JP2008133861A - Rocking gear device - Google Patents

Rocking gear device Download PDF

Info

Publication number
JP2008133861A
JP2008133861A JP2006319001A JP2006319001A JP2008133861A JP 2008133861 A JP2008133861 A JP 2008133861A JP 2006319001 A JP2006319001 A JP 2006319001A JP 2006319001 A JP2006319001 A JP 2006319001A JP 2008133861 A JP2008133861 A JP 2008133861A
Authority
JP
Japan
Prior art keywords
tooth
gear
roller
teeth
gears
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006319001A
Other languages
Japanese (ja)
Other versions
JP4939185B2 (en
Inventor
Ichiro Kamimura
一郎 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ogino Industrial Co Ltd
Original Assignee
Ogino Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ogino Industrial Co Ltd filed Critical Ogino Industrial Co Ltd
Priority to JP2006319001A priority Critical patent/JP4939185B2/en
Publication of JP2008133861A publication Critical patent/JP2008133861A/en
Application granted granted Critical
Publication of JP4939185B2 publication Critical patent/JP4939185B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Retarders (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rocking gear device having high transmission efficiency, by making both compatible in securing a degree of freedom of processing accuracy and securing a degree of freedom of positioning accuracy, without impairing an original characteristic such as small type high output. <P>SOLUTION: In this rocking gear device having four bevel gears, first and fourth gears are constituted as a projecting tooth being an equal height tooth out of a cross-sectional semicircular recessed groove extending in the radial direction from the gear center at an equal interval on a pitch cone and a columnar roller rollingly arranged in the recessed groove. Second and third gears respectively meshing with the first and fourth gears are a recessed tooth formed as a generated tooth shape or an approximately generated tooth shape of generating and transferring a tooth shape of the projecting tooth. The projecting tooth is formed longer in the tooth trace length than the tooth trace length of a recessed tooth, and the recessed groove of constituting the projecting tooth is formed in the same circular arc cross section of a uniform cross section so as to non-tiltably support a roller in close contact in the whole tooth trace direction area. The roller is respectively positioned and held by an annular retainer on both ends in the tooth trace direction. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ハウジングに固定された歯数n1 の第1歯車と、出力軸に取付けられた歯数n4 の第4歯車とを、入力軸との各軸芯を一致させて配置し、歯数n2 の第2歯車および歯数n3 の第3歯車を一体に設けた回転体を、第2歯車が第1歯車と噛み合い、第3歯車が第4歯車と噛み合うように前記入力軸の傾斜部で軸支し、前記第1、第2歯車の各ピッチ円を通る共通球面の中心点と、前記第3、第4歯車の各ピッチ円を通る共通球面の中心点とが一致する点を原点とするXY座標のX軸上に前記入力軸の軸芯を配置し、かつ、第1、第2歯車の噛み合い点と第4、第3歯車の噛み合い点とを該XY座標の同一象限若しくは異なる象限上に置いてなる揺動型歯車装置に関する。 In the present invention, a first gear with n 1 teeth fixed to the housing and a fourth gear with n 4 teeth attached to the output shaft are arranged with their axis centers aligned with the input shaft, A rotating body integrally provided with a second gear having n 2 teeth and a third gear having n 3 teeth is arranged on the input shaft so that the second gear meshes with the first gear and the third gear meshes with the fourth gear. The center point of the common sphere passing through the pitch circles of the first and second gears coincides with the center point of the common sphere passing through the pitch circles of the third and fourth gears. The axis of the input shaft is arranged on the X axis of the XY coordinates with the point as the origin, and the meshing points of the first and second gears and the meshing points of the fourth and third gears are the same in the XY coordinates. The present invention relates to an oscillating gear device placed in a quadrant or a different quadrant.

従来より、揺動運動を行ういわゆる揺動型歯車装置を用いた減速歯車装置の原理が知られていた。この揺動型歯車装置は、4つの歯車のみで大減速比を得ることが可能であり、様々な利点を有するものである。しかしながら、揺動型歯車装置はその歯形を高精度かつ低コストでの生産が困難な球面インボリュート歯形とする必要があり、実用化には至らなかった。本発明者はこの球面インボリュート歯形に替えて、一方の歯車の歯形を、歯すじ方向において歯幅および歯たけが等しいいわゆる等高歯とし、他方の歯形を該等高歯の歯形を創成転写し、さらに該等高歯を、ローラ状のコロを凸状歯として用いることにより、揺動型歯車装置の実用化を可能とした。なお、揺動型歯車装置の詳細については、特公平7−56324号公報(特許文献1)に開示されている。   Conventionally, the principle of a reduction gear device using a so-called oscillating gear device for oscillating motion has been known. This oscillating gear device can obtain a large reduction ratio with only four gears, and has various advantages. However, the oscillating gear device needs to have a spherical involute tooth profile that is difficult to produce with high accuracy and low cost, and has not been put into practical use. Instead of this spherical involute tooth profile, the present inventor changed the tooth profile of one gear to a so-called contour tooth having the same tooth width and tooth width in the direction of the teeth, and created and transferred the tooth profile of the contour tooth to the other tooth profile. Furthermore, the swing-type gear device can be put to practical use by using the contoured teeth and roller-shaped rollers as convex teeth. The details of the oscillating gear device are disclosed in Japanese Patent Publication No. 7-56324 (Patent Document 1).

図13には、本発明者による揺動型歯車装置の要部断面が示されている。揺動型歯車装置は、入力軸1と出力軸2との間を、第1〜第4歯車A1 〜A4 で連結し、これらの歯車によって減速を行っている。この第1〜第4歯車A1〜A4は傘歯車である。そして、第1歯車A1 はハウジング6に一体的に固定されている。また、第2歯車A2 および第3歯車A3 は1つの回転体3に設けられ、回転体3は入力軸1の傾斜部1aで回転自在に支承されている。このように回転体3を傾斜支持すると、入力軸1の回転に伴って回転体3に揺動運動を発生させることができる。また、各歯車の噛み合い部にコロが介在されこのコロの転動により噛み合い摩擦を吸収している。 FIG. 13 shows a cross section of the main part of the oscillating gear device by the present inventor. In the oscillating gear device, the input shaft 1 and the output shaft 2 are connected by first to fourth gears A 1 to A 4 , and the speed is reduced by these gears. The first to fourth gears A 1 to A 4 are bevel gears. The first gear A 1 is integrally fixed to the housing 6. The second gear A 2 and the third gear A 3 are provided on one rotating body 3, and the rotating body 3 is rotatably supported by the inclined portion 1 a of the input shaft 1. When the rotating body 3 is supported in an inclined manner as described above, a swinging motion can be generated in the rotating body 3 as the input shaft 1 rotates. A roller is interposed in the meshing portion of each gear, and meshing friction is absorbed by the rolling of the roller.

図14に示すように、コロ4aは、第1歯車A1(第4歯車A4 )に形成された凹溝4bによって転動自在に支持されている。そして、凹溝4bから突出するコロ4aによって、半円筒状の凸状歯4を形成している。また、第2歯車A2 (第3歯車A3 )にも半円弧状凹溝を形成し、凹状歯5として構成する。そして、回転体3が矢印Bで示す方向に揺動運動を行うと、第2歯車A2 (第3歯車A3 )は矢印Cで示す方向に移動し、各凹状歯5と凸状歯4とを噛み合わせていく。この際に、各凹状歯と凸状歯との間に生ずる摺動を、コロ4aの転動で吸収している。したがって、バックラッシの設定をなくし、かつ、歯同士に意図的に予圧を付与しても、歯同士の噛み合いによる発熱を回避することが可能となる。
特公平7−56324号公報
As shown in FIG. 14, the roller 4a is supported by a concave groove 4b formed in the first gear A 1 (fourth gear A 4 ) so as to be able to roll. And the semicylindrical convex tooth | gear 4 is formed with the roller 4a which protrudes from the ditch | groove 4b. Further, the second gear A 2 (third gear A 3 ) is also formed with a semicircular arc-shaped groove and formed as a concave tooth 5. When the rotating body 3 swings in the direction indicated by the arrow B, the second gear A 2 (third gear A 3 ) moves in the direction indicated by the arrow C, and the concave teeth 5 and the convex teeth 4 are moved. And bite. At this time, the sliding generated between the concave teeth and the convex teeth is absorbed by the rolling of the rollers 4a. Therefore, even if the backlash setting is eliminated and the preload is intentionally applied to the teeth, it is possible to avoid heat generation due to the meshing of the teeth.
Japanese Examined Patent Publication No. 7-56324

上記の揺動型歯車装置は、上記凸状歯を凹溝とコロとで構成、すなわち、噛み合い部にコロを介在させることにより、原理的には噛み合い部の摩擦抵抗が低減されることになり、伝達効率を高めることが可能となる。しかしながら、噛み合い部の構成要素が増えることにより噛み合い精度の確保が大きな課題となる。一体型の凸状歯と凹状歯の噛み合いであれば2部品個々の精度と2者間の位置決め精度を確保すればよいが、噛み合い構成要素としてコロが増加することによって、3部品の個別精度に加えて3者間の位置決め精度の確保が極めて複雑になる。   In the above-mentioned oscillating gear device, the convex teeth are composed of concave grooves and rollers, that is, by interposing the rollers in the meshing portion, the frictional resistance of the meshing portion is reduced in principle. It becomes possible to increase the transmission efficiency. However, securing the meshing accuracy becomes a major issue due to the increase in the components of the meshing portion. If it is meshing of integral convex teeth and concave teeth, it is sufficient to ensure the accuracy of each of the two parts and the positioning accuracy between the two, but by increasing the roller as the meshing component, the individual precision of the three parts is increased. In addition, ensuring the positioning accuracy among the three parties becomes extremely complicated.

つまり、揺動型歯車装置において、第1歯車A1と第2歯車A2の噛み合いが、第2歯車A2が第1歯車に対して面ぶれ運動を行いながら噛み合いが行われるため、噛み合い始めから噛み合い離脱の間、各歯車の母線が互いに交差することになり、相互に噛み合い干渉部が生じる。それ故、凸状歯および凹状歯の両者をともに単純な形状にすることはできず、一方を任意の単純な形状にすれば、他方はそれに適切に噛み合うように干渉部を取り除いた複雑な形状にする必要がある。 In other words, in the oscillating gear device, the meshing of the first gear A 1 and the second gear A 2 is performed while the second gear A 2 performs a face-to-face movement with respect to the first gear, so that the meshing begins. During meshing and disengagement, the buses of the gears intersect each other, and meshing interference portions are generated. Therefore, both convex teeth and concave teeth cannot be made simple, and if one is made to be any simple shape, the other is a complicated shape with the interference part removed so as to properly mesh with it. It is necessary to.

したがって、他方の歯形を一方の歯形に創成転写することで適切な歯形とすることが可能であるが、複雑な創成加工機を用いる必要があり、加工上課題がある。歯すじ長さが短ければ、単純な直線の組み合わせ加工で創成歯に近似する近似歯形とすることも可能であるが、歯すじ長さが長い場合には、母線相互の角度は一定でも歯すじ方向端部での変位量が大きくなり干渉除去部の幅が大きくなるので単純な直線の組み合わせでは加工工程が極めて複雑になる。   Therefore, it is possible to obtain an appropriate tooth profile by creating and transferring the other tooth profile to one tooth profile, but it is necessary to use a complex creation processing machine, and there is a problem in processing. If the tooth trace length is short, it is possible to make an approximate tooth profile that approximates the tooth generated by simple straight line combination processing. However, if the tooth trace length is long, the tooth traces are constant even if the angle between the busbars is constant. Since the amount of displacement at the end in the direction increases and the width of the interference removal portion increases, the machining process becomes extremely complicated with a simple straight line combination.

また、創成加工によって適切な歯形が加工できたとしても、歯形が複雑であるが故に両者の位置決めは、回転方向もさることながら半径方向すなわち歯すじ方向においても厳密に位置決めする必要があり、生産性において大きな課題となっている。すなわち、凸状歯としてのコロが、部品点数として増加することは、コロと凹状歯との間、コロと凹溝との間においてきわめて正確な位置決め精度が必要となる。   Even if an appropriate tooth profile can be machined by creation, the tooth profile is complicated, so it is necessary to position both of them in the radial direction, that is, in the tooth trace direction as well as the rotational direction. It is a big issue in sex. That is, the fact that the rollers as the convex teeth increase as the number of parts requires extremely accurate positioning accuracy between the rollers and the concave teeth, and between the rollers and the concave grooves.

さらに、加工精度および組み立て時の位置決め精度が向上したとしても、負荷を掛けての作動中、3者間の位置精度が常に適正に維持される必要があるが、特に凸状歯としてのコロにはかなりの高荷重が作用することになるので、適正位置を維持するためには、凹溝内における高い支持剛性が必要となる。コロの支持剛性を確保するためには、コロの長手方向、つまり歯すじ方向の支持長さが必要となるが、単純に長くすれば伝動効率を低下させるだけでなく、歯車装置の大型化を招き新たな課題が残る。   Furthermore, even if the machining accuracy and positioning accuracy during assembly are improved, it is necessary to always maintain the position accuracy between the three during operation under load. As a result, a considerably high load is applied, and in order to maintain an appropriate position, a high support rigidity in the groove is required. In order to secure the support rigidity of the roller, the support length in the longitudinal direction of the roller, that is, the direction of the tooth trace, is required, but simply increasing the length will not only reduce the transmission efficiency but also increase the size of the gear device. Invite new challenges remain.

特に、第2歯車A2側を凸状歯とし、コロを支持するように構成すると、その支持長さを確保するためには、コロおよびそれを支持する凹溝の長さを長くする必要があり、第2歯車A2を形成する回転体の肉厚が厚くなり、回転体としての質量が増大し偏芯回転運動(揺動運動)に伴うバランサー構造が複雑になるばかりか、揺動型歯車装置の特徴である小型高出力という特徴が損なわれることになる。 In particular, when the second gear A 2 side has convex teeth and is configured to support the roller, it is necessary to increase the length of the roller and the concave groove that supports the roller in order to secure the support length. The thickness of the rotating body forming the second gear A 2 is increased, the mass as the rotating body is increased, and the balancer structure associated with the eccentric rotational motion (oscillating motion) is complicated. The feature of the small and high output characteristic of the gear device is impaired.

本発明はかかる点に鑑みてなされたもので、揺動型歯車装置としての小型高出力という本来の特徴を損なうことなく、加工精度の自由度の確保と位置決め精度の自由度の確保とを両立でき、伝達効率の高い揺動型歯車装置を提供することをその目的とする。   The present invention has been made in view of the above points, and it is possible to achieve both a high degree of freedom in machining accuracy and a high degree of freedom in positioning accuracy without impairing the original characteristic of a small and high output as a oscillating gear device. An object of the present invention is to provide an oscillating gear device that can transmit and has high transmission efficiency.

上記課題を解決するための本発明の請求項1に係わる手段は、ハウジングに固定された歯数n1 の第1歯車と、出力軸に取付けられた歯数n4 の第4歯車とを、入力軸との各軸芯を一致させて配置し、歯数n2 の第2歯車および歯数n3 の第3歯車を一体に設けた回転体を、第2歯車が第1歯車と噛み合い、第3歯車が第4歯車と噛み合うように前記入力軸の傾斜部で軸支し、前記第1、第2歯車の基準ピッチ円を通る共通球面の中心点と、前記第3、第4歯車の各ピッチ円を通る共通球面の中心点とが一致する点を原点とするXY座標のX軸上に前記入力軸の軸芯を配置し、かつ、第1、第2歯車の噛み合い点と第4、第3歯車の噛み合い点とを該XY座標の同一象限若しくは異なる象限上に置いてなる揺動型歯車装置であって、
上記第1ないし第4歯車が傘歯車として構成され、
該第1ないし第4歯車の互いに噛み合い対峙する歯車のうち第1歯車および第4歯車が、ピッチ円錐上において等間隔で歯車中心から放射方向に伸びる断面半円状の凹溝と、該凹溝内に転動自在に配置される円柱状のコロとで等高歯としての凸状歯として構成され、上記第1歯車および第4歯車とそれぞれ噛み合う第2および第3歯車が、該凸状歯の歯形を創成転写した創成歯形もしくは近似創成歯形として形成された凹状歯として構成され、
該凸状歯は歯すじ長さが該凹状歯の歯すじ長さより長く設定されており、
上記凸状歯を構成する凹溝は、歯すじ方向全域において上記コロを傾動不能に密接支持するように歯すじ方向の全域において断面一様の同一円弧断面に形成され、
さらに該コロは、歯すじ方向両端においてそれぞれ環状のリテーナによって上記第1および第4歯車に位置決め保持されていることを特徴とする。
Means according to claim 1 of the present invention to solve the above problems, a first gear tooth number n 1 which is fixed to the housing, and a fourth gear teeth number n 4 attached to the output shaft, A rotating body in which each shaft core with the input shaft is arranged to be coincident and a second gear having n 2 teeth and a third gear having n 3 teeth are integrally provided, and the second gear meshes with the first gear; The third gear is pivotally supported by the inclined portion of the input shaft so as to mesh with the fourth gear, the center point of the common spherical surface passing through the reference pitch circle of the first and second gears, and the third and fourth gears. The axis of the input shaft is arranged on the X axis of the XY coordinates with the origin coincident with the central point of the common spherical surface passing through each pitch circle, and the meshing points of the first and second gears and the fourth An oscillating gear device in which the meshing point of the third gear is placed in the same or different quadrant of the XY coordinates,
The first to fourth gears are configured as bevel gears,
The first gear and the fourth gear of the first to fourth gears meshing with each other and facing each other have a semicircular groove having a semicircular cross section extending radially from the gear center at equal intervals on the pitch cone, and the groove The second and third gears, which are configured as convex teeth as contour teeth with a cylindrical roller that is arranged so as to freely roll inside, are meshed with the first gear and the fourth gear, respectively. It is configured as a concave tooth formed as a created tooth profile or an approximate created tooth profile created by transferring the tooth profile of
The convex teeth are set such that the tooth length is longer than the tooth length of the concave teeth,
The concave grooves constituting the convex teeth are formed in the same circular arc cross section with a uniform cross section in the whole area in the streak direction so as to closely support the roller in a non-tiltable manner in the whole area in the tooth streak direction,
Further, the roller is positioned and held on the first and fourth gears by annular retainers at both ends in the tooth trace direction.

以上のように、歯すじ方向に断面が一様の円柱状のコロと凹溝とで構成され十分な長さを有する凸状歯を比較的配置上の自由度のある第1歯車、第4歯車側に配置固定されていることによって他方の対峙歯車としての第2および第3歯車の歯形すなわち凹状歯の歯すじ方向長さを短くすることができ、その分、第2および第3歯車のコロとの間の干渉幅が小さくなり、加工上の自由度が拡大するだけでなくその歯形の寸法精度が多少低くても必要な噛み合い精度を確保することができる。しかも、歯すじ方向の組み立て精度が多少のずれがあっても噛み合い歯車としての一方の歯形が歯すじ方向に断面一様の円柱状のコロであることとそのコロが歯すじ方向に断面一様でかつ十分な歯すじ長さの凹溝にてその全域が支持され、その支持剛性が高められ、コロと凹溝とが実質的に一体化されているので、この凸状歯と凹状歯の位置決め精度は一体化された凸状歯と凹状歯間の位置決め精度によって決まることになり、その自由度が拡大することになる。したがって、加工精度および位置決め精度の自由度の確保が可能となり、もって、揺動型歯車装置としての生産性の向上と伝達効率の向上とを同時に達成することが可能となる。   As described above, the first gear, which is composed of a cylindrical roller having a uniform cross-section in the tooth trace direction and a concave groove and has a sufficient length, has a relatively high degree of freedom in arrangement, and fourth By arranging and fixing on the gear side, the tooth shape of the second and third gears as the other counter gear, that is, the length of the concave tooth in the streak direction can be shortened. The interference width with the roller is reduced, the degree of freedom in processing is increased, and the required meshing accuracy can be ensured even if the dimensional accuracy of the tooth profile is somewhat low. Moreover, even if there is a slight deviation in the assembly accuracy in the tooth trace direction, one tooth profile as the meshing gear is a cylindrical roller having a uniform cross section in the tooth trace direction, and that roller has a uniform cross section in the tooth trace direction. In addition, the entire region is supported by a groove having a sufficient tooth trace length, the support rigidity is enhanced, and the roller and the groove are substantially integrated. The positioning accuracy is determined by the positioning accuracy between the integrated convex teeth and concave teeth, and the degree of freedom is expanded. Therefore, it is possible to ensure the degree of freedom of machining accuracy and positioning accuracy, so that it is possible to simultaneously improve productivity and transmission efficiency as the swinging gear device.

請求項2にかかわる手段は、請求項1において、上記凹状歯がその開口部が基準ピッチ円直径をはさんで歯すじ方向外方および歯すじ方向内方に拡大する鼓形状に形成されていることを特徴とする。この構成によれば凹状歯の開口部における周方向の干渉幅を最小にすることができ、加工精度の自由度ならびに加工形態の選択の自由度の拡大につながり、噛み合い精度の向上および生産コストの低減に大きく貢献する。しかも、半径方向の干渉幅が小さくなることは、噛み合い始め(噛み合い終わり)位置における凸状歯との接触角が小さくなることを意味し、アキシャル方向の分力が小さくなり、伝達効率が向上する。   According to a second aspect of the present invention, in the first aspect of the present invention, the concave teeth are formed in a drum shape in which the openings expand outward in the tooth trace direction and inward in the tooth trace direction across the reference pitch circle diameter. It is characterized by that. According to this configuration, the interference width in the circumferential direction at the opening of the concave tooth can be minimized, leading to an increase in freedom of processing accuracy and freedom of selection of a processing form, improving meshing accuracy and reducing production cost. Greatly contributes to reduction. Moreover, the reduction in the radial interference width means that the contact angle with the convex teeth at the meshing start (meshing end) position is reduced, the axial component force is reduced, and the transmission efficiency is improved. .

請求項3にかかわる手段は、請求項1において、上記基準ピッチ円直径が、歯すじ方向中央をはさんで内外にそれぞれ歯すじ長さの30%の範囲に設定されていることを特徴とする。基準ピッチ円直径が30%以上内外にずれると、上記干渉除去幅が一方において大きくなるので、伝達効率の悪化につながり、好ましくない。   According to a third aspect of the present invention, in the first aspect, the reference pitch circle diameter is set in a range of 30% of the length of the streak in and out of the center of the streak direction. . If the reference pitch circle diameter is shifted inward or outward by 30% or more, the interference removal width increases on one side, which leads to deterioration in transmission efficiency, which is not preferable.

請求項4にかかわる手段は、請求項1において、上記基準ピッチ円直径が、上記凹状歯の干渉除去部の幅が歯すじ方向両端においてほぼ等しくなるように歯すじ方向中央より外方に設定されていることを特徴とする。この構成によれば、干渉除去幅を最小にすることが可能となり、伝達効率の向上はもちろんのこと、特別な創成加工機を用いなくても従来の直線加工機での加工も可能となり、生産性が極めて向上する。   According to a fourth aspect of the present invention, in the first aspect, the reference pitch circle diameter is set outward from the center of the tooth trace direction so that the width of the interference removal portion of the concave tooth is substantially equal at both ends of the tooth trace direction. It is characterized by. According to this configuration, it is possible to minimize the interference removal width, not only improve transmission efficiency, but also allow processing with a conventional linear processing machine without using a special creation processing machine. The property is greatly improved.

請求項5にかかわる手段は、請求項1〜4において、上記凸状歯を構成する凹溝は、上記コロの外周面とその全面で接触するように、コロの外周面に対応した単一円弧で形成されていることを特徴とする。この構成によれば、支持長さが長いこととあいまって、コロの支持剛性がより向上する。   According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the concave groove constituting the convex teeth is a single arc corresponding to the outer peripheral surface of the roller so that the outer peripheral surface of the roller contacts the entire surface. It is formed by. According to this configuration, coupled with the long support length, the support rigidity of the roller is further improved.

請求項6にかかわる手段は、請求項1〜4において、上記凸状歯を構成する凹溝は、開口部近傍において接触点を持ちかつ溝底においコロとの間に所定の空間を構成するように複数の円弧で形成されていることを特徴とする。この構成によれば、コロが特定接触点の2点で支持されることになるので、支持剛性を安定的に強化することができる。さらに、コロが磨耗してもコロと凹溝の接触角の変動がなく、凹溝内でのがたが生じることがなく、歯すじ方向全域において安定した支持剛性が得られる。   According to a sixth aspect of the present invention, in the first to fourth aspects, the concave groove constituting the convex tooth has a contact point in the vicinity of the opening and forms a predetermined space with the roller at the bottom of the groove. Are formed by a plurality of arcs. According to this configuration, since the roller is supported at two specific contact points, the support rigidity can be stably enhanced. Furthermore, even if the roller is worn, there is no change in the contact angle between the roller and the groove, and no rattling occurs in the groove, so that stable support rigidity can be obtained in the entire region of the tooth trace direction.

請求項7にかかわる手段は、請求項1〜4において、上記凸状歯を構成する凹溝が、上記コロの外周面とその全面で接触するように、コロの外周面に対応した単一円弧で形成され、上記凹状歯が、開口部近傍において接触点を持ちかつ溝底においコロとの間に所定の空間を構成するように多重円弧で形成されていることを特徴とする。この構成によれば、コロの支持剛性の確保と伝達効率の向上とを同時に図ることができる。   According to a seventh aspect of the present invention, in the first to fourth aspects, a single arc corresponding to the outer peripheral surface of the roller so that the concave groove constituting the convex tooth contacts the outer peripheral surface of the roller over the entire surface thereof. The concave teeth are formed in multiple arcs so as to form a predetermined space between the contact point in the vicinity of the opening and the roller at the groove bottom. According to this configuration, it is possible to simultaneously secure the roller support rigidity and improve the transmission efficiency.

請求項8にかかわる手段は、請求項1〜4において、上記凹溝と凹状歯がともに開口部近傍において接触点を持ちかつ溝底においコロとの間に所定の空間を構成するように多重円弧で形成されていることを特徴とする。この構成によれば、支持剛性の安定確保と伝達効率の向上とを同時に図ることができる。   According to an eighth aspect of the present invention, in the first to fourth aspects, the concave groove and the concave teeth both have a contact point in the vicinity of the opening, and a multiple arc is formed between the bottom of the groove and a roller. It is formed by. According to this configuration, it is possible to achieve stable support rigidity and improve transmission efficiency at the same time.

請求項9にかかわる手段は、請求項1〜8において、上記リテーナのうち少なくとも内方側はその外周面において上記コロの端面とコンタクトし該コロを歯すじ方向に弾性的に保持していることを特徴とする。この構成によれば、各歯車の噛み合い部におけるコロは、歯すじ方向に摩擦力が作用するが、コロの軸方向内端がリテーナによって弾性的に保持されているので、その弾性に抗して歯すじ方向に変位が可能となり、コロの端面とリテーナの外周面との間の摩擦力が大幅に低減される。この場合、噛み合いが解除されれば、コロはリテーナの弾性により初期位置に戻されることになる。   According to a ninth aspect of the present invention, in the first to eighth aspects, at least the inner side of the retainer is in contact with the end surface of the roller on the outer peripheral surface thereof, and the roller is elastically held in the tooth trace direction. It is characterized by. According to this configuration, the roller at the meshing portion of each gear is subjected to a frictional force in the direction of the teeth, but the inner end in the axial direction of the roller is elastically held by the retainer. Displacement in the tooth trace direction is possible, and the frictional force between the end surface of the roller and the outer peripheral surface of the retainer is greatly reduced. In this case, if the mesh is released, the roller is returned to the initial position by the elasticity of the retainer.

本発明は、揺動型歯車装置としての小型高出力という本来の特徴を損なうことなく、加工精度の自由度の確保と位置決め精度の自由度の確保とを両立でき、噛み合い精度が高く伝達効率の高い揺動型歯車装置を提供することができる。   The present invention can achieve both a high degree of freedom in machining accuracy and a high degree of freedom in positioning accuracy without compromising the original characteristics of a small and high output as an oscillating gear device, with high meshing accuracy and high transmission efficiency. A high oscillating gear device can be provided.

以下本発明の実施例を図1〜10に基づいて説明する。なお、上記従来例と同一ないし相当部分は同一符号を付し詳細な説明は省略する。本発明にかかわる揺動型歯車装置は、ハウジング6に固定された歯数n1 の第1歯車A1と、出力軸2に取付けられた歯数n4 の第4歯車A4とを、入力軸1との各軸芯を一致させて配置し、歯数n2 の第2歯車A2および歯数n3 の第3歯車A3を一体に設けた回転体3を、第2歯車A2が第1歯車A1と噛み合い、第3歯車A3が第4歯車A4と噛み合うように前記入力軸1の傾斜部1aで軸支し、前記第1、第2歯車の各ピッチ円を通る共通球面の中心点と、前記第3、第4歯車の各ピッチ円を通る共通球面の中心点が一致する点Oを原点とするXY座標のX軸上に前記入力軸の軸芯Gを配置し、かつ、第1、第2歯車A2の噛み合い点と第4、第3歯車A3の噛み合い点とを該XY座標の同一象限若しくは異なる象限上に置くことによって構成される。 Embodiments of the present invention will be described below with reference to FIGS. The same or corresponding parts as those in the conventional example are given the same reference numerals, and detailed description thereof is omitted. The oscillating gear device according to the present invention inputs a first gear A 1 having n 1 teeth fixed to the housing 6 and a fourth gear A 4 having n 4 teeth attached to the output shaft 2. match the respective axis of the shaft 1 is arranged, the rotor 3 having a second gear a 2 and the third gear a 3 teeth number n 3 of the teeth n 2 together, the second gear a 2 Is engaged with the first gear A 1, and the third gear A 3 is supported by the inclined portion 1 a of the input shaft 1 so as to be engaged with the fourth gear A 4, and passes through the pitch circles of the first and second gears. The axis G of the input shaft is arranged on the X axis of the XY coordinates with the origin being a point O where the center point of the common sphere coincides with the center point of the common sphere passing through the pitch circles of the third and fourth gears. and, and, construction by placing the first, second gear a 2 meshing point and the fourth, identical quadrants or different quadrant on the engagement point of the third gear a 3 the XY coordinates It is.

上記揺動型歯車装置は、より具体的には、歯数の異なる4つの歯車として、第1〜第4歯車A1 〜A4 を有している。各歯車は傘歯車である。このうち第1歯車A1 は、ハウジング6に一体的に固定され、回転をしない固定歯車である。第2歯車A2 、第3歯車A3 は、入力軸1によって軸支される回転体3に形成されている。また、第4歯車A4 は出力軸2に設けられ、ハウジング6により回転自在に支持されている。そして、第1歯車A1 と第2歯車A2 、第3歯車A3 と第4歯車A4 とがそれぞれ噛み合っている。 More specifically, the oscillating gear device has first to fourth gears A 1 to A 4 as four gears having different numbers of teeth. Each gear is a bevel gear. Among these, the first gear A 1 is a fixed gear that is integrally fixed to the housing 6 and does not rotate. The second gear A 2 and the third gear A 3 are formed on the rotating body 3 supported by the input shaft 1. The fourth gear A 4 is provided on the output shaft 2 and is rotatably supported by the housing 6. The first gear A 1 and the second gear A 2 , and the third gear A 3 and the fourth gear A 4 are engaged with each other.

回転体3は、入力軸1の軸芯Gに対して所定の角度をなす軸芯Hを有する傾斜部1aによって支持されている。入力軸1自体も、ハウジング6によって回動自在に支持されている。入力軸1が回転すると、傾斜部1aが首を振るような運動をし、これに軸支される回転体3は、揺動運動をする。この、回転体3の揺動運動に伴い、第2歯車A2 を第1歯車A1 に、また、第3歯車A3 を第4歯車A4 にそれぞれ噛み合わせていく。すると、第2歯車A2 は、1周期の揺動運動(入力軸1の1回転)当り、第1歯車A1 との歯数差に相当する分だけ第1歯車A1に対して回転する。すなわち、第1歯車A1 と、第2歯車A2 との間で、1段階の減速がなされる。 The rotating body 3 is supported by an inclined portion 1 a having an axis H that forms a predetermined angle with respect to the axis G of the input shaft 1. The input shaft 1 itself is also rotatably supported by the housing 6. When the input shaft 1 rotates, the inclined portion 1a performs a motion such as swinging the head, and the rotating body 3 pivotally supported by the inclined portion 1a performs a swinging motion. As the rotating body 3 swings, the second gear A 2 is engaged with the first gear A 1 and the third gear A 3 is engaged with the fourth gear A 4 . Then, the second gear A 2 is rotated per oscillating motion of one cycle (one revolution of the input shaft 1), with respect to an amount corresponding first gear A 1 which corresponds to the difference in the number of teeth between the first gear A 1 . That is, one-stage deceleration is performed between the first gear A 1 and the second gear A 2 .

ここで、第1歯車A1 の歯数を 100、第2歯車A2 の歯数を 101とした場合を考える。入力軸1が1回正回転すると、第1歯車A1 に対して第2歯車A2 は1/100 だけ正回転する。第2歯車A2 の運動は、第3歯車A3 に直接伝わり、第3歯車A3 と第4歯車A4 との間でも、同様の噛み合いを行う。よって、第3歯車A3 と第4歯車A4 との間でも、1段階の減速がなされる。すなわち、入力軸1の回転運動が出力軸2に伝達される際に、第1、第2歯車A1 ,A2 と、第3、第4歯車A3 ,A4 とで、2段階の減速作用が行われることになる。 Here, consider the case where the number of teeth of the first gear A 1 is 100 and the number of teeth of the second gear A 2 is 101. When the input shaft 1 rotates forward once, the second gear A 2 rotates forward by 1/100 with respect to the first gear A 1 . Movement of the second gear A 2 is transmitted directly to the third gear A 3, also between the third gear A 3 and the fourth gear A 4, performs the same engagement. Therefore, one-stage deceleration is performed between the third gear A 3 and the fourth gear A 4 . That is, when the rotational movement of the input shaft 1 is transmitted to the output shaft 2, the first and second gears A 1 and A 2 and the third and fourth gears A 3 and A 4 are decelerated in two stages. The action will be performed.

上記揺動型歯車装置の減速比をR(入力軸1が1回転したときの出力軸2の回転数)とすると、R=1−(n4 ×n2 )/(n3 ×n1 ) ……(i)
ここで、n1 :第1歯車A1 の歯数,n2 :第2歯車A2 の歯数,n3 :第3歯車A3 の歯数,n4 :第4歯車A4 の歯数とし、n1 =1000,n2 =1001,n3 =1000,n4 =999とすると、減速比R=1/ 100万(正回転)となる。このように、揺動型歯車装置は、僅か4枚の歯車で大きな減速比を得ることができるものである。
R = 1− (n 4 × n 2 ) / (n 3 × n 1 ) where R (the number of rotations of the output shaft 2 when the input shaft 1 makes one rotation) is R ...... (i)
Here, n 1 : number of teeth of the first gear A 1 , n 2 : number of teeth of the second gear A 2 , n 3 : number of teeth of the third gear A 3 , n 4 : number of teeth of the fourth gear A 4 Assuming that n 1 = 1000, n 2 = 1001, n 3 = 1000, and n 4 = 999, the reduction ratio R = 1 / 1,000,000 (forward rotation). Thus, the oscillating gear device can obtain a large reduction ratio with only four gears.

なお、前述のごとく、第1歯車A1 の歯数と第2歯車A2 の歯数差が1の場合には、揺動運動が1周期進むと、第1歯車A1 と第2歯車A2 との間で、噛み合う歯は1つずれる。また、同歯数差が2の場合は、揺動運動が1周期進むと、第1歯車A1 と第2歯車A2 との間で、噛み合う歯は2つずれる。同様にして、歯数差がnの場合には、噛み合う歯はn個ずれることになる。このことは、第3、第4歯車A3 ,A4 の関係においても同じである。 As described above, when the difference between the number of teeth of the first gear A 1 and the number of teeth of the second gear A 2 is 1, the first gear A 1 and the second gear A are moved when the oscillating motion advances by one cycle. The teeth that mesh with each other are shifted by one. Further, when the difference in the number of teeth is 2, when the oscillating motion advances by one cycle, the meshing teeth are shifted by two between the first gear A 1 and the second gear A 2 . Similarly, when the difference in the number of teeth is n, the meshing teeth are shifted by n. This also applies to the relationship between the third and fourth gears A 3 and A 4 .

続いて、揺動型歯車装置の歯形を求める手法について、以下に説明する。ここで、図1に示す揺動型歯車装置の各傘歯車の歯形を求める手法を示す展開図を図4に、その要部拡大図を図5に示す。なお、各歯車A1,A2 ,A3 ,A4 は摸式的にピッチ円錐で示している。 Next, a method for obtaining the tooth profile of the oscillating gear device will be described below. Here, FIG. 4 is a development view showing a method for obtaining the tooth profile of each bevel gear of the swinging gear device shown in FIG. 1, and FIG. Each gear A 1 , A 2 , A 3 , A 4 is schematically shown as a pitch cone.

ここでは、第1歯車A1 、第2歯車A2 の各ピッチ円(基準ピッチ円直径位置)を通る共通球面Cir1と、第3歯車A3 、第4歯車A4 の各ピッチ円を通る共通球面Cir2とを考える。そして、各共通球面の中心点を一致させ、該一致点を点Oとする。さらに、点Oを原点とするXY座標を考える。このXY座標のX軸上に入力軸1の軸芯Gを配置する。また、第1、第2歯車A1 ,A2 の噛み合い点をC1 、第3、第4歯車A3 ,A4 の噛み合い点をC2 とする。そして、噛み合い点C1,C2 を、第1象限と第3象限若しくは第2象限と第4象限に置く。 Here, a common spherical surface Cir1 that passes through each pitch circle (reference pitch circle diameter position) of the first gear A 1 and the second gear A 2 and a common that passes through each pitch circle of the third gear A 3 and the fourth gear A 4 are used. Consider spherical Cir2. Then, the center points of the respective common spherical surfaces are made to coincide with each other, and the coincidence point is set as a point O. Further, XY coordinates with the point O as the origin are considered. The axis G of the input shaft 1 is arranged on the X axis of the XY coordinates. The meshing point of the first and second gears A 1 and A 2 is C 1 , and the meshing point of the third and fourth gears A 3 and A 4 is C 2 . Then, the meshing points C 1 and C 2 are placed in the first quadrant and the third quadrant or the second quadrant and the fourth quadrant.

また、入力軸1の軸芯Gと傾斜部1aの軸芯Hとがなす角度をθ、第1歯車A1 の背円錐とピッチ円錐の中心線とでなす角度をθ1 、第2歯車A2 の背円錐とピッチ円錐の中心線とでなす角度をθ2 とすると、θ1 +θ2 =θである。なお、θ1 ,θ2 のいずれか一方の角度を零とすることも可能であり、この場合は、前記角度を零とした方の歯車が冠歯車となる。同様にして、第3、第4歯車A3 ,A4 の背円錐と各ピッチ円錐の中心線とでなす角度は、第3歯車A3 はθ3 、第4歯車A4 はθ4 かつθ3 +θ4 =θである。 The angle formed between the axis G of the input shaft 1 and the axis H of the inclined portion 1a is θ, the angle formed between the spine cone of the first gear A 1 and the center line of the pitch cone is θ 1 , and the second gear A. When the angle formed by the back cone of 2 and the center line of the pitch cone is θ 2 , θ 1 + θ 2 = θ. It is also possible to make either one of the angles θ 1 and θ 2 zero, and in this case, the gear having the zero angle becomes the crown gear. Similarly, the third angle formed by the fourth gear A 3, the center line of the back cone and the pitch cone of A 4, the third gear A 3 are theta 3, the fourth gear A 4 is theta 4 cutlet theta 3 + θ 4 = θ.

また、第1〜第4歯車の歯数をそれぞれn1 ,n2 ,n3 ,n4 とし、n1 ,n2 の値、n3 ,n4 の値は互いに異なるものとする。ここで、第1〜第4歯車A1 〜A4 の各ピッチ円錐の頂点O1 ,O2 ,O3 ,O4 から、各背円錐の頂点D1 ,D2 ,D3 ,D4 までの距離D11 ,D22 ,D33 ,D44 を、ピッチ円半径とする円筒歯車ER1 ,ER2 ,ER3 ,ER4 を考える。そして、このピッチ円上に形成されるインボリュート歯形若しくは任意の歯形を想定し、これを第1〜第4歯車A1 〜A4 の相当円筒歯車とする。ここで、該相当円筒歯車の相当歯数をZ1 ,Z2 ,Z3 ,Z4 とすると、
1 =n1 /Sinθ1 ……(ii)
2 =n2 /Sinθ2 ……(iii )
3 =n3 /Sinθ3 ……(iv)
4 =n4 /Sinθ4 ……(v)
と表すことができる。
Also, the number of teeth of the first to fourth gears is n 1 , n 2 , n 3 , n 4 , respectively, and the values of n 1 , n 2 , n 3 , n 4 are different from each other. Here, the vertex O 1, O 2, O 3 , O 4 of the pitch cone of the first to fourth gear A 1 to A 4, vertex D 1 of the respective back-conical, D 2, D 3, to D 4 Let us consider cylindrical gears ER 1 , ER 2 , ER 3 , and ER 4 having a pitch circle radius of distances D 1 O 1 , D 2 O 2 , D 3 O 3 , and D 4 O 4 . An involute tooth profile or an arbitrary tooth profile formed on the pitch circle is assumed, and this is used as a corresponding cylindrical gear of the first to fourth gears A 1 to A 4 . Here, if the equivalent number of teeth of the equivalent cylindrical gear is Z 1 , Z 2 , Z 3 , Z 4 ,
Z 1 = n 1 / Sinθ 1 (ii)
Z 2 = n 2 / Sinθ 2 (iii)
Z 3 = n 3 / Sinθ 3 (iv)
Z 4 = n 4 / Sinθ 4 (v)
It can be expressed as.

したがって、本発明にかかわる歯形は、上記式(ii),(iii )で得られる関係を基礎に相当円筒歯車において、第1歯車A1 に等高歯の歯形を形成し、さらに、第2歯車A2 に該歯形を創成転写する。第3、第4歯車A3 ,A4 も同様にして形成する。すなわち、第1〜第4歯車A1〜A4は2対の等高歯歯車対が形成されることになり、従来の球面インボリュウト歯形に比べて加工精度の自由度の高い揺動型歯車装置が得られることになる。さらに、第1〜第4歯車A1〜A4の歯形についてより具体的に説明する。 Therefore, the tooth profile according to the present invention is based on the relationship obtained by the above formulas (ii) and (iii). In the equivalent cylindrical gear, the first gear A 1 is formed with a contour tooth profile, and the second gear to creating transferred tooth shaped to a 2. The third and fourth gears A 3 and A 4 are formed in the same manner. That is, the first to fourth gears A 1 to A 4 are formed as two pairs of contour gears, and the oscillating gear device has a higher degree of freedom in machining accuracy than the conventional spherical involute tooth profile. Will be obtained. Further, the tooth profiles of the first to fourth gears A 1 to A 4 will be described more specifically.

図1に示す本発明にかかわる揺動型歯車装置は、その一例として第1歯車A1と第2歯車A2との間において、第2歯車A2の歯数を第1歯車A1の歯数より1枚多く設定し、また第3歯車A3と第4歯車A4との間において第3歯車A3が第4歯車A4の歯数より1枚多く設定し、第1歯車A・、第2歯車A2間における1段の減速と、第3、第4歯車A3,A4間の減速とで2段階の減速を行うように設定されている。したがって、第2歯車A2および第3歯車A3は、第1歯車A1および第4歯車A4に対し、1歯相当分基準ピッチ円直径が大きく設定されている。また第1ないし第4歯車の基準ピッチ円直径は、歯すじ方向中央に設定されている。 Oscillating gear device according to the present invention shown in FIG. 1, between the first gear A 1 as an example the second gear A 2, the number of teeth of the second gear A 2 of the first gear A 1 tooth set more one than the number, and the third gear a 3 is set one more than the number of teeth of the fourth gear a 4 between the third gear a 3 and the fourth gear a 4, · first gear a The first gear reduction between the second gears A 2 and the second gear reduction between the third gears A 3 and A 4 are set to perform two-stage decelerations. Accordingly, the second gear A 2 and the third gear A 3 are set to have a reference pitch circle diameter corresponding to one tooth larger than that of the first gear A 1 and the fourth gear A 4 . The reference pitch circle diameter of the first to fourth gears is set at the center of the tooth trace direction.

このように設定された、第1歯車A1および第4歯車A4は、ピッチ円錐上において、等間隔で歯車中心から放射方向に伸びかつ母線に対し平行に所定の幅で伸びる断面半円状の凹溝4bと、この凹溝4b内に転動自在に配置される所定直径の円柱状のコロ4aとで等高歯としの凸状歯4として構成されている。また、上記第2および第3歯車は上記凸状歯4の歯形を創成転写した創成歯形もしくは近似創成歯形として形成されている。なお、本実施例において第1、第4歯車と第2、第3歯車とは、それぞれ歯数が相違するだけで歯形形状および基本構造を同じくしているので、以下の説明は、凸状歯としての第1歯車と凹状歯としての第2歯車について説明する。 The first gear A 1 and the fourth gear A 4 set in this way have a semicircular cross section that extends radially from the center of the gear at a regular interval on the pitch cone and extends with a predetermined width parallel to the generatrix. The concave groove 4b and a cylindrical roller 4a having a predetermined diameter, which is rotatably disposed in the concave groove 4b, are configured as convex teeth 4 as contour teeth. The second and third gears are formed as a generating tooth profile or an approximate generating tooth profile obtained by generating and transferring the tooth profile of the convex tooth 4. In the present embodiment, the first and fourth gears and the second and third gears have the same tooth profile and basic structure except for the number of teeth. The first gear as the second gear and the second gear as the concave tooth will be described.

上記凸状歯4は、歯すじ長さが凹状歯5の歯すじ長さより長く設定されている。その長さは、第2歯車A2の揺動運動に伴う噛み合い始め位置から噛み合い離脱位置の間で、第2歯車A2の凹状歯開口部における干渉除去幅が歯すじ方向両端で最大となるように、有効噛み合い長さが長く設定されている。また、凸状歯4を構成するコロ4aは第1歯車A1の母材に固定手段としてのリテーナ7,8によって歯すじ方向両端において係止する必要があるので、上記凸状歯4の長さはコロ4aの係止分の寸法を考慮してさらに長く設定されている。つまり、凸状歯4を構成するコロ4aの歯すじ長さは、凹状歯5の歯すじ長さに対して、有効歯すじ長さの差分とリテーナ係止分の長さが加算された寸法として設定されている。またコロ4aの外径は、歯すじ方向全域において同一直径となっている。 The convex teeth 4 are set so that the tooth length is longer than the tooth length of the concave teeth 5. Its length between the disengaged position meshing from meshing begins position due to the rocking motion of the second gear A 2, interference cancellation width of the second concave tooth opening of the gear A 2 becomes maximum in the tooth trace direction end Thus, the effective meshing length is set long. Further, since the rollers 4a constituting the convex teeth 4 must be locked in the tooth trace direction end by a retainer 7, 8 as a fixing means to the first base member of the gear A 1, the length of the convex teeth 4 The length is set longer in consideration of the dimension of the locking portion of the roller 4a. That is, the length of the tooth 4a of the roller 4a constituting the convex tooth 4 is a dimension obtained by adding the difference of the effective tooth length and the length of the retainer to the tooth length of the concave tooth 5. Is set as Further, the outer diameter of the roller 4a is the same in the entire region of the tooth trace direction.

ところで、コロ4aと凹溝4bとで構成される凸状歯4の場合、コロ4aの直径が噛み合い強度および騒音に大きく影響する。径が大きくなれば噛み合い強度は増すが騒音は大きくなり、小さければその逆になる。したがって、同一の減速比のもとで、噛み合い強度を重視する場合には最小歯数に設定してコロ4aの直径を大きくすればよく、騒音の減少を重視する場合には、歯数を増やし、コロ4aの直径を小さくすればよい。   By the way, in the case of the convex tooth 4 constituted by the roller 4a and the concave groove 4b, the diameter of the roller 4a greatly affects the meshing strength and noise. As the diameter increases, the meshing strength increases but the noise increases, and vice versa. Therefore, under the same reduction ratio, when the meshing strength is important, the minimum number of teeth can be set to increase the diameter of the roller 4a. When the reduction of noise is important, the number of teeth is increased. The diameter of the roller 4a may be reduced.

上記凸状歯4として構成されるコロ4aは、第1、第4歯車の歯数と同数備え、その軸方向(歯すじ方向)の両端部において外側リテーナ7、内側リテーナ8によって位置決め保持されている。各リテーナ7,8はリング状に形成されており、軸方向内端には第1、第4歯車A4の係止溝9と係合する環状の係止爪7a,8aがそれぞれ形成されている。軸方向の外端には、コロ4aの軸端部を保持する環状の係止爪7b,8bがそれぞれ形成されている。このリテーナ7,8はポリアミド系あるいはポリイミド系の樹脂にて形成され、自身が所定の外力の作用により変形が可能で、各歯車の噛み合い時にコロ4aに軸方向内方に摩擦力が作用するが、この力に対し、コロ4aの変位を弾性的に許容するように構成されている。 The rollers 4a configured as the convex teeth 4 have the same number of teeth as that of the first and fourth gears, and are positioned and held by the outer retainer 7 and the inner retainer 8 at both ends in the axial direction (tooth direction). Yes. Each retainer 7, 8 are formed in a ring shape, the axially inner end first, annular locking claws 7a that engages the locking groove 9 of the fourth gear A 4, 8a is formed respectively Yes. At the outer end in the axial direction, annular locking claws 7b and 8b for holding the shaft end portion of the roller 4a are formed, respectively. The retainers 7 and 8 are made of polyamide or polyimide resin, and can be deformed by the action of a predetermined external force. A frictional force acts on the roller 4a in the axial direction when the gears are engaged. The roller 4a is elastically allowed to be displaced with respect to this force.

この場合、内側リテーナの弾性特性としては、コロ4aに作用する力にもよるが、内側リテーナ8の外周面の一部の弾性変形によるものでもよく、リテーナ全体が弾性変形するものであってもよく、要するに噛み合い時の弾性変形と非噛み合い時の復元性とを備えていればよい。また、リテーナは周方向に等間隔で切欠部10が設けられており、この切欠部10も内側リテーナ8の弾性変形を許容するに有効な手段といえる。この切欠部10はコロ4aを歯車に対して組み付け保持する際、歯車の内周面に対し先端部をすぼめて挿入できるので組み付け性の向上にも貢献する。切欠部10は、図2に示すように非開放部側が円弧状に形成されており、リテーナの変形に伴う切欠部10の特定部分に対する応力集中を防ぐことが可能とある。   In this case, although the elastic characteristics of the inner retainer depend on the force acting on the roller 4a, it may be due to elastic deformation of a part of the outer peripheral surface of the inner retainer 8, or the entire retainer may be elastically deformed. In short, what is necessary is just to have the elastic deformation at the time of meshing and the restoring property at the time of non-meshing. Further, the retainer is provided with notches 10 at equal intervals in the circumferential direction, and this notch 10 can also be said to be an effective means for allowing elastic deformation of the inner retainer 8. When the roller 4a is assembled and held with respect to the gear, the notch 10 can be inserted with the tip portion retracted with respect to the inner peripheral surface of the gear. As shown in FIG. 2, the notched portion 10 is formed in an arc shape on the non-opened portion side, and it is possible to prevent stress concentration on a specific portion of the notched portion 10 due to the deformation of the retainer.

また、上記のような回転体3の揺動運動すなわち第2および第3歯車の揺動運動は、傾斜部1aの回転に伴って入力軸の軸芯Gと傾斜部1aの軸芯Hの交点Oを中心とした円弧上(共通球面Cir1)を移動しながら揺動運動が行われるので、その噛み合い時において、凸状歯4を構成するコロ4aに対し、その歯すじ方向(歯車の軸心方向)に摩擦力が作用するが、この力によってコロ4aの軸方向内端部と当接する内側リテーナ8が弾性変形しコロ4aが歯すじ方向に移動することになるので、コロ4aの端面とリテーナ8外周面との間の摩擦力が大幅に低減され、もってコロ4aの転動抵抗が大幅に軽減されることになる。この状態から非噛み合い状態に移行すると、コロ4aに作用する歯すじ方向の摩擦力がなくなるので、コロ4aはリテーナの弾性復元力により所定の位置に復帰する。   Further, the swinging motion of the rotating body 3, that is, the swinging motion of the second and third gears as described above, is the intersection of the shaft core G of the input shaft and the shaft core H of the tilting portion 1a as the tilting portion 1a rotates. Oscillating motion is performed while moving on an arc centered on O (common spherical surface Cir1), and therefore, at the time of meshing, with respect to the roller 4a constituting the convex teeth 4, the direction of the tooth trace (the axis of the gear). The inner retainer 8 that abuts the inner end of the roller 4a in the axial direction is elastically deformed by this force, and the roller 4a moves in the direction of the tooth trace. The frictional force between the retainer 8 and the outer peripheral surface is greatly reduced, so that the rolling resistance of the roller 4a is greatly reduced. When the state shifts from this state to the non-engagement state, the frictional force acting on the roller 4a in the direction of the tooth streak disappears, so that the roller 4a returns to a predetermined position by the elastic restoring force of the retainer.

以上のように構成される凸状歯4としてのコロ4aを支持する凹溝4bは、ピッチ円錐面上において、歯すじ方向全域において断面一様、つまり同一幅、同一深さのいわゆる等高歯として形成され、上記コロ4aを歯すじ方向において摺動可能でかつ回転方向に傾動不能に密接支持するように構成されている。   The concave groove 4b that supports the roller 4a as the convex tooth 4 configured as described above is a so-called contoured tooth having a uniform cross-section in the whole tooth line direction on the pitch conical surface, that is, the same width and the same depth. The roller 4a is slidable in the direction of the tooth trace and is intimately supported so as not to tilt in the rotational direction.

その断面形状としては、図6に示すように、凹状歯5の断面形状と同様に多重円弧にて形成されている。具体的にはコロ4aの半径に対し1より大きい半径rを持つ2つの円弧でもって、その円弧中心をコロ4a中心に対してオフセットさせて形成されている。それ故、凹溝4bおよび凹状歯5の開口部近くには、二つの接触点P0、P0が形成され、コロ4aとの間で45度より小さい所定の(たとえば15度)の接触角αが得られるとともに、この接触点P0、P0から溝底に向かってコロ4aの外周から徐々に離間することで溝底近辺に所定のオイル溜り4d,5bが形成されることになる。なお、接触角αとは、凸状歯4aと凹状歯5の噛み合いにおいて互いの母線が重なり合う最大噛み合い位置における角度をいう。 As shown in FIG. 6, the cross-sectional shape is formed by multiple arcs as in the cross-sectional shape of the concave teeth 5. Specifically, two arcs having a radius r larger than 1 with respect to the radius of the roller 4a are formed by offsetting the center of the arc with respect to the center of the roller 4a. Therefore, two contact points P 0 and P 0 are formed near the openings of the concave groove 4b and the concave teeth 5, and a predetermined (for example, 15 degrees) contact angle smaller than 45 degrees with the roller 4a. α is obtained, and predetermined oil reservoirs 4d and 5b are formed in the vicinity of the groove bottom by gradually separating from the outer periphery of the roller 4a from the contact points P 0 and P 0 toward the groove bottom. The contact angle α is an angle at the maximum meshing position where the buses overlap each other in meshing of the convex teeth 4a and the concave teeth 5.

したがって、円柱状のコロ4aは歯すじ方向の全域において、凹溝4bの接触点P0、P0の2点にて確実に支持され、コロ4aの支持剛性が高められ、コロ4aの凹溝4b内における回転方向の傾動が確実に阻止され、結果、コロ4aと凹溝4bとが強固に結合され、実質的に一体的な凸状歯4が構成されることになる。 Therefore, the cylindrical roller 4a is reliably supported at the two contact points P 0 and P 0 of the concave groove 4b in the entire region of the tooth trace direction, the support rigidity of the roller 4a is increased, and the concave groove of the roller 4a is increased. The tilting in the rotational direction in 4b is reliably prevented, and as a result, the roller 4a and the concave groove 4b are firmly coupled to form a substantially integral convex tooth 4.

また、凹溝4bにおける接触点P0、P02点による支持は、加工精度の自由度拡大に対しても重要な意味を持つ。つまり、コロ4aとの接触が全面当たりの場合、その精度如何によりコロ4aとの接触が部分当りとなりコロ4aの位置決めが不正確になる可能性があるが、上述のように2点当りの場合、位置決め精度上の自由度が高く、コロ4aの支持剛性を比較的安定的に確保することが可能となる。 Further, the support by the contact points P 0 and P 0 in the concave groove 4b is important for increasing the degree of freedom of processing accuracy. In other words, when the contact with the roller 4a comes into contact with the entire surface, the contact with the roller 4a may come into contact with the part depending on the accuracy, but the positioning of the roller 4a may be inaccurate. The degree of freedom in positioning accuracy is high, and the support rigidity of the roller 4a can be ensured relatively stably.

また、上述のように凹溝4bおよび凹状歯5の断面を多重円弧で形成し、接触点P0、P0を開口部近くに設定することで、その接触角αを小さくすることができ、特に凹状歯5において、伝達効率の向上および歯車各部の耐久性の向上に大きく貢献する。 Further, as described above, the cross section of the concave groove 4b and the concave tooth 5 is formed by multiple arcs, and the contact points P 0 and P 0 are set close to the opening, thereby reducing the contact angle α. In particular, the concave tooth 5 greatly contributes to improvement of transmission efficiency and durability of each part of the gear.

つまり、第1歯車A1および第2歯車A2の噛み合いが生じているときには図6の凹状歯5の接触点P0ではコロ4aに対し荷重Pがかかる。この荷重Pは第1、第2歯車A1、A2のピッチ円錐と平行な方向の分力である回転伝達力Tと、同じくピッチ円錐と垂直な方向の分力であるアキシャル力Fとに成分を分けて考えることができる。このアキシャル力が大きくなれば逆に回転伝達力が小さくなる。しかもアキシャル力は、第2歯車A2が形成される回転体3に曲げ力として作用し回転体3を支障するベアリングに悪影響を与え歯車装置としての耐久性を損なうことになる。したがって、接触角αを小さくすれば、アキシャル力が小さくなり、伝達効率の向上および耐久性の向上がともに可能となる。 That is, when the engagement of the first gear A 1 and the second gear A 2 occurs, a load P is applied to the roller 4a at the contact point P 0 of the concave tooth 5 of FIG. This load P includes a rotational transmission force T, which is a component force in a direction parallel to the pitch cone of the first and second gears A 1 , A 2 , and an axial force F, which is also a component force in a direction perpendicular to the pitch cone. The components can be considered separately. Conversely, if this axial force increases, the rotation transmission force decreases. In addition, the axial force acts as a bending force on the rotating body 3 on which the second gear A 2 is formed, adversely affects the bearing that interferes with the rotating body 3, and impairs the durability of the gear device. Therefore, if the contact angle α is reduced, the axial force is reduced, and both transmission efficiency and durability can be improved.

なお、凸状歯を構成する凹溝4bにおいては、このアキシャル力は第1歯車が固定されるハウジング6にて受けることになるので、上述の耐久性には影響を与えることはない。   In the concave groove 4b constituting the convex teeth, this axial force is received by the housing 6 to which the first gear is fixed, and thus the above-described durability is not affected.

ところで、凹状歯において接触角を小さくすれば上述のようにアキシャル力が小さくなり、連携する回転体3および同ベアリングに対する曲げ力(ねじり力)を小さくすることが可能であるが、むやみに小さくし過ぎると凹状歯5はもちろんのこと凹溝4bの歯の耐久性にとって不利になる場合がある。すなわち、接触角αが小さくなれば荷重Pの作用方向が隣り合う凹溝4b、凹状歯5の歯底より歯先方向に作用することになり、凹溝4b間および凹状歯5間のランド部4c、5aに歯底を起点に曲げ荷重として作用し、高荷重の作用によりランド部4c、5aが損傷するなどの問題が生じる可能性がある。   By the way, if the contact angle is reduced in the concave teeth, the axial force is reduced as described above, and it is possible to reduce the bending force (torsional force) with respect to the rotating body 3 and the bearing to cooperate with. If it passes too much, the concave tooth 5 may be disadvantageous for the durability of the tooth of the concave groove 4b as well. That is, if the contact angle α is reduced, the acting direction of the load P acts in the tooth tip direction from the bottom of the adjacent concave grooves 4b and the concave teeth 5, and the land portions between the concave grooves 4b and between the concave teeth 5 are obtained. 4c and 5a may act as a bending load starting from the root of the tooth, and may cause problems such as damage to the land portions 4c and 5a due to the action of a high load.

特に、コロの直径を大きくし、ランド部4c,5aの回転方向の幅を小さくした場合、その内径側が特に薄くなるのでこの部分での損傷が生じる可能性がある。   In particular, when the diameter of the roller is increased and the width of the land portions 4c and 5a is reduced, the inner diameter side of the land portions 4c and 5a is particularly thin, so that damage may occur in this portion.

本実施態様においては、図9に示すように、接触角αは噛み合い時の荷重方向が、隣り合う凹溝4bおよび凹状歯5の歯底より内方(歯車母材側)に向かうように設定し、アキシャル荷重をむやみに大きくすることなくランド部4c,5aの耐久性を同時に満足するように構成されている。なお、本実施態様における噛み合い位置は、基準ピッチ円位置である。   In this embodiment, as shown in FIG. 9, the contact angle α is set so that the load direction at the time of meshing is directed inward (gear base material side) from the roots of the adjacent concave grooves 4 b and concave teeth 5. In addition, the durability of the land portions 4c and 5a is satisfied at the same time without increasing the axial load unnecessarily. Note that the meshing position in the present embodiment is a reference pitch circle position.

また、上記のように凹溝4b,凹状歯5のそれぞれの歯底とコロ4aの間にはオイル溜り4d,5bが形成されており、コロ4aとの間の潤滑が適正に行われる。なお、凹溝4bの断面形状を多重円弧にて形成されているが、図8に示すように単一円弧で形成すれば、コロ4aの接触面が面接触となるので、コロ4aの支持剛性をよりいっそう高めることができ、コロ4aの傾動を確実に防止することができる。この場合、噛み合い離脱を繰り返す凹状歯5は、噛み合い精度を確保する意味において図6と同様に2点当りとなるように多重円弧で形成されている。   Further, as described above, oil reservoirs 4d and 5b are formed between the bottoms of the concave grooves 4b and the concave teeth 5 and the rollers 4a, and lubrication between the rollers 4a is performed appropriately. In addition, although the cross-sectional shape of the concave groove 4b is formed by multiple arcs, if it is formed by a single arc as shown in FIG. 8, the contact surface of the roller 4a becomes surface contact. Can be further increased, and the tilting of the roller 4a can be reliably prevented. In this case, the concave teeth 5 that repeatedly engage and disengage are formed in multiple arcs so as to reach two points as in FIG.

また、凹溝4bの深さL1は、コロ4aの半径に対しできるだけ深い方がコロ4aの支持剛性を高める上では好ましいが、その端面ランド部4cは上記凹状歯5の端面ランド部5aと対峙し両者間には噛み合い時の干渉を避けるために所定の間隙を形成する必要があり、むやみに深くすることはできない。図6に示す実施態様においては、凹状歯5の深さL2と同じで、かつコロ4aの半径より若干短く設定されている。 Further, the depth L 1 of the concave groove 4b is preferably as deep as possible with respect to the radius of the roller 4a in order to increase the support rigidity of the roller 4a, but the end surface land portion 4c is the same as the end surface land portion 5a of the concave tooth 5. In order to avoid interference at the time of meshing between the two, it is necessary to form a predetermined gap, and it is not possible to increase the depth unnecessarily. In the embodiment shown in FIG. 6, it is set to be the same as the depth L 2 of the concave tooth 5 and slightly shorter than the radius of the roller 4a.

この凹溝4bの深さに関し、図7に示す別の実施態様では、凸状歯4の凹溝4bの深さL1と凹状歯5の深さL2は、凹状歯5が相対的に深く、凹溝4bが浅く形成されている。このように、凹状歯5を深くすることで開口部における強度を確保した上で接触角αをより小さくすることが可能となる。反面、凹溝4bが浅くなることでコロ4aの支持剛性には不利となるが、本実施態様においては、その断面をコロとの接触が全面あたりとなるように単一円弧で形成し支持剛性の悪化を補うように構成されている。なお、図6〜図8に示す実施例はいずれの場合も、ランド部4c,5a間には相互干渉を防止するための最小の間隙が設けられている。 With regard to the depth of the concave groove 4b, in another embodiment shown in FIG. 7, the depth L 1 of the concave groove 4b of the convex tooth 4 and the depth L 2 of the concave tooth 5 are relatively different from each other. The deep groove 4b is formed shallow. As described above, by deepening the concave teeth 5, it is possible to further reduce the contact angle α while ensuring the strength at the opening. On the other hand, the shallow groove 4b is disadvantageous for the support rigidity of the roller 4a. However, in this embodiment, the cross section is formed by a single arc so that the contact with the roller is around the entire surface. It is configured to compensate for the deterioration. In any of the embodiments shown in FIGS. 6 to 8, a minimum gap for preventing mutual interference is provided between the land portions 4c and 5a.

次に第2歯車A2に形成される凹状歯5の歯形について詳細に説明する。凹状歯5は、先に概略説明したように、第1歯車A1としての凸状歯4を創成転写することによって形成される。創成転写(加工)方法としては、本発明者が先の特許出願(特開平10−235519号)に詳細に開示しているように、ワークを保持する保持手段を本発明が対象とするいわゆる揺動型歯車装置を介して駆動するように構成し、ワークおよび保持手段を揺動運動させながらワークと対を成すカッターホイルを歯すじ方向に移動させることにより、凸状歯4と干渉する干渉除去部が除去されて適切な歯形として創成転写が可能となる。 Next, the tooth profile of the concave tooth 5 formed on the second gear A 2 will be described in detail. The concave teeth 5 are formed by generating and transferring the convex teeth 4 as the first gear A 1 as schematically described above. As the generative transfer (processing) method, as disclosed in detail in the previous patent application (Japanese Patent Application Laid-Open No. 10-235519), the present inventor employs a so-called swinging mechanism in which the present invention targets a holding means for holding a workpiece. Interference removal that interferes with the convex teeth 4 by moving the cutter wheel paired with the workpiece in the direction of the tooth trace while moving the workpiece and the holding means in a swinging manner. The part is removed, and the creation transfer can be performed as an appropriate tooth profile.

このような手法にて創成転写される凹状歯5の形状について以下詳細に説明する。図10は、第1歯車と第2歯車の噛み合いにあたって、第1歯車の凸状歯としての等高歯に対し、第2歯車の凹状歯を同一深さ、同一幅の等高凹歯(干渉状況を説明する上での仮想形状)とし、第2歯車が矢印方向に揺動運動する際、凸状等高歯としてのコロ4aと等高凹歯としての凹状歯5の関係を2次元的に示す模式図である。この場合、第2歯車の歯数が第1歯車の歯数より多く設定され、その基準ピッチ円直径は歯数差分大きく設定されるとともに歯すじ方向中央に設定される。また、第1歯車の中心は入出力軸の軸芯Gを中心とし、第2歯車は傾斜部の軸芯H上の中心を持ち、中心Hは中心Gの周りを偏心回転する。   The shape of the concave tooth 5 created and transferred by such a method will be described in detail below. FIG. 10 shows that when the first gear and the second gear are engaged, the concave teeth of the second gear have the same depth and the same width as the convex teeth of the first gear. (Virtual shape for explaining the situation) When the second gear swings in the direction of the arrow, the relationship between the roller 4a as the convex contour tooth and the concave tooth 5 as the contour groove is two-dimensional. It is a schematic diagram shown in FIG. In this case, the number of teeth of the second gear is set to be larger than the number of teeth of the first gear, and the reference pitch circle diameter is set to be larger than the difference in the number of teeth and set to the center of the tooth line direction. The center of the first gear is centered on the axis G of the input / output shaft, the second gear has the center on the axis H of the inclined portion, and the center H rotates eccentrically around the center G.

したがって、第2歯車が矢印方向に揺動運動つまり偏心運動すると、等高歯としての凹状歯とコロとは所定の角度範囲Eにおいて噛み合いが行われることになる。この場合、コロと凹状歯とは母線M1、M2に対して歯すじ方向に同一幅(同一径)に形成されているので、母線が重なる最大噛み合い位置W1位置においては適正な噛み合いとなるが、その前後の噛み合い角度位置では、母線が互いに交差し、凹状歯5にはコロ4aとの干渉が生じる。 Therefore, when the second gear swings in the direction of the arrow, that is, moves eccentrically, the concave teeth as the contour teeth and the rollers are engaged in a predetermined angle range E. In this case, since the rollers and the concave teeth are formed to have the same width (same diameter) in the direction of the teeth with respect to the buses M 1 and M 2 , proper engagement is achieved at the maximum meshing position W 1 where the buses overlap. However, at the meshing angle positions before and after that, the bus lines intersect with each other, and the concave teeth 5 interfere with the rollers 4a.

この母線の交差は、噛み合い始め位置W2および噛み合い離脱位置W3とで最大となり、しかも交差方向が最大噛み合い位置を基点に前後で逆の傾きとなるので、その干渉部(図中斜線付与部)は噛み合い始め位置W2から最大噛み合い位置W1までの角度範囲では基準ピッチ円直径(PCD)外側では凹状歯5の反回転方向側で発生し、基準ピッチ円直径内側では回転方向側に発生する。また、最大噛み合い位置W1から噛み合い離脱位置W3までの角度範囲では、基準ピッチ円直径の外側と内側では、上記とは逆の方向に干渉部が発生する。よって、凹状歯5の開口部には、噛み合い始め位置から噛み合い離脱位置の噛み合い範囲において、基準ピッチ円直径を基点に内外に拡大する鼓形状の干渉部が生まれる。 The intersection of the buses is maximum at the meshing start position W 2 and the meshing disengagement position W 3 , and the intersecting direction has a reverse inclination before and after the maximum meshing position as a base point. ) engages begins to occur in the counter-rotational direction of the concave tooth 5 at reference pitch circle diameter (PCD) outer in an angular range from the position W 2 to the maximum engagement position W 1, generated in the rotation direction side of the reference pitch diameter inner To do. Further, in the angular range up to the disengaged position W 3 mesh from the maximum engagement position W 1, the outer and inner reference pitch circle diameter, the interference portion is generated in the opposite direction to the above. Therefore, in the opening portion of the concave teeth 5, a drum-shaped interference portion is created that expands inward and outward from the reference pitch circle diameter in the meshing range from the meshing start position to the meshing disengagement position.

この干渉部は、歯筋長さが長くなるほど歯すじ方向端部での干渉幅が大きくなり、また歯すじ長さが一定でも基準ピッチ円直径の設定位置によっても大きく影響を受ける。たとえば、基準ピッチ円直径を歯すじ方向内端および外端に設定した場合には、基準ピッチ円直径から一方の端部までの距離が大きくなるので、基準ピッチ円直径を起点に歯すじ方向他端に向かっていわゆるラッパ状に広がりきわめて大きい干渉部が発生することになる。   As the tooth trace length increases, the interference width of the interference portion increases at the end of the tooth trace direction, and is greatly affected by the setting position of the reference pitch circle diameter even if the tooth trace length is constant. For example, if the reference pitch circle diameter is set at the inner and outer ends of the tooth trace direction, the distance from the reference pitch circle diameter to one end increases, so the tooth pitch direction and other points start from the reference pitch circle diameter. An extremely large interference portion is generated spreading in a so-called trumpet toward the end.

したがって、凹状歯は上述の創成加工機によってその干渉部が除去されることにより所定の噛み合い範囲における適正な噛み合いが得られることになるが、干渉部除去後の歯形は伝達効率および加工精度の自由度に対しても大きく影響することになるので、干渉幅を支配する凹状歯の歯すじ長さおよび基準ピッチ円直径の設定を干渉幅が最小になるように考慮する必要がある。つまり、干渉幅が大きくなると、コロ4aとの噛み合い角度範囲、特に噛み合い始め位置および噛み合い離脱位置におけるコロとの接触角が大きくなり、その分アキシャル方向の分力が大きくなり伝達効率の低下につながる。   Therefore, the concave teeth can be properly meshed in the predetermined meshing range by removing the interference part by the above-described generating machine, but the tooth profile after the interference part removal is free of transmission efficiency and machining accuracy. Therefore, it is necessary to consider the setting of the streak length of the concave tooth that governs the interference width and the reference pitch circle diameter so that the interference width is minimized. That is, when the interference width increases, the meshing angle range with the roller 4a, particularly the contact angle with the roller at the meshing start position and the meshing disengagement position, and the axial force increases accordingly, leading to a decrease in transmission efficiency. .

また、この干渉幅の拡大は、加工形態の自由度および加工精度の自由度にも影響を与える。つまり、上述のように創成加工機を用いて加工を行えば、精度の確保は可能であるが、特別な加工機を新たに用意する必要があり、従来の直線的加工機で加工するにはあまりにも複雑な加工工程が必要となり、精度の確保と生産性の自由度の両立が困難になる。したがって、本実施態様においては、凹状歯の歯すじ長さをと凸状歯より大幅に短く設定し、かつ基準ピッチ円直径を歯すじ中央に設定しているので、その干渉部を最小にすることができ、精度の確保と生産性の自由度確保の両立を図ることができる。   In addition, the increase in the interference width also affects the degree of freedom of the processing form and the degree of freedom of the processing accuracy. In other words, as long as machining is performed using a creation machine as described above, accuracy can be ensured, but a special machining machine needs to be newly prepared. An extremely complicated machining process is required, and it becomes difficult to ensure both accuracy and freedom of productivity. Therefore, in this embodiment, the length of the tooth of the concave tooth is set to be significantly shorter than that of the convex tooth, and the reference pitch circle diameter is set at the center of the tooth, so that the interference portion is minimized. It is possible to ensure both accuracy and productivity.

図11は、図10で明らかになった干渉部を除去した状態の凹状歯の歯形を示すもので、上記噛み合い範囲において最大噛み合い位置を含む前後5つの噛み合い位置での干渉部の除去状態を示す。   FIG. 11 shows the tooth profile of the concave tooth with the interference part clarified in FIG. 10 removed, and shows the removal state of the interference part at the five front and rear meshing positions including the maximum meshing position in the meshing range. .

図中、歯底から開口端にかけて描かれている三角形状のエリアは、上記角度位置ごとに発生する干渉部が除去された干渉除去部が示されている。すなわち、第1エリアE1は噛み合い始め位置における干渉除去部に相当するエリアで、基準ピッチ円直径PCD1をはさんで回転方向側と半回転方向側にそれぞれ位置する。第2エリアE2は、噛み合い始め位置W2と最大噛み合い位置W1の間の中間角度位置での干渉除去部に相当するエリアを示す。第3および第4エリアE3、E4は最大噛み合い位置W3から噛み合い離脱方向での上記と同様の干渉除去エリアを示す。なお、エリアE5は干渉が発生しない非干渉除去部で、最大噛み合い位置W1でコロが接触するエリアを示す。 In the drawing, a triangular area drawn from the root of the tooth to the opening end shows an interference removing portion from which the interference portion generated at each angular position is removed. That is, the first area E 1 is an area corresponding to the interference removing portion at the meshing start position, and is located on the rotation direction side and the half rotation direction side across the reference pitch circle diameter PCD1. The second area E 2 indicates an area corresponding to an interference removing unit at an intermediate angular position between the meshing start position W 2 and the maximum meshing position W 1 . The third and fourth areas E 3 and E 4 indicate the same interference removal area as described above in the mesh disengagement direction from the maximum mesh position W 3 . Area E 5 is a non-interference removing portion where no interference occurs, and indicates an area where the roller contacts at the maximum meshing position W 1 .

この図から明らかなように、上記各干渉除去部は、基準ピッチ円直径を基点に半径方向内外(歯すじ方向内外)に向かってそれぞれ拡大するが、基準ピッチ円直径が中央にあることと歯すじ長さが短いこととでその拡大率は比較的小さく保たれる。なお、図11に示す上述の干渉除去部を示すエリアは連続した回転の元では連続した曲面となり、エリアを画成する線は存在しないが説明の都合上上記の角度位置ごとの除去エリアを示した。   As is apparent from this figure, each of the interference canceling parts expands radially inward and outward (inside and outside of the streak direction) with the reference pitch circle diameter as a base point. Because the streak length is short, the enlargement ratio is kept relatively small. Note that the area indicating the above-described interference removal unit shown in FIG. 11 is a continuous curved surface under continuous rotation, and there is no line that defines the area, but the removal area for each angular position is shown for convenience of explanation. It was.

以上の説明で明らかなように、歯すじ長さの短縮と歯すじ中央部への基準ピッチ円直径の設定により歯すじ方向両端部における干渉除去部の拡大率を比較的小さくすることができ、その分、噛み合い始め位置および噛み合い離脱位置におけるコロとの接触角が小さくなり伝達効率が向上する。その意味において、基準ピッチ円直径の設定は、歯すじ方向中央を基点に歯すじ方向内方あるいは外方おいてそれぞれ歯すじ長さの30%の範囲であることが望ましく、それ以上中心からずれると一端部における干渉除去部の拡大率がおおきくなり過ぎるので好ましくない。より好ましくは両端の干渉除去部がほぼ等しくなるように基準ピッチ円直径を設定する必要がある。   As is clear from the above explanation, the enlargement ratio of the interference removal portion at both ends of the tooth trace direction can be made relatively small by shortening the tooth trace length and setting the reference pitch circle diameter to the center of the tooth trace. Accordingly, the contact angle with the roller at the meshing start position and the meshing release position is reduced, and transmission efficiency is improved. In that sense, it is desirable that the reference pitch circle diameter is set within a range of 30% of the length of the tooth streak inward or outward from the center of the streak direction, and further deviates from the center. Since the enlargement ratio of the interference removal portion at one end is too large, it is not preferable. More preferably, it is necessary to set the reference pitch circle diameter so that the interference removal portions at both ends are substantially equal.

その意味において基準ピッチ円直径の位置は、歯すじ中央より若干外方に配置する必要がある。つまり、基準ピッチ円直径を歯すじ方向中心に設定した場合半径方向内端と外端とではモジュウルに差があり、この点に起因して内端と外端の間に干渉幅の差が生じ、外端が内端より大きくなる傾向がある。図11は、基準ピッチ円直径を凹状歯の歯すじ方向中央に設定した場合(PCD1)と、中央より半径方向外方に設定した場合(基準ピッチ円直径PCD2)において開口部の内端および外端の開口幅の関係を示すもので、この図から明らかなように、PCD1の場合は、半径方向外端の幅H1は内端の幅H2より広く、また、PCD2の場合はその開口幅は、外端側が縮小し内端側が拡大しH1´,H2´となり、その結果、両者はほぼ等しい開口幅となる。それ故、基準ピッチ円直径を中央より外方に設定することにより干渉幅を等しくすることができる。なお、図12は、基準ピッチ円直径(PCD)位置における断面図で、点線は歯すじ外端部を示し、一点差線は歯すじ内端を示す。 In that sense, the position of the reference pitch circle diameter needs to be arranged slightly outward from the center of the tooth trace. In other words, when the reference pitch circle diameter is set at the center of the tooth trace direction, there is a difference in the modul on the inner end and the outer end in the radial direction, and this causes a difference in the interference width between the inner end and the outer end. The outer end tends to be larger than the inner end. FIG. 11 shows the inner and outer edges of the opening when the reference pitch circle diameter is set at the center of the concave teeth (PCD1) and radially outward from the center (reference pitch circle diameter PCD2). FIG. 6 shows the relationship between the opening widths of the ends. As is apparent from this figure, in the case of PCD1, the width H 1 of the radially outer end is wider than the width H 2 of the inner end, and in the case of PCD2, the opening thereof The width is reduced on the outer end side and enlarged on the inner end side to become H 1 ′ and H 2 ′. As a result, both have substantially the same opening width. Therefore, the interference width can be made equal by setting the reference pitch circle diameter outward from the center. FIG. 12 is a cross-sectional view at the reference pitch circle diameter (PCD) position, where the dotted line indicates the outer end of the tooth trace, and the one-dot difference line indicates the inner end of the tooth trace.

以上の説明で明らかなように、上記実施態様の揺動型歯車装置は、設計自由度の高い第1歯車を歯すじ長さの長い凸状歯として構成し、設計自由度の低い第2歯車を歯すじ長さの短い凹状歯として構成することにより揺動型歯車装置の小型化を図り、また、歯すじ長さの長い凸状歯を加工の容易な等高歯とし、歯すじ長さの短い凹状歯を上記凸状歯を創成転写した創成歯あるいは近似創成歯とするとともにその基準ピッチ円直径を歯すじ方向中央部付近に設定することにより、加工精度の自由度の拡大を図り、さらに上記凸状歯を構成するコロを、歯すじ方向全域で一様な断面の凹溝でもって回転方向に傾動不能に支持しコロの支持剛性高め、凸状歯を構成するコロと凹溝とが強固に結合され実質的に一体化された凸状歯とすることで、位置決め精度の自由度の向上を図るようになされている。よって、上記実施態様の揺動型歯車装置においては、加工精度の自由度の拡大と位置決め精度の自由度の拡大とで噛み合い精度を高めることができ、生産性を損なうことなく伝達効率を向上させることが可能となる。   As is apparent from the above description, the oscillating gear device of the above embodiment is configured such that the first gear having a high degree of design freedom is formed as a convex tooth having a long tooth length, and the second gear having a low degree of design freedom. The oscillating gear device can be miniaturized by configuring the tooth as a concave tooth with a short tooth length, and the convex tooth with a long tooth length can be used as a contoured tooth that is easy to process. By setting the reference pitch circle diameter in the vicinity of the center of the tooth trace direction as a creation tooth obtained by creating and transferring the above-mentioned convex tooth or an approximate creation tooth, and increasing the degree of freedom of processing accuracy, Further, the rollers constituting the convex teeth are supported in a non-tiltable manner in the rotational direction with concave grooves having a uniform cross-section in the entire region of the tooth trace direction to increase the support rigidity of the rollers, and the rollers and concave grooves constituting the convex teeth By making the convex teeth that are firmly connected and substantially integrated, It is adapted to improve the flexibility of fit accuracy. Therefore, in the oscillating gear device of the above-described embodiment, the meshing accuracy can be increased by increasing the degree of freedom of processing accuracy and the degree of freedom of positioning accuracy, and the transmission efficiency is improved without impairing productivity. It becomes possible.

本発明は上記の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.

本発明に係わる揺動歯車装置の断面図。Sectional drawing of the rocking gear apparatus concerning this invention. 本発明に係わる揺動歯車装置の要部の断面図。Sectional drawing of the principal part of the rocking gear apparatus concerning this invention. 本発明に係わる揺動歯車装置の要部の正面図。The front view of the principal part of the rocking gear apparatus concerning this invention. 本発明に係わる揺動歯車装置の相当平歯車への展開説明図。Explanatory drawing to the equivalent spur gear of the rocking gear apparatus concerning this invention. 図4の要部の拡大図。The enlarged view of the principal part of FIG. 本発明に係わる揺動歯車装置の第1実施態様の歯形の断面。The tooth profile section of the 1st embodiment of the rocking gear device concerning the present invention. 本発明に係わる揺動歯車装置の第2実施態様の同上図。The same figure of the 2nd embodiment of the rocking gear apparatus concerning this invention. 本発明に係わる揺動歯車装置の第3実施態様の同上図。The same figure of the 3rd embodiment of the rocking gear apparatus concerning this invention. 本発明に係わる揺動歯車装置の第4実施態様の同上図。The same figure of the 4th embodiment of the rocking gear apparatus concerning this invention. 本発明に係わる揺動歯車装置の凸状歯と凹状歯の関係を示す模式図。The schematic diagram which shows the relationship between the convex-tooth and concave-tooth of the rocking gear apparatus concerning this invention. 本発明に係わる揺動歯車装置の凹状歯の拡大斜視図。The expansion perspective view of the concave tooth of the rocking gear device concerning the present invention. 図11の断面図。Sectional drawing of FIG. 従来の揺動型歯車装置の断面図Sectional view of a conventional oscillating gear device 従来の揺動型歯車装置の噛み合い部の説明図。Explanatory drawing of the meshing part of the conventional rocking | fluctuation type gear apparatus.

符号の説明Explanation of symbols

1 入力軸
1a 傾斜部
2 出力軸
3 回転体3
4 凸状歯
4a コロ
4b 凹溝
5 凹状歯
6 ハウジング
7 外側リテーナ
8 内側リテーナ
1 Input shaft 1a Inclined part 2 Output shaft 3 Rotating body 3
4 Convex tooth 4a Roller 4b Concave groove 5 Concave tooth 6 Housing 7 Outer retainer 8 Inner retainer

Claims (9)

ハウジングに固定された歯数n1 の第1歯車と、出力軸に取付けられた歯数n4 の第4歯車とを、入力軸との各軸芯を一致させて配置し、歯数n2 の第2歯車および歯数n3 の第3歯車を一体に設けた回転体を、第2歯車が第1歯車と噛み合い、第3歯車が第4歯車と噛み合うように前記入力軸の傾斜部で軸支し、前記第1、第2歯車の各ピッチ円を通る共通球面の中心点と、前記第3、第4歯車の各ピッチ円を通る共通球面の中心点とが一致する点を原点とするXY座標のX軸上に前記入力軸の軸芯を配置し、かつ、第1、第2歯車の噛み合い点と第4、第3歯車の噛み合い点とを該XY座標の同一象限若しくは異なる象限上に置いてなる揺動型歯車装置であって、
上記第1ないし第4歯車が傘歯車として構成され、
該第1ないし第4歯車の互いに噛み合い対峙する歯車のうち第1歯車および第4歯車が、ピッチ円錐上において等間隔で歯車中心から放射方向に伸びる断面半円状の凹溝と、該凹溝内に転動自在に配置される円柱状のコロとで等高歯としての凸状歯として構成され、上記第1歯車および第4歯車とそれぞれ噛み合う第2および第3歯車が、該凸状歯の歯形を創成転写した創成歯形もしくは近似創成歯形として形成された凹状歯として構成され、
該凸状歯は、歯すじ長さが該凹状歯の歯すじ長さより長く設定されており、
上記凸状歯を構成する凹溝は、歯すじ方向全域において上記コロを傾動不能に密接支持するように歯すじ方向の全域において断面一様の同一円弧断面に形成され、
さらに該コロは、歯すじ方向両端においてそれぞれ環状のリテーナによって上記第1および第4歯車に位置決め保持されていることを特徴とする揺動型歯車装置。
A first gear with n 1 teeth fixed to the housing and a fourth gear with n 4 teeth attached to the output shaft are arranged with their axis centers aligned with the input shaft, and the number of teeth n 2 The rotating body integrally provided with the second gear and the third gear having the number of teeth n 3 is arranged at the inclined portion of the input shaft so that the second gear meshes with the first gear and the third gear meshes with the fourth gear. A point where the center point of the common sphere passing through the pitch circles of the first and second gears and the center point of the common sphere passing through the pitch circles of the third and fourth gears coincides with the origin. The axis of the input shaft is arranged on the X axis of the XY coordinates to be used, and the meshing points of the first and second gears and the meshing points of the fourth and third gears are the same quadrant or different quadrants of the XY coordinates. An oscillating gear device placed on top,
The first to fourth gears are configured as bevel gears,
The first gear and the fourth gear of the first to fourth gears meshing with each other and facing each other have a semicircular groove having a semicircular cross section extending radially from the gear center at equal intervals on the pitch cone, and the groove The second and third gears, which are configured as convex teeth as contour teeth with a cylindrical roller that is arranged so as to freely roll inside, are meshed with the first gear and the fourth gear, respectively. It is configured as a concave tooth formed as a created tooth profile or an approximate created tooth profile created by transferring the tooth profile of
The convex teeth are set such that the tooth length is longer than the tooth length of the concave teeth,
The concave grooves constituting the convex teeth are formed in the same circular arc cross section with a uniform cross section in the whole area in the streak direction so as to closely support the roller in a non-tiltable manner in the whole area in the tooth streak direction,
Further, the roller is positioned and held on the first and fourth gears by annular retainers at both ends of the tooth trace direction, respectively.
上記凹状歯は、その開口部が基準ピッチ円直径をはさんで歯すじ方向外方および歯すじ方向内方に拡大する鼓形状に形成されていることを特徴とする請求項1に記載の揺動型歯車装置。   2. The rocking tooth according to claim 1, wherein the concave teeth are formed in a drum shape whose openings are expanded outward in the tooth line direction and inward in the tooth line direction across the reference pitch circle diameter. Dynamic gear device. 上記基準ピッチ円直径が、歯すじ方向中央をはさんで内外にそれぞれ歯すじ長さの30%の範囲に設定されていることを特徴とする請求項1に記載の揺動型歯車装置。   2. The oscillating gear device according to claim 1, wherein the reference pitch circle diameter is set within a range of 30% of the length of the tooth streak in and out of the center of the tooth streak direction. 上記基準ピッチ円直径が、上記凹状歯の干渉除去部の幅が歯すじ方向両端においてほぼ等しくなるように歯すじ方向中央より外方に設定されていることを特徴とする請求項1に記載の揺動型歯車装置。   The reference pitch circle diameter is set outward from the center of the tooth trace direction so that the width of the interference removal portion of the concave tooth is substantially equal at both ends of the tooth trace direction. Oscillating gear device. 上記凸状歯を構成する凹溝は、上記コロの外周面とその全面で接触するように、コロの外周面に対応した単一円弧で形成されていることを特徴とする請求項1〜4のいずれか1つに記載の揺動型歯車装置。   The concave grooves constituting the convex teeth are formed by a single arc corresponding to the outer peripheral surface of the roller so as to come into contact with the outer peripheral surface of the roller and the entire surface thereof. The rocking | fluctuation type gear apparatus as described in any one of these. 上記凸状歯を構成する凹溝は、開口部近傍において接触点を持ちかつ溝底とコロとの間に所定の空間を構成するように多重円弧で形成されていることを特徴とする請求項1〜4のいずれか1つに記載の揺動型歯車装置。   The concave groove constituting the convex tooth has a contact point in the vicinity of the opening and is formed by multiple arcs so as to constitute a predetermined space between the groove bottom and the roller. The rocking | fluctuation type gear apparatus as described in any one of 1-4. 上記凸状歯を構成する凹溝が、上記コロの外周面とその全面で接触するように、コロの外周面に対応した単一円弧で形成され、上記凹状歯が、開口部近傍において接触点を持ちかつ溝底とコロとの間に所定の空間を構成するように多重円弧で形成されていることを特徴とする請求項1〜4のいずれか1つに記載の揺動型歯車装置。   The concave grooves constituting the convex teeth are formed by a single arc corresponding to the outer peripheral surface of the roller so that the concave grooves make contact with the outer peripheral surface of the roller, and the concave teeth are contact points in the vicinity of the opening. 5. The oscillating gear device according to claim 1, wherein the oscillating gear device is formed with multiple arcs so as to form a predetermined space between the groove bottom and the roller. 上記凹溝と凹状歯がともに開口部近傍において接触点を持ちかつ溝底とコロとの間に所定の空間を構成するように多重円弧で形成されていることを特徴とする請求項1〜4のいずれか1つに記載の揺動型歯車装置。   5. The concave groove and the concave tooth both have a contact point in the vicinity of the opening and are formed in multiple arcs so as to form a predetermined space between the groove bottom and the roller. The rocking | fluctuation type gear apparatus as described in any one of these. 上記リテーナのうち少なくとも内方側はその外周面において上記コロの端面とコンタクトし該コロを歯すじ方向に弾性的に保持していることを特徴とする請求項1〜8のいずれか1つに記載の揺動型歯車装置。   9. The retainer according to claim 1, wherein at least an inner side of the retainer is in contact with an end surface of the roller at an outer peripheral surface thereof, and elastically holds the roller in a tooth line direction. The oscillating gear device described.
JP2006319001A 2006-11-27 2006-11-27 Oscillating gear unit Active JP4939185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006319001A JP4939185B2 (en) 2006-11-27 2006-11-27 Oscillating gear unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006319001A JP4939185B2 (en) 2006-11-27 2006-11-27 Oscillating gear unit

Publications (2)

Publication Number Publication Date
JP2008133861A true JP2008133861A (en) 2008-06-12
JP4939185B2 JP4939185B2 (en) 2012-05-23

Family

ID=39558856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006319001A Active JP4939185B2 (en) 2006-11-27 2006-11-27 Oscillating gear unit

Country Status (1)

Country Link
JP (1) JP4939185B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052510A (en) * 2008-08-27 2010-03-11 Jtekt Corp Vehicular steering device
JP2010052508A (en) * 2008-08-27 2010-03-11 Jtekt Corp Vehicular steering device
CN106864587A (en) * 2017-04-14 2017-06-20 无锡市宝通流体设备有限公司 Pipe column type electric servo steering device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101362708B1 (en) * 2012-05-23 2014-02-12 가부시키가이샤 하모닉 드라이브 시스템즈 Wave generator of wave gear device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857544A (en) * 1981-09-30 1983-04-05 Nichimen Kk Hypoid face gear for syncline face cycloidal gearing and its manufacture
JPH0446244A (en) * 1990-05-14 1992-02-17 Ichiro Kamimura Conical rolling equal tooth thickness bevel gear device and machining method thereof
JPH10246293A (en) * 1997-03-04 1998-09-14 Namu:Kk Speed change gear device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857544A (en) * 1981-09-30 1983-04-05 Nichimen Kk Hypoid face gear for syncline face cycloidal gearing and its manufacture
JPH0446244A (en) * 1990-05-14 1992-02-17 Ichiro Kamimura Conical rolling equal tooth thickness bevel gear device and machining method thereof
JPH10246293A (en) * 1997-03-04 1998-09-14 Namu:Kk Speed change gear device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052510A (en) * 2008-08-27 2010-03-11 Jtekt Corp Vehicular steering device
JP2010052508A (en) * 2008-08-27 2010-03-11 Jtekt Corp Vehicular steering device
CN106864587A (en) * 2017-04-14 2017-06-20 无锡市宝通流体设备有限公司 Pipe column type electric servo steering device

Also Published As

Publication number Publication date
JP4939185B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP5256249B2 (en) Bending gear system
JP5466739B2 (en) Eccentric oscillating gear unit
JP2011112214A (en) Flexible meshing-type gear device, and method for manufacturing external gear thereof
JP5988424B2 (en) Eccentric oscillating gear unit
JP4939185B2 (en) Oscillating gear unit
TWI720967B (en) Decelerating or accelerating device
JP4939191B2 (en) Oscillating gear unit
JP2023184669A (en) gear unit
JP2008075840A (en) Reduction gear
JP4935510B2 (en) Oscillating gear unit
JP6878036B2 (en) Eccentric swing type gear device
JP4971012B2 (en) Oscillating gear unit
JP4971011B2 (en) Oscillating gear unit
JP4961225B2 (en) Oscillating gear unit
JP4922741B2 (en) Oscillating gear unit
JP5290778B2 (en) Oscillating gear unit
JP5290787B2 (en) Oscillating gear unit
JP4884315B2 (en) Oscillating gear unit
JP2016166674A (en) Speed reducer or accelerator
JP6184546B2 (en) Eccentric oscillating gear unit
JP2007247741A (en) Rocking gear device
JP6890563B2 (en) Eccentric swing type speed reducer
JPH11315908A (en) Gear pair and coriolis motion gear device
JP6446101B2 (en) Eccentric oscillating gear unit
JP4971013B2 (en) Oscillating gear unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4939185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250