3d of the hub 3c is arranged on the bottom side (that is, the main plate 3b side) instead of the top side of the truncated cone shape, Compared to the case where the opening hole 3d is to be secured near the lower side surface or near the lower end of the conventional hub, the area of the member (hub 3c) between the adjacent opening holes 3d can be increased, so that high strength against the rotational torque of the motor 4 is obtained. be able to.

なお、本実施の形態1では、導風カバー18の周面部18cとハブ3cの周面部3caとが略平行な場合を例示したが、図13に示すように、導風カバー18の周面部18cをモータ4側の外周面に沿うように屈曲させて円筒状部18dを設けた構成としてもよい。この形状の場合、導風カバー18のモータ4側に流入した空気をモータ4の表面に確実に沿わせることができるため、モータ冷却効率を更に向上させることができる。また、上記と同様に、電磁異常音や軸受回転音等を低減でき静粛で、モータ4の破損を防止できる信頼性の高い天井埋込型空気調和機を得ることができる。   In the first embodiment, the case where the peripheral surface portion 18c of the air guide cover 18 and the peripheral surface portion 3ca of the hub 3c are substantially parallel is illustrated, but as shown in FIG. 13, the peripheral surface portion 18c of the air guide cover 18 is provided. It is good also as a structure which bent 18m along the outer peripheral surface by the side of the motor 4, and provided the cylindrical part 18d. In the case of this shape, the air that has flowed into the air guide cover 18 on the side of the motor 4 can be made to follow the surface of the motor 4 with certainty, so that the motor cooling efficiency can be further improved. Further, similarly to the above, it is possible to obtain a highly-reliable ceiling-embedded air conditioner that can reduce electromagnetic abnormal noise, bearing rotation noise, and the like and is quiet and can prevent the motor 4 from being damaged.

実施の形態2.
以下、本発明に係る実施の形態2における天井埋込型空気調和機を図14〜図19を用いて説明する。
図14は本発明の実施の形態2の空気調和機の内部を示す縦断面図、図15は図14の空気調和機本体1の内部を示し天板側から見た水平断面図、図16は図14のターボファン3付近の拡大図、図17はターボファン3が輸送時等にハブ3cとモータ回転軸4aの固定点を支点にファンが振れ天板側断熱材1eと接触する時の概要図である。なお、これらの図において図1〜図4に示した実施の形態1と同一部分には同一符号を付し説明を省略する。
Embodiment 2. FIG.
Hereinafter, a ceiling-embedded air conditioner according to Embodiment 2 of the present invention will be described with reference to FIGS.
FIG. 14 is a longitudinal sectional view showing the inside of the air conditioner according to Embodiment 2 of the present invention, FIG. 15 is a horizontal sectional view showing the inside of the air conditioner main body 1 shown in FIG. FIG. 17 is an enlarged view of the vicinity of the turbo fan 3, and FIG. 17 shows an outline when the fan swings around the fixed point of the hub 3c and the motor rotating shaft 4a during transportation or the like and contacts the top plate side heat insulating material 1e. FIG. In these drawings, the same parts as those in the first embodiment shown in FIGS.

実施の形態2は、図2に示した実施の形態1の天板側断熱材1eのうち、主板3bに対向するリング状のファン主板相当領域1fに、隙間E1からモータ4側へと流れ込む流量を制限する整流部1gを形成し、これにより開口穴3dからファン内部風路3eへ向けて放出される流量を低減して低騒音化を図るものである。なお、この整流部1gは、天板側断熱材1eによって一体的に形成されたものである。   In the second embodiment, the flow rate that flows from the gap E1 to the motor 4 side into the ring-shaped fan main plate equivalent region 1f facing the main plate 3b of the top plate-side heat insulating material 1e of the first embodiment shown in FIG. The flow straightening part 1g which restricts the above is formed, thereby reducing the flow rate discharged from the opening hole 3d toward the fan internal air passage 3e to reduce noise. In addition, this rectification | straightening part 1g is integrally formed by the top-plate-side heat insulating material 1e.

以下、整流部1gの形状について図16〜図18を参照して具体的に説明する。図18は、断熱材1cのファン側相当部から見た斜視図である。
整流部1gは、略リング状に形成されており、外周部から内周部側に向かうに従って主板3bとの高さ方向の距離が短くなるように構成されている。また、整流部1gと主板3bとの最小隙間E1と、主板3bと天板側断熱材1eとの高さ方向の隙間D1とは、所定の関係になるように形成されている。また、整流部1gの側面1hは、図17に示すように輸送時等にハブ3cとモータ回転軸4aとの固定部3hを支点にターボファン3が振れて整流部1gと接触する際に、ターボファン3の外周縁と点接触しない傾斜に形成されている。また、その傾斜側面1hの形状は、具体的には、図18に示すようにターボファン3の外周縁と線または面接触するような多角形状となっている。
Hereinafter, the shape of the rectifying unit 1g will be specifically described with reference to FIGS. FIG. 18 is a perspective view of the heat insulating material 1c as viewed from the fan-side equivalent portion.
The rectifying portion 1g is formed in a substantially ring shape, and is configured such that the distance in the height direction from the main plate 3b becomes shorter from the outer peripheral portion toward the inner peripheral portion side. Further, the minimum gap E1 between the rectifying unit 1g and the main plate 3b and the gap D1 in the height direction between the main plate 3b and the top plate-side heat insulating material 1e are formed to have a predetermined relationship. Further, as shown in FIG. 17, the side surface 1h of the rectifying unit 1g is brought into contact with the rectifying unit 1g when the turbo fan 3 is swung around the fixing unit 3h between the hub 3c and the motor rotating shaft 4a during transportation, as shown in FIG. It is formed with an inclination that does not make point contact with the outer peripheral edge of the turbofan 3. Further, the shape of the inclined side surface 1h is specifically a polygonal shape that makes a line or surface contact with the outer peripheral edge of the turbofan 3 as shown in FIG.

かかる構成の整流部1gを設けたことにより、ターボファン3の吹出口3iから吹出され、主板3bと天板側断熱材1eとの間の隙間E1方向へ反転する流れC2が過剰にモータ側風路3fへ向かうのを抑制できる。このため、開口穴3dからファン内部風路3eへと流出する空気の流量を低減でき、ファン吸込流れBへの干渉及びせん断乱れ発生が抑制され、低騒音化を図ることができる。   By providing the rectifying unit 1g having such a configuration, the flow C2 which is blown out from the outlet 3i of the turbo fan 3 and reverses in the direction of the gap E1 between the main plate 3b and the top plate-side heat insulating material 1e is excessively increased in the motor side wind. It can suppress going to the road 3f. For this reason, the flow rate of the air flowing out from the opening hole 3d to the fan internal air passage 3e can be reduced, interference with the fan suction flow B and occurrence of shearing turbulence can be suppressed, and noise can be reduced.

次に、モータ4の冷却効果や騒音低減効果を十分に発揮できる整流部1gの寸法設計について次の図19を用いて説明する。
図19(a)は、E1/D1(整流部1gと主板3bとの間の最小隙間E1と、天板側断熱材1eと主板3bとの高さ方向の隙間D1との比率)に対する同一送風量時での騒音値の変化を示した図、図19(b)はE1/D1に対する同一送風量時でのモータ冷却効率を示した図である。
Next, the dimension design of the rectifying unit 1g that can sufficiently exhibit the cooling effect and noise reduction effect of the motor 4 will be described with reference to FIG.
FIG. 19A shows the same feed with respect to E1 / D1 (the ratio of the minimum gap E1 between the rectifying unit 1g and the main plate 3b and the height direction gap D1 between the top plate-side heat insulating material 1e and the main plate 3b). The figure which showed the change of the noise value at the time of air volume, FIG.19 (b) is the figure which showed the motor cooling efficiency at the time of the same ventilation volume with respect to E1 / D1.

E1/D1が小さすぎると、隙間D1の通風抵抗が大きいため、空気が流れなくなり図19(a)に示すように低騒音になるが、一方、モータ4表面への流入量が減少するためにモータ4を十分に冷却できなくなり、図19(b)に示すようにモータ冷却効率が悪くなってしまう。また、逆にE1/D1が大きすぎると、隙間D1に空気が過剰に流れ、図19(a)に示すように騒音が大きくなってしまうが、一方、モータ4表面へ十分に空気が流れることから、モータ4の冷却効率を高くすることができる。よって、モータ4の冷却効果と騒音低減効果との兼ね合いから、本例ではE1/D1を0.3〜0.7に設定している。これによりモータ冷却効率が向上しモータ4の発熱による故障を防止でき、さらに騒音値も低減することが可能となる。   If E1 / D1 is too small, the airflow resistance of the gap D1 is large, so that air does not flow and noise is reduced as shown in FIG. 19A, but on the other hand, the amount of inflow to the surface of the motor 4 is reduced. The motor 4 cannot be sufficiently cooled, and the motor cooling efficiency is deteriorated as shown in FIG. On the other hand, if E1 / D1 is too large, air flows excessively in the gap D1 and noise increases as shown in FIG. 19 (a). On the other hand, sufficient air flows on the surface of the motor 4. Therefore, the cooling efficiency of the motor 4 can be increased. Therefore, E1 / D1 is set to 0.3 to 0.7 in this example in consideration of the cooling effect of the motor 4 and the noise reduction effect. As a result, the motor cooling efficiency is improved, the failure due to the heat generation of the motor 4 can be prevented, and the noise value can also be reduced.

このように実施の形態2によれば、上記実施の形態1と同様の作用効果が得られるとともに、上記形状の整流部1gを設けたため、ターボファン3の吹出口3iから吹出され、主板3bと天板側断熱材1eとの間の隙間E1方向へ反転する流れC2が過剰にモータ4側へ向かうのを抑制できる。このため、開口穴3dからファン内部風路3eへと流出する空気の流量を低減でき、ファン吸込流れBへの干渉及びせん断乱れ発生が抑制され、低騒音化を図ることができる。   As described above, according to the second embodiment, the same operational effects as those of the first embodiment can be obtained, and the rectifying unit 1g having the above shape is provided, so that the air is blown out from the outlet 3i of the turbo fan 3 and the main plate 3b. It is possible to prevent the flow C2 that reverses in the direction of the gap E1 between the top plate side heat insulating material 1e and the motor 4 from being excessively directed. For this reason, the flow rate of the air flowing out from the opening hole 3d to the fan internal air passage 3e can be reduced, interference with the fan suction flow B and occurrence of shearing turbulence can be suppressed, and noise can be reduced.

また、輸送時等で万一天板側断熱材1eにターボファン3の主板3bが接触しても従来のような点接触でなく図17のJに示すように線または面接触なので、衝撃によるファン主板3bへの応力集中を回避でき、ターボファン3の破損を防止できる。また風路を構成する断熱材1cを流用し、断熱材1cの成形時に整流部1gを一体形成できるため、別途部品を構成する必要がなく組立て工程を省略できる利点もある。これらの結果、モータ冷却効率向上によりモータ故障を防止することできて信頼性が高く、また、低騒音で居住者が快適な環境を得られる天井埋込型空気調和機を得ることができる。   Moreover, even if the main plate 3b of the turbofan 3 contacts the top plate side heat insulating material 1e during transportation or the like, it is not a point contact as in the conventional case but a line or surface contact as shown in FIG. Stress concentration on the fan main plate 3b can be avoided, and the turbo fan 3 can be prevented from being damaged. Further, since the heat insulating material 1c constituting the air path can be used and the rectifying portion 1g can be integrally formed at the time of forming the heat insulating material 1c, there is an advantage that an assembling process can be omitted without the necessity of separately forming parts. As a result, it is possible to obtain a ceiling-embedded air conditioner that can prevent a motor failure by improving the motor cooling efficiency, has high reliability, and can provide a comfortable environment for the occupant with low noise.

また、E1/D1を0.3〜0.7に設定したので、モータ4の冷却効果と騒音低減効果を兼ね備えた天井埋込型空気調和機を得ることができる。   Moreover, since E1 / D1 is set to 0.3 to 0.7, a ceiling-embedded air conditioner having both the cooling effect of the motor 4 and the noise reduction effect can be obtained.

なお、整流部1gを、本例では側面形状を多角形状にした場合を例示して説明したが、これに限られたものではなく、要はターボファン3の外周縁と線又は面接触する形状に形成されていればよく、次の図20のように形成してもよい。   The rectifying unit 1g has been described by exemplifying a case in which the side surface shape is a polygonal shape in this example, but is not limited to this, and the shape is in line contact or surface contact with the outer peripheral edge of the turbofan 3. And may be formed as shown in FIG.

図20は整流部1gの別の形状例を示した斜視図で、この例では、整流部1gの側面1hを、円錐台状の傾斜形状に構成した場合を示している。この場合でも、少なくとも主板3bと側面1hで線接触となるので、衝撃による主板3bへの応力集中を回避でき、ターボファン3の破損を防止できる。また、この形状とした場合も上記と同様にE1/D1=0.3〜0.7とすれば、モータ4の冷却効果と騒音低減効果を兼ね備えた天井埋込型空気調和機を得ることができる。   FIG. 20 is a perspective view illustrating another example of the shape of the rectifying unit 1g. In this example, the side surface 1h of the rectifying unit 1g is configured to have a truncated cone shape. Even in this case, since at least the main plate 3b and the side surface 1h are in line contact, stress concentration on the main plate 3b due to impact can be avoided, and damage to the turbo fan 3 can be prevented. Further, even in this shape, if E1 / D1 = 0.3 to 0.7 as described above, a ceiling-embedded air conditioner having both the cooling effect of the motor 4 and the noise reduction effect can be obtained. it can.

また、整流部1gを、本例では天板側断熱材1eで構成する場合を例示して説明したが、他に例えば図21に示すように、筐体天板1bのファン主板相当領域1f部分を変形して整流部1gを構成するようにしてもよい。この場合、天板1bの風路内部に天板側断熱材1eが無くても筐体天板1bと一体に成型できるためコストを低減することが可能である。   Moreover, although the case where the rectifying unit 1g is configured by the top plate side heat insulating material 1e in the present example has been illustrated and described, for example, as shown in FIG. 21, for example, the fan main plate equivalent region 1f portion of the housing top plate 1b May be modified to constitute the rectifying unit 1g. In this case, even if there is no top plate-side heat insulating material 1e inside the air passage of the top plate 1b, the cost can be reduced because it can be molded integrally with the housing top plate 1b.

実施の形態3.
以下、本発明に係る実施の形態3における天井埋込型空気調和機を図22及び図23を用いて説明する。
図22は本発明の実施の形態3の空気調和機の内部を示す縦断面図、図23は図22の整流板19の斜視図である。なお、これらの図において図1〜図4に示した実施の形態1と同一部分には同一符号を付し説明を省略する。
Embodiment 3 FIG.
Hereinafter, a ceiling-embedded air conditioner according to Embodiment 3 of the present invention will be described with reference to FIGS.
22 is a longitudinal sectional view showing the inside of the air conditioner according to Embodiment 3 of the present invention, and FIG. 23 is a perspective view of the current plate 19 of FIG. In these drawings, the same parts as those in the first embodiment shown in FIGS.

実施の形態3は、図14に示した実施の形態2において、天板側断熱材1eに整流部1gを形成するようにしていたのに代えて、整流部1gに相当する形状を有し、整流部1gと同様の機能を有する整流板19を交換自在に装着するようにしたもので、その他の構成は実施の形態2と同様である。なお、整流板19は板金部材やプラスチック部材により構成され、天板側断熱材1eや筐体天板1bに対してネジ止め等により固着される。   The third embodiment has a shape corresponding to the rectifying unit 1g instead of forming the rectifying unit 1g on the top plate side heat insulating material 1e in the second embodiment shown in FIG. The rectifying plate 19 having the same function as that of the rectifying unit 1g is mounted so as to be replaceable, and other configurations are the same as those of the second embodiment. The rectifying plate 19 is made of a sheet metal member or a plastic member, and is fixed to the top plate side heat insulating material 1e or the case top plate 1b by screws or the like.

このように構成することにより、実施の形態1及び実施の形態2と同様の作用効果が得られるとともに、整流板19を交換可能としたので、熱交換器6やフィルタ14等構成部品の仕様が一部異なり通風抵抗が変化する場合に、整流板19を交換するだけで、主板3bと整流板19の隙間E2の流れの量をその機種にあった流量に調整できる。   By configuring in this way, the same effects as in the first and second embodiments can be obtained, and the rectifying plate 19 can be replaced. When the ventilation resistance changes in part, the amount of flow in the gap E2 between the main plate 3b and the rectifying plate 19 can be adjusted to a flow rate suitable for the model by simply replacing the rectifying plate 19.

なお、整流板19は、上記整流部1gの場合と同様に、図示の形状に限られたものではなく、次の図24のように形成してもよい。   Note that the rectifying plate 19 is not limited to the illustrated shape, as in the case of the rectifying unit 1g, and may be formed as shown in FIG.

この例では、整流板19の側面1hを、円錐台状の傾斜形状に構成した場合を示している。この場合でも、少なくとも主板3bと側面1hで線接触となるので、衝撃による主板3bへの応力集中を回避でき、ターボファン3の破損を防止できる。また、上述したようにE1/D1=0.3〜0.7とすれば、モータ4の冷却効果と騒音低減効果を兼ね備えた天井埋込型空気調和機を得ることができる。   In this example, the case where the side surface 1h of the current plate 19 is configured in a truncated cone shape is shown. Even in this case, since at least the main plate 3b and the side surface 1h are in line contact, stress concentration on the main plate 3b due to impact can be avoided, and damage to the turbo fan 3 can be prevented. Moreover, if E1 / D1 = 0.3 to 0.7 as described above, a ceiling-embedded air conditioner having both the cooling effect of the motor 4 and the noise reduction effect can be obtained.

実施の形態4.
以下、本発明に係る実施の形態4における天井埋込型空気調和機を図25〜図32を用いて説明する。
図25は本発明の実施の形態4の空気調和機の内部を示す縦断面図で、図26のY−Y断面図である。図26は図25のZ−Z断面図である。図27は図25の矢視Sの天板外観図、図28は図25のターボファン3近傍の部分拡大図、図29は図26のV−Vにおける断面斜視図である。図30はモータ4の部分断面側面図、図31はモータ4に内蔵される駆動用基板概略図である。図32は、図25の放射配置導風路1kとターボファン3との位置関係に応じたモータ表面温度及び騒音値の計測実験結果を示す図である。なお、これらの図において図1〜図4に示した実施の形態1と同一部分には同一符号を付し説明を省略する。
Embodiment 4 FIG.
Hereinafter, a ceiling-embedded air conditioner according to Embodiment 4 of the present invention will be described with reference to FIGS.
25 is a longitudinal sectional view showing the inside of an air conditioner according to Embodiment 4 of the present invention, and is a YY sectional view of FIG. 26 is a sectional view taken along the line ZZ in FIG. 27 is an external view of the top plate in the direction of arrow S in FIG. 25, FIG. 28 is a partially enlarged view near the turbo fan 3 in FIG. 25, and FIG. 29 is a cross-sectional perspective view taken along line V-V in FIG. FIG. 30 is a partial cross-sectional side view of the motor 4, and FIG. 31 is a schematic diagram of a driving substrate built in the motor 4. FIG. 32 is a diagram showing measurement experiment results of the motor surface temperature and the noise value according to the positional relationship between the radiation arrangement air guide path 1k and the turbo fan 3 of FIG. In these drawings, the same parts as those in the first embodiment shown in FIGS.

実施の形態4は、図1に示した実施の形態1の筐体天板1bに、複数の補強リブ1iを設けて筐体天板1bの強度向上を図り、また、補強リブ1iと筐体天板1bに設けた天板側断熱材1eaとにより、流れC2をモータ4へ導く放射配置導風路1kを形成してモータ4の冷却効率の向上を図ったものである。   In the fourth embodiment, a plurality of reinforcing ribs 1i are provided on the casing top plate 1b of the first embodiment shown in FIG. 1 to improve the strength of the casing top plate 1b. A radiation arrangement air guide path 1k that guides the flow C2 to the motor 4 is formed by the top board side heat insulating material 1ea provided on the top board 1b to improve the cooling efficiency of the motor 4.

補強リブ1iは、筐体天板1bにおいて熱交換器6の内側に相当する領域内に、モータ4と対向する領域の外周部分から筐体側板1a方向に放射状にかつ本体内部側へ突出して複数形成されている。このような補強リブ1iが形成された筐体天板1bと筐体側板1aの内面側には、全体略箱状に形成された断熱材1caが配設され風路壁面を構成している。断熱材1caは、筐体天板1b内面の一部又は全部に沿う天板側断熱材1eaと上記と同様の側板側断熱材1dとから構成されている。本実施の形態4では、天板側断熱材1eaに特徴の一つを有しており、天板側断熱材1eaの形状について以下に詳細に説明する。   A plurality of reinforcing ribs 1i project radially inward from the outer peripheral portion of the region facing the motor 4 toward the housing side plate 1a in the region corresponding to the inside of the heat exchanger 6 in the housing top plate 1b. Is formed. On the inner surface side of the case top plate 1b and the case side plate 1a on which such reinforcing ribs 1i are formed, a heat insulating material 1ca formed in a substantially box shape as a whole is disposed to constitute an air passage wall surface. The heat insulating material 1ca includes a top plate side heat insulating material 1ea along a part or all of the inner surface of the housing top plate 1b and a side plate side heat insulating material 1d similar to the above. In this Embodiment 4, it has one of the characteristics in the top-plate-side heat insulating material 1ea, and the shape of the top-plate-side heat insulating material 1ea will be described in detail below.

天板側断熱材1eaは、筐体天板1b内面の一部又は全部に沿うとしたが、本例では、筐体天板1bの一部に沿うように形成している。すなわち、筐体天板1bには、補強リブ1iが本体内部側へ突出して形成されており、その突出面1ia(図29参照)を基準として突出面1ia全体に沿うように天板側断熱材1eaが形成されている。そして、その突出面1iaよりも外側に突出した複数の放射配置領域(すなわち、筐体天板1bにおいて隣り合う補強リブ1i間に挟まれた三角形領域(一ヶ所だけ長穴状領域))1ibのうち、一部(数ヶ所)の放射配置領域1ibに対し、天板側断熱材1eaが沿うように突出して形成する。本例では、図26に示すように4個の放射配置領域1ibに対して沿うように形成し、その他の部分は放射配置領域1ibに沿うことなく平坦に形成する。したがって、図26及び図29に示すように、前記4個分の放射配置領域1ib以外の放射配置領域1ibは、天板側断熱材1eaの平坦部分で覆われて隠れた状態となることになる。   Although the top-plate-side heat insulating material 1ea is supposed to be along a part or all of the inner surface of the case top plate 1b, in this example, it is formed so as to be along a part of the case top plate 1b. That is, a reinforcing rib 1i is formed on the housing top plate 1b so as to protrude toward the inside of the main body, and the top plate-side heat insulating material extends along the entire protruding surface 1ia with reference to the protruding surface 1ia (see FIG. 29). 1ea is formed. A plurality of radiation arrangement regions (that is, a triangular region (a long hole-shaped region at one location) sandwiched between the reinforcing ribs 1i adjacent to each other on the housing top plate 1b) projecting outward from the projecting surface 1ia Of these, a part (several places) of the radiation arrangement region 1 ib is formed so as to protrude along the top plate side heat insulating material 1 ea. In this example, as shown in FIG. 26, it forms along 4 radiation | emission arrangement | positioning area | regions 1ib, and forms other parts flatly along the radiation | emission arrangement | positioning area | region 1ib. Therefore, as shown in FIGS. 26 and 29, the radiation arrangement regions 1ib other than the four radiation arrangement regions 1ib are covered with the flat portion of the top-plate-side heat insulating material 1ea and hidden. .

このように構成された天板側断熱材1eaにより、放射配置領域1ib(図29参照)に対応する部分は、ターボファン主板3bとの隙間距離が、補強リブ1iとターボファン主板3bとの隙間距離に比べて大きい放射配置導風路1kを形成している。   The portion corresponding to the radiation arrangement region 1 ib (see FIG. 29) has a clearance distance between the turbofan main plate 3b and a clearance between the reinforcing rib 1i and the turbofan main plate 3b due to the top plate-side heat insulating material 1ea thus configured. A radial arrangement air guide path 1k larger than the distance is formed.

次に、冷却対象であるモータ4の構成と、モータ4の実装について図30及び図31を参照して説明する。
モータ4は、駆動回路4dと制御回路4eが実装されたモータ内蔵基板4hがモータ内部の筐体天板側(ターボファンと逆側)に実装された構成のもので、具体的にはDCモータで構成されている。モータ4の内部にはモータ内蔵基板4h、回転軸4aにはローター4gが固着され、ローター4gの周囲には巻線とコア等よりなるステータ4fが配設される。ステータ4fはモールド材4kによりモールドされ一体化されており、前記ステータ4fが形成する中空部にローター4gを配置するとともに、前記中空部の端部およびブラケット4Lに圧入した軸受4iによりローター4gを回転自在に保持し、DCモーターを構成している。またローター4gはプラスチックマグネット材をシリンダー状に成形し構成され外周にNとS極の磁界を有する。
Next, the configuration of the motor 4 to be cooled and the mounting of the motor 4 will be described with reference to FIGS. 30 and 31. FIG.
The motor 4 has a configuration in which a motor-embedded board 4h on which a drive circuit 4d and a control circuit 4e are mounted is mounted on a housing top plate side (opposite side of the turbofan) inside the motor. Specifically, a DC motor It consists of A motor built-in substrate 4h and a rotor 4g are fixed to the rotating shaft 4a inside the motor 4, and a stator 4f including a winding, a core, and the like is disposed around the rotor 4g. The stator 4f is molded and integrated with a molding material 4k. The rotor 4g is disposed in a hollow portion formed by the stator 4f, and the rotor 4g is rotated by a bearing 4i press-fitted into the end of the hollow portion and the bracket 4L. It holds freely and constitutes a DC motor. The rotor 4g is formed by forming a plastic magnet material into a cylindrical shape, and has N and S magnetic fields on the outer periphery.

さらに、モータ内蔵基板4hは、ローター4gの磁界検知を行い回転数信号を発生するホール素子4j、回転数信号を受け回転数指令電圧を伝達する制御回路4e、回転数指令電圧よりステータ4fの磁界の通電制御する駆動回路4dが実装されている。そしてモータ内蔵基板4hの駆動回路4dにはパワー素子4Mが実装され、絶縁板、放熱シリコーンを介しブラケット4Lに接触している。   Further, the motor-embedded substrate 4h includes a Hall element 4j that detects the magnetic field of the rotor 4g and generates a rotation speed signal, a control circuit 4e that receives the rotation speed signal and transmits a rotation speed command voltage, and a magnetic field of the stator 4f from the rotation speed command voltage. A drive circuit 4d for controlling the energization is mounted. A power element 4M is mounted on the drive circuit 4d of the motor built-in substrate 4h, and is in contact with the bracket 4L via an insulating plate and heat radiating silicone.

そしてモータ内蔵基板4hは配線を介し図25の電気品箱24内の電子基板25と接続されている。電子基板25には、図31に示すように、AC電源26の電圧(ex200V)をDC電圧へ変換・昇圧し駆動回路4dへ電源を供給するAC/DC変換部25aと制御回路4eの電源である制御回路用電源25bとが実装されている。   The motor built-in substrate 4h is connected to the electronic substrate 25 in the electrical component box 24 of FIG. As shown in FIG. 31, the electronic board 25 is supplied with power from the AC / DC converter 25a that converts and boosts the voltage (ex200V) of the AC power supply 26 to DC voltage and supplies power to the drive circuit 4d and the control circuit 4e. A control circuit power supply 25b is mounted.

このような構成のモータ4は、運転時に、パワー素子4Mの発熱温度がステータ4fの巻線など他の部分よりも高くなり、放熱シリコーンを介して熱伝達されてブラケット4Lの温度およびモータ4の筐体天板側の側面4cの温度が高くなる。そのためブラケット4Lおよびモータ4の筐体天板側の側面4cを放熱できないとパワー素子4Mが発熱により破損し、モータ4が故障する。つまりモータ4の故障防止には主にブラケット4Lおよびモータの筐体天板側の側面4cの冷却が必要である。   In the motor 4 having such a configuration, during operation, the heat generation temperature of the power element 4M becomes higher than that of other portions such as the windings of the stator 4f, and heat is transferred via the heat radiating silicone, so that the temperature of the bracket 4L and the motor 4 The temperature of the side surface 4c on the case top side increases. Therefore, if the bracket 4L and the side surface 4c on the housing top plate side of the motor 4 cannot be radiated, the power element 4M is damaged by heat generation, and the motor 4 fails. That is, in order to prevent failure of the motor 4, cooling of the bracket 4L and the side surface 4c on the housing top plate side of the motor is mainly required.

またモータ4の別の例として、駆動回路4dと制御回路4eとをモータ外部の電気品箱24の電子基板25に実装したDCモータとした場合、モータ4において最も温度が高いステータ4fからの伝熱により回転軸4aが熱せられ、軸受4iの潤滑油が高温により劣化し、軸受4iが焼付き停止し、故障する。つまりこの場合も、モータ4の故障防止には主にモータ表面の軸受け相当部4P(図28参照)および軸受4iが接するブラケット4Lの冷却が必要である。なお、軸受け相当部4Pは、モータ4の軸受4iの外郭表面に相当する部分を指している。   As another example of the motor 4, when the drive circuit 4d and the control circuit 4e are DC motors mounted on the electronic board 25 of the electrical component box 24 outside the motor, the motor 4 is transmitted from the stator 4f having the highest temperature. The rotating shaft 4a is heated by heat, the lubricating oil of the bearing 4i deteriorates due to high temperature, and the bearing 4i stops seizing and breaks down. That is, also in this case, in order to prevent the failure of the motor 4, it is necessary to mainly cool the bearing equivalent portion 4P (see FIG. 28) on the surface of the motor and the bracket 4L with which the bearing 4i contacts. The bearing equivalent portion 4P indicates a portion corresponding to the outer surface of the bearing 4i of the motor 4.

次に、放射配置導風路1kを設けたことによるモータ4の冷却効果について説明する。
天板側断熱材1eaにおいて放射配置領域1ibに沿うように形成されて各放射配置導風路1kを構成する部分は、その他の部分(すなわち補強リブ1iの突出面1iaに合わせて平坦に形成した部分)に比べて隙間距離E1が大きい。このため、ターボファン3の吹出流れの一部C2がモータ4へ誘引される際の流量を増加させることができ、また、流速も上昇させることができる。よって、モータ4の冷却効果を高めることができる。
Next, the cooling effect of the motor 4 by providing the radiation arrangement air guide path 1k will be described.
In the top plate-side heat insulating material 1ea, the portion that is formed along the radiation arrangement region 1ib and constitutes each radiation arrangement air guide channel 1k is formed flatly in accordance with the other portion (that is, the protruding surface 1ia of the reinforcing rib 1i). The gap distance E1 is larger than the (part). For this reason, it is possible to increase the flow rate when a part C2 of the blowout flow of the turbo fan 3 is attracted to the motor 4, and it is also possible to increase the flow velocity. Therefore, the cooling effect of the motor 4 can be enhanced.

また主板3bと天板側断熱材1eaの間を旋回しながらモータ4の方向へ誘引される流れC2は、図29に示すように放射配置導風路1kの側面1kaに当接してさらにモータ4へ向けて変向されるので、モータ4の筐体天板側の側面4cおよびモータ4の筐体天板側天面のブラケット4Lを冷却できる。   Further, the flow C2 attracted in the direction of the motor 4 while turning between the main plate 3b and the top plate-side heat insulating material 1ea abuts against the side surface 1ka of the radial arrangement air guide path 1k as shown in FIG. Therefore, the side surface 4c of the motor 4 on the housing top plate side and the bracket 4L on the housing top plate side top surface of the motor 4 can be cooled.

ここで、本例では天板側断熱材1eaを、筐体天板1bの各放射配置領域1ibのうち、一部の放射配置領域1ibだけに沿うようにし、全部の放射配置領域1ibに沿わないようにしたのは、全部に沿うように形成した場合、騒音増大を招く可能性があるためである。   Here, in this example, the top-plate-side heat insulating material 1ea is set so as to be along only a part of the radiation arrangement regions 1ib among the radiation arrangement regions 1ib of the housing top plate 1b, and not along all the radiation arrangement regions 1ib. The reason for this is that, if it is formed so as to extend along the entire surface, there is a possibility of increasing noise.

また図28に示すように、主板3bと天板側断熱材1ebとの隙間E1を通りモータ側風路3fに流入した空気C2は、モータ4の周囲を流れた後、開口穴3dからファン内部風路3eへ向け放出される。このとき、空気の流れがモータ表面の軸受け相当部4Pを通過するため、軸受け相当部4Pを冷却することができ、モータ4を十分冷却できて破損防止が可能である。また、このようにモータ4の十分な冷却が可能であるため、パワー素子4Mの限界設定温度までターボファン3を回転することが可能となる。これにより送風量を増加することが可能となり、熱交換器6での熱交換性能を向上することができる。さらに、パワー素子4Mの内部回路損失が低減できることからモータ効率が向上し省エネも可能である。   As shown in FIG. 28, the air C2 flowing into the motor side air passage 3f through the gap E1 between the main plate 3b and the top plate side heat insulating material 1eb flows around the motor 4 and then passes through the opening hole 3d. It is discharged toward the air passage 3e. At this time, since the air flow passes through the bearing equivalent portion 4P on the motor surface, the bearing equivalent portion 4P can be cooled, and the motor 4 can be sufficiently cooled to prevent damage. Further, since the motor 4 can be sufficiently cooled as described above, the turbo fan 3 can be rotated to the limit set temperature of the power element 4M. Thereby, it becomes possible to increase an air flow rate, and the heat exchange performance in the heat exchanger 6 can be improved. Furthermore, since the internal circuit loss of the power element 4M can be reduced, the motor efficiency is improved and energy saving is possible.

次に、モータ4の高い冷却効果と騒音低減効果が得られる、放射配置導風路1kとターボファン3との位置関係について述べる。
放射配置導風路1kの内周端1kbがモータ4から離れていると、モータ4の筐体天板側側面4cやブラケット4Lへ流れを誘引しづらくなり十分に冷却できない。また放射配置導風路1kの外周端1kcがターボファン3の外周よりも外側すぎると、隙間E1を通過してモータ側風路3fに向かう流れC2ではなく吹出流れC1自体が直接、放射配置導風路1kの側面1kaへ衝突し、騒音増大を招いてしまう。また、吹出流れC1が直接、放射配置導風路1kの側面1kaへ衝突して空気の流れがモータ4へ向けて変向されると、モータ4側への流入量が多くなり、逆に熱交換器6への流入量が減少するため、熱交換能力上昇のための風量増加が必要となり結果として騒音悪化を招く。
Next, the positional relationship between the radiation arrangement air guide path 1k and the turbofan 3 that can obtain a high cooling effect and noise reduction effect of the motor 4 will be described.
If the inner peripheral end 1 kb of the radial arrangement air guide path 1 k is separated from the motor 4, it is difficult to induce the flow to the housing top plate side surface 4 c and the bracket 4 L of the motor 4, and the cooling cannot be sufficiently performed. If the outer peripheral end 1kc of the radial arrangement air guide path 1k is too far outside the outer periphery of the turbofan 3, the blowout flow C1 itself, not the flow C2 passing through the gap E1 and going to the motor side air path 3f, is directly provided in the radial arrangement direction. It collides with the side surface 1ka of the air passage 1k and causes an increase in noise. Further, when the blowout flow C1 directly collides with the side surface 1ka of the radial arrangement air guide path 1k and the air flow is turned toward the motor 4, the amount of inflow to the motor 4 increases, and conversely the heat Since the amount of inflow into the exchanger 6 is reduced, an increase in the air volume is required to increase the heat exchange capacity, resulting in noise deterioration.

以上を鑑み、冷却効果と騒音低減効果の両方を発揮できる、放射配置導風路1kの内周端1kbおよび外周端1kcの最適位置範囲について検討する。   In view of the above, the optimum position range of the inner peripheral end 1 kb and the outer peripheral end 1 kc of the radiation arrangement air duct 1 k that can exhibit both the cooling effect and the noise reduction effect will be examined.

図32(a)は放射配置導風路1kの内周端1kbの位置と同一時間運転後のモータ4の筐体天板側に配設されるブラケット4Lの表面温度T1との関係を示した図である。図32(b)は放射配置導風路1kの外周端1kcの位置と同一風量時における騒音値SPL1の関係を示した図である。図32(c)は放射配置導風路1kの外周端1kcの位置と同一時間運転後でのモータ4の筐体天板側に配設されるブラケット4Lの表面温度T1との関係を示した図である。   FIG. 32 (a) shows the relationship between the position of the inner peripheral end 1kb of the radial arrangement air guide path 1k and the surface temperature T1 of the bracket 4L arranged on the casing top plate side of the motor 4 after the same time operation. FIG. FIG. 32B is a diagram showing a relationship between the position of the outer peripheral end 1kc of the radial arrangement air guide path 1k and the noise value SPL1 when the air volume is the same. FIG. 32 (c) shows the relationship between the position of the outer peripheral end 1kc of the radial arrangement air guide path 1k and the surface temperature T1 of the bracket 4L disposed on the casing top plate side of the motor 4 after operation for the same time. FIG.

ターボファン3の外径L1、モータ4の回転軸中心4acと放射配置導風路1kの外周端1kcとの距離L0、モータ4の回転軸中心4acと放射配置導風路1kの内周端1kbとの距離L2とするとき、図32(a)のように0≦L2≦0.3×L1であれば、放射配置導風路1kを設けないとき(L2=0.5×L1)に比べ、十分モータ4が冷却される。これは、放射配置導風路1kの側面1kaの面積を広く確保できてモータ4に向かう空気の流量を多くすることができるためと考えられる。   The outer diameter L1 of the turbo fan 3, the distance L0 between the rotational axis center 4ac of the motor 4 and the outer peripheral end 1kc of the radial arrangement air guide path 1k, the inner peripheral end 1kb of the rotational axis center 4ac of the motor 4 and the radial arrangement air guide path 1k. When the distance L2 is 0 ≦ L2 ≦ 0.3 × L1 as shown in FIG. 32A, compared to when the radial arrangement air guide path 1k is not provided (L2 = 0.5 × L1). The motor 4 is sufficiently cooled. This is considered to be because the area of the side surface 1ka of the radiation arrangement air guide path 1k can be secured widely and the flow rate of air toward the motor 4 can be increased.

また図32(b)のようにL0≦0.6×L1であれば騒音値がほぼ悪化しない。また図32(c)のように0.5×L1≦L0つまり放射配置導風路1kの外周端1kcがターボファンの主板3bより外部であればモータ4が十分冷却される。   Further, as shown in FIG. 32 (b), if L0 ≦ 0.6 × L1, the noise value is hardly deteriorated. Further, as shown in FIG. 32C, the motor 4 is sufficiently cooled if 0.5 × L1 ≦ L0, that is, if the outer peripheral end 1kc of the radiation arrangement air guide path 1k is outside the main plate 3b of the turbofan.

よって、0.5×L1≦L0≦0.6×L1で、かつ0≦L2≦0.3×L1の範囲となるように寸法設計を行うことにより、モータ4が十分冷却され、また騒音値も悪化せず高品質な天井埋込型空気調和機が得られる。   Therefore, by designing the dimensions so that 0.5 × L1 ≦ L0 ≦ 0.6 × L1 and 0 ≦ L2 ≦ 0.3 × L1, the motor 4 is sufficiently cooled and the noise level is reduced. A high quality ceiling-embedded air conditioner can be obtained.

以上説明したように、本実施の形態4によれば、補強リブ1iを筐体天板1bに本体内部側に突出するように形成したので、本体の高さ寸法を大きくすることなく強度増加でき、これにより筐体天板1bの薄肉化が可能となり、軽量化を図ることが可能となる。また、筐体天板1bの内面側に設けた天板側断熱材1eaにより、流れC2をモータ4へ向けて変向する機能を有する放射配置導風路1kを形成したので、モータ4を効果的に冷却することが可能となり、モータ破損防止が可能となる。   As described above, according to the fourth embodiment, since the reinforcing rib 1i is formed on the housing top plate 1b so as to protrude toward the inside of the main body, the strength can be increased without increasing the height of the main body. As a result, the casing top plate 1b can be thinned, and the weight can be reduced. Further, the top plate side heat insulating material 1ea provided on the inner surface side of the housing top plate 1b forms the radiation arrangement air guide path 1k having a function of turning the flow C2 toward the motor 4, so that the motor 4 is effective. Therefore, it is possible to cool the motor and prevent the motor from being damaged.

また、筐体天板1bの内面側に断熱材(天板側断熱材1ea)を設けているので、冷房運転時に熱交換器6が冷え、本体内部雰囲気も冷却状態で、空気調和機本体1が設置される天井裏の温湿度が高い場合でも、筐体天板1bの表面での結露が防止でき、部屋の床等へ結露水が滴下して汚すといった不都合なく、床面をきれいに保ったまま使用できる。   Moreover, since the heat insulating material (top plate side heat insulating material 1ea) is provided on the inner surface side of the case top plate 1b, the heat exchanger 6 is cooled during the cooling operation, the internal atmosphere of the main body is also cooled, and the air conditioner main body 1 Even when the temperature and humidity behind the ceiling is high, dew condensation on the surface of the housing top plate 1b can be prevented, and the floor surface is kept clean without the inconvenience of dripping water on the floor of the room. Can be used as is.

また、0.5×L1≦L0≦0.6×L1で、かつ0≦L2≦0.3×L1を満足する設計とすることにより、モータ4の冷却効率向上と騒音値悪化抑制とを両立でき、モータ4の発熱による破損防止と低騒音化が可能な、高品質な天井埋込型空気調和機が得られる。   In addition, both the cooling efficiency of the motor 4 and the suppression of deterioration of the noise value are both achieved by the design satisfying 0.5 × L1 ≦ L0 ≦ 0.6 × L1 and satisfying 0 ≦ L2 ≦ 0.3 × L1. Thus, a high-quality ceiling-embedded air conditioner capable of preventing damage due to heat generation of the motor 4 and reducing noise can be obtained.

また、駆動回路4dと制御回路4eとが実装されたモータ内蔵基板4hをモータ4の内部に収納したので、電気品箱24内に駆動回路4dと制御回路4eを収納する場合に比べて電気品箱24を小さくでき、ベルマウス5および本体吸込風路11を一部封鎖することがない。よって、通風抵抗の低減と吸込偏流の防止が可能となり、低騒音化が可能である。   Further, since the motor-embedded board 4h on which the drive circuit 4d and the control circuit 4e are mounted is housed in the motor 4, the electrical product is compared with the case where the drive circuit 4d and the control circuit 4e are housed in the electrical product box 24. The box 24 can be made smaller and the bell mouth 5 and the main body suction air passage 11 are not partially blocked. Therefore, it is possible to reduce ventilation resistance and to prevent suction drift and to reduce noise.

なお、モータ4の筐体天板1b側の天面(モータ4のブラケット4Lの表面)の高さ位置が、図28中の破線の天板側断熱材1ea表面の高さ位置よりも下方(ターボファン3側)であれば、ブラケット4L近傍で空間ができ、流れC2がブラケット4Lまで流入しやすくなる。したがって、さらに冷却効果を高めることができ、その結果、モータ効率が向上し省エネに優れた天井埋込型空気調和機を得ることが可能となる。   Note that the height position of the top surface of the motor 4 on the housing top plate 1b side (the surface of the bracket 4L of the motor 4) is lower than the height position of the surface of the top plate-side heat insulating material 1ea shown by the broken line in FIG. In the case of the turbo fan 3 side), a space is formed in the vicinity of the bracket 4L, and the flow C2 easily flows into the bracket 4L. Therefore, the cooling effect can be further enhanced. As a result, it is possible to obtain a ceiling-embedded air conditioner that is improved in motor efficiency and excellent in energy saving.

実施の形態5.
以下、本発明に係る実施の形態5における天井埋込型空気調和機を図33〜図35を用いて説明する。
Embodiment 5. FIG.
The ceiling-embedded air conditioner according to the fifth embodiment of the present invention will be described below with reference to FIGS.

図33、図34は実施の形態4において放射状に配置した補強リブ1iを本体外部方向へ突出した場合の例を示しており、図33は、筐体天板1bを天板側断熱材1eb側から見た図である。図33のY−Y縦断面図は図28と略同等形状である。また図34は、筐体天板1bの外観平面図である。また図35は、図33のV−Vにおける断面斜視図である。なお、これらの図において図1〜図4に示した実施の形態1及び図25〜図32に示した実施の形態4と同一部分には同一符号を付し説明を省略する。   33 and 34 show an example in which the reinforcing ribs 1i arranged radially in the fourth embodiment protrude outward from the main body, and FIG. 33 shows the case top plate 1b on the top plate side heat insulating material 1eb side. It is the figure seen from. 33 is substantially the same shape as FIG. 28. FIG. 34 is an external plan view of the housing top plate 1b. FIG. 35 is a cross-sectional perspective view taken along line VV in FIG. In these drawings, the same parts as those in the first embodiment shown in FIGS. 1 to 4 and the fourth embodiment shown in FIGS.

実施の形態5は、実施の形態4において放射配置した補強リブ1iを、本体内部方向ではなく本体外部方向へ突出させたものである。このような外部に突出した補強リブ1iが形成された筐体天板1bと筐体側板1aの内面側には、全体略箱状に形成された断熱材1cbが配設され風路壁面を構成している。断熱材1cbは、筐体天板1b内面の一部又は全部に沿う天板側断熱材1eaと上記と同様の側板側断熱材1dとから構成されている。本実施の形態5では、天板側断熱材1ebに特徴の一つを有しており、天板側断熱材1ebの形状について以下に詳細に説明する。   In the fifth embodiment, the reinforcing ribs 1i arranged in a radial manner in the fourth embodiment are protruded not in the main body direction but in the main body outer direction. On the inner surface side of the case top plate 1b and the case side plate 1a on which such reinforcing ribs 1i projecting to the outside are formed, a heat insulating material 1cb formed in a generally box shape is disposed to constitute the air channel wall surface. is doing. The heat insulating material 1cb is composed of a top plate side heat insulating material 1ea along a part or all of the inner surface of the housing top plate 1b and a side plate side heat insulating material 1d similar to the above. In this Embodiment 5, it has one of the characteristics in the top-plate-side heat insulating material 1eb, and the shape of the top-plate-side heat insulating material 1eb will be described in detail below.

天板側断熱材1ebは、実施の形態4と同様に、筐体天板1bの全体ではなく筐体天板1bの一部に沿うように形成している。すなわち、筐体天板1bには、図34に示すように補強リブ1iが本体外部側へ突出して形成されており、補強リブ1i形成部分以外の面1ic(図35参照)を基準として面1ic全体に沿うように天板側断熱材1ebが形成されている。そして、その面1icよりも外側に突出した複数の補強リブ1iのうち、一部(数ヶ所のみ)の補強リブ1iに対し、天板側断熱材1ebが沿うよう突出して形成する。本例では、図33に示すように、4個分の補強リブ1iに対して沿うように形成し、その他の部分は補強リブ1iに沿うことなく平坦に形成する。したがって、図33に示すように、前記4個分の補強リブ1i以外の補強リブ1iは、天板側断熱材1ebの平坦部分で覆われて隠れた状態となることになる。   Similarly to the fourth embodiment, the top plate-side heat insulating material 1eb is formed not along the entire case top plate 1b but along a part of the case top plate 1b. That is, a reinforcing rib 1i is formed on the housing top plate 1b so as to protrude to the outside of the main body as shown in FIG. 34, and the surface 1ic with reference to the surface 1ic (see FIG. 35) other than the portion where the reinforcing rib 1i is formed. A top plate-side heat insulating material 1eb is formed along the whole. And it forms so that the top-plate-side heat insulating material 1eb may protrude along a part (only several places) of the plurality of reinforcing ribs 1i protruding outward from the surface 1ic. In this example, as shown in FIG. 33, it forms along 4 reinforcement ribs 1i, and forms other parts flatly along the reinforcement rib 1i. Therefore, as shown in FIG. 33, the reinforcing ribs 1i other than the four reinforcing ribs 1i are covered and hidden by the flat portion of the top plate heat insulating material 1eb.

このように構成された断熱材1ebにおいて、補強リブ1iに沿って形成された部分は、補強リブ1iに沿わず平坦に形成された部分と比べてターボファン主板3bとの隙間距離が大きい放射配置導風路1k’を形成している。   In the heat insulating material 1eb configured as described above, the portion formed along the reinforcing rib 1i has a radial arrangement in which the gap distance from the turbofan main plate 3b is larger than the portion formed flat without being along the reinforcing rib 1i. A wind guide path 1k ′ is formed.

このように構成することにより、実施の形態4の放射配置導風路1kを設けた場合と同様に、強度増加による軽量化と放射配置導風路1k’によるターボファン3の吹出流れの一部C2のモータ4への導風が可能となり、モータ4の筐体天板側の側面4cおよびブラケット4Lを効果的に冷却することが可能となる。   With this configuration, as in the case where the radial arrangement air guide path 1k according to the fourth embodiment is provided, a part of the blowout flow of the turbo fan 3 due to weight reduction by the increase in strength and the radial arrangement air guide path 1k ′ is provided. C2 can be guided to the motor 4, and the side surface 4c and the bracket 4L of the motor 4 on the housing top plate side can be effectively cooled.

また、主板3bと天板側断熱材1ebとの隙間E1を通りモータ側風路3fに流入した空気は、モータ4の周囲を流れた後、開口穴3dからファン内部風路3eへ向け放出される。このとき、空気の流れがモータ表面の軸受け相当部4Pを通過するため、軸受け相当部4Pを冷却することができ、モータ4を十分冷却できて破損防止が可能である。また、このようにモータ4の十分な冷却が可能であるため、パワー素子4Mの限界設定温度までファン3を回転することができる。これにより送風量を増加することが可能となり、熱交換器6での熱交換性能を向上することができる。さらに、パワー素子4Mの内部回路損失が低減できることからモータ効率が向上し省エネ可能である。   In addition, the air flowing into the motor-side air passage 3f through the gap E1 between the main plate 3b and the top plate-side heat insulating material 1eb flows around the motor 4 and is then discharged from the opening hole 3d toward the fan internal air passage 3e. The At this time, since the air flow passes through the bearing equivalent portion 4P on the motor surface, the bearing equivalent portion 4P can be cooled, and the motor 4 can be sufficiently cooled to prevent damage. Further, since the motor 4 can be sufficiently cooled in this way, the fan 3 can be rotated to the limit set temperature of the power element 4M. Thereby, it becomes possible to increase an air flow rate, and the heat exchange performance in the heat exchanger 6 can be improved. Furthermore, since the internal circuit loss of the power element 4M can be reduced, the motor efficiency is improved and energy saving is possible.

また、筐体天板1bの内面側は天板側断熱材1ebにて覆われるため、熱交換器6で冷却された一部の空気がモータ4へ流入しても結露を防止でき、高品質な天井埋込型空気調和機が得られる。   Moreover, since the inner surface side of the case top plate 1b is covered with the top plate side heat insulating material 1eb, it is possible to prevent dew condensation even if a part of the air cooled by the heat exchanger 6 flows into the motor 4. A ceiling-embedded air conditioner can be obtained.

なお、上記実施の形態4において、図32により、0.5×L1≦L0≦0.6×L1、かつ0≦L2≦0.3×L1を満たす寸法設計が、モータ4の冷却及び騒音低減に効果があることについて説明したが、本実施の形態5の場合も同様に効果がある。   In the fourth embodiment, the dimensional design satisfying 0.5 × L1 ≦ L0 ≦ 0.6 × L1 and 0 ≦ L2 ≦ 0.3 × L1 is shown in FIG. However, the fifth embodiment is also effective.

本発明の実施の形態1に係る天井埋込型空気調和機の外観斜視図である。1 is an external perspective view of a ceiling-embedded air conditioner according to Embodiment 1 of the present invention. 図1の空気調和機の内部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the inside of the air conditioner of FIG. 図1の空気調和機の内部を示し天板側から見た図2のX−Xでの水平断面図である。It is the horizontal sectional view in XX of FIG. 2 which showed the inside of the air conditioner of FIG. 1 and was seen from the top plate side. 図2のターボファン3付近での断面拡大図である。FIG. 3 is an enlarged cross-sectional view in the vicinity of a turbo fan 3 in FIG. 2. ターボファン3の斜視図(その1)である。2 is a perspective view (No. 1) of a turbo fan 3. FIG. ターボファン3の斜視図(その2)である。FIG. 3 is a perspective view (No. 2) of a turbo fan 3; 導風カバー18の斜視図である。3 is a perspective view of the air guide cover 18. FIG. 導風カバー18とモータ4の最小隙間間隔kとモータ冷却効率の関係を示す図である。It is a figure which shows the relationship between the minimum clearance gap k of the wind guide cover 18 and the motor 4, and motor cooling efficiency. G4/G1(全開口面積G4と周状開口面積G1との比率)とモータ冷却効率との関係を示す図である。It is a figure which shows the relationship between G4 / G1 (ratio of total opening area G4 and circumferential opening area G1) and motor cooling efficiency. G4/G5(ターボファン吹出口面積G5と全開口面積G4との比率)と騒音値及びータ冷却効率との関係を示す図である。It is a figure which shows the relationship between G4 / G5 (ratio of the turbofan blower outlet area G5 and the total opening area G4), a noise value, and data cooling efficiency. 本発明における空気調和機運転時の周波数特性図である。It is a frequency characteristic figure at the time of the air conditioner driving | operation in this invention. 本発明における空気調和機運転時の送風量と騒音の関係図である。It is a related figure of the ventilation volume and noise at the time of the air conditioner driving | operation in this invention. 導風カバー18の他の例を示すターボファン3付近での断面拡大図である。FIG. 6 is an enlarged cross-sectional view in the vicinity of a turbo fan 3 showing another example of a wind guide cover 18. 本発明の実施の形態2に係る天井埋込型空気調和機の内部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the inside of the ceiling embedded type air conditioner which concerns on Embodiment 2 of this invention. 図14の空気調和機本体1の内部を示し天板側から見た水平断面図である。It is the horizontal sectional view which showed the inside of the air conditioner main body 1 of FIG. 14, and was seen from the top plate side. 図14のターボファン3付近の拡大図である。It is an enlarged view of the turbo fan 3 vicinity of FIG. ターボファン3が輸送時等にハブ3cとモータ回転軸4aの固定部3hを支点にファン3が振れ天板側断熱材1eと接触する時の概要図である。It is a schematic diagram when the fan 3 swings and contacts the top-side heat insulating material 1e with the hub 3c and the fixed portion 3h of the motor rotating shaft 4a as a fulcrum during transportation of the turbo fan 3. 断熱材1cのファン側相当部から見た斜視図である。It is the perspective view seen from the fan side equivalent part of the heat insulating material 1c. E1/D1(整流部1gと主板3bとの間の最小隙間E1と、天板側断熱材1eと主板3bとの高さ方向の隙間D1との比率)に対する同一送風量時での騒音値の変化及びモータ冷却効率を示した図である。E1 / D1 (the ratio of the minimum gap E1 between the rectifying unit 1g and the main plate 3b and the height gap D1 between the top plate-side heat insulating material 1e and the main plate 3b) at the same air flow rate It is a figure showing change and motor cooling efficiency. 整流部1gの別の形状例を示した斜視図である。It is the perspective view which showed another example of the shape of the rectification | straightening part 1g. 整流部1gの別の構成例を示した縦断面図である。It is the longitudinal cross-sectional view which showed another structural example of the rectification | straightening part 1g. 本発明の実施の形態3に係る天井埋込型空気調和機の内部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the inside of the ceiling embedded type air conditioner which concerns on Embodiment 3 of this invention. 側面1hの傾斜形状が多角形状である整流板19の斜視図である。It is a perspective view of the baffle plate 19 whose side surface 1h inclination shape is a polygonal shape. 側面1hの傾斜形状が円錐台状である整流板19の斜視図である。It is a perspective view of the baffle plate 19 whose side surface 1h inclination shape is truncated cone shape. 本発明の実施の形態4に係る天井埋込型空気調和機の内部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the inside of the ceiling-embedded air conditioner which concerns on Embodiment 4 of this invention. 図25のZ−Zにおける水平断面図である。It is a horizontal sectional view in ZZ of FIG. 図25の矢視Sの天板外観図である。It is a top-plate external view of the arrow S of FIG. 図25のターボファン3近傍の部分拡大図である。It is the elements on larger scale near the turbo fan 3 of FIG. 図26のV−Vにおける断面斜視図である。It is a cross-sectional perspective view in VV of FIG. モータ4の部分断面側面図である。3 is a partial cross-sectional side view of the motor 4. FIG. モータ4に内蔵される駆動用基板概略図である。FIG. 3 is a schematic diagram of a driving board built in a motor 4. 図25の放射配置導風路1kとターボファン3との位置関係に応じたモータ表面温度及び騒音値の計測実験結果を示す図である。It is a figure which shows the measurement experiment result of the motor surface temperature and noise value according to the positional relationship of the radiation arrangement | positioning wind guide path 1k and the turbo fan 3 of FIG. 本発明の実施の形態5に係る天井埋込型空気調和機において筐体天板1bを天板側断熱材1eb側から見た図である。It is the figure which looked at the housing | casing top plate 1b from the top plate side heat insulating material 1eb side in the ceiling embedded type air conditioner which concerns on Embodiment 5 of this invention. 本発明の実施の形態5に係る天井埋込型空気調和機の筐体天板1bの外観平面図である。It is an external appearance top view of the housing | casing top plate 1b of the ceiling-embedded air conditioner which concerns on Embodiment 5 of this invention. 図33のV−Vにおける断面斜視図である。It is a cross-sectional perspective view in VV of FIG.

符号の説明Explanation of symbols

1 天井埋込型空気調和機本体、1a 筐体側板、1b 筐体天板、1c,1ca,1cb 断熱材、1e,1ea,1eb 天板側断熱材、1f ファン主板相当領域、1g 整流部、1h 側面、1i 補強リブ、1ia 突出面、1ib 放射配置領域、1k 放射配置導風路、1kb 内周端、1kc 外周端、3 ターボファン、3a 翼、3b 主板、3c ハブ、3ca 周面部、3cb 平面部、3cc 円筒部、3d 開口穴、3e ファン内部風路、3f モータ側風路、3g シュラウド、3h 固定部、3i 吹出口、4 モータ、4a 回転軸、4ac 回転軸中心、4b モータの下端表面、4d 駆動回路、4e 制御回路、4h モータ内蔵基板、5 ベルマウス、6 熱交換器、18 導風カバー、18a 鍔部、18b 下端開口、18c 周面部、19 整流板、23a 吸込風路、23b ファン吹出風路。
DESCRIPTION OF SYMBOLS 1 Ceiling-embedded air conditioner main body, 1a case side plate, 1b case top plate, 1c, 1ca, 1cb heat insulating material, 1e, 1ea, 1eb top plate side heat insulating material, 1f fan main plate equivalent area, 1g rectifying unit, 1h Side surface, 1i Reinforcement rib, 1ia Projection surface, 1ib Radiation arrangement area, 1k Radiation arrangement air guide channel, 1kb Inner end, 1kc Outer end, 3 Turbo fan, 3a Blade, 3b Main plate, 3c Hub, 3ca Outer surface part, 3cb Plane part, 3cc cylindrical part, 3d opening hole, 3e fan internal air passage, 3f motor side air passage, 3g shroud, 3h fixed part, 3i air outlet, 4 motor, 4a rotating shaft, 4ac rotating shaft center, 4b lower end of motor Surface, 4d drive circuit, 4e control circuit, 4h motor built-in board, 5 bell mouth, 6 heat exchanger, 18 air guide cover, 18a collar, 18b bottom opening, 18c peripheral surface, 19 rectification , 23a suction air passage, 23b fan blowing air duct.

Claims (21)

(a)筐体天板を有する天井埋込型空気調和機本体と、
(b)前記天井埋込型空気調和機本体内に前記筐体天板に回転軸が直交するように配置されるモータと、
(c)該モータを覆い前記モータの回転軸を固定する下に凸形状のハブと、該ハブの上部開口面周囲から天板に対向するように延出され、前記筐体天板と対向する面とは反対側の面に複数枚の翼が取り付けられた主板と、該主板に対向し前記翼の案内流路を構成するシュラウドとを有し、前記シュラウド側から吸い込んだ空気を、前記ハブのモータ側と反対側に形成されたファン内部風路を介して吹き出すターボファンと、
(d)前記ハブのモータ側に設けられ、前記モータとの間にモータ側風路を形成し、前記筐体天板と前記主板との間に形成された隙間から前記モータ側風路に流れ込んだ空気を、前記モータに向けて導風する導風カバーと
を備え、
前記導風カバーは、前記主板側から下方に向かって延出された周面部を備え、該周面部の下端開口の高さ位置が前記モータの下端表面よりも下方に位置するように形成されており、前記ハブは、前記隙間から前記モータ側風路に流れ込み、前記導風カバーの下端開口から流れ出て前記導風カバーと前記ハブとの隙間に流入した空気を前記ファン内部風路に流出させる開口穴を複数有することを特徴とする天井埋込型空気調和機。
(A) a ceiling-embedded air conditioner body having a casing top plate;
(B) a motor disposed in the ceiling-embedded air conditioner main body so that a rotation axis is orthogonal to the casing top plate;
(C) A convex-shaped hub that covers the motor and fixes the rotation shaft of the motor, and extends from the periphery of the upper opening surface of the hub so as to face the top plate, and faces the housing top plate. A main plate having a plurality of blades attached to a surface opposite to the surface, and a shroud that opposes the main plate and constitutes a guide flow path of the blades, and sucks air sucked from the shroud side A turbo fan that blows out through a fan internal air passage formed on the opposite side of the motor side of
(D) provided on the motor side of the hub, forming a motor side air passage between the hub and the motor, and flowing into the motor side air passage through a gap formed between the housing top plate and the main plate. An air guide cover that guides the air toward the motor,
The wind guide cover includes a peripheral surface portion extending downward from the main plate side, and is formed such that a height position of a lower end opening of the peripheral surface portion is positioned below a lower end surface of the motor. The hub flows into the motor side air passage from the gap, and flows out from the lower end opening of the air guide cover and flows into the gap between the air guide cover and the hub and flows out to the fan internal air passage. A ceiling-embedded air conditioner having a plurality of opening holes.
前記ハブには、複数の前記開口穴が前記主板近傍に形成されていることを特徴とする請求項1記載の天井埋込型空気調和機。   The ceiling-embedded air conditioner according to claim 1, wherein the hub has a plurality of the opening holes formed in the vicinity of the main plate. 前記導風カバーの前記周面部は、前記下端開口に向かうに従って前記モータ側風路の断面積が小さくなるように形成されていることを特徴とする請求項1又は請求項2記載の天井埋込型空気調和機。   The ceiling embedding according to claim 1 or 2, wherein the peripheral surface portion of the wind guide cover is formed so that a cross-sectional area of the motor side air passage becomes smaller toward the lower end opening. Type air conditioner. 前記ハブと前記導風カバーの前記周面部とは、それぞれ円錐台状に形成され、傾斜がほぼ同じに形成されていることを特徴とする請求項1乃至請求項3の何れかに記載の天井埋込型空気調和機。   The ceiling according to any one of claims 1 to 3, wherein the hub and the peripheral surface portion of the wind guide cover are each formed in a truncated cone shape and are substantially the same in inclination. Embedded air conditioner. 前記導風カバーの周面部は、前記モータの外周面に沿う円筒状部を有することを特徴とする請求項1乃至請求項3の何れかに記載の天井埋込型空気調和機。   The ceiling-embedded air conditioner according to any one of claims 1 to 3, wherein a peripheral surface portion of the wind guide cover has a cylindrical portion along an outer peripheral surface of the motor. 前記導風カバーと前記モータの下端との最小隙間間隔k、前記ターボファンの吹出口面積G5、前記導風カバーと前記ハブとの最小隙間間隔E2での周状開口面積G1、前記開口穴の全開口面積G4とするとき、前記最小隙間間隔kが8mm以上25mm以下で、かつG4/G1が40%以上で、さらにG4/G5が0.5%以上10%以下となるように該当の各構成部間の関係を保つように形成されてなることを特徴とする請求項1乃至請求項5の何れかに記載の天井埋込型空気調和機。   The minimum clearance gap k between the wind guide cover and the lower end of the motor, the blower outlet area G5 of the turbofan, the circumferential opening area G1 at the minimum clearance distance E2 between the wind guide cover and the hub, and the opening hole When the total opening area G4 is set, each of the corresponding gaps such that the minimum gap k is 8 mm or more and 25 mm or less, G4 / G1 is 40% or more, and G4 / G5 is 0.5% or more and 10% or less. The ceiling-embedded air conditioner according to any one of claims 1 to 5, wherein the air conditioner is formed so as to maintain a relationship between components. 前記導風カバーは、熱伝導性の高い金属部材で構成され、且つ前記ターボファンと一体に回転するように固着されていることを特徴とする請求項1乃至請求項6の何れかに記載の天井埋込型空気調和機。   The said wind guide cover is comprised by the metal member with high heat conductivity, and is being fixed so that it may rotate integrally with the said turbo fan. Embedded ceiling air conditioner. 前記金属部材は、アルミニウム又はメッキ鋼板であることを特徴とする請求項7記載の天井埋込型空気調和機。   8. The ceiling-embedded air conditioner according to claim 7, wherein the metal member is aluminum or a plated steel plate. 前記筐体天板の前記主板に対向するファン主板相当領域と前記主板との隙間に、前記主板との隙間が前記主板の中心方向に向かうに従って短くなるように形成された整流部を設けたことを特徴とする請求項1乃至請求項8の何れかに記載の天井埋込型空気調和機。   In the gap between the main plate and the fan main plate equivalent region facing the main plate of the casing top plate, a rectifying portion formed so that the gap with the main plate becomes shorter toward the center of the main plate is provided. The ceiling-embedded air conditioner according to any one of claims 1 to 8. 前記整流部の側面は、輸送時等に前記ハブと前記モータ回転軸との固定部を支点に前記ターボファンが振れて前記整流部と接触する際に、ターボファンの外周縁と点接触しない傾斜に形成されていることを特徴とする請求項9記載の天井埋込型空気調和機。   The side surface of the rectifying unit is inclined so as not to make point contact with the outer peripheral edge of the turbo fan when the turbo fan swings and contacts the rectifying unit with the fixed part of the hub and the motor rotation shaft as a fulcrum during transportation The ceiling-embedded air conditioner according to claim 9, wherein the air conditioner is embedded in a ceiling. 前記整流部は、輸送時等に前記ハブと前記モータ回転軸との固定部を支点に前記ターボファンが振れて前記整流部と接触する際に、線または面接触するような多角形状に形成されていることを特徴とする請求項10記載の天井埋込型空気調和機。   The rectifying unit is formed in a polygonal shape so as to come into line contact or surface contact when the turbofan shakes and contacts the rectifying unit with a fixed part between the hub and the motor rotating shaft as a fulcrum during transportation or the like. The ceiling-embedded air conditioner according to claim 10. 前記整流部は、輸送時等に前記ハブと前記モータ回転軸との固定部を支点に前記ターボファンが振れて前記整流部と接触する際に、線接触するような円錐台形状に形成されていることを特徴とする請求項10記載の天井埋込型空気調和機。   The rectifying unit is formed in a truncated cone shape so as to come into line contact when the turbo fan is shaken and contacts the rectifying unit with a fixed part between the hub and the motor rotating shaft as a fulcrum during transportation or the like. The ceiling-embedded air conditioner according to claim 10. 前記筐体天板の前記主板側には、前記筐体天板の内側の風路を構成する天板側断熱材が設けられており、前記整流部は、前記天板側断熱材により一体形成されていることを特徴とする請求項9乃至請求項12の何れかに記載の天井埋込型空気調和機。   On the main plate side of the casing top plate, a top plate side heat insulating material constituting an air path inside the case top plate is provided, and the rectifying unit is integrally formed by the top plate side heat insulating material. The ceiling-embedded air conditioner according to any one of claims 9 to 12, wherein the air conditioner is embedded in a ceiling. 前記整流部は、前記筐体天板のファン主板相当領域部分を変形することにより構成されていることを特徴とする請求項9乃至請求項12の何れかに記載の天井埋込型空気調和機。   13. The ceiling-embedded air conditioner according to claim 9, wherein the rectifying unit is configured by deforming an area corresponding to a fan main plate of the casing top plate. . 前記整流部は、前記筐体天板に直接的又は間接的に交換自在に固着された整流板であることを特徴とする請求項9乃至請求項12の何れかに記載の天井埋込型空気調和機。   13. The ceiling-embedded air according to claim 9, wherein the rectifying unit is a rectifying plate fixed to the top plate of the casing so as to be exchangeable directly or indirectly. Harmony machine. 前記整流部と前記主板との間の最小隙間E1と、前記天板側断熱材と前記主板との高さ方向の隙間D1との比率E1/D1が0.3〜0.7となるように形成したことを特徴とする請求項9乃至請求項15の何れかに記載の天井埋込型空気調和機。   The ratio E1 / D1 between the minimum gap E1 between the rectifying unit and the main plate and the height direction gap D1 between the top plate-side heat insulating material and the main plate is 0.3 to 0.7. The ceiling-embedded air conditioner according to any one of claims 9 to 15, wherein the ceiling-embedded air conditioner is formed. (a)筐体天板を有する天井埋込型空気調和機本体と、
(b)前記天井埋込型空気調和機本体の内部に設けられ、送風を行うターボファンと、
(c)前記天井埋込型空気調和機本体内に前記筐体天板に回転軸が直交するように配置され、前記ターボファンを駆動するモータと、
(d)前記ターボファンを囲むように立設された熱交換器と、
(e)前記筐体天板において前記熱交換器の内側に相当する領域内に、前記モータと対向する領域の外周部分から放射状にかつ本体内部側へ突出して形成された複数の補強リブと、
(f)前記筐体天板の内側に設けられた天板側断熱材と
を備え、
前記天板側断熱材は、略全体が前記各補強リブの突出面に沿うよう形成され、かつ前記筐体天板の各補強リブ以外の各放射配置領域に対しては一部又は全部に沿うように形成され、
前記放射配置領域に沿うように形成された部分によって、ターボファンからの吹き出し流れの一部を前記モータへ導風する放射配置導風路を構成したことを特徴とする天井埋込型空気調和機。
(A) a ceiling-embedded air conditioner body having a casing top plate;
(B) a turbofan that is provided inside the ceiling-embedded air conditioner body and that blows air;
(C) a motor that drives the turbofan, and is arranged in the ceiling-embedded air conditioner main body so that a rotation axis is orthogonal to the casing top plate;
(D) a heat exchanger erected so as to surround the turbofan;
(E) a plurality of reinforcing ribs formed in a region corresponding to the inner side of the heat exchanger in the housing top plate and projecting radially outward from the outer peripheral portion of the region facing the motor;
(F) a top plate-side heat insulating material provided inside the housing top plate;
The top plate-side heat insulating material is formed substantially along the protruding surface of each reinforcing rib, and partially or entirely along each radiation arrangement region other than each reinforcing rib of the casing top plate. Formed as
A ceiling-embedded air conditioner characterized in that a portion formed along the radiation arrangement region constitutes a radiation arrangement air duct that guides a part of the blowout flow from the turbofan to the motor. .
(a)筐体天板を有する天井埋込型空気調和機本体と、
(b)前記天井埋込型空気調和機本体の内部に設けられ、送風を行うターボファンと、
(c)前記ターボファンを駆動するモータと、
(d)前記ターボファンを囲むように立設された熱交換器と、
(e)前記筐体天板において前記熱交換器の内側に相当する領域内に、前記モータと対向する領域の外周部分から放射状にかつ本体外部側へ突出して形成された複数の補強リブと、
(f)前記筐体天板の内側に設けられた天板側断熱材と
を備え、
前記天板側断熱材は、略全体が前記各補強リブ以外の面に沿うよう形成され、かつ前記筐体天板の前記各補強リブ部分に対しては一部又は全部に沿うように形成され、
前記各補強リブ部分に沿うように形成された部分によって、ターボファンからの吹き出し流れの一部を前記モータへ導風する放射配置導風路を構成したことを特徴とする天井埋込型空気調和機。
(A) a ceiling-embedded air conditioner body having a casing top plate;
(B) a turbofan that is provided inside the ceiling-embedded air conditioner body and that blows air;
(C) a motor for driving the turbofan;
(D) a heat exchanger erected so as to surround the turbofan;
(E) a plurality of reinforcing ribs formed in a region corresponding to the inner side of the heat exchanger in the casing top plate and projecting radially outward from the outer peripheral portion of the region facing the motor;
(F) a top plate-side heat insulating material provided inside the housing top plate;
The top plate-side heat insulating material is formed so that substantially the whole is along a surface other than the reinforcing ribs, and is formed to be partly or entirely along the reinforcing rib portions of the casing top plate. ,
A ceiling-embedded air conditioner characterized in that a radiation arrangement air guide passage that guides a part of a blowout flow from a turbofan to the motor is formed by a portion formed along each of the reinforcing rib portions. Machine.
前記モータの回転軸中心から放射配置導風路の外周端までの距離L0、前記モータの回転軸中心から放射配置導風路の内周端までの距離L2、ターボファンの直径L1とするとき、0.5×L1≦L0≦0.6×L1で、かつ0≦L2≦0.3×L1の範囲となるように形成したことを特徴とする請求項17又は請求項18記載の天井埋込型空気調和機。   When the distance L0 from the rotation axis center of the motor to the outer peripheral end of the radial arrangement air guide path, the distance L2 from the rotation axis center of the motor to the inner peripheral edge of the radial arrangement air guide path, and the diameter L1 of the turbofan, The ceiling embedding according to claim 17 or 18, wherein the ceiling is embedded in a range of 0.5 x L1 ≤ L0 ≤ 0.6 x L1 and 0 ≤ L2 ≤ 0.3 x L1. Type air conditioner. 前記モータは、内部に、駆動回路と制御回路とが実装されたモータ内蔵基板を収納してなることを特徴とする請求項17乃至請求項19の何れかに記載の天井埋込型空気調和機。   20. The ceiling-embedded air conditioner according to any one of claims 17 to 19, wherein the motor includes a motor built-in board on which a drive circuit and a control circuit are mounted. . 前記モータの筐体天板側の天面の高さ位置が、天板側断熱材の表面の高さ位置よりも下方となるように前記モータを配設したことを特徴とする請求項17乃至請求項20の何れかに記載の天井埋込型空気調和機。
18. The motor according to claim 17, wherein the motor is disposed such that a height position of a top surface of the motor on a top side of the casing is lower than a height position of a surface of the top plate-side heat insulating material. The ceiling-embedded air conditioner according to claim 20.
JP2005334856A 2005-02-24 2005-11-18 Embedded ceiling air conditioner Active JP4684085B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2005334856A JP4684085B2 (en) 2005-02-24 2005-11-18 Embedded ceiling air conditioner
ES11177128.3T ES2623875T3 (en) 2005-02-24 2006-02-03 Recessed ceiling air conditioner
PCT/JP2006/301829 WO2006090564A1 (en) 2005-02-24 2006-02-03 Ceiling embedded air conditioner
EP06712972A EP1873461B1 (en) 2005-02-24 2006-02-03 Ceiling embedded air conditioner
CN2006800001629A CN1942716B (en) 2005-02-24 2006-02-03 Ceiling embedded air conditioner
CN2010102717631A CN101907325B (en) 2005-02-24 2006-02-03 Ceiling embedded air conditioner
EP10009996.9A EP2273207B1 (en) 2005-02-24 2006-02-03 Ceiling-embedded-type air conditioning apparatus
EP11177128.3A EP2390590B1 (en) 2005-02-24 2006-02-03 Ceiling-embedded-type air conditioning apparatus
ES10009996.9T ES2623606T3 (en) 2005-02-24 2006-02-03 Recessed ceiling air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005049354 2005-02-24
JP2005334856A JP4684085B2 (en) 2005-02-24 2005-11-18 Embedded ceiling air conditioner

Publications (2)

Publication Number Publication Date
JP2006266664A true JP2006266664A (en) 2006-10-05
JP4684085B2 JP4684085B2 (en) 2011-05-18

Family

ID=36927208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005334856A Active JP4684085B2 (en) 2005-02-24 2005-11-18 Embedded ceiling air conditioner

Country Status (5)

Country Link
EP (3) EP2390590B1 (en)
JP (1) JP4684085B2 (en)
CN (2) CN101907325B (en)
ES (2) ES2623606T3 (en)
WO (1) WO2006090564A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192415A (en) * 2006-01-17 2007-08-02 Mitsubishi Heavy Ind Ltd Cabinet for air conditioner and air conditioner using the same
JP2009030827A (en) * 2007-07-25 2009-02-12 Sanyo Electric Co Ltd Indoor unit of ceiling-embedded air conditioning device
JP2010169277A (en) * 2009-01-20 2010-08-05 Sanyo Electric Co Ltd Ceiling-embedded air conditioner
JP2011169583A (en) * 2011-04-27 2011-09-01 Sanyo Electric Co Ltd Indoor unit for ceiling-embedded air conditioning device
JP2011174701A (en) * 2011-04-27 2011-09-08 Sanyo Electric Co Ltd Indoor unit for ceiling-embedded type air conditioner
JP2011185596A (en) * 2011-04-27 2011-09-22 Sanyo Electric Co Ltd Indoor unit of ceiling-embedded air conditioning device
JP2011196572A (en) * 2010-03-17 2011-10-06 Mitsubishi Electric Corp Indoor unit of air conditioner
WO2011155359A1 (en) * 2010-06-09 2011-12-15 三菱重工業株式会社 Cabinet for air conditioning device, and air conditioning device using same
JP2012088038A (en) * 2011-11-28 2012-05-10 Sanyo Electric Co Ltd Indoor unit for ceiling-embedded air conditioning device
KR101419943B1 (en) * 2008-01-03 2014-07-16 엘지전자 주식회사 Air conditioner and Fan assembly thereof
KR101468739B1 (en) * 2008-01-03 2014-12-03 엘지전자 주식회사 Air conditioner and Fan assembly thereof
JP2015200438A (en) * 2014-04-07 2015-11-12 三菱電機株式会社 Indoor equipment of air conditioner
US9255716B2 (en) 2007-07-25 2016-02-09 Panasonic Intellectual Property Management Co., Ltd. In-ceiling mount type air conditioner and indoor unit thereof
WO2016170652A1 (en) * 2015-04-23 2016-10-27 三菱電機株式会社 Indoor unit and air conditioning device
WO2021149935A1 (en) * 2020-01-20 2021-07-29 삼성전자(주) Embedded air purification device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5247784B2 (en) * 2010-10-04 2013-07-24 三菱電機株式会社 Air conditioner
JPWO2015104791A1 (en) 2014-01-07 2017-03-23 三菱電機株式会社 Air conditioner
WO2015104838A1 (en) 2014-01-10 2015-07-16 三菱電機株式会社 Centrifugal fan, air-conditioning device, and air-cleaning device
JP6458984B2 (en) * 2014-10-10 2019-01-30 株式会社富士通ゼネラル Embedded ceiling air conditioner
KR101900484B1 (en) 2015-01-23 2018-09-20 삼성전자주식회사 Air conditioner
JP2016142431A (en) * 2015-01-30 2016-08-08 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
WO2016203815A1 (en) * 2015-06-18 2016-12-22 三菱電機株式会社 Air conditioner
JP2017053588A (en) * 2015-09-11 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner and its indoor unit
CN106247520B (en) * 2016-08-30 2021-11-09 珠海格力电器股份有限公司 Annular air outlet equipment
CN106352533B (en) * 2016-09-27 2019-07-30 广东美的制冷设备有限公司 The sealing plate and heat exchanger assembly of heat exchanger
CN109477661B (en) 2017-03-17 2020-11-03 张益艳 Air conditioning unit
JP6916413B2 (en) * 2017-04-25 2021-08-11 株式会社島津製作所 Power supply integrated vacuum pump
JP7023366B2 (en) 2018-08-23 2022-02-21 三菱電機株式会社 Heat exchanger unit and refrigeration cycle device
CN114233655B (en) * 2021-11-09 2024-05-07 中国电建集团河南工程有限公司 Construction method of detachable heat preservation structure of fan body
CN118382782A (en) * 2021-12-28 2024-07-23 三菱电机株式会社 Heat exchange unit and air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03270567A (en) * 1990-03-20 1991-12-02 Fuji Photo Film Co Ltd Picture signal correction method
JPH03275474A (en) * 1990-03-12 1991-12-06 Yoshiyuki Kikaku:Kk Popcorn making bag
JPH06341659A (en) * 1993-04-09 1994-12-13 Daikin Ind Ltd Air conditioning apparatus
JPH10153196A (en) * 1996-11-22 1998-06-09 Daikin Ind Ltd Turbofan

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3270567B2 (en) * 1993-04-12 2002-04-02 松下冷機株式会社 Blower
JPH11101194A (en) * 1997-09-30 1999-04-13 Daikin Ind Ltd Centrifugal blower and air conditioner with the centrifugal blower
JP3268279B2 (en) * 1999-01-18 2002-03-25 三菱電機株式会社 Air conditioner
JP2000227231A (en) * 1999-02-05 2000-08-15 Fujitsu General Ltd Ceiling-buried-type air-conditioner
JP2000283493A (en) * 1999-03-31 2000-10-13 Fujitsu General Ltd Ceiling embedded type air conditioner
JP3438684B2 (en) * 1999-11-05 2003-08-18 ダイキン工業株式会社 Ceiling embedded air conditioner
KR100405981B1 (en) * 2001-02-12 2003-11-14 엘지전자 주식회사 Structure of turbo fan for cassette type air conditioner
WO2004055380A1 (en) * 2002-12-16 2004-07-01 Daikin Industries, Ltd. Centrifugal blower and air conditioner with the same
JP2004353510A (en) * 2003-05-28 2004-12-16 Daikin Ind Ltd Centrifugal fan, and air-conditioner having the same
KR20040104772A (en) * 2003-06-03 2004-12-13 삼성전자주식회사 Turbofan and air conditioner with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275474A (en) * 1990-03-12 1991-12-06 Yoshiyuki Kikaku:Kk Popcorn making bag
JPH03270567A (en) * 1990-03-20 1991-12-02 Fuji Photo Film Co Ltd Picture signal correction method
JPH06341659A (en) * 1993-04-09 1994-12-13 Daikin Ind Ltd Air conditioning apparatus
JPH10153196A (en) * 1996-11-22 1998-06-09 Daikin Ind Ltd Turbofan

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192415A (en) * 2006-01-17 2007-08-02 Mitsubishi Heavy Ind Ltd Cabinet for air conditioner and air conditioner using the same
JP2009030827A (en) * 2007-07-25 2009-02-12 Sanyo Electric Co Ltd Indoor unit of ceiling-embedded air conditioning device
US9255716B2 (en) 2007-07-25 2016-02-09 Panasonic Intellectual Property Management Co., Ltd. In-ceiling mount type air conditioner and indoor unit thereof
KR101419943B1 (en) * 2008-01-03 2014-07-16 엘지전자 주식회사 Air conditioner and Fan assembly thereof
KR101468739B1 (en) * 2008-01-03 2014-12-03 엘지전자 주식회사 Air conditioner and Fan assembly thereof
JP2010169277A (en) * 2009-01-20 2010-08-05 Sanyo Electric Co Ltd Ceiling-embedded air conditioner
JP2011196572A (en) * 2010-03-17 2011-10-06 Mitsubishi Electric Corp Indoor unit of air conditioner
WO2011155359A1 (en) * 2010-06-09 2011-12-15 三菱重工業株式会社 Cabinet for air conditioning device, and air conditioning device using same
JP2011257068A (en) * 2010-06-09 2011-12-22 Mitsubishi Heavy Ind Ltd Cabinet for air conditioner and air conditioner using the same
JP2011174701A (en) * 2011-04-27 2011-09-08 Sanyo Electric Co Ltd Indoor unit for ceiling-embedded type air conditioner
JP2011185596A (en) * 2011-04-27 2011-09-22 Sanyo Electric Co Ltd Indoor unit of ceiling-embedded air conditioning device
JP2011169583A (en) * 2011-04-27 2011-09-01 Sanyo Electric Co Ltd Indoor unit for ceiling-embedded air conditioning device
JP2012088038A (en) * 2011-11-28 2012-05-10 Sanyo Electric Co Ltd Indoor unit for ceiling-embedded air conditioning device
JP2015200438A (en) * 2014-04-07 2015-11-12 三菱電機株式会社 Indoor equipment of air conditioner
WO2016170652A1 (en) * 2015-04-23 2016-10-27 三菱電機株式会社 Indoor unit and air conditioning device
JPWO2016170652A1 (en) * 2015-04-23 2017-11-02 三菱電機株式会社 Indoor unit and air conditioner
WO2021149935A1 (en) * 2020-01-20 2021-07-29 삼성전자(주) Embedded air purification device

Also Published As

Publication number Publication date
EP2390590A2 (en) 2011-11-30
EP2273207A3 (en) 2014-06-18
CN1942716A (en) 2007-04-04
EP1873461B1 (en) 2011-10-05
ES2623606T3 (en) 2017-07-11
WO2006090564A1 (en) 2006-08-31
CN1942716B (en) 2011-01-26
EP2390590B1 (en) 2017-03-22
ES2623875T3 (en) 2017-07-12
EP2273207A2 (en) 2011-01-12
JP4684085B2 (en) 2011-05-18
EP1873461A1 (en) 2008-01-02
CN101907325A (en) 2010-12-08
EP2390590A3 (en) 2014-06-04
EP1873461A4 (en) 2010-07-14
EP2273207B1 (en) 2017-03-22
CN101907325B (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP4684085B2 (en) Embedded ceiling air conditioner
US7066712B2 (en) Turbofan and air conditioner having the turbofan
JP2799030B2 (en) Rotating machine with cooling device
JP3758396B2 (en) Air conditioner
JP3704016B2 (en) Electric blower
JP2005241018A (en) Integral type air conditioner
JP2003214658A (en) Outdoor unit of air conditioner
JP6352232B2 (en) Centrifugal fan
JP2010181058A (en) Air conditioner
JP2006104976A (en) Electric fan
JP2002235930A (en) Air conditioner
JP2001295788A (en) Blower integral with fan motor
JP6620841B2 (en) Centrifugal fan
JP5158507B2 (en) Blower unit
JP2007192454A (en) Outdoor unit of air conditioner
KR20060117595A (en) Ceiling embedded air conditioner and air flow passgae for the same
JP2019090344A (en) Blower device
JPH11264567A (en) Ceiling-embedded type air conditioner
JPH10108416A (en) Electric rotary machine
JP7558434B2 (en) Indoor units and air conditioners
JP2020122583A (en) Air conditioner
JPH06281180A (en) Room unit of ceiling air conditioner
JP2010065945A (en) Indoor unit for air conditioner and air conditioner equipped with the same
JP3679234B2 (en) refrigerator
JP4738109B2 (en) Fan guard and outdoor unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4684085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250