JP2006265512A - Method for producing solid product from gel-like material - Google Patents

Method for producing solid product from gel-like material Download PDF

Info

Publication number
JP2006265512A
JP2006265512A JP2005159216A JP2005159216A JP2006265512A JP 2006265512 A JP2006265512 A JP 2006265512A JP 2005159216 A JP2005159216 A JP 2005159216A JP 2005159216 A JP2005159216 A JP 2005159216A JP 2006265512 A JP2006265512 A JP 2006265512A
Authority
JP
Japan
Prior art keywords
gel
product
solid
liquid
dried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005159216A
Other languages
Japanese (ja)
Other versions
JP4663409B2 (en
Inventor
Koichi Murayama
晃一 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futamura Chemical Co Ltd
Original Assignee
Futamura Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futamura Chemical Co Ltd filed Critical Futamura Chemical Co Ltd
Priority to JP2005159216A priority Critical patent/JP4663409B2/en
Publication of JP2006265512A publication Critical patent/JP2006265512A/en
Application granted granted Critical
Publication of JP4663409B2 publication Critical patent/JP4663409B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Grain Derivatives (AREA)
  • Jellies, Jams, And Syrups (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily, efficiently and economically producing a solid product from a high-viscosity and low-fluid gel-like material. <P>SOLUTION: The method for producing the solid product of predetermined shape comprises irradiating the gel-like material with ultrasonic waves to form a liquid product, which is then dried. In this method, the liquid product is dried on a dish-like drying plate to obtain a plate-like solid product, or the liquid product is injected into a mold to obtain a solid product of predetermined shape. Alternatively, the liquid product is dried into a powdery product, which is then compressed into a solid product of predetermined shape; particularly, the liquid product is dried by a spray dryer into a powdery product, and the resulting solid product may be in the form of plate, granules or rod. The above gel-like material may contain at least one kind of polysaccharides, proteins, polyacrylic acids, polymethacrylic acids, polyvinyl alcohols, polyethylene glycols and derivatives thereof. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、主として、ゲル状物から固形物を製造する方法に関する。   The present invention mainly relates to a method for producing a solid from a gel.

でん粉やペクチン、グルコマンナンなどの多糖類、あるいはゼラチンなどのたんぱく質や、ポリアクリル酸などの高分子物質は、適当な溶媒に溶解されて高粘度で低流動性のゲル状物として食品や工業で用いられる。例えば、でん粉は粒径が約数マイクロメートルから数百マイクロメートルの粒子であり、冷水中では溶解せずにスラリーとして存在するが、加熱処理またはアルカリ性条件下や塩類の添加による化学的処理により、でん粉が溶媒に溶解してゲル状物、すなわちでん粉糊となる。 Polysaccharides such as starch, pectin, and glucomannan, proteins such as gelatin, and polymer substances such as polyacrylic acid are dissolved in an appropriate solvent and used as a gel with a high viscosity and low fluidity in food and industry. Used. For example, starch is a particle having a particle size of about several micrometers to several hundred micrometers, and does not dissolve in cold water but exists as a slurry, but by heat treatment or chemical treatment by alkaline conditions or addition of salts, Starch dissolves in a solvent to form a gel, that is, starch paste.

一般に、食品分野では、野菜などの煮汁に水溶きした片栗粉を分散加熱することでトロミを付与し、あんかけなどにすることが行われている。また、ゼラチンや寒天を水中で加熱し溶解した後、任意の形状の型に流し入れ、冷却固化する事で任意の形状の固形物すなわちゼリーを得たり、果肉と果皮とを煮詰めることで果皮中に含まれるペクチンにて果汁を固めマーマレードを得たりすることは、広く行われている。そして、工業分野では、アルカリ処理されたでん粉により得られたでん粉糊が、紙製品の製造などで接着剤として広く用いられている。また、ポリアクリル酸などのように、水と接したときに非常に強い吸水性を示してゲル状になる性質を利用した吸水パッドは、おむつの吸水材として使用されている。 In general, in the food field, trochi is given by dispersing and heating potato starch that has been dissolved in boiled juice such as vegetables. In addition, after gelatin and agar are heated and dissolved in water, they are poured into a mold of any shape and solidified by cooling to obtain a solid material of any shape, that is, jelly, or boiled into flesh and flesh. It is widely practiced to solidify fruit juice with pectin contained therein to obtain marmalade. In the industrial field, starch paste obtained from alkali-treated starch is widely used as an adhesive in the manufacture of paper products. Also, water-absorbing pads that use a property such as polyacrylic acid that exhibits a very strong water-absorbing property when in contact with water and become a gel are used as water-absorbing materials for diapers.

しかるに、ゲル状物は、しばしばその高粘度や低流動性がゲル状物の操作を困難とすることがある。物質の操作の代表的なものとして移動が挙げられるが、例えば前記のマーマレードにあっては、製造直後で温度が高く流動性が高い状態では、多数の瓶に正確な分量で素早く小分けすることが可能であるが、冷却して流動性が低下したマーマレードを同様に小分けすることは極めて困難である。 However, the gel-like product often has a high viscosity and low fluidity, which makes it difficult to operate the gel-like product. For example, in the case of the above-mentioned marmalade, in the state where the temperature is high and the fluidity is high immediately after production, it is possible to quickly subdivide into a large number of bottles in an accurate amount. Although possible, it is extremely difficult to subdivide marmalade that has cooled and has decreased fluidity.

また、ゲル状物の高粘度や低流動性がその利用範囲を狭めていることが挙げられる。例えば多糖類のうちグルコマンナンに代表される難消化性多糖類においては、人の栄養源となりにくいその栄養学的な機能と食物繊維としての機能を有することに着目して、繊維質不足やカロリー過剰摂取になりがちな現在の食生活における健康維持に有益な物質であると注目されている。特に、食物繊維の摂取は血液中のコレステロール低下を促し、心筋梗塞、糖尿病、大腸がんなどの成人病予防にも効果があることからその積極的な用途展開が試みられている。しかしながら、これらの多糖類にあっては、その高粘度や低流動性のため、高濃度での摂取が困難となることが多く、効果的な利用の妨げとなっている。また、前述したゲル状物の操作上の問題もあいまって、多糖類を高濃度に含有する食品の工業的な設計については障害が少なくない。 Moreover, it is mentioned that the high viscosity and low fluidity of the gel-like product have narrowed its use range. For example, indigestible polysaccharides typified by glucomannan among polysaccharides, focusing on the fact that they have nutritional functions and dietary fiber functions that are difficult for human nutrition, It is attracting attention as a substance useful for maintaining health in the current diet that tends to be overdose. In particular, the intake of dietary fiber promotes the reduction of cholesterol in the blood, and since it is effective in preventing adult diseases such as myocardial infarction, diabetes, and colon cancer, its active use has been attempted. However, these polysaccharides are often difficult to ingest at a high concentration due to their high viscosity and low fluidity, which hinders effective use. In addition, there are many obstacles to the industrial design of foods containing a high concentration of polysaccharides due to the aforementioned operational problems with gelled materials.

ところで、でん粉や多糖類の粘度を低下させる方法として、でん粉中間分解物であるデキストリンやマルトデキストリンを混合することで粘度を低下させている例もあるが(例えば特許文献1,2を参照)、一般的な液状化手段としては、α―アミラーゼ酵素によるでん粉の液化法が広く行われている。   By the way, as a method of reducing the viscosity of starch and polysaccharides, there is an example in which the viscosity is reduced by mixing dextrin or maltodextrin which is a starch intermediate decomposition product (see, for example, Patent Documents 1 and 2). As a general liquefaction means, a starch liquefaction method using an α-amylase enzyme is widely used.

すなわち、でん粉糖化工業における、でん粉液化物を得る方法で、でん粉乳と液化酵素であるでん粉分解酵素を、予め混合しておき加熱することで、でん粉粒の加熱崩壊による糊化と、糊化したでん粉の加水分解を同時に進行させる方法である。このでん粉液化物に、取得したい最終製品に合わせて糖化酵素の種類や組み合わせを選択することで、ブドウ糖や水飴、サイクロデキストリンといったでん粉由来の糖質の製造が行われている。でん粉糖化工業における、でん粉液化は、糖化酵素の作用を円滑に進めるための前処理にあたり、でん粉の糊化によるゲル状化を防ぐことで、移動や糖化酵素との混和がスムーズに行われている。   That is, in the method of obtaining starch liquefaction in starch saccharification industry, starch milk and liquefying enzyme, starch-degrading enzyme, are mixed in advance and heated, and gelatinized by heating collapse of starch granules and gelatinized This is a method in which starch hydrolysis proceeds simultaneously. By selecting the type and combination of saccharifying enzymes in the starch liquefied product according to the final product to be obtained, starch-derived carbohydrates such as glucose, starch syrup and cyclodextrin are produced. In the starch saccharification industry, starch liquefaction is a pretreatment for smoothly promoting the action of saccharifying enzymes, and gelation due to gelatinization of starch is prevented, so that movement and mixing with saccharifying enzymes are performed smoothly. .

しかしながら、予め糊化された高粘度で低流動性のゲル状となったでん粉については、移動および液化酵素との混和といった操作が困難であるため、配管閉塞や加熱部分への付着による焦げ付きなどの深刻な障害が発生することが問題となっている。また、たんぱく質については、でん粉と同じく各種のたんぱく質分解酵素が存在するため処理自体は可能であるが、ゲル状物に対しては、やはり操作が困難である。   However, for starch that has been pre-gelatinized and has a low-viscosity gel, it is difficult to move and mix with liquefied enzymes. The problem is that serious failures occur. As for protein, various proteolytic enzymes are present in the same manner as starch, so that the treatment itself is possible, but it is still difficult to operate on gel.

それ以外の多糖類や高分子の酵素液化については、グルコマンナンを液化する酵素による飲料の製造方法が提案されている(例えば特許文献3参照)。しかし、加水分解による高分子の分解によって液状化するものであり、操作の問題に加え、商業的に使用できる酵素が存在しないか非常に高価であり、製造費用を押し上げる結果となるため、経済的理由等から工業的利用は難しい。   Regarding other enzyme liquefaction of polysaccharides and polymers, a beverage production method using an enzyme that liquefies glucomannan has been proposed (for example, see Patent Document 3). However, it is liquefied by degradation of the polymer by hydrolysis, and in addition to the problem of operation, there is no commercially available enzyme or it is very expensive, resulting in increased manufacturing costs, so it is economical Industrial use is difficult for reasons.

塩酸や硫酸といった強酸による酸分解法によれば、原理的にはゲル状物の種類によらず液化することが可能であると考えられるが、操作の問題だけでなく、使用する酸による反応容器や付帯設備といった製造設備の腐食や、酸や中和するアルカリ等の取り扱いそのものが非常に危険であるという問題が生じる。   According to the acid decomposition method using a strong acid such as hydrochloric acid or sulfuric acid, it is thought that in principle it can be liquefied regardless of the type of gel, but it is not only a matter of operation but also a reaction vessel depending on the acid used. There arises a problem that corrosion of manufacturing equipment such as ancillary equipment and incidental equipment, and handling of acid and alkali to be neutralized are very dangerous.

加えて、酵素分解ならびに酸分解ともに、使用した酵素や酸およびその中和により生じた塩類などが、液化物中に混在して残存するため、例えば、食品分野など特に最終製品の純度が要求される場合には、ろ過やイオン交換処理など適切な精製方法で残存物の除去を行う必要があり、この場合には工程が煩雑なものとなる。   In addition, both the enzymatic degradation and acid degradation require the purity of the final product, for example in the food field, because the enzyme used, the acid, and the salts produced by the neutralization remain mixed in the liquefied product. In this case, it is necessary to remove the residue by an appropriate purification method such as filtration or ion exchange treatment. In this case, the process becomes complicated.

また、イオン交換処理を行う場合には、液化物の成分が荷電を有していると、イオン交換処理に用いるイオン交換樹脂に吸着されることがあるため、著しい収率低下をきたすなど、処理自体が困難となる場合もある。   In addition, when ion exchange treatment is performed, if the component of the liquefied product is charged, it may be adsorbed by the ion exchange resin used for the ion exchange treatment, resulting in a significant decrease in yield. It can be difficult.

上記の問題点を解決し高粘度で低流動性のゲル状物の液状化による操作性、経済性および利便性を向上させるため、本発明者が鋭意検討したところ、前記ゲル状物に超音波照射を適用することで短時間で液状化が生じ、液状物が取得可能であることを見出した。そして、この液状物をもとに、さらに乾燥処理をして、使用目的に最も適した所定形状の固形物を容易に得ることができる。
特開2003−2901公報 (第2―3頁、第1図) 特許3066568号公報 (第2頁) 特開平5−199856号公報 (第2―4頁)
In order to solve the above problems and improve operability, economy and convenience by liquefaction of a highly viscous and low flowable gel material, the present inventor has intensively studied. It was found that by applying irradiation, liquefaction occurred in a short time, and a liquid material could be obtained. And based on this liquid substance, it can dry-process further and can obtain the solid substance of the predetermined shape most suitable for the intended purpose.
JP 2003-2901 A (page 2-3, FIG. 1) Japanese Patent No. 3066568 (2nd page) JP-A-5-199856 (Page 2-4)

従って、本発明は、高粘度で低流動性のゲル状物を容易にかつ効率よくしかも経済的に使用目的に最も適した所定形状の固形物となす方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method for converting a gel having a high viscosity and a low fluidity into a solid having a predetermined shape which is most suitable for the purpose of use easily and efficiently.

すなわち、請求項1の発明は、ゲル状物に超音波を照射して液状物となし、前記液状物を乾燥して所定形状の固形物となすことを特徴とするゲル状物から固形物を製造する方法に係る。   That is, the invention of claim 1 irradiates the gel material with ultrasonic waves to form a liquid material, and the liquid material is dried to form a solid material of a predetermined shape. According to the manufacturing method.

請求項2の発明は、前記液状物を皿状の乾燥板上で乾燥して、板状の固形物を得ることを特徴とする請求項1に記載のゲル状物から固形物を製造する方法に係る。   The invention according to claim 2 is a method for producing a solid from a gel-like material according to claim 1, wherein the liquid material is dried on a dish-like drying plate to obtain a plate-like solid material. Concerning.

請求項3の発明は、前記液状物を成形型に注入して乾燥して、所定形状の固形物を得ることを特徴とする請求項1に記載のゲル状物から固形物を製造する方法に係る。   The invention according to claim 3 is a method for producing a solid from a gel-like material according to claim 1, wherein the liquid material is poured into a mold and dried to obtain a solid material having a predetermined shape. Related.

請求項4の発明は、ゲル状物に超音波を照射して液状物となし、前記液状物を乾燥して粉状物とし、前記粉状物を圧縮して所定形状の固形物となすことを特徴とするゲル状物から固形物を製造する方法に係る。   In the invention of claim 4, the gel-like material is irradiated with ultrasonic waves to form a liquid material, the liquid material is dried into a powder material, and the powder material is compressed into a solid material of a predetermined shape. The present invention relates to a method for producing a solid from a gel-like material.

請求項5の発明は、前記液状物をスプレードライヤーにて乾燥して粉状物とするとともに、前記固形物が板状若しくは粒状若しくは棒状である請求項4に記載のゲル状物から固形物を製造する方法に係る。   According to a fifth aspect of the present invention, the liquid material is dried with a spray dryer to form a powdery material, and the solid material is plate-shaped, granular, or rod-shaped. According to the manufacturing method.

請求項6の発明は、前記ゲル状物が、多糖類、タンパク質、ポリアクリル酸類、ポリメタクリル酸類、ポリビニルアルコール類、ポリエチレングリコール類並びにこれらの誘導体のうち少なくともいずれか1種以上を含有している請求項1ないし5のいずれか1項に記載のゲル状物から固形物を製造する方法に係る。   In the invention of claim 6, the gel-like material contains at least one or more of polysaccharides, proteins, polyacrylic acids, polymethacrylic acids, polyvinyl alcohols, polyethylene glycols and derivatives thereof. It concerns on the method of manufacturing a solid substance from the gel-like substance of any one of Claims 1 thru | or 5.

請求項1の発明に係るゲル状物から固形物を製造する方法によると、ゲル状物に超音波を照射することにより、前記ゲル状物から液状物を得ることができる。そのため、例えば、予め糊化された高粘度で低流動性のゲル状物であっても、超音波照射により短時間で液状化することが可能であり、操作性や利便性を向上させることができる。そして、この液状物をもとにして、さらに、乾燥処理をして、使用目的に最も適した所定形状の固形物を容易に得ることができる。   According to the method for producing a solid from the gel according to the first aspect of the invention, a liquid can be obtained from the gel by irradiating the gel with an ultrasonic wave. Therefore, for example, even a pregelatinized high-viscosity and low-fluidity gel can be liquefied in a short time by ultrasonic irradiation, improving operability and convenience. it can. And based on this liquid substance, it can further dry-process and can obtain the solid object of the predetermined shape most suitable for the intended purpose.

請求項2の発明に係る製法によれば、前記液状物を皿状の乾燥板上で乾燥して、板状の固形物を得るものであるから、使用目的に応じた板状の固形物を簡単かつ容易に成形することができる。   According to the manufacturing method according to the invention of claim 2, since the liquid material is dried on a dish-shaped drying plate to obtain a plate-shaped solid material, the plate-shaped solid material corresponding to the purpose of use is obtained. It can be easily and easily molded.

請求項3の発明に係る製法によれば、前記液状物を成形型に注入して乾燥して、所定形状の固形物を得るものであるから、用途に応じた所定形状の固形物を簡単かつ容易に成形することができる。   According to the manufacturing method of the invention of claim 3, the liquid material is poured into a mold and dried to obtain a solid material having a predetermined shape. It can be easily molded.

請求項4の発明に係る製法によれば、ゲル状物に超音波を照射して液状物となし、前記液状物を乾燥して粉状物とし、前記粉状物を圧縮して所定形状の固形物となすものであるから、使用目的に最も適した所定形状の固形物を簡単かつ容易に得ることができる。   According to the manufacturing method of the invention of claim 4, the gel material is irradiated with ultrasonic waves to form a liquid material, the liquid material is dried to form a powder material, and the powder material is compressed to obtain a predetermined shape. Since it becomes a solid product, a solid product having a predetermined shape most suitable for the intended purpose can be obtained easily and easily.

請求項5の発明に係る製法によれば、前記液状物をスプレードライヤーにて乾燥して粉状物とすものであるから、連続的にかつ大量の乾燥が簡単容易に効率よく、経済的に行うことができる。さらに、前記固形物が板状若しくは粒状若しくは棒状であるから、これらは従来公知の装置によって、使用目的に最も適した所定形状の固形物に簡単かつ容易に成形することができる。   According to the manufacturing method of the invention of claim 5, since the liquid material is dried with a spray dryer to form a powdery material, continuous and large-scale drying is easily and easily performed efficiently and economically. It can be carried out. Furthermore, since the solid is plate-shaped, granular or rod-shaped, these can be easily and easily formed into a solid having a predetermined shape most suitable for the purpose of use by a conventionally known apparatus.

請求項6の発明に係る製法によれば、前記ゲル状物は、多糖類、タンパク質だけでなく、ポリアクリル酸類、ポリメタクリル酸類、ポリビニルアルコール類、ポリエチレングリコール類並びにこれらの誘導体のうち少なくともいずれか1種以上を含有することができる。従って、本方法によれば、従来、例えば商業的に使用できる酵素が、存在しないか非常に高価であったでん粉以外の多糖類や高分子の液化についても、そのような酵素を用いることなく、しかも高粘度で低流動性のゲル状物であっても、経済的で簡便に液状物を得ることができる。そして、この液状物をもとにして、さらに、乾燥処理をして、使用目的に最も適した所定形状の固形物を容易に得ることができる。   According to the production method of the invention of claim 6, the gel-like product is not only a polysaccharide and a protein, but also at least one of polyacrylic acids, polymethacrylic acids, polyvinyl alcohols, polyethylene glycols, and derivatives thereof. 1 or more types can be contained. Therefore, according to the present method, conventionally, for example, commercially available enzymes are not present or very expensive for polysaccharides and polymer liquefaction other than starch without using such enzymes, And even if it is a highly viscous and low fluidity gel-like substance, a liquid substance can be obtained economically and simply. And based on this liquid substance, it can further dry-process and can obtain the solid object of the predetermined shape most suitable for the intended purpose.

以下、本発明の実施形態を詳細に説明する。図1は本発明を実施する工程の概略を表す概略工程図で、ゲル状物に超音波を照射して液状物となす工程と、前記液状物を乾燥して固形物となす工程とからなる。また、図2は本発明に用いる超音波照射装置の一例を示す概略図、図3は前記液状物を皿状の乾燥板上で乾燥して、板状の固形物を得る工程を示す概略図、図4は前記液状物を成形型に注入して乾燥して、所定形状の固形物を得る工程を示す概略図、図5は液状物を乾燥して粉状物とし、前記粉状物を圧縮して所定形状の固形物となす工程を示す概略図である。   Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 is a schematic process diagram showing an outline of a process for carrying out the present invention, and includes a step of irradiating a gel-like material with ultrasonic waves to form a liquid material, and a step of drying the liquid material to form a solid material. . FIG. 2 is a schematic view showing an example of an ultrasonic irradiation apparatus used in the present invention. FIG. 3 is a schematic view showing a step of drying the liquid material on a dish-like drying plate to obtain a plate-like solid material. FIG. 4 is a schematic diagram showing a process of injecting the liquid material into a mold and drying it to obtain a solid material having a predetermined shape, and FIG. 5 is a diagram of drying the liquid material to form a powder material. It is the schematic which shows the process of compressing and making it the solid substance of a predetermined shape.

請求項1の発明として規定するように、ゲル状物に超音波を照射して液状物が得られる。ここで、前記ゲル状物の固形分濃度は特に限られたものではないが、分解物の経済的な取得の観点から1重量%以上が好ましく、更には10重量%以上が好ましい。また、超音波を照射する前記ゲル状物の粘度は特に限定されないが、粘度400mPa・s程度の軟らかいゲル状物はもちろんのこと、40,000mPa・s以上の硬いゲル状物に対しても本方法の適用が可能である。なお、粘度はB型粘度計(東機産業株式会社製TVB−10)を用い、ローターと回転数を適宜調整し、温度50℃で測定したときの一例である。   As specified in the invention of claim 1, a liquid material is obtained by irradiating the gel-like material with ultrasonic waves. Here, the solid content concentration of the gel is not particularly limited, but is preferably 1% by weight or more, and more preferably 10% by weight or more from the viewpoint of economically obtaining the decomposed product. In addition, the viscosity of the gel-like material irradiated with ultrasonic waves is not particularly limited, but it is not limited to a soft gel-like material having a viscosity of about 400 mPa · s, but also to a hard gel-like material having a viscosity of 40,000 mPa · s or more. Application of the method is possible. In addition, a viscosity is an example when using a B-type viscometer (TVB-10 by Toki Sangyo Co., Ltd.), adjusting a rotor and rotation speed suitably, and measuring it at the temperature of 50 degreeC.

さらに、前記ゲル状物とは、請求項6の発明として規定するように、多糖類、タンパク質、ポリアクリル酸類、ポリメタクリル酸類、ポリビニルアルコール類、ポリエチレングリコール類並びにこれらの誘導体のうち少なくともいずれか1種以上を含有したゲル状物とすることができる。   Furthermore, as defined in the invention of claim 6, the gel-like product is at least one of polysaccharides, proteins, polyacrylic acids, polymethacrylic acids, polyvinyl alcohols, polyethylene glycols, and derivatives thereof. It can be set as the gel containing a seed or more.

前記ゲル状物の調製方法としては、特に限定されないが、高分子の浸漬による膨潤や攪拌による溶解および加温や薬剤処理ならびにそれらを組み合わせた方法などが挙げられる。また、前記ゲル状物の調製に用いる溶媒も、水、有機溶剤もしくはそれらの混合物など特に限られるものではない。   The method for preparing the gel is not particularly limited, and examples thereof include swelling by polymer immersion, dissolution and heating by stirring, chemical treatment, and a combination thereof. Moreover, the solvent used for the preparation of the gel is not particularly limited, such as water, an organic solvent or a mixture thereof.

ゲル状物に超音波を照射して得られた液状物の性状は、超音波照射の形態により、液化の程度が任意に調整される。前記液状物は、単体で糊剤やトロミ付け、粘度賦与などに利用できるほか、任意の物質と混合し組成物を調製することができる。   As for the properties of the liquid obtained by irradiating the gel-like material with ultrasonic waves, the degree of liquefaction is arbitrarily adjusted according to the form of ultrasonic irradiation. The liquid material can be used alone for pasting, trotting, viscosity imparting, etc., and can be mixed with an arbitrary substance to prepare a composition.

前記ゲル状物に照射される超音波の周波数は、20KHzないし400KHzの周波数から選択して用いることが可能である。また、超音波照射における照射形式、照射時間、強度、ゲル状物の量などの条件については、特に限られるものではない。なお、超音波照射の周波数としては、超音波照射装置の消費電力、ゲル状物に超音波を照射する際の処理効率などから、10KHzから10MHz、好ましくは20KHzから2MHz、20KHzから1MHz、20KHzから400KHz、また更に好ましくは20KHzから100KHzが好適であると想定される。   The frequency of the ultrasonic wave applied to the gel can be selected from a frequency of 20 KHz to 400 KHz. In addition, the conditions such as the irradiation type, irradiation time, intensity, and amount of gel in ultrasonic irradiation are not particularly limited. The frequency of ultrasonic irradiation is from 10 KHz to 10 MHz, preferably from 20 KHz to 2 MHz, from 20 KHz to 1 MHz, from 20 KHz, from the power consumption of the ultrasonic irradiation device, the processing efficiency when irradiating the gel-like object with ultrasonic waves, and the like. It is assumed that 400 KHz, and more preferably 20 KHz to 100 KHz is suitable.

また、ゲル状物の調製と超音波照射を同時に実施したり、被処理物の投入と当該処理物の取り出しを適宜行うことで連続的に実施してもかまわない。さらに、従来の液化方法である酸分解法や酵素分解法と組み合わせることで、それらの処理法を高濃度で経済的に進める手段としても利用することもできる。また、ゲル状物と混和したい物質を共存させた上で超音波照射を行えば、液状化と混和を同時に実施する事も可能である。   Moreover, it may be carried out continuously by preparing the gel-like material and irradiating ultrasonic waves at the same time, or by appropriately inserting the object to be processed and taking out the object to be processed. Furthermore, by combining with conventional acid liquefaction methods such as acid decomposition method and enzyme decomposition method, these treatment methods can also be utilized as means for economically advancing these treatment methods at high concentrations. In addition, liquefaction and mixing can be carried out simultaneously by irradiating with ultrasonic waves after coexisting a substance desired to be mixed with the gel.

本発明に用いるゲル状物の液化装置の一例を説明すると、図2において、ゲル状物の液化装置1は、信号を発振する発振機2、発振された信号出力を測定する電力計3、発振された信号により振動する振動子4、振動子の振動により生じる超音波が照射される被照射物5、その被照射物の容器6により構成されている。例えば、前記容器6は、上面が開放され、下面が閉じているステンレス製円筒を用いることができる。容器6内に被照射物5を入れた後、振動子4を容器6の開放側から被照射物5に直接密着させる。上記の発振機2から、振動子4へ信号が発振されることで被照射物5に超音波が照射され、その出力は電力計3により監視される。任意の程度まで超音波照射を行ったのち、発振機2からの信号を停止し、容器6から被照射物5を取り出すことができる。   An example of the gel-like product liquefying apparatus used in the present invention will be described. In FIG. 2, a gel-like product liquefying apparatus 1 includes an oscillator 2 that oscillates a signal, a wattmeter 3 that measures the oscillated signal output, and an oscillation. The vibrator 4 is vibrated by the received signal, the irradiated object 5 is irradiated with ultrasonic waves generated by the vibration of the vibrator, and the container 6 of the irradiated object. For example, the container 6 may be a stainless steel cylinder having an open upper surface and a closed lower surface. After putting the irradiated object 5 in the container 6, the vibrator 4 is brought into direct contact with the irradiated object 5 from the open side of the container 6. A signal is oscillated from the oscillator 2 to the vibrator 4 so that the irradiated object 5 is irradiated with ultrasonic waves, and its output is monitored by the wattmeter 3. After performing ultrasonic irradiation to an arbitrary degree, the signal from the oscillator 2 can be stopped, and the irradiated object 5 can be taken out from the container 6.

前記工程で得られた液状物は、微生物汚染を受けやすい様態であるため、液状での長期保存や輸送については、高度に衛生的な仕様の容器の設置や入念な配管洗浄など格別の設備管理が必要とされる。一方、得られた液状物を、速やかに水分を減少させて固形物とすることで、この微生物汚染の危険性を解決することができる。また、固形物であるので、一般的な管理条件で、効率のよい保管や流通が可能となるだけでなく、使用時における配合や調製といった操作を、任意の濃度に再溶解した液状、あるいは固形物や粉状のままでも実施することができる。   The liquid material obtained in the above process is susceptible to microbial contamination. For long-term storage and transportation in liquid form, special equipment management such as the installation of highly hygienic containers and careful pipe cleaning is required. Is needed. On the other hand, the risk of microbial contamination can be solved by quickly reducing the water content of the obtained liquid to a solid. In addition, since it is a solid substance, not only efficient storage and distribution are possible under general management conditions, but also operations such as formulation and preparation during use are re-dissolved to an arbitrary concentration, It can be carried out even in a product or powder form.

次に、乾燥工程について述べると、前記超音波照射工程によって得られた液状物は、乾燥によって固形物とされる。乾燥は、加熱板、加熱ローラー、焼き型、オーブンもしくは加熱プレスやフリーズドライなどを用いた公知手法により任意に行うことができる。また、乾燥により得られた所定形状の固形物を、目的に応じて粉砕し、適当な粒径の粉状物を得ることもできる。   Next, the drying process will be described. The liquid obtained by the ultrasonic irradiation process is turned into a solid by drying. Drying can be arbitrarily performed by a known method using a heating plate, a heating roller, a baking mold, an oven, a heating press, freeze drying, or the like. Moreover, the solid substance of the predetermined shape obtained by drying can also be grind | pulverized according to the objective, and the powdery substance of a suitable particle size can also be obtained.

また、請求項2に規定し、図3に示すように、前記液状物を皿状の乾燥板上で乾燥して、板状の固形物を得ることができる。目的とする板状の固形物の性状に応じて、前記液状物に保水剤やグリセリンなどの柔軟剤などの添加剤を混合して、乾燥することができる。乾燥雰囲気や乾燥温度、時間は、特に限られず、大気中や真空中で乾燥することができ、板状の固形物の性状や形状、厚みなどに応じて適宜調節される。板状の固形物や成形により得られた所定形状の固形物を均一に乾燥するために、乾燥の温度や時間を、段階的に変化させて乾燥してもよい。また、板状の固形物を粉砕して、粉状物を得ることも可能である。   Further, as defined in claim 2 and as shown in FIG. 3, the liquid material can be dried on a dish-shaped drying plate to obtain a plate-shaped solid material. Depending on the properties of the target plate-like solid, an additive such as a water retention agent or a softening agent such as glycerin can be mixed with the liquid and dried. The drying atmosphere, the drying temperature, and the time are not particularly limited, and the drying atmosphere, the drying temperature, and the time can be dried in the air or in a vacuum, and are appropriately adjusted according to the properties, shape, thickness, and the like of the plate-like solid material. In order to uniformly dry a plate-like solid or a solid having a predetermined shape obtained by molding, drying may be performed by changing the drying temperature and time stepwise. It is also possible to obtain a powdery product by pulverizing a plate-like solid material.

前記皿状の乾燥板の材質は特に限定されず、ステンレス、鉄などの金属あるいはテフロン(登録商標)などの樹脂等を用いることができる。乾燥板の濡れ性や前記液状物の粘度によっては、乾燥板上で前記液状物が平滑に広がりにくい場合があるため、乾燥板の材質は濡れ性のよいポリエチレンテレフタレート(以下、PETという。)などのポリオレフィン類が好ましい。さらに、コロナ処理やサンドブラスト処理などによる乾燥板の濡れ性向上や、前記液状物に界面活性剤等の添加や粘度調整などを行うことによる表面張力の低減も好適である。また、シリコン類などの離型剤を塗布することも可能である。これらは、以下に述べる、前記液状物を成形型に注入する場合や、前記液状物を乾燥して得られた粉状物を圧縮する場合に用いられる成形型についても、同様である。   The material of the dish-shaped drying plate is not particularly limited, and a metal such as stainless steel or iron or a resin such as Teflon (registered trademark) can be used. Depending on the wettability of the drying plate and the viscosity of the liquid material, the liquid material may be difficult to spread smoothly on the drying plate, so the material of the drying plate is polyethylene terephthalate (hereinafter referred to as PET) having good wettability. The polyolefins are preferred. Furthermore, it is also preferable to improve the wettability of the dry plate by corona treatment or sand blasting, and to reduce the surface tension by adding a surfactant or adjusting the viscosity of the liquid material. It is also possible to apply a release agent such as silicon. The same applies to the molding die described below when the liquid material is poured into the molding die or when the powdery material obtained by drying the liquid material is compressed.

また、前記皿状の乾燥板のサイズは特に限られず、目的に応じた大きさの前記乾燥板を用いることができる。特に、板状の固形物の厚み方向の大きさは、前記液状物の固形分濃度を変化させたり、板状の固形物を幾つか重ねたりすることなどにより調製することもできる。   The size of the dish-shaped drying plate is not particularly limited, and the drying plate having a size according to the purpose can be used. In particular, the size of the plate-like solid in the thickness direction can be prepared by changing the solid content concentration of the liquid or by overlapping several plate-like solids.

次に、請求項3に規定し、図4に示すように、前記液状物を成形型に注入して乾燥して、所定形状の固形物を得る場合には、前述の板状の固形物を得るときと同様に、前記液状物に保水剤やグリセリンなどの柔軟剤などの添加剤を混合して、乾燥することができる。乾燥雰囲気や乾燥温度、時間は、特に限られず、固形物の性状や形状、厚みなどに応じて適宜調節される。成型方法は例えば、射出成形、インモールド成形、鋳込み成形などを目的に応じて、適宜選択することができる。   Next, as defined in claim 3 and as shown in FIG. 4, when the liquid material is poured into a mold and dried to obtain a solid material having a predetermined shape, the plate-shaped solid material described above is used. As in the case of obtaining, an additive such as a water retention agent or a softening agent such as glycerin can be mixed with the liquid material and dried. The drying atmosphere, drying temperature, and time are not particularly limited, and are appropriately adjusted according to the properties, shape, thickness, and the like of the solid material. As the molding method, for example, injection molding, in-mold molding, cast molding, or the like can be appropriately selected depending on the purpose.

また、請求項4に規定し、図5に示すように、前記液状物を乾燥して粉状物とし、前記粉状物を圧縮して所定形状の固形物を得る場合には、目的とする粉状物の性状に応じて、前記液状物に、例えば、バインダーや分散剤等を加えることで、乾燥に最適なスラリーなどにすることも可能である。粉状物の粒径、形態などは特に限定されるものではなく、目的とする粉状物の性状に応じて任意に選択することができる。   Further, as defined in claim 4 and as shown in FIG. 5, when the liquid material is dried into a powdery material, and the powdery material is compressed to obtain a solid material of a predetermined shape, it is an object. Depending on the properties of the powdery material, for example, a binder, a dispersing agent, or the like can be added to the liquid material to obtain an optimum slurry for drying. The particle size, form, and the like of the powder are not particularly limited, and can be arbitrarily selected according to the properties of the target powder.

このような、粉状化方法としては、請求項5に規定するように、速やかで連続的であり、かつ内容成分への影響が少ない液状物の乾燥方法であるスプレードライヤーによる実施が望ましい。また、スプレードライヤーによる乾燥によれば、大量の前記液状物の乾燥が簡単容易に効率よく、経済的に行うことができる。   As such a powdering method, as defined in claim 5, it is desirable to use a spray dryer which is a method for drying a liquid material which is rapid and continuous and has little influence on the content components. Moreover, according to the drying with a spray dryer, a large amount of the liquid material can be easily and efficiently dried economically.

そして、圧縮工程では、粉状物を圧縮して所定の固形物、例えば、板状若しくは粒状若しくは棒状の固形物とすることができる。圧縮装置としては、公知の圧縮ローラ、圧延ローラ、各種プレス装置、造粒装置、ブリケットマシンなどを所望する性状あるいは形状に応じて適宜使用することができる。例えば、スプレードライヤーなどの乾燥により得られた粉状物を加圧成形すれば、板状若しくは粒状若しくは棒状などの所定形状の固形物を容易に得ることができる。所定形状の固形物に成形しやすいように、得られた粉状物にバインダーなどを添加することも可能である。   In the compression step, the powdery material can be compressed into a predetermined solid material, for example, a plate-shaped, granular, or rod-shaped solid material. As the compression device, a known compression roller, rolling roller, various press devices, granulating device, briquette machine, etc. can be appropriately used according to the desired properties or shape. For example, if a powdery material obtained by drying such as a spray dryer is pressure-molded, a solid material having a predetermined shape such as a plate shape, a granular shape or a rod shape can be easily obtained. It is also possible to add a binder or the like to the obtained powdery material so that it can be easily formed into a solid material having a predetermined shape.

次に本発明における液状物の実施例について示す。各処理を行うに当たり、下記所定の条件でゲル状物の調製を行った。前記ゲル状物を直径5.5cm、高さ4cmのステンレス製円筒容器に充填し、超音波発振機「(有)コウワ技研製 バリアブル型超音波発振機」の発振で駆動する振動子の先端(直径5cm)を密着させ、20KHz、100Wの超音波照射を30分間行い、各液状物を得た。   Next, examples of the liquid material in the present invention will be described. In performing each treatment, a gel-like product was prepared under the following predetermined conditions. The gel-like material is filled in a stainless steel cylindrical container having a diameter of 5.5 cm and a height of 4 cm, and the tip of a vibrator driven by the oscillation of an ultrasonic oscillator “Variable ultrasonic oscillator manufactured by Kowa Giken” ( 5 cm in diameter) was closely attached, and ultrasonic irradiation with 20 KHz and 100 W was performed for 30 minutes to obtain each liquid material.

[処理例1]
試薬「グルコマンナン」(和光純薬工業(株)製)固形換算0.5gを49.5gの沸騰脱イオン水に攪拌しながら投入して50gのゲル状物を調製した。超音波照射の時間に伴う粘度変化を確認するために、超音波照射時間を5分から60分の間で変化させて行った。本発明によって得られた液状物の粘度と超音波照射時間の関係は下記表1、図6に示すとおりである。ゲル状物に対する超音波照射により、ゲル状物の液状化が生じ、照射時間に伴って粘度低下が進行していることが明らかである。また、超音波照射時間については、30分以上超音波照射を行っても、それ以降はほとんど粘度変化が無かった。従って、以下の各試料は超音波照射時間を30分として処理を行った。
[Processing Example 1]
Reagent “Glucomannan” (manufactured by Wako Pure Chemical Industries, Ltd.) 0.5 g of solid was added to 49.5 g of boiling deionized water while stirring to prepare 50 g of a gel-like product. In order to confirm the viscosity change with the time of ultrasonic irradiation, the ultrasonic irradiation time was changed between 5 minutes and 60 minutes. The relationship between the viscosity of the liquid obtained by the present invention and the ultrasonic irradiation time is as shown in Table 1 and FIG. It is clear that the gel-like material is liquefied by the ultrasonic irradiation of the gel-like material, and the viscosity lowers with the irradiation time. Moreover, about ultrasonic irradiation time, even if ultrasonic irradiation was performed for 30 minutes or more, there was almost no viscosity change after that. Therefore, each sample below was processed with an ultrasonic irradiation time of 30 minutes.

Figure 2006265512
Figure 2006265512

[処理例2]
市販とうもろこしでん粉「コーンスターチ」(フタムラスターチ(株)製)固形換算5.0gと水酸化ナトリウム試薬0.5gを脱イオン水に溶解し、50gのゲル状物を調製した。このゲル状物を処理例1と同様の方法にて超音波照射を30分間行い、当該処理物を得た。
[Processing Example 2]
Commercially available corn starch “Corn Starch” (Futamura Starch Co., Ltd.) 5.0 g in solid conversion and 0.5 g sodium hydroxide reagent were dissolved in deionized water to prepare 50 g of a gel. This gel-like product was irradiated with ultrasonic waves in the same manner as in Treatment Example 1 for 30 minutes to obtain the treated product.

[処理例3]
市販とうもろこしでん粉「コーンスターチ」(フタムラスターチ(株)製)固形換算5.0gを脱イオン水に分散させ加温し、50gのゲル状物を調製した。このゲル状物を処理例2と同様の方法にて超音波照射を行い、当該処理物を得た。
[Processing Example 3]
Commercially available corn starch “Corn Starch” (manufactured by Phutamura Starch Co., Ltd.) in a solid equivalent of 5.0 g was dispersed in deionized water and heated to prepare 50 g of a gel-like product. This gel-like product was irradiated with ultrasonic waves in the same manner as in Processing Example 2 to obtain the processed product.

[処理例4]
市販馬鈴薯でん粉「片栗粉」((株)扇カネ安製)固形換算5.0gを処理例3と同様の方法でゲル状物を調製した。このゲル状物を処理例2と同様の方法にて超音波照射を行い、当該処理物を得た。
[Processing Example 4]
A gel-like product was prepared in the same manner as in Processing Example 3 by using 5.0 g of solid potato starch “Kataguri” (manufactured by Okane Kane An) as a solid. This gel-like product was irradiated with ultrasonic waves in the same manner as in Processing Example 2 to obtain the processed product.

[処理例5]
試薬「ジェランガム」(関東化学(株)製)固形換算1.0gを処理例3と同様の方法でゲル状物を調製した。このゲル状物を処理例2と同様の方法にて超音波照射を行い、当該処理物を得た。
[Processing Example 5]
A gel-like product was prepared in the same manner as in Treatment Example 3 by using 1.0 g of solid equivalent of the reagent “gellan gum” (manufactured by Kanto Chemical Co., Inc.). This gel-like product was irradiated with ultrasonic waves in the same manner as in Processing Example 2 to obtain the processed product.

[処理例6]
試薬「アルギン酸ナトリウム」(関東化学(株)製)固形換算2.5gを処理例3と同様の方法でゲル状物を調製した。このゲル状物を処理例2と同様の方法にて超音波照射を行い、当該処理物を得た。
[Processing Example 6]
A gel-like product was prepared in the same manner as in Treatment Example 3 using 2.5 g of the solid amount of the reagent “sodium alginate” (manufactured by Kanto Chemical Co., Inc.). This gel-like product was irradiated with ultrasonic waves in the same manner as in Processing Example 2 to obtain the processed product.

[処理例7]
試薬「ペクチン」(関東化学(株)製)固形換算5.0gを処理例3と同様の方法でゲル状物を調製した。このゲル状物を処理例2と同様の方法にて超音波照射を行い、当該処理物を得た。
[Processing Example 7]
A gel-like product was prepared in the same manner as in Treatment Example 3 by using 5.0 g of the reagent “pectin” (manufactured by Kanto Chemical Co., Inc.) as solids. This gel-like product was irradiated with ultrasonic waves in the same manner as in Processing Example 2 to obtain the processed product.

[処理例8]
試薬「ポリアクリル酸」(和光純薬工業(株)製)固形換算0.5gを処理例3と同様の方法でゲル状物を調製した。このゲル状物を処理例2と同様の方法にて超音波照射を行い、当該処理物を得た。
[Processing Example 8]
A gel-like product was prepared in the same manner as in Treatment Example 3 by using 0.5 g of the reagent “polyacrylic acid” (manufactured by Wako Pure Chemical Industries, Ltd.) as solids. This gel-like product was irradiated with ultrasonic waves in the same manner as in Processing Example 2 to obtain the processed product.

[処理例9]
試薬「ポリビニルアルコール」(関東化学(株)製)固形換算0.5gを処理例3と同様の方法でゲル状物を調製した。このゲル状物を処理例2と同様の方法にて超音波照射を行い、当該処理物を得た。
[Processing Example 9]
A gel-like product was prepared in the same manner as in Treatment Example 3 using 0.5 g of the solid equivalent of the reagent “polyvinyl alcohol” (manufactured by Kanto Chemical Co., Inc.). This gel-like product was irradiated with ultrasonic waves in the same manner as in Processing Example 2 to obtain the processed product.

[処理例10]
試薬「ポリエチレングリコール」(メルク(株)製)固形換算10gを処理例3と同様の方法でゲル状物を調製した。このゲル状物を処理例2と同様の方法にて超音波照射を行い、当該処理物を得た。
[Processing Example 10]
A gel-like product was prepared in the same manner as in Treatment Example 3 by using 10 g of the solid equivalent of the reagent “polyethylene glycol” (manufactured by Merck). This gel-like product was irradiated with ultrasonic waves in the same manner as in Processing Example 2 to obtain the processed product.

[処理例11]
市販「ゼラチン」(マルハ(株)製)固形換算0.5gを処理例3と同様の方法でゲル状物を調製した。このゲル状物を処理例2と同様の方法にて超音波照射を行い、当該処理物を得た。
[Processing Example 11]
A gel-like product was prepared in the same manner as in Processing Example 3 using 0.5 g of a solid equivalent of commercially available “gelatin” (manufactured by Maruha Corporation). This gel-like product was irradiated with ultrasonic waves in the same manner as in Processing Example 2 to obtain the processed product.

[処理例12]
市販粉末「寒天」(伊那食品工業(株)製)固形換算0.1gを処理例3と同様の方法でゲル状物を調製した。このゲル状物を処理例2と同様の方法にて超音波照射を行い、当該処理物を得た。
[Processing Example 12]
A gel-like product was prepared in the same manner as in Processing Example 3 using 0.1 g of a solid powder (agar) (manufactured by Ina Food Industry Co., Ltd.) as a solid. This gel-like product was irradiated with ultrasonic waves in the same manner as in Processing Example 2 to obtain the processed product.

[処理例13]
加工でん粉(公知の方法により調製されたでん粉リン酸エステル)固形換算5.0gを処理例3と同様の方法でゲル状物を調製した。このゲル状物を処理例2と同様の方法にて超音波照射を行い、当該処理物を得た。
[Processing Example 13]
A gelled product was prepared in the same manner as in Processing Example 3 using 5.0 g of processed starch (starch phosphate prepared by a known method) in solid form. This gel-like product was irradiated with ultrasonic waves in the same manner as in Processing Example 2 to obtain the processed product.

[超音波照射による各試料の粘度の評価]
図7に、処理例2から処理例13までの各試料における、超音波照射前と超音波照射後の粘度の測定結果を示す。図7から明らかなように、いずれの処理例においても、ゲル状物に対する超音波照射により、著しく粘度が低下した。
[Evaluation of viscosity of each sample by ultrasonic irradiation]
FIG. 7 shows the measurement results of the viscosities before and after the ultrasonic irradiation in the samples of the processing examples 2 to 13. As is clear from FIG. 7, in any of the treatment examples, the viscosity was remarkably reduced by ultrasonic irradiation of the gel-like material.

[処理例14]
処理例3により調製した当該処理物に水酸化カルシウム試薬を加えpH6.0に調製した後、α―アミラーゼ「大和化成(株)製クライスターゼT−5」30U添加し、50℃で3時間反応させた上で、シュウ酸試薬にてpH4.5に再調製し、グルコアミラーゼ「アマノエンザイム(株)製シルバラーゼ」170Uを添加して50℃にて72時間反応せしめ、ぶどう糖液を得た。
[Processing Example 14]
A calcium hydroxide reagent was added to the treated product prepared in Treatment Example 3 to adjust the pH to 6.0, and then 30 U of α-amylase “Chrystase T-5 manufactured by Daiwa Kasei Co., Ltd.” was added and reacted at 50 ° C. for 3 hours Then, the pH was adjusted again to 4.5 with an oxalic acid reagent, 170 U of glucoamylase “Amanoenzyme Silvalase” was added, and the mixture was reacted at 50 ° C. for 72 hours to obtain a glucose solution.

[比較例1]
フタムラスターチ(株)製連続酵素液化装置にて液化された10重量%でん粉液化液に、α―アミラーゼ「大和化成(株)製クライスターゼT−5」30U添加し、50℃で3時間反応させた上で、シュウ酸試薬にてpH4.5に再調製し、グルコアミラーゼ「アマノエンザイム(株)製シルバラーゼ」170Uを添加して50℃にて72時間反応せしめ、ぶどう糖液を得た。
[Comparative Example 1]
To 10 wt% starch liquefied liquid liquefied by continuous enzyme liquefaction equipment manufactured by Futamura Starch Co., Ltd., 30 U of α-amylase “Chrystase T-5 manufactured by Daiwa Kasei Co., Ltd.” was added and reacted at 50 ° C. for 3 hours. Then, the pH was adjusted again to 4.5 with an oxalic acid reagent, 170 U of glucoamylase “Amanoenzyme Silvalase” was added, and the mixture was reacted at 50 ° C. for 72 hours to obtain a glucose solution.

[ぶどう糖当量の評価]
表2に、処理例14および比較例1にて得られたぶどう糖液のぶどう糖含量を示す。なおぶどう糖量はレーンエイノン法にて得られたぶどう糖当量(DE Dextrose Equivalent)にて測定した。表2により、処理例14において得られたぶどう糖液のぶどう糖当量(DE)は比較例1とほとんど同じであり、本発明によって得られたでん粉の当該処理物は、従来用いられているでん粉液化液と同等にぶどう糖の生産に使用可能であることが明らかである。
[Evaluation of glucose equivalent]
Table 2 shows the glucose content of the glucose solution obtained in Treatment Example 14 and Comparative Example 1. The amount of glucose was measured by the glucose equivalent (DE Dextose Equivalent) obtained by the Lane Einon method. According to Table 2, the glucose equivalent (DE) of the glucose solution obtained in Processing Example 14 is almost the same as that of Comparative Example 1, and the processed product of starch obtained by the present invention is a starch liquefaction solution conventionally used. It is clear that it can be used for the production of glucose as well.

Figure 2006265512
Figure 2006265512

[処理例15]
処理例3により調製した当該処理物に水酸化カルシウム試薬を加えpH6.0に調製した後、サイクロデキストリングルカノトランスフェラーゼ「アマノエンザイム(株)製コンチザイム」15Uを添加して50℃にて72時間反応せしめサイクロデキストリン溶液を得た。
[Processing Example 15]
After the calcium hydroxide reagent was added to the treated product prepared in Treatment Example 3 to adjust the pH to 6.0, cyclodextrin glucanotransferase “Umanzyme Co., Ltd. Contizyme” 15 U was added and reacted at 50 ° C. for 72 hours. A caustic cyclodextrin solution was obtained.

[比較例2]
比較例1にて得られた10重量%でん粉液化液に、サイクロデキストリングルカノトランスフェラーゼ「アマノエンザイム(株)製コンチザイム」15Uを添加して50℃にて72時間反応せしめサイクロデキストリン溶液を得た。
[Comparative Example 2]
A cyclodextrin solution was obtained by adding 15 U of cyclodextrin glucanotransferase “Contzyme manufactured by Amano Enzyme Co., Ltd.” 15 U to the 10% by weight starch liquefied liquid obtained in Comparative Example 1 and reacting at 50 ° C. for 72 hours.

[サイクロデキストリン量の評価]
表3に処理例15と比較例2にて得られたサイクロデキストリン溶液のサイクロデキストリン含量の比較を示す。なお、サイクロデキストリン含量は、HPLC装置(株式会社島津製作所製RID―10A)を用いて、高速液体クロマトグラフィー法により測定を行った。表3によれば、処理例15において得られたサイクロデキストリン量は比較例2よりやや多く、本発明によって得られたでん粉の当該処理物は、従来用いられているでん粉液化液よりもサイクロデキストリン生産に好適であることが明らかである。
[Evaluation of cyclodextrin content]
Table 3 shows a comparison of the cyclodextrin contents of the cyclodextrin solutions obtained in Treatment Example 15 and Comparative Example 2. The cyclodextrin content was measured by a high performance liquid chromatography method using an HPLC apparatus (RID-10A manufactured by Shimadzu Corporation). According to Table 3, the amount of cyclodextrin obtained in Treatment Example 15 was slightly higher than that of Comparative Example 2, and the treated product of starch obtained by the present invention produced cyclodextrin more than conventionally used starch liquefaction liquid. It is clear that this is suitable.

Figure 2006265512
Figure 2006265512

[処理例16]
処理例3により得られた当該処理物を、PET製トレイ上に乾燥物にて100g/m2となるよう均一に注入し、80℃雰囲気に調製した乾燥機中にて乾燥を行い、シート状物を得た。
[Processing Example 16]
The processed product obtained in Processing Example 3 is uniformly poured onto a PET tray so as to be 100 g / m 2 with a dried product, and dried in a dryer prepared in an 80 ° C. atmosphere, and then in a sheet form. I got a thing.

[比較例3]
市販とうもろこしでん粉「コーンスターチ」(フタムラスターチ(株)製)固形換算5.0gを脱イオン水に分散させ加温し、50gのゲル状物を調製した。このゲル状物をPET製トレイ上に乾燥物にて100g/m2となるよう均一に注入を試みた。本試料は粘度が高く均一にすることができなかったが、そのまま80℃雰囲気に調製した乾燥機中にて乾燥を行いシート状物を得た。
[Comparative Example 3]
Commercially available corn starch “Corn Starch” (manufactured by Phutamura Starch Co., Ltd.) in a solid equivalent of 5.0 g was dispersed in deionized water and heated to prepare 50 g of a gel-like product. An attempt was made to uniformly inject this gel-like material onto a PET tray so as to be 100 g / m 2 as a dry product. Although this sample had high viscosity and could not be made uniform, it was dried as it was in a dryer prepared in an 80 ° C. atmosphere to obtain a sheet.

[加工性の評価]
表4に処理例16と比較例3により得られたシート状物の比較を示す。本比較については、外観、透明性、乾燥性のいずれにおいても処理例16のほうが勝っている。比較例3は均一に塗布できなかったことに由来する厚みのムラが、部位による乾燥速度の差異を生じて品質の低下を来しており、厚みのムラが生じない処理例6の加工性が高いことは明らかである。

Figure 2006265512
[Evaluation of workability]
Table 4 shows a comparison of the sheet-like materials obtained in Processing Example 16 and Comparative Example 3. Regarding this comparison, Treatment Example 16 is superior in any of appearance, transparency, and drying properties. In Comparative Example 3, the unevenness in thickness resulting from the fact that the coating could not be performed uniformly resulted in a difference in drying speed depending on the part, resulting in a decrease in quality. Clearly it is expensive.
Figure 2006265512

本発明を実施する工程の概略を表す概略工程図である。It is a schematic process drawing showing the outline of the process of implementing this invention. 本発明に用いる超音波照射装置の一例を示す概略図である。It is the schematic which shows an example of the ultrasonic irradiation apparatus used for this invention. 前記液状物を皿状の乾燥板上で乾燥して、板状の固形物を得る工程を示す概略図である。It is the schematic which shows the process of drying the said liquid substance on a plate-shaped drying board and obtaining a plate-shaped solid substance. 前記液状物を成形型に注入して乾燥して、所定形状の固形物を得る工程を示す概略図である。It is the schematic which shows the process of inject | pouring the said liquid substance into a shaping | molding die and drying and obtaining the solid substance of a predetermined shape. 液状物を乾燥して粉状物とし、前記粉状物を圧縮して所定形状の固形物となす工程を示す概略図である。It is the schematic which shows the process of drying a liquid substance into a powdery substance and compressing the said powdery substance to make a solid substance of a predetermined shape. 本発明によって得られた液状物の粘度と超音波照射時間の関係を示す図である。It is a figure which shows the relationship between the viscosity of the liquid obtained by this invention, and ultrasonic irradiation time. 処理例2から処理例13までの各試料における、超音波照射前後の粘度の測定結果を示す。The measurement result of the viscosity before and behind ultrasonic irradiation in each sample from processing example 2 to processing example 13 is shown.

符号の説明Explanation of symbols

1 ゲル状物の液化装置
2 発振機
3 電力計
4 振動子
5 被照射物
6 容器
DESCRIPTION OF SYMBOLS 1 Liquefaction apparatus of gel-like substance 2 Oscillator 3 Wattmeter 4 Vibrator 5 Object to be irradiated 6 Container

Claims (6)

ゲル状物に超音波を照射して液状物となし、前記液状物を乾燥して所定形状の固形物となすことを特徴とするゲル状物から固形物を製造する方法。   A method for producing a solid from a gel-like material, wherein the gel-like material is irradiated with ultrasonic waves to form a liquid material, and the liquid material is dried to form a solid material having a predetermined shape. 前記液状物を皿状の乾燥板上で乾燥して、板状の固形物を得ることを特徴とする請求項1に記載のゲル状物から固形物を製造する方法。   The method for producing a solid material from a gel-like material according to claim 1, wherein the liquid material is dried on a dish-shaped drying plate to obtain a plate-like solid material. 前記液状物を成形型に注入して乾燥して、所定形状の固形物を得ることを特徴とする請求項1に記載のゲル状物から固形物を製造する方法。   The method for producing a solid material from a gel-like material according to claim 1, wherein the liquid material is poured into a mold and dried to obtain a solid material having a predetermined shape. ゲル状物に超音波を照射して液状物となし、前記液状物を乾燥して粉状物とし、前記粉状物を圧縮して所定形状の固形物となすことを特徴とするゲル状物から固形物を製造する方法。   A gel-like product characterized in that a gel-like product is irradiated with ultrasonic waves to form a liquid product, the liquid product is dried into a powder product, and the powder product is compressed into a solid product having a predetermined shape. To produce solids from 前記液状物をスプレードライヤーにて乾燥して粉状物とするとともに、前記固形物が板状若しくは粒状若しくは棒状である請求項4に記載のゲル状物から固形物を製造する方法。   The method for producing a solid from the gel according to claim 4, wherein the liquid is dried with a spray dryer to form a powder, and the solid is plate-shaped, granular, or rod-shaped. 前記ゲル状物が、多糖類、タンパク質、ポリアクリル酸類、ポリメタクリル酸類、ポリビニルアルコール類、ポリエチレングリコール類並びにこれらの誘導体のうち少なくともいずれか1種以上を含有している請求項1ないし5のいずれか1項に記載のゲル状物から固形物を製造する方法。   6. The gel according to claim 1, wherein the gel-like product contains at least one of polysaccharides, proteins, polyacrylic acids, polymethacrylic acids, polyvinyl alcohols, polyethylene glycols, and derivatives thereof. A method for producing a solid from the gel-like material according to claim 1.
JP2005159216A 2005-02-25 2005-05-31 Method for producing a solid from a gel Expired - Fee Related JP4663409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005159216A JP4663409B2 (en) 2005-02-25 2005-05-31 Method for producing a solid from a gel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005050345 2005-02-25
JP2005159216A JP4663409B2 (en) 2005-02-25 2005-05-31 Method for producing a solid from a gel

Publications (2)

Publication Number Publication Date
JP2006265512A true JP2006265512A (en) 2006-10-05
JP4663409B2 JP4663409B2 (en) 2011-04-06

Family

ID=37201798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005159216A Expired - Fee Related JP4663409B2 (en) 2005-02-25 2005-05-31 Method for producing a solid from a gel

Country Status (1)

Country Link
JP (1) JP4663409B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199607A (en) * 1986-02-27 1987-09-03 ゲンコ−プ インコ−ポレ−テツド Production of grafted protein latex
JPH05285374A (en) * 1992-04-09 1993-11-02 Kiyoshi Yamauchi Microcapsule using regenerated natural keratin as wall material and its production
JPH06511273A (en) * 1991-10-01 1994-12-15 レヴォザーン−ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing starch degradation products with narrow molecular weight distribution
JPH10291999A (en) * 1997-04-18 1998-11-04 Kiyoshi Yamauchi Reduced protein from hair of higher animal, its dispersion in aqueous medium and its production
JPH11196786A (en) * 1998-01-07 1999-07-27 Asahi Chem Ind Co Ltd Spherical edible body
JP2006011175A (en) * 2004-06-28 2006-01-12 Pentax Corp Optical device having antireflection film and its manufacturing method
JP2006231219A (en) * 2005-02-25 2006-09-07 Futamura Chemical Co Ltd Method for producing liquid material from gelatinous material and method for producing powdery material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199607A (en) * 1986-02-27 1987-09-03 ゲンコ−プ インコ−ポレ−テツド Production of grafted protein latex
JPH06511273A (en) * 1991-10-01 1994-12-15 レヴォザーン−ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing starch degradation products with narrow molecular weight distribution
JPH05285374A (en) * 1992-04-09 1993-11-02 Kiyoshi Yamauchi Microcapsule using regenerated natural keratin as wall material and its production
JPH10291999A (en) * 1997-04-18 1998-11-04 Kiyoshi Yamauchi Reduced protein from hair of higher animal, its dispersion in aqueous medium and its production
JPH11196786A (en) * 1998-01-07 1999-07-27 Asahi Chem Ind Co Ltd Spherical edible body
JP2006011175A (en) * 2004-06-28 2006-01-12 Pentax Corp Optical device having antireflection film and its manufacturing method
JP2006231219A (en) * 2005-02-25 2006-09-07 Futamura Chemical Co Ltd Method for producing liquid material from gelatinous material and method for producing powdery material

Also Published As

Publication number Publication date
JP4663409B2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
JP4288381B2 (en) Method for producing liquid substance from gel-like substance and method for producing powdery substance
TWI422336B (en) Solid milk
WO2021114694A1 (en) Method for preparing arrowhead resistant starch by ultrasound synergistic pullulanase
CN87104735A (en) Preparation contains the method for the solid phase prod of oil-soluble substance
JP2012196156A (en) Collagen peptide-containing powder composition and method for producing the same
JP4663409B2 (en) Method for producing a solid from a gel
Xu et al. Exploring the mechanism of variation in 3D printing accuracy of cassava starch gels during freezing process
JP2015136315A (en) Solid adhesive paste formulation
CN104719484B (en) A kind of production method of milk tablet base stock powder and the direct tablet compressing method of milk tablet
CN107072958B (en) Soft botanical capsule composition without chemical metal salts
JP2004097064A (en) Combination feed and method for producing the same
JP2009171903A (en) Granular granulated substance and method for producing the same
JP2009143977A (en) Water-absorbing processed starch and binder for food
JP2504888B2 (en) Method for producing easily soluble gelatin
Deng et al. Physical, chemical, and rheological properties of konjac glucomannan phosphate ester
KR20240021784A (en) Nit reaction product of calcium and volatile fatty acids as a nutritional supplement for livestock and poultry
CN1791389A (en) Homogeneous, thermoreversible gel film containing kappa-2 carrageenan and soft capsules made therefrom
CN106947002A (en) A kind of method that mechanical activation prepares scintilla dextran
CN1832748A (en) Homogeneous, thermoreversible gel containing reduced viscosity carrageenan and products made therefrom
CN103131027B (en) Instant gellan gum and its preparation method
CN107105735B (en) Gel-containing polysaccharide compositions and articles comprising gel-containing polysaccharide compositions
CN218686537U (en) Production device of high-purity sorbitol powder with uniform granularity
JPS6169882A (en) Preparation of instantly soluble thickener
CN107163264B (en) A method of chitosan microball is prepared to break out nucleation method
JPS6218155B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110105

R150 Certificate of patent or registration of utility model

Ref document number: 4663409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees