JP2006266398A - Sequentially driving device - Google Patents

Sequentially driving device Download PDF

Info

Publication number
JP2006266398A
JP2006266398A JP2005085617A JP2005085617A JP2006266398A JP 2006266398 A JP2006266398 A JP 2006266398A JP 2005085617 A JP2005085617 A JP 2005085617A JP 2005085617 A JP2005085617 A JP 2005085617A JP 2006266398 A JP2006266398 A JP 2006266398A
Authority
JP
Japan
Prior art keywords
geneva
vehicle
angle
slave
pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005085617A
Other languages
Japanese (ja)
Inventor
Henrique Massanori Oka
エンリッケ マサノリ オカ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005085617A priority Critical patent/JP2006266398A/en
Publication of JP2006266398A publication Critical patent/JP2006266398A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Gears, Cams (AREA)
  • Transmission Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sequentially driving device capable of suppressing play to small extent and realizing stable positioning operation at high speed with high precision. <P>SOLUTION: When the number of Geneva driven wheels having the number m of channels 501a, 501b is k and the number of original wheel pins 510a, 510b for driving the Geneva driven wheels is n in this sequentially driving device having a configuration for driving a plurality of Geneva driven wheels 50a, 50b sequentially using one Geneva original wheel 51, an angle between the Geneva driven wheels is η, an angle between the Geneva original wheel pins is α, and α≠360°/n in a configuration for satisfying kηn=360°, wherein η=180°-360°/m n≥2, k≥2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複数の駆動対象物を順次稼動・停止するためのゼネバ機構を用いた順次駆動装置に関するものである。   The present invention relates to a sequential drive device using a Geneva mechanism for sequentially operating and stopping a plurality of driven objects.

従来、1つのゼネバ原車により1つのゼネバ従車を制御する構成が知られている(例えば特許文献1参照)。この例においては1つのゼネバ原車に複数のゼネバ原車ピンを有する構成を採用しているので順次動作を目的としていない。又、ピンを対称位置に配置し、ゼネバ原車・従車共にゼネバカム面勘合を確保し、ガタの少ない構成としている。   Conventionally, a configuration in which one Geneva slave is controlled by one Geneva original vehicle is known (see, for example, Patent Document 1). In this example, since a configuration having a plurality of Geneva original vehicle pins in one Geneva original vehicle is adopted, sequential operation is not aimed. In addition, the pins are arranged at symmetrical positions to ensure a Geneva cam surface fit for both the Geneva original vehicle and the slave vehicle, and have a configuration with little play.

特開平10−181992号公報Japanese Patent Laid-Open No. 10-181992

しかしながら、従来構成で知られているゼネバ機構で1つのゼネバ原車を用いて複数のゼネバ従車を駆動するためにゼネバ原車ピンを対称配置すると、図8に示すようにゼネバ従車のカム面500bがゼネバ原車カム面511が接する位置が軸間を結ぶ直線と近いため、ふれ角度(ガタ)が大きいことが確認できる。即ち、ゼネバ原車とゼネバ従車のカム面勘合が減少し、ゼネバ従車のガタが増大してしまう。更に、この場合カム面の加工精度の影響も大きく安定した停止精度を維持することが困難となる。   However, if a Geneva base pin is symmetrically arranged to drive a plurality of Geneva slaves using a single Geneva master vehicle with a Geneva mechanism known in the prior art, the cam of the Geneva slave vehicle as shown in FIG. Since the position where the surface 500b is in contact with the Geneva original vehicle cam surface 511 is close to the straight line connecting the axes, it can be confirmed that the deflection angle (backlash) is large. That is, the cam surface fitting of the Geneva master vehicle and the Geneva slave vehicle decreases, and the play of the Geneva slave vehicle increases. Furthermore, in this case, the influence of the cam surface machining accuracy is greatly affected, and it becomes difficult to maintain a stable stopping accuracy.

そのため、例えば1つのゼネバ原車を用いて、90°位相に配置された4つ溝のゼネバ従車を2つ駆動する場合、ゼネバ原車とゼネバ従車のカム面勘合量を充分確保するには、停止位置においてゼネバ原車ピンを2つのゼネバ従車溝から離れた位置に配置する必要がある。その結果、この構成ではゼネバ原車には1つのピンしか配置できず、ゼネバ原車1回転で2つのゼネバ従車を順次稼動・停止するようにする必要がある。   Therefore, for example, when two Geneva slaves with four grooves arranged at 90 ° phase are driven using one Geneva master vehicle, a sufficient cam surface fitting amount between the Geneva master vehicle and the Geneva slave vehicle is secured. In the stop position, it is necessary to dispose the Geneva vehicle pin at a position away from the two Geneva slave grooves. As a result, in this configuration, only one pin can be arranged in the Geneva master vehicle, and it is necessary to sequentially operate and stop the two Geneva slave vehicles by one rotation of the Geneva master vehicle.

しかし、この場合、2つのゼネバ従車の動作はゼネバ原車180°で終了するが、ゼネバ原車は更に180°ムダに回転する必要が生じるため、動作の高速化が困難となる。ゼネバ原車の回転速度を上げると駆動源への負荷が増大し、機械の小型化、省エネ化が困難となる。   However, in this case, the operations of the two Geneva slave vehicles end at the Geneva master vehicle 180 °. However, since the Geneva master vehicle needs to be further rotated 180 °, it is difficult to increase the operation speed. Increasing the rotational speed of the Geneva original vehicle increases the load on the drive source, making it difficult to reduce the size of the machine and save energy.

カム面の勘合を充分確保するため、図9に示すように、ゼネバ従車を180°位相に配置することも考えられる。こうすることによってゼネバ原車のカム面511はゼネバ従車カム面500bを全面で抑えることによりふれ角度(ガタ)を少なく抑えることができる。   In order to sufficiently secure the cam surface, it is conceivable to arrange the Geneva follower at a 180 ° phase as shown in FIG. By doing so, the cam surface 511 of the Geneva original vehicle can suppress the deflection angle (backlash) by suppressing the Geneva slave vehicle cam surface 500b over the entire surface.

しかしながら、この構成では2つのゼネバ従車が同時に駆動されることになり、順次駆動が実現できない。   However, in this configuration, the two Geneva slaves are driven at the same time, and sequential driving cannot be realized.

本発明は上記問題に鑑みてなされたもので、その目的とする処は、ガタを小さく抑えて高速で高精度且つ安定した位置決め動作が実現できる順次駆動装置を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a sequential drive device capable of realizing high-speed, high-accuracy and stable positioning operation with small play.

上記目的を達成するため、本発明は、1つのゼネバ原車を用いて複数のゼネバ従車を順次駆動する構成を用いた順次駆動装置において、
m個の溝を有するゼネバ従車の個数をkとし、ゼネバ従車を駆動する原車ピンの個数をnとしたとき、
kηn=360°
但し、
η=180°−360°/m
n≧2,k≧2
を満足する構成において、ゼネバ従車間角度をηとし、ゼネバ原車ピン間角度αは、
α≠360°/n
とすることを特徴とする。
To achieve the above object, the present invention provides a sequential drive device using a configuration in which a plurality of Geneva slaves are sequentially driven using one Geneva original vehicle.
When the number of Geneva slaves having m grooves is k, and the number of original vehicle pins driving the Geneva slave is n,
kηn = 360 °
However,
η = 180 ° -360 ° / m
n ≧ 2, k ≧ 2
In the configuration satisfying the above, the angle between the Geneva follower vehicle is η, and the Geneva original vehicle pin angle α is
α ≠ 360 ° / n
It is characterized by.

本発明によれば、ゼネバ原車が第1の停止位置で停止した時、前記ピンはゼネバ従車溝に嵌合し、ゼネバ従車のガタを小さく抑えることとなる。又、第2の停止位置で停止した状態においては、ゼネバ原車のカム面とゼネバ従車カム面の接する角度を増大することによりガタを小さく抑えることができ、高速で高精度且つ安定した位置決め動作が実現できる。   According to the present invention, when the Geneva original vehicle stops at the first stop position, the pin fits into the Geneva slave vehicle groove, and the play of the Geneva slave vehicle is kept small. Further, in the state of stopping at the second stop position, the backlash can be kept small by increasing the angle at which the cam surface of the Geneva master vehicle and the Geneva slave cam surface are in contact with each other. Operation can be realized.

以下に本発明の実施の形態を添付図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

<実施の形態1>
図1に実施の形態1を示す。
<Embodiment 1>
Embodiment 1 is shown in FIG.

ゼネバ原車51は2つのピン510a,510bを位相αに配置し、2つのゼネバ従車50a,50bを駆動する構成となっている。   The Geneva master vehicle 51 has a configuration in which two pins 510a and 510b are arranged in the phase α to drive the two Geneva slave vehicles 50a and 50b.

ゼネバ従車50a,50bは、ゼネバ原車51に対して90°位相に設置され、ゼネバ原車51が不図示の駆動源により180°時計(反時計)方向に回転すると、先ず、ゼネバ従車50a(50b)が回動され、次にゼネバ従車50b(50a)が回動され、順次駆動動作を行い、図2に示す次の停止状態で停止する。   The Geneva slave vehicles 50a and 50b are installed at a 90 ° phase with respect to the Geneva master vehicle 51, and when the Geneva master vehicle 51 is rotated 180 ° clockwise (counterclockwise) by a drive source (not shown), the Geneva slave vehicle first. 50a (50b) is rotated, and then the Geneva follower 50b (50a) is rotated to sequentially drive and stop in the next stop state shown in FIG.

図1の状態において、ゼネバ従車50a、50bのガタはゼネバ原車のピン510a,510bとゼネバ従車の溝501a,501bへの嵌合により決まる。   In the state of FIG. 1, the play of the Geneva followers 50a, 50b is determined by the fitting of the pins 510a, 510b of the Geneva original vehicle and the grooves 501a, 501b of the Geneva follower.

図1において、ゼネバ機構の基本半径(R)とゼネバ原車ピン510がゼネバ従車溝501と勘合する角度(α2)と図4に示す原車ピン510と従車溝501のガタ(g)を変数とし、ゼネバ従車のガタ角度(γ)を求めると以下のようになる。   In FIG. 1, the basic radius (R) of the Geneva mechanism, the angle (α2) at which the Geneva original vehicle pin 510 engages with the Geneva follower groove 501 and the play (g) of the original vehicle pin 510 and the follower groove 501 shown in FIG. Is used as a variable, and the play angle (γ) of the Geneva follower is obtained as follows.

γ=cos−1(1,g2 /(2Rs2 ))
但し、上記式のRsはゼネバ原車ピンがゼネバ従車溝に勘合角度(α2)で嵌合した状態を簡略化した図5より求めると、
Rs22 +2R2 −2√2R2 os(π/4−α2)
となる。
γ = cos −1 (1, g 2 / (2Rs 2 ))
However, Rs of the above formula is obtained from FIG. 5 which is a simplified view of the state where the Geneva original vehicle pin is fitted to the Geneva slave groove at the fitting angle (α2).
Rs 2 R 2 + 2R 2 -2√2R 2 os (π / 4-α2)
It becomes.

又、このときゼネバ従車50が原車ピン510と嵌合することにより正規の位置よりずれる角度(δ)は以下のようになる。   At this time, the angle (δ) deviated from the normal position by fitting the Geneva follower wheel 50 with the original vehicle pin 510 is as follows.

δ=π/4−cos−1((R2 +Rs2 )/(2√2RRs))
又、図2の状態においては、ゼネバ従車50のガタは、ゼネバ原車カム面511とゼネバ従車カム面500a,500bが接することにより決まる。
δ = π / 4-cos −1 ((R 2 + Rs 2 ) / (2√2RRs))
In addition, in the state of FIG. 2, the play of the Geneva slave vehicle 50 is determined by the Geneva master vehicle cam surface 511 and the Geneva slave vehicle cam surfaces 500a and 500b coming into contact with each other.

図2の状態において、原車カム面511と従車カム面500bが接する時のガタを求めるために図3に示すゼネバ機構の簡略モデルを用いる。   In the state of FIG. 2, a simplified model of the Geneva mechanism shown in FIG. 3 is used in order to obtain a backlash when the original vehicle cam surface 511 and the slave vehicle cam surface 500 b are in contact with each other.

ゼネバ原車とゼネバ従車の基本半径(R)、ゼネバ原車・従車の軸間距離(√2R)、ゼネバ原車カム面半径(R1)、ゼネバ従車カム面半径(R2)、ゼネバ原車カム面511の境界点(P)と原車・従車軸間直線間角度の原車カム角度(α1)を変数とし、ゼネバ従車ガタ角度(θ)を求めると以下のようになる。   The basic radius (R) of the Geneva original vehicle and the Geneva slave vehicle, the distance between the axes of the Geneva original vehicle and the slave vehicle (√2R), the Geneva original vehicle cam surface radius (R1), the Geneva slave vehicle cam surface radius (R2), the Geneva When the boundary point (P) of the original vehicle cam surface 511 and the original vehicle cam angle (α1) of the angle between the straight line between the original vehicle and the driven vehicle shaft are used as variables, the Geneva follower backlash angle (θ) is obtained as follows.

θ=cos−1((R2 +2R2 −R22 )/(2√2RpR))・β
但し、Rp,βはゼネバ原車のカム面とゼネバ従車のカム面が接した状態を簡略化した図3の簡略モデルよりもとめると、
Rp2 R12 +2R2 −2R1R√2cos(α1)
β =sin−1(R1sin(α1)/Rp)
である。
θ = cos −1 ((R 2 + 2R 2 −R2 2 ) / (2√2RpR)) · β
However, Rp and β are obtained from the simplified model of FIG. 3 in which the cam surface of the Geneva original vehicle and the cam surface of the Geneva slave vehicle are in contact with each other.
Rp 2 R1 2 + 2R 2 -2R1R√2 cos (α1)
β = sin −1 (R1sin (α1) / Rp)
It is.

ここで、ゼネバ原車ピン510がゼネバ原車溝501に嵌合した時ずれる角度(γ+δ)がカム面接触ガタ(θ)以下となる範囲で嵌合させると、機構全体のガタを小さく抑えることができる。   Here, if the Geneva master pin 510 is fitted within a range where the angle (γ + δ) that is displaced when the Geneva master pin 510 is fitted to the Geneva master groove 501 is not more than the cam surface contact play (θ), the play of the entire mechanism can be kept small. Can do.

ここで、R=20mmとし、軸間距離、カム面半径寸法精度を±0.05mm、カム間称呼ガタを0.03mmと想定すると、R1=15mmの場合、R2=15.18mmとなる。又、ゼネバ原車ピン510とゼネバ従車溝501間のガタ(g)は100μmとし、ゼネバ従車のガタ角度(γ)及びゼネバ従車ズレ角度(δ)とゼネバ従車ガタ角度(θ)を図6及び図7の表にまとめる。   Here, assuming that R = 20 mm, the inter-axis distance, cam surface radius dimensional accuracy is ± 0.05 mm, and the inter-cam nominal play is 0.03 mm, when R1 = 15 mm, R2 = 15.18 mm. The play (g) between the Geneva master pin 510 and the Geneva follower groove 501 is 100 μm, the play angle (γ) of the Geneva follower, the deviation angle (δ) of the Geneva follower, and the play back angle (θ) of the Geneva follower. Are summarized in the tables of FIGS.

この結果より、嵌合角度(α2)が増大するとゼネバ従車のガタ角度(γ)が増加し、ゼネバ原車カム角度(α1)が増加するとゼネバ従車ガタ角度(θ)が減少することが確かめられる。   As a result, when the fitting angle (α2) increases, the play angle (γ) of the Geneva slave vehicle increases, and when the Geneva master vehicle cam angle (α1) increases, the Geneva follower play angle (θ) decreases. It can be confirmed.

しかしながら、ゼネバ原車カム角度(α1)と原車ピンが溝と嵌合する角度(α2)間には以下の関係が成り立つ。   However, the following relationship is established between the Geneva original vehicle cam angle (α1) and the angle (α2) at which the original vehicle pin fits into the groove.

α1=α2+Δ
ここで、Δは図8に示すようにゼネバ機構特有の定数でありゼネバ機構の形状や配置により決まる。一般のゼネバ機構においてはΔ=0と考えられる。
α1 = α2 + Δ
Here, Δ is a constant specific to the Geneva mechanism as shown in FIG. 8 and is determined by the shape and arrangement of the Geneva mechanism. In a general Geneva mechanism, it is considered that Δ = 0.

Δ=0とした時のゼネバ原車ピン510とゼネバ従車溝501の嵌合によりゼネバ従車50の総合位置ずれ量(γ+ δ)とカム面のガタにより発生するゼネバ従車ガタ角度(θ)の総ずれ量を図6及び図7の表で確認すると、
10°<α1=α2<12.5°
の範囲に
(γ+δ)=θ
の均衡点が存在することが確認できる。
Geneva follower backlash angle (γ + δ) generated due to the total displacement amount (γ + δ) of the Geneva follower wheel 50 due to the fitting of the Geneva master wheel pin 510 and the Geneva follower groove 501 when Δ = 0. When the total deviation amount of θ) is confirmed in the tables of FIGS. 6 and 7,
10 ° <α1 = α2 <12.5 °
(Γ + δ) = θ
It can be confirmed that there exists an equilibrium point.

又、図1に示す停止状態1においては嵌合角度(α2)が増大するとガタ(δ)及び正規位置からのずれ量(γ)が増大することも確認できる。   In addition, in the stop state 1 shown in FIG. 1, it can be confirmed that as the fitting angle (α2) increases, the backlash (δ) and the amount of deviation (γ) from the normal position increase.

更に、図2に示す停止位置2状態においては、ゼネバ原車カム角度(α1)が増大するとガタ(θ)が減少することが確認できる。   Furthermore, in the stop position 2 state shown in FIG. 2, it can be confirmed that the play (θ) decreases as the Geneva original vehicle cam angle (α1) increases.

即ち、α2をできるだけ小さく、α1はできるだけ大きくすることが望ましく、双方のガタを同時に抑えるには(γ+δ)、θを同時に最小とする必要がある。   That is, it is desirable to make α2 as small as possible and α1 as large as possible. In order to suppress both backlashes at the same time (γ + δ), it is necessary to simultaneously minimize θ.

Δにおいてはゼネバ機構の形状を工夫することによりΔ>0は実現可能なので、双方のガタを最小とするにはゼネバ原車ピン510とゼネバ従車溝501との嵌合角度(α2)を均衡点近辺の10°以下に抑えることが望ましい。   Since Δ> 0 can be realized by devising the shape of the Geneva mechanism in Δ, the fitting angle (α2) between the Geneva original vehicle pin 510 and the Geneva follower groove 501 is balanced in order to minimize the play of both. It is desirable to keep it below 10 ° near the point.

<実施の形態2>
図10に実施の形態2を示す。
<Embodiment 2>
FIG. 10 shows the second embodiment.

本実施の形態では、ゼネバ原車ピン510は180°位相に配置し、ゼネバ従車50a、50bをα3位相に設置する。   In the present embodiment, the Geneva master vehicle pin 510 is arranged in a 180 ° phase, and the Geneva slave vehicles 50a and 50b are installed in an α3 phase.

このような構成にすることにより、ゼネバ原車ピン510がゼネバ従車溝と嵌合する角度(α2)は一定となり、ゼネバ従車50の正規位置ズレ角度(δ)とゼネバ従車ガタ角度(γ)は実施の形態1の式と同じとなる。   With this configuration, the angle (α2) at which the Geneva master vehicle pin 510 is fitted to the Geneva slave groove is constant, and the normal position deviation angle (δ) of the Geneva slave vehicle 50 and the Geneva slave vehicle play angle ( γ) is the same as the equation in the first embodiment.

カム面接触によるゼネバ従車ガタ角度(θ)より小さく抑えるには角度α3を90°以上110°以下とする必要がある。   In order to keep it below the Geneva follower backlash angle (θ) due to the cam surface contact, the angle α3 needs to be 90 ° or more and 110 ° or less.

しかしながら、本実施の形態においては、ゼネバ従車のガタ角度(γ)は小さく抑えることができるため、正規位置ずれ量(δ)により嵌合角度(α2)を決定することもできる。   However, in this embodiment, since the play angle (γ) of the Geneva slave wheel can be kept small, the fitting angle (α2) can also be determined from the normal displacement amount (δ).

<実施の形態3>
図11に実施の形態3を示す。
<Embodiment 3>
FIG. 11 shows a third embodiment.

本実施の形態においては、3つ溝のゼネバ従車50a,50bを2つ用いている。m=2(ゼネバ溝数)、k=2(ゼネバ従車個数)とすると、
η=180°/360/3=60°
となり、ゼネバ従車は60°位相に配置している。
In the present embodiment, two Geneva followers 50a and 50b having three grooves are used. When m = 2 (number of Geneva grooves) and k = 2 (number of Geneva followers),
η = 180 ° / 360/3 = 60 °
Thus, the Geneva follower is arranged at 60 ° phase.

このとき、kηn=360°より、
n=3
となり、ゼネバ原車ピン510の個数を3とする。
At this time, from kηn = 360 °,
n = 3
Thus, the number of Geneva original vehicle pins 510 is three.

又、原車ピン間角度αは、
α≠360°/n=120°
となるように2つのピン間角度をα5、他のピン間角度をα4(α4≠α5)とする。
The angle α between the original vehicle pins is
α ≠ 360 ° / n = 120 °
The angle between the two pins is α5, and the other pin angle is α4 (α4 ≠ α5).

この状態において、図11に示すようにピン間角度α4状態においては原車ピン510が従車溝501と嵌合し、ゼネバ従車50のガタが抑えられる。   In this state, as shown in FIG. 11, in the inter-pin angle α4 state, the original vehicle pin 510 is fitted into the follower groove 501 and the play of the Geneva follower 50 is suppressed.

又、図12に示すように、ピン間角度α5状態においてはカム面511及び500の接触量が増大し、ガタが抑えられる。   Further, as shown in FIG. 12, in the state of the pin angle α5, the contact amount between the cam surfaces 511 and 500 is increased, and the play is suppressed.

本発明の実施の形態1でのゼネバ原車ピンとゼネバ従車溝嵌合状態を示す図である。It is a figure which shows the Geneva original vehicle pin and Geneva follower groove | channel fitting state in Embodiment 1 of this invention. 本発明の実施の形態1でのゼネバ原車カム面とゼネバ従車カム面接触状態を示す図である。It is a figure which shows the Geneva original vehicle cam surface and Geneva slave vehicle cam surface contact state in Embodiment 1 of this invention. ゼネバ原車ピンとゼネバ従車嵌合状態簡略図である。It is a Geneva original vehicle pin and a Geneva slave vehicle fitting state simplification figure. ゼネバ原車ピン、ゼネバ従車溝嵌合ガタ詳細図である。FIG. 5 is a detailed view of a Geneva original vehicle pin and a Geneva follower groove fitting backlash. ゼネバ原車カム面とゼネバ従車カム面接触状態簡略図である。It is a simplified view of the contact state of the Geneva original vehicle cam surface and the Geneva slave vehicle cam surface. ゼネバ原車ピンとゼネバ従車溝嵌合時ガタ表である。It is a backlash table | surface at the time of a Geneva master vehicle pin and Geneva slave wheel groove fitting. ゼネバ原車カム面とゼネバ従車カム面接触時ガタ表である。It is a backlash | play table at the time of a Geneva original vehicle cam surface and a Geneva slave vehicle cam surface contact. ゼネバ原車ピン対称位置配置図である。It is a Geneva original vehicle pin symmetrical position arrangement drawing. ゼネバ従車180°位相配置図である。It is a Geneva follower 180 degree phase arrangement diagram. 本発明の実施の形態2を示す図である。It is a figure which shows Embodiment 2 of this invention. 本発明の実施の形態3を示す図である。It is a figure which shows Embodiment 3 of this invention. 本発明の実施の形態3を示す図である。It is a figure which shows Embodiment 3 of this invention.

符号の説明Explanation of symbols

50a,50b ゼネバ従車
51 ゼネバ原車
510a,510b ゼネバ原車ピン
501a,501b ゼネバ従車溝
511 ゼネバ原車カム面
500a,500b ゼネバ従車カム面
α1 ゼネバ原車カム角度
α2 ゼネバ原車ピン・従車溝嵌合角度
θ カム面接触時ゼネバ従車ガタ角度
δ ゼネバ原車ピン・従車溝嵌合角時ゼネバ従車ガタ角度
50a, 50b Geneva slave vehicle 51 Geneva master vehicle 510a, 510b Geneva master vehicle pin 501a, 501b Geneva slave vehicle groove 511 Geneva master vehicle cam surface 500a, 500b Geneva slave vehicle cam surface α1 Geneva master vehicle cam angle α2 Geneva master vehicle pin / Follower groove fitting angle θ Geneva follower backlash angle when cam surface comes in contact δ Geneva master car pin / follower groove fit angle Geneva follower backlash angle

Claims (3)

1つのゼネバ原車を用いて複数のゼネバ従車を順次駆動する構成を用いた順次駆動装置において、
m個の溝を有するゼネバ従車の個数をkとし、ゼネバ従車を駆動する原車ピンの個数をnとしたとき、
kηn=360°
但し、
η=180°−360°/m
n≧2,k≧2
を満足する構成において、ゼネバ従車間角度をηとし、ゼネバ原車ピン間角度αは、
α≠360°/n
とすることを特徴とする順次駆動装置。
In a sequential drive device using a configuration that sequentially drives a plurality of Geneva slaves using one Geneva original vehicle,
When the number of Geneva slaves having m grooves is k, and the number of original vehicle pins driving the Geneva slave is n,
kηn = 360 °
However,
η = 180 ° -360 ° / m
n ≧ 2, k ≧ 2
In the configuration satisfying the above, the angle between the Geneva follower vehicle is η, and the Geneva original vehicle pin angle α is
α ≠ 360 ° / n
A sequential drive device characterized by that.
4つ溝のゼネバ従車2つを1つのゼネバ原車を用いて制御し、前記2つのゼネバ従車を前記ゼネバ原車に対し90°位相に設置し、前記ゼネバ従車を駆動する2つのピンを有する前記ゼネバ原車を有する順次駆動装置において、
前記2つのピンの位相をαとしたとき、
160°≦α<180°
となる位相に設置することを特徴とする請求項1記載の順次駆動装置。
Two Geneva slave vehicles with four grooves are controlled by using one Geneva master vehicle, the two Geneva slave vehicles are installed at a phase of 90 ° with respect to the Geneva master vehicle, and the two Geneva slave vehicles are driven. In the sequential drive device having the Geneva original vehicle having a pin,
When the phase of the two pins is α,
160 ° ≦ α <180 °
The sequential drive device according to claim 1, wherein the sequential drive device is installed in a phase that becomes
1つのゼネバ原車を用いて複数のゼネバ従車を順次駆動する構成を用いた順次駆動装置において、
m個の溝を有するゼネバ従車の個数をkとし、ゼネバ従車を駆動する原車ピンの個数をnとしたとき、
kηn=360°
但し、
η=180°−360°/ m
n≧2,k≧2
を満足する構成において、少なくとも2つのゼネバ従車間の位相τを、
τ>η
とすることを特徴とする順次駆動装置。
In a sequential drive device using a configuration that sequentially drives a plurality of Geneva slaves using one Geneva original vehicle,
When the number of Geneva slaves having m grooves is k, and the number of original vehicle pins driving the Geneva slave is n,
kηn = 360 °
However,
η = 180 ° -360 ° / m
n ≧ 2, k ≧ 2
In a configuration satisfying the above, the phase τ between at least two Geneva slaves is
τ> η
A sequential drive device characterized by that.
JP2005085617A 2005-03-24 2005-03-24 Sequentially driving device Withdrawn JP2006266398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005085617A JP2006266398A (en) 2005-03-24 2005-03-24 Sequentially driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005085617A JP2006266398A (en) 2005-03-24 2005-03-24 Sequentially driving device

Publications (1)

Publication Number Publication Date
JP2006266398A true JP2006266398A (en) 2006-10-05

Family

ID=37202592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005085617A Withdrawn JP2006266398A (en) 2005-03-24 2005-03-24 Sequentially driving device

Country Status (1)

Country Link
JP (1) JP2006266398A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20120392A1 (en) * 2012-05-02 2013-11-03 Claudio Gentile INNOVATIVE DISTRIBUTION SYSTEM FOR INTERNAL COMBUSTION ENGINES
CN106763606A (en) * 2016-12-06 2017-05-31 昆明理工大学 It is a kind of with multiple it is dynamic stop than outside geneva mechanism and its application method
CN108116525A (en) * 2017-12-13 2018-06-05 北京深醒科技有限公司 The robot chassis singly driven
CN108383401A (en) * 2018-05-15 2018-08-10 芮少春 A kind of flue gas waste heat-recovering energy conservation and environmental protection lime burner furnace
CN109718057A (en) * 2019-03-02 2019-05-07 哈尔滨理工大学 A kind of double speed swing type Mammary cancer device for healing and training and application method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20120392A1 (en) * 2012-05-02 2013-11-03 Claudio Gentile INNOVATIVE DISTRIBUTION SYSTEM FOR INTERNAL COMBUSTION ENGINES
CN106763606A (en) * 2016-12-06 2017-05-31 昆明理工大学 It is a kind of with multiple it is dynamic stop than outside geneva mechanism and its application method
CN106763606B (en) * 2016-12-06 2023-09-26 昆明理工大学 Outer sheave mechanism with multiple stop-and-go ratios and use method thereof
CN108116525A (en) * 2017-12-13 2018-06-05 北京深醒科技有限公司 The robot chassis singly driven
CN108116525B (en) * 2017-12-13 2019-05-07 北京深醒科技有限公司 The robot chassis singly driven
CN108383401A (en) * 2018-05-15 2018-08-10 芮少春 A kind of flue gas waste heat-recovering energy conservation and environmental protection lime burner furnace
CN109718057A (en) * 2019-03-02 2019-05-07 哈尔滨理工大学 A kind of double speed swing type Mammary cancer device for healing and training and application method
CN109718057B (en) * 2019-03-02 2023-09-05 哈尔滨理工大学 Double-speed swing type breast cancer postoperative rehabilitation training device

Similar Documents

Publication Publication Date Title
JP2006266398A (en) Sequentially driving device
WO2010122680A1 (en) Method of measuring an involute gear tooth profile
JP3214039U (en) Gripper with electric actuator with gap adjustment function
JP5268900B2 (en) Ring rolling bearing with axial movement and molding tool with ring rolling bearing
US8461790B2 (en) Rotary encoder, rotary motor, and rotary motor system
US20120034027A1 (en) Rotary flexure bearing
CN102686895B (en) Can the radial bearing means adjusted
CN104793313B (en) A kind of transmission mechanism for being applied to Zoom optic lens
TW201326622A (en) Cam device
JP5996203B2 (en) Vibration reduction device for rotating body
JP2015535602A (en) Watch escapement
KR20150079666A (en) Gear cutter with radial adjustability of stick blades
TWI611862B (en) Transmission structure of rotary table
TWI444549B (en) Harmonic drive and wave generator thereof
JP5807558B2 (en) Drive mechanism
JP2008256103A (en) Rocking gear device
JP2008133861A (en) Rocking gear device
JP2008303906A (en) Oscillating gear device
CN104638974B (en) Piezoelectric flexible rotation drive device
CN205363427U (en) Cam carousel mechanism
CN106257096B (en) The steel rope gearing system and its adjusting apparatus of three-dimensional printer
CN102854603A (en) Semi-nested planar cam focusing mechanism
KR101478061B1 (en) Nut screw conveying device
US5243869A (en) Cam operated indexing drive
JPH0324927Y2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603