JP2009143977A - Water-absorbing processed starch and binder for food - Google Patents

Water-absorbing processed starch and binder for food Download PDF

Info

Publication number
JP2009143977A
JP2009143977A JP2007319612A JP2007319612A JP2009143977A JP 2009143977 A JP2009143977 A JP 2009143977A JP 2007319612 A JP2007319612 A JP 2007319612A JP 2007319612 A JP2007319612 A JP 2007319612A JP 2009143977 A JP2009143977 A JP 2009143977A
Authority
JP
Japan
Prior art keywords
starch
water
weight
absorbing
swelling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007319612A
Other languages
Japanese (ja)
Other versions
JP5300254B2 (en
Inventor
Koichi Murayama
晃一 村山
Sakio Harashina
佐喜夫 原科
Yoshihiro Komoda
好弘 菰田
Ariyoshi Hayashi
有美 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUTAMURA STARCH KK
Futamura Chemical Co Ltd
Original Assignee
FUTAMURA STARCH KK
Futamura Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUTAMURA STARCH KK, Futamura Chemical Co Ltd filed Critical FUTAMURA STARCH KK
Priority to JP2007319612A priority Critical patent/JP5300254B2/en
Publication of JP2009143977A publication Critical patent/JP2009143977A/en
Application granted granted Critical
Publication of JP5300254B2 publication Critical patent/JP5300254B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Grain Derivatives (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Jellies, Jams, And Syrups (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water-absorbing processed starch which can be produced very easily using as a raw material an easily available starch whose safety is established, has good water absorbency, and can be easily disposed of after use, by irradiating gelatinized starch with an ultrasonic wave followed by drying to allow the water absorbency to be developed, and to provide a binder for food comprising the water-absorbing processes starch. <P>SOLUTION: The water-absorbing processed starch is obtained by irradiating gelatinized raw material starch with an ultrasonic wave followed by drying. The swelling volume V<SB>a</SB>satisfies 3≤V<SB>a</SB>≤20, and the swelling weight W<SB>a</SB>satisfies 1.5≤W<SB>a</SB>≤10. The raw material starch is cornstarch. The binder for food includes the water-absorbing processed starch. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、吸水性処理デンプン及び前記吸水性処理デンプンよりなることを特徴とする食品用結着剤に関する。   The present invention relates to a water-absorbing processed starch and a food binder characterized by comprising the water-absorbing processed starch.

従来よりデンプンの吸水性を利用した食品は広く存在する。例えば、炊飯は生米を膨潤、吸水させて可食せしめるものである。また、クリームや餡などは、デンプンと糖を加熱下で混合することで吸水させ、安定な粘性としてその固有の風味、食感を作り出している。このような食品においては、吸水したデンプンの粘性や膨潤性が食感の付与に大きく寄与している。   Conventionally, there are a wide variety of foods that utilize starch water absorption. For example, cooked rice swells and absorbs raw rice to make it edible. In addition, cream and strawberries absorb water by mixing starch and sugar under heating, creating their unique flavor and texture as a stable viscosity. In such foods, the viscosity and swellability of the absorbed starch greatly contributes to the texture.

この場合のデンプンによる粘性や膨潤性の付与は、多くは加水下でデンプンを加熱することによる糊化、およびそれが冷却などしたことで固化する老化を利用したものであるが、その調整には、微妙な水分調整や加熱中の混和などに注意を払わなければならないものである。この安定化のために、酸化や架橋など多様な処理をした化工デンプンが開発されてきた。なお、工業用途としてはアルカリ処理によるデンプン糊が広く使われているが、これは粘性安定化のみに着目されたもので、吸水性を向上させたり膨潤性が付与されたものではない。   In this case, the starch is imparted with viscosity and swelling by utilizing gelatinization by heating starch under water and aging that solidifies when it is cooled. Careful attention should be paid to fine moisture adjustment and mixing during heating. For this stabilization, modified starches that have been subjected to various treatments such as oxidation and crosslinking have been developed. In addition, starch paste obtained by alkali treatment is widely used for industrial use, but this is focused only on viscosity stabilization and does not improve water absorption or impart swelling property.

具体的には、食品分野においてデンプンによる粘性や膨潤性を簡便に与える方法としては、下記のような方法が提案されてきた。加工食品の製造において、デンプンを加熱糊化し直ちに乾燥、調製するアルファー化デンプンが従来より利用されているが、可溶化が増加する性質のため、粘性や膨潤性に欠けることになる。このような課題に対して、例えば部分アルファー化デンプンが提案されている(特許文献1参照)。   Specifically, in the food field, the following methods have been proposed as methods for easily imparting viscosity and swelling properties with starch. In the manufacture of processed foods, pregelatinized starch, which is starch-heated and immediately dried and prepared, has been used conventionally, but lacks viscosity and swelling due to the property of increasing solubilization. For such a problem, for example, partially pregelatinized starch has been proposed (see Patent Document 1).

前記部分アルファー化とは、デンプン粒を形成する外殻薄膜構造を実質的に維持しながら内部の糊化を行う処理とされているものであるが、その実施にあたっては、原料デンプンのスラリー(分散)液を、糊化温度を若干上回る温度下で加熱して調製される(特許文献2参照)。しかしながら、工業的スケールでこのようなスラリーを加熱する場合、その熱分散の悪さから熱分布が不均一になりやすく、精密かつ均一に加熱処理を行うことは、非常に困難である。   The partial pregelatinization is a process of gelatinizing the inside while substantially maintaining the outer shell thin film structure that forms the starch granules. It is prepared by heating the liquid at a temperature slightly above the gelatinization temperature (see Patent Document 2). However, when such a slurry is heated on an industrial scale, the heat distribution tends to be non-uniform due to the poor heat dispersion, and it is very difficult to perform the heat treatment precisely and uniformly.

一方、工業的な分野では、石化樹脂やその誘導体からなる吸水性樹脂が、衛生用品や止水剤などの吸水剤として利用されている。これらは冷水でも膨潤させることができるが、生分解性は無く、環境中への放出に関しては充分な注意が必要である。また、デンプン由来のこのような性質を示す物質としては、デンプン−アクリル酸塩グラフト重合体のようなものが知られている(特許文献3参照)。   On the other hand, in the industrial field, water-absorbing resins made of petrified resins and their derivatives are used as water-absorbing agents such as sanitary products and water-stopping agents. They can be swollen even in cold water, but they are not biodegradable and great care must be taken regarding their release into the environment. In addition, as a substance exhibiting such properties derived from starch, a substance such as a starch-acrylate graft polymer is known (see Patent Document 3).

ところが、前記デンプン−アクリル酸塩グラフト重合体のように、デンプンを化学処理して得られる、いわゆる化工デンプンは結合した官能基により生分解性が著しく低い、または損なわれる傾向がある。特に衛生用品や土壌改良剤としてこのような保水剤を利用する場合は、廃棄の簡便さやその用途として環境中に放出されるものであるという観点から、分解性が極めて高く、冷水膨潤する保水剤、吸水剤が必要とされている。   However, like the starch-acrylate graft polymer, a so-called modified starch obtained by chemically treating starch has a tendency to be significantly low in biodegradability or impaired due to a functional group bonded thereto. In particular, when such a water retention agent is used as a sanitary product or a soil conditioner, the water retention agent is extremely degradable and swells in cold water from the viewpoint of easy disposal and its release into the environment. There is a need for a water-absorbing agent.

なお、デンプンに対して物理加工した醸造用アルファー化デンプンも提案されているものの(特許文献4参照)、これはデンプン質を含む原料を二軸エクストルーダーにて加圧押出することでアルファー化すなわち糊化せしめるもので、あくまで醸造用のための連続的なデンプン糊化法であり、むしろデンプンの可溶性向上を目的とするもので、吸水性付与の効果は期待できない。   Although brewed pregelatinized starch that has been physically processed with respect to starch has also been proposed (see Patent Document 4), this is pregelatinized by extruding a starch-containing raw material with a biaxial extruder. It is gelatinized and is a continuous starch gelatinization method for brewing. Rather, it is intended to improve the solubility of starch, and the effect of imparting water absorption cannot be expected.

このような、主に工業的な用途としての単純な保水剤としての利用だけでなく、吸水性を有するデンプン製品の用途としては、製パンをはじめとした小麦粉加工製品の利用や(特許文献5及び特許文献6参照)、餡またはフィリング剤の食感向上といった様々な用途がある(特許文献7参照)。これは吸水性デンプンが、糖質、たんぱく質、脂質をはじめとした複数成分からなる複雑な組成をもつ食品において安定性の向上に寄与できるためである。そのため、極めて容易に製造、管理することができ、優れた吸水性を有する吸水性デンプンが切望されている。
特許第2729642号公報 特開昭57−5700号公報 特許第2579814号公報 特公平6−14860号公報 特開平5−161446号公報 特許第3358629号公報 特許第3016895号公報
In addition to the use as a simple water-retaining agent mainly for industrial applications, the use of starch products having water absorption includes the use of processed flour products such as bread making (Patent Document 5). And Patent Document 6), and there are various uses such as improving the texture of candy or filling agents (see Patent Document 7). This is because the water-absorbing starch can contribute to the improvement of stability in a food having a complex composition composed of a plurality of components including carbohydrates, proteins and lipids. Therefore, a water-absorbing starch that can be produced and managed very easily and has excellent water absorption is desired.
Japanese Patent No. 2729642 JP-A-57-5700 Japanese Patent No. 2579814 Japanese Patent Publication No. 6-14860 JP-A-5-161446 Japanese Patent No. 3358629 Japanese Patent No. 3016895

発明者らは、上記課題を達成すべく鋭意研究努力した結果、従来、糊化したデンプンは強い粘性を示すため乾燥操作を行うことが極めて困難であるが、この発明の吸水性処理デンプンは、糊化したデンプンに超音波を照射した後に乾燥することで、吸水性を発現させることを見出すに至った。   As a result of diligent research efforts to achieve the above-mentioned problems, the inventors have heretofore been difficult to perform a drying operation because gelatinized starch exhibits a strong viscosity. It came to find out that water absorption is expressed by irradiating the gelatinized starch with ultrasonic waves and then drying.

この発明は、前記の点に鑑みなされたものであり、安全性が確立され安価に調達容易なデンプンを原料として、極めて容易に製造することができ、また、優れた吸水性を有し、使用後の廃棄処分等も容易に行うことができる吸水性処理デンプン及び前記吸水性処理デンプンよりなる食品用結着剤を提供するものである。   The present invention has been made in view of the above points, and can be manufactured very easily using starch that is safe and easily procured at low cost, and has excellent water absorption and use. It is intended to provide a water-absorbing treated starch that can be easily disposed of later and a food binder comprising the water-absorbing treated starch.

すなわち、請求項1の発明は、原料デンプンの糊化物に超音波を照射して乾燥したことを特徴とする吸水性処理デンプンに係る。   That is, the invention of claim 1 relates to a water-absorbing treated starch characterized in that the gelatinized material of raw material starch is dried by irradiating ultrasonic waves.

請求項2の発明は、下記(I)膨潤容積測定方法により測定される膨潤容積Vaが、3≦Va≦20を満たし、下記(II)膨潤重量測定方法により測定され、式(i)により示される膨潤重量Waが、1.5≦Wa≦10を満たす請求項1に記載の吸水性処理デンプンに係る。 In the invention of claim 2, the swelling volume V a measured by the following (I) swelling volume measuring method satisfies 3 ≦ V a ≦ 20, measured by the following (II) swelling weight measuring method, and the formula (i) The swollen weight W a represented by the formula is related to the water-absorbed processed starch according to claim 1 satisfying 1.5 ≦ W a ≦ 10.

ただし、(I)膨潤容積測定方法は、吸水性処理デンプン1g(無水換算)を20℃、75mlの純水を入れたビーカー中に、スターラーで撹拌しつつ添加し、均一に分散させて分散液とする。ついで、前記分散液を100mlメスシリンダーに全量移し、さらに純水を加えて100mlとした後、室温で12時間放置したときの沈降体積を読み取った数値を膨潤容積Vaとする。 However, (I) Swelling volume measurement method was carried out by adding 1 g of water-absorbing treated starch (anhydrous conversion) to a beaker containing 75 ml of pure water at 20 ° C. while stirring with a stirrer, and uniformly dispersing the dispersion. And Then, the dispersion is transferred the total amount to 100ml measuring cylinder, was a 100ml further added pure water, and numerically the swelling volume V a obtained by reading the sedimentation volume when left at room temperature for 12 hours.

また、(II)膨潤重量測定方法は、ナイロン製開口255メッシュ(57μm)を、100×400mmの長方形に切断し、200×100mmとなるように折り曲げて長辺側をヒートシールして200±2×90±2mm容量の上部が開口した袋状としたもの(ティーバッグ)を作成し、吸水性処理デンプン約1g(無水換算。このときの吸水性処理デンプンの重量をaとする。)を前記ティーバッグの底部に均一になるように入れ、ままこ(継粉)が生じないように静かに前記ティーバッグの下部150mmを25℃の純水1Lに24時間浸漬する。そして、前記ティーバッグの底部が傾斜するように10分間上部開口部の端を釣り糸でつるして水切りした後、直ちに重量を測る(このときの重量をbとする。)。一方、吸水性処理デンプンを入れないティーバッグを上記のように、25℃の純水1Lに24時間浸漬して、同様に10分間ティーバッグの底が傾斜するように上部開口部の端を釣り糸でつるして水切りした後の重量を3回測定して平均値を求め(このときの重量をcとする。)、下記式(i)に基づいて算出した値を膨潤重量Waとする。 Further, (II) the swelling weight measurement method was as follows. Nylon opening 255 mesh (57 μm) was cut into a rectangle of 100 × 400 mm, bent so as to be 200 × 100 mm, and the long side was heat-sealed, and 200 ± 2 A bag-shaped bag (tea bag) having an opening of 90 ± 2 mm capacity was prepared, and about 1 g of water-absorbed processed starch (anhydrous conversion. The weight of the water-absorbed processed starch at this time is a). Place the tea bag uniformly in the bottom of the tea bag, and gently immerse the lower 150 mm of the tea bag in 1 L of 25 ° C. pure water for 24 hours so as not to leave any residue. Then, the end of the upper opening is suspended with a fishing line for 10 minutes so that the bottom of the tea bag is inclined, and then the weight is immediately measured (the weight at this time is defined as b). On the other hand, a tea bag not containing water-absorbing treated starch is immersed in 1 L of pure water at 25 ° C. for 24 hours as described above, and the end of the upper opening portion is similarly fishing line so that the bottom of the tea bag is inclined for 10 minutes. was measured three times the weight after draining hanging by seeking an average value (the weight at this time is c.), the value calculated according to the following formula (i) swelling the weight W a.

Figure 2009143977
Figure 2009143977

なお、(i)式において、a、b及びcは上記(II)膨潤重量測定方法で測定した値であって、aは吸水性処理デンプンの重量、bは吸水性処理デンプンを入れたティーバッグを24時間浸漬し、水切りした後の重量、cは吸水性処理デンプンを入れていないティーバッグを24時間浸漬し、水切り後の重量を3回測定して求めた平均値である。   In the formula (i), a, b and c are values measured by the above (II) swelling weight measuring method, where a is the weight of the water-absorbed processed starch and b is a tea bag containing the water-absorbed processed starch. Is a weight obtained after dipping for 24 hours and draining, and c is an average value obtained by immersing a tea bag without water-absorbing treated starch for 24 hours and measuring the weight after draining three times.

請求項3の発明は、前記原料デンプンがコーンスターチである請求項1又は2のいずれか1項に記載の吸水性処理デンプンに係る。   The invention according to claim 3 relates to the water-absorbent processed starch according to any one of claims 1 and 2, wherein the raw starch is corn starch.

請求項4の発明は、請求項1ないし3のいずれか1項に記載の吸水性処理デンプンよりなることを特徴とする食品用結着剤に係る。   A fourth aspect of the present invention relates to a food binder characterized by comprising the water-absorbing treated starch according to any one of the first to third aspects.

請求項1の発明に係る吸水性処理デンプンによると、原料デンプンの糊化物に超音波を照射し、その後に乾燥したため、乾燥を簡単に行うことができ、極めて容易に製造することができる。また、デンプンを原料として使用し、化工デンプンのように化学的処理等を行わないため、例えば食品分野のように高度な安全性が求められる分野においても利用が可能である。加えて、生分解性を有するため環境への負荷が少なく、廃棄が容易である。   According to the water-absorbing treated starch according to the first aspect of the present invention, since the gelatinized material of the raw material starch is irradiated with ultrasonic waves and then dried, it can be easily dried and manufactured very easily. Further, since starch is used as a raw material and chemical processing is not performed as in the case of modified starch, it can be used in fields where high safety is required, such as the food field. In addition, because it is biodegradable, it has a low environmental impact and is easy to dispose of.

請求項2の発明に係る吸水性処理デンプンによると、請求項1の発明において、膨潤容積測定方法により測定される膨潤容積Vaが、3≦Va≦20を満たし、膨潤重量測定方法により測定されて算出された膨潤重量Waが、1.5≦Wa≦10を満たすため、優れた吸水性が得られる。 According to the water-absorbing treated starch according to the invention of claim 2, in the invention of claim 1, the swelling volume V a measured by the swelling volume measuring method satisfies 3 ≦ V a ≦ 20, and measured by the swelling weight measuring method Thus, since the calculated swelling weight W a satisfies 1.5 ≦ W a ≦ 10, excellent water absorption is obtained.

請求項3の発明に係る吸水性処理デンプンによると、請求項1又は2の発明において、前記原料デンプンがコーンスターチであるため、乾燥が極めて容易である。   According to the water-absorbing treated starch according to the invention of claim 3, in the invention of claim 1 or 2, since the raw material starch is corn starch, drying is extremely easy.

請求項4の発明に係る食品用結着剤によると、請求項1ないし3のいずれか1項に記載の吸水性処理デンプンよりなるため、極めて容易に製造することができ、経済性及び安全性に優れていると共に、添加する食品の味覚に影響を与えることがほとんどない。   The food binder according to the invention of claim 4 comprises the water-absorbing treated starch of any one of claims 1 to 3, and therefore can be manufactured very easily, and is economical and safe. In addition, the taste of the added food is hardly affected.

以下添付の図面に従って、この発明の実施例を詳細に説明する。図1はこの発明の吸水性処理デンプンの製法の一例を示す概略工程図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic process diagram showing an example of a method for producing a water-absorbing treated starch of the present invention.

この発明の実施例である吸水性処理デンプンPは、図1に示されるように、原料デンプンM1の糊化物M2に超音波を照射し、その後、乾燥して得られる。実施例の製造工程の概略を説明すると、原料デンプンM1は、いったん温水等の水分中に分散され、加熱等されることにより、適度にデンプン結晶中に水分子が入り込んだ状態に糊化されて(S11)、糊化物M2が得られる。次に、前記糊化物M2に対して超音波照射を行い(S12)、液状物M3とされる。この超音波照射によって物理的なエネルギーが加わることにより、複数デンプン分子の絡み合いの解消、すなわち分散が促進される。また、前記液状物M3は、超音波照射により適度に水等に分散したデンプンの状態、すなわち分散デンプンの水溶化物である。そして、前記液状物M3が乾燥されて(S13)、吸水性処理デンプンPとされる。   As shown in FIG. 1, the water-absorbing treated starch P which is an embodiment of the present invention is obtained by irradiating the gelatinized material M2 of the raw material starch M1 with ultrasonic waves and then drying. The outline of the production process of the example will be described. The raw material starch M1 is once dispersed in water such as warm water and heated to be gelatinized in a state where water molecules are appropriately contained in starch crystals. (S11), a gelatinized material M2 is obtained. Next, the gelatinized material M2 is irradiated with ultrasonic waves (S12) to obtain a liquid material M3. By applying physical energy by the ultrasonic irradiation, the entanglement of the plurality of starch molecules, that is, dispersion is promoted. The liquid M3 is a starch state that is appropriately dispersed in water or the like by ultrasonic irradiation, that is, a water-soluble product of dispersed starch. And the said liquid M3 is dried (S13), and it is set as the water absorption processed starch P. FIG.

次に、各工程の詳細について述べる。まず、原料デンプンM1が水分中に溶解、糊化されて(S11)、糊化物M2が得られる。前記原料デンプンM1は、各種デンプンが用いられ、例えば、トウモロコシ(コーンスターチ)、コムギ、オオムギ、ライムギ、コメ、サツマイモ(甘藷デンプン)、ジャガイモ(馬鈴薯デンプン)、エンドウ、緑豆、タピオカ等に由来するデンプンが挙げられる。前記原料デンプンとして、1種類のデンプンあるいは複数種類のデンプンが適宜選択されて用いられる。なかでも、原料デンプンとしてコーンスターチは、市場で多く流通されて入手が容易であってコスト的にも有利であり、後述する液状物の乾燥しやすさからも好ましい。   Next, details of each step will be described. First, raw material starch M1 is melt | dissolved and gelatinized in a water | moisture content (S11), and gelatinized material M2 is obtained. As the raw material starch M1, various types of starches are used. For example, starch derived from corn (corn starch), wheat, barley, rye, rice, sweet potato (sweet potato starch), potato (potato starch), pea, mung bean, tapioca, etc. Can be mentioned. As the raw material starch, one type of starch or a plurality of types of starch are appropriately selected and used. Among them, corn starch as a raw material starch is widely distributed in the market and easily available, and is advantageous in terms of cost, and is also preferable from the viewpoint of easy drying of a liquid material described later.

前記原料デンプンを溶解する場合、作業効率の面からその溶媒として温水、熱水が用いられる。また、前記原料デンプンは、適宜加熱されながら溶解されてもよい。前記原料デンプンが溶解、糊化される場合において、原料デンプンの種類、添加水分量、吸水性能をはじめ、設備面等により好適にその粘度等が勘案される。通常、糊化の際の粘度は、工程間の流動性等が考慮されて0.2〜40Pa・sの粘度範囲内に調製される。   When the raw material starch is dissolved, warm water and hot water are used as the solvent from the viewpoint of work efficiency. Moreover, the said raw material starch may be melt | dissolved, heating suitably. In the case where the raw starch is dissolved and gelatinized, the viscosity and the like are suitably taken into account depending on the type of raw starch, the amount of added water, water absorption performance, equipment, and the like. Usually, the viscosity at the time of gelatinization is adjusted within a viscosity range of 0.2 to 40 Pa · s in consideration of fluidity between processes.

なお、前記吸水性処理デンプンの用途に応じて、例えば、食品分野に利用される場合であれば水以外に塩水、糖蜜水、調味料を溶解させた溶液、スープ(ブイヨン)、出汁、たれ、つゆ等にデンプンを溶解させて、呈味の糊化物とすることも可能である。また、糖やその他の種々の食品成分が添加されてもよい。前記糖やその他食品成分は、前記吸水性処理デンプンが添加される最終製品に応じて選択されるが、吸水性を損なわない限りで自由に選択することができる。特に、ショ糖など従来公知のデンプン糊の安定化に有効とされる成分は、この発明においても同様の効果が得られることが期待できる。   Depending on the use of the water-absorbing processed starch, for example, in the case of use in the food field, salt water, molasses water, a solution in which seasoning is dissolved, soup (bouillon), soup stock, sauce, It is also possible to dissolve starch in soup or the like to obtain a taste gelatinized product. Moreover, sugar and other various food components may be added. The sugar and other food components are selected according to the final product to which the water-absorbing processed starch is added, but can be freely selected as long as the water absorption is not impaired. In particular, it can be expected that components that are effective for stabilizing a conventionally known starch paste such as sucrose can obtain the same effect in this invention.

次に、図1に示されるように、前記糊化物M2に対して超音波照射が行われ(S12)、液状物M3とされる。前記超音波照射において、その周波数や用いられる超音波発振器の出力は特に限定されないが、通常20kHz〜1MHzの一般的な周波数が使用され、超音波発振器の出力も100〜2000Wの適宜で調整される。前記超音波の周波数や発振器等の出力は、前記原料デンプンの種類、濃度(配合量)、前記糊化物の性状、乾燥性並びに所望する前記液状物の粘度等により総合的に規定される。   Next, as shown in FIG. 1, the gelatinized material M2 is irradiated with ultrasonic waves (S12) to obtain a liquid material M3. In the ultrasonic irradiation, the frequency and the output of the ultrasonic oscillator to be used are not particularly limited, but a general frequency of 20 kHz to 1 MHz is usually used, and the output of the ultrasonic oscillator is also appropriately adjusted to 100 to 2000 W. . The frequency of the ultrasonic wave and the output of the oscillator are comprehensively defined by the type and concentration (blending amount) of the raw starch, the properties of the gelatinized product, the drying property, the desired viscosity of the liquid material, and the like.

前記糊化物の超音波照射に用いられる処理槽、超音波振動子、超音波発振器等は、生産規模や処理能力等を勘案して適切に選択される。デンプン糊化物に対する超音波照射は、逐次回分式あるいは連続式のいずれであっても良い。   A treatment tank, an ultrasonic vibrator, an ultrasonic oscillator, and the like used for ultrasonic irradiation of the gelatinized material are appropriately selected in consideration of a production scale, a processing capability, and the like. The ultrasonic irradiation with respect to the starch gelatinized material may be either a sequential batch method or a continuous method.

一方、作業の簡便さ、制御、管理等のしやすさから、1種類の原料を適度に制御しながら超音波照射されたり、前記原料デンプンとして、複数種類の原料デンプンが用いられた場合に、異なる種類の原料デンプンを別々に超音波照射して分散されてもよい。この場合、予め異なるデンプン分散物(糊化物)から得られる液状物同士を、事後的に所望の割合で混合、調製することもできる。また、1種類又は複数種類の前記原料デンプンを異なる照射量毎に調製して得られる液状物を事後的に混合する方法等、適宜に選択できる。   On the other hand, from the ease of work, ease of control, management, etc., when one kind of raw material is moderately controlled and ultrasonically irradiated, or as the raw material starch, when multiple types of raw material starch are used, Different types of raw starch may be dispersed separately by ultrasonic irradiation. In this case, liquids obtained from different starch dispersions (gelatinized materials) can be mixed and prepared afterwards in a desired ratio. Moreover, the method of mixing the liquid material obtained by preparing 1 type or several types of said raw material starch for every different irradiation amount, etc. can be selected suitably.

続いて、前記液状物が乾燥される(S13)。この乾燥工程においては、乾燥方法は特に限定されず、凍結乾燥、真空ドラムドライヤーによる乾燥、噴霧乾燥(スプレードライ)等が用いられる。なお、この乾燥により、防腐や保存、取り扱いやすさ等の利便性も向上される。量産性の観点からは、スプレードライヤーにて乾燥されることが好ましい。乾燥後に得られる吸水性処理デンプンの形状及び大きさ等は、吸水性処理デンプンの用途に応じて適宜選択され、粉末状あるいはフレークのような不定形状等とされる。さらに、必要に応じて、乾燥後に公知の手法により粉砕、分級等が行われてもよい。   Subsequently, the liquid material is dried (S13). In this drying step, the drying method is not particularly limited, and freeze drying, drying with a vacuum drum dryer, spray drying (spray drying), or the like is used. This drying also improves convenience such as preserving, storage, and ease of handling. From the viewpoint of mass productivity, drying with a spray dryer is preferred. The shape, size, and the like of the water-absorbed processed starch obtained after drying are appropriately selected depending on the use of the water-absorbed processed starch, and are in an irregular shape such as powder or flakes. Furthermore, if necessary, pulverization, classification, and the like may be performed by a known method after drying.

以上のようにして吸水性処理デンプンを製造することで、前記原料デンプンの種類に応じて糊化、超音波照射等の工程管理を極めて容易に行うことができる。例えば、仮に前記原料デンプンの収穫地、収穫時期、収穫年等の環境要因による品質の変動があって、原料デンプンから得られる糊化物の粘度等が左右されても、前記糊化物や液状物同士を混ぜ合わせたり、超音波照射の時間、強さ等を調節することにより、吸水性処理デンプンとしての品質を極力安定させることができる。特に、デンプンの分散度等の液状物の性状などは照射する超音波の時間、周波数等により定量的に制御可能であることから、目的とする吸水性処理デンプンに対応させて造り分けることも極めて容易である。   By producing the water-absorbing treated starch as described above, process management such as gelatinization and ultrasonic irradiation can be performed very easily according to the kind of the raw starch. For example, even if there is a change in quality due to environmental factors such as the harvesting place, harvesting time, and year of harvesting of the raw starch, and the viscosity of the gelatinized product obtained from the raw starch is influenced, The quality of the water-absorbing processed starch can be stabilized as much as possible by adjusting the time and intensity of ultrasonic irradiation. In particular, liquid properties such as the degree of dispersion of starch can be quantitatively controlled by the time, frequency, etc. of the ultrasonic wave to be irradiated. Easy.

なお、この発明により得られる吸水性処理デンプンに関して、その作用機構の詳細は現時点では必ずしも明らかではないが、前記原料デンプンがアルファー化された糊化物が、超音波照射されて液状化、乾燥後に得られるこの発明の吸水性処理デンプンは、デンプン外殻構造と同様の構造を有しているものと解され、そのために吸水性が付与されるものと推測される。   The details of the action mechanism of the water-absorbing treated starch obtained by the present invention are not necessarily clear at the present time, but the gelatinized material obtained by pregelatinizing the raw material starch is liquefied by ultrasonic irradiation and obtained after drying. It is assumed that the water-absorbing treated starch of the present invention has a structure similar to the starch shell structure, and therefore water absorption is presumed.

さらに、前記吸水性処理デンプンは、その膨潤容積Vaが、3ml/g以上、20ml/g以下であることが望ましい。ここで、前記膨潤容積Va(ml/g)は、下記(I)膨潤容積測定方法により測定される値であって、吸水性処理デンプン1gあたり、前記方法で吸水させた後の容積(ml)とする。また、望ましくは、5ml/g以上、20ml/g以下であること、さらには10ml/g以上、20ml/g以下であることが望ましい。無処理の原料デンプンの膨潤容積はおよそ3ml/gより小さく、膨潤容積が大きい方が好ましいが、膨潤容積が20ml/gより大きい場合には、デンプンの粒子構造が保てず糊性が強くなる傾向がある。 Further, the water absorbent treated starch, the swelling volume V a is, 3 ml / g or more is desirably not more than 20 ml / g. Here, the swelling volume V a (ml / g) is a value measured by the following (I) swelling volume measuring method, and the volume (ml) of water absorbed by the above method per 1 g of the water-absorbing treated starch. ). Further, it is desirably 5 ml / g or more and 20 ml / g or less, and further desirably 10 ml / g or more and 20 ml / g or less. The swelling volume of the untreated raw material starch is smaller than about 3 ml / g, and it is preferable that the swelling volume is larger. However, when the swelling volume is larger than 20 ml / g, the starch particle structure cannot be maintained and the pasting property becomes strong. Tend.

前記(I)膨潤容積測定方法は、吸水性処理デンプン1g(無水換算)を20℃、75mlの純水を入れたビーカー中に、スターラーで撹拌しつつ添加し、均一に分散させて分散液とする。ついで、前記分散液を100mlメスシリンダーに全量移し、さらに純水を加えて100mlとした後、室温で12時間放置したときの沈降体積を読み取った数値を膨潤容積Vaとしている。 (I) Swelling volume measurement method is carried out by adding 1 g of water-absorbing treated starch (anhydrous conversion) to a beaker containing 75 ml of pure water at 20 ° C. while stirring with a stirrer, and uniformly dispersing the dispersion liquid. To do. Then transferred the total amount of the dispersion to 100ml measuring cylinder, was a 100ml further added with pure water, and the numerical value was read sedimentation volume when left at room temperature for 12 hours and the swelling volume V a.

さらに、前記吸水性処理デンプンは、その膨潤重量Waとしては、1.5g/g以上、10g/g以下であること、またさらに好ましくは5g/g以上、10g/g以下であることが好ましい。ここで、膨潤重量Wa(g/g)は、下記(II)膨潤重量測定方法により測定され、式(i)により算出される値であって、試料1gあたりが吸水した水の量(水の量g/試料g)である。前記膨潤重量の場合と同様に、無処理の原料デンプンの膨潤重量はおよそ1.5g/gより小さく、膨潤重量が大きい方が好ましいが、膨潤重量が10g/gより大きい場合には、デンプンの粒子構造が保てず糊性が強くなる傾向がある。 Further, the water absorbing processing starch as its swelling weight W a, 1.5 g / g or more, or less 10 g / g, or even more preferably 5 g / g or more, and preferably not more than 10 g / g . Here, the swollen weight W a (g / g) is a value calculated by the following (II) swollen weight measuring method and calculated by the formula (i), and the amount of water absorbed per 1 g of sample (water G / sample g). As in the case of the swell weight, the untreated raw starch has a swell weight of less than about 1.5 g / g and preferably a large swell weight, but if the swell weight is greater than 10 g / g, There is a tendency that the particle structure cannot be maintained and the paste property becomes strong.

前記(II)膨潤重量測定方法は、JISK7223(ティーバッグ法)から理解されるような類似の手法であって、ナイロン製開口255メッシュ(57μm)を、100×400mmの長方形に切断し、200×100mmとなるように折り曲げて長辺側をヒートシールして200±2×90±2mm容量の上部が開口した袋状としたもの(ティーバッグ)を作成し、吸水性処理デンプン約1g(無水換算。このときの吸水性処理デンプンの重量をaとする。)を前記ティーバッグの底部に均一になるように入れ、ままこ(継粉)が生じないように静かに前記ティーバッグの下部150mmを25℃の純水1Lに24時間浸漬する。そして、前記ティーバッグの底部が傾斜するように10分間上部開口部の端を釣り糸でつるして水切りした後、直ちに重量を測る(このときの重量をbとする。)。一方、吸水性処理デンプンを入れないティーバッグを上記のように、25℃の純水1Lに24時間浸漬して、同様に10分間ティーバッグの底が傾斜するように上部開口部の端を釣り糸でつるして水切りした後の重量を3回測定して平均値を求め(このときの重量をcとする。)、下記式(i)に基づいて算出した値を膨潤重量Waとする。 The (II) swelling weight measuring method is a similar method as understood from JISK7223 (tea bag method), and a nylon opening 255 mesh (57 μm) is cut into a rectangle of 100 × 400 mm, and 200 × Bend it to 100mm and heat-seal the long side to create a bag shape (tea bag) with an opening of 200 ± 2 × 90 ± 2mm capacity. The weight of the water-absorbing treated starch at this time is assumed to be a), and the bottom of the tea bag is uniformly placed, and the lower part 150 mm of the tea bag is gently Immerse in 1 L of pure water at 25 ° C. for 24 hours. Then, the end of the upper opening is suspended with a fishing line for 10 minutes so that the bottom of the tea bag is inclined, and then the weight is immediately measured (the weight at this time is defined as b). On the other hand, a tea bag not containing water-absorbing treated starch is immersed in 1 L of pure water at 25 ° C. for 24 hours as described above, and the end of the upper opening portion is similarly fishing line so that the bottom of the tea bag is inclined for 10 minutes. measured 3 times the weight after draining hanging by seeking an average value (the weight at this time is c.), the value calculated according to the following formula (i) swelling the weight W a.

Figure 2009143977
Figure 2009143977

なお、(i)式において、a、b及びcは上記(II)膨潤重量測定方法で測定した値であって、aは吸水性処理デンプンの重量、bは吸水性処理デンプンを入れたティーバッグを24時間浸漬し、水切りした後の重量、cは吸水性処理デンプンを入れていないティーバッグを24時間浸漬し、水切り後の重量を3回測定して求めた平均値である。   In the formula (i), a, b and c are values measured by the above (II) swelling weight measuring method, where a is the weight of the water-absorbed processed starch and b is a tea bag containing the water-absorbed processed starch. Is a weight obtained after dipping for 24 hours and draining, and c is an average value obtained by immersing a tea bag without water-absorbing treated starch for 24 hours and measuring the weight after draining three times.

一方、前記吸水性処理デンプンは、原料デンプンを一旦糊化するため、冷水可溶分が増加する傾向がある。前記冷水可溶分が50%を超えると、デンプンの粒形構造が崩壊して流動性が増加する。前記冷水可溶分が50%以下、望ましくは冷水可溶分30%以下であれば、例えば実際に食品素材と併せて利用される場合に、適度な粘着性を示すことで良好な親和性が得られる。ただし、これらの性質は前記吸水性処理デンプンの用途により軽重されるものであり、特に食品分野においては、ある程度の可溶性を有するほうが、他成分との混和性向上に有効である。   On the other hand, the water-absorbing treated starch once gelatinizes the raw material starch, so that the cold water soluble component tends to increase. If the cold water soluble content exceeds 50%, the granular structure of the starch will collapse and the fluidity will increase. If the cold water-soluble content is 50% or less, desirably 30% or less, for example, when actually used in combination with a food material, a good affinity can be obtained by exhibiting appropriate tackiness. can get. However, these properties are lightened depending on the use of the water-absorbing processed starch. Particularly in the food field, it is more effective to improve miscibility with other components if it has a certain degree of solubility.

なお、前記冷水可溶分は、以下のように測定し、下式(ii)から算出される。冷水可溶分(%)の測定方法としては、前記吸水性処理デンプンを3g(無水換算)精秤して、20℃の純水300gを加え、電磁式スターラーミキサーを用いて600rpmで2.5分間撹拌する。ついで、NO.5C濾紙にて分散液全量についてろ過を行う。このうち約40mlを精秤したろ液の重量A(g)を測定し、105℃で蒸発乾固して、固形分重量B(g)を求め、下式(ii)に基づき冷水可溶分を算出することにより求められる。   In addition, the said cold water soluble part is measured as follows and is computed from the following Formula (ii). As a method for measuring the cold water soluble content (%), 3 g (anhydrous conversion) of the water-absorbing processed starch was precisely weighed, 300 g of pure water at 20 ° C. was added, and 2.5 rpm at 600 rpm using an electromagnetic stirrer mixer. Stir for minutes. Subsequently, it filters about the whole dispersion liquid with NO.5C filter paper. The weight A (g) of the filtrate obtained by accurately weighing about 40 ml was measured and evaporated to dryness at 105 ° C. to obtain the solid content weight B (g). It is calculated | required by calculating.

Figure 2009143977
Figure 2009143977

このような前記吸水性処理デンプンは、既述のとおりデンプンを原料とするため、極めて安価に調達可能であり、食品分野や工業分野等の各種分野において使用することができる。加えて、デンプンは食品として古くから利用されているため、吸水性処理デンプンとしての経済性並びに安全性において極めて優れている。特に、吸水性処理デンプンを食品に添加した場合には、その味覚に影響を与えることがほとんどないため、例えば食品添加用途として好適である。なお、前記吸水性処理デンプンが前述した衛生用品や土壌改良剤の吸水剤等として利用される場合には、前記デンプンが原料とされているので生分解性を有し、環境への負荷の軽減、使用後の廃棄等の観点から取り扱い性に非常に優れている。   Since the water-absorbing treated starch is made of starch as described above, it can be procured at a very low cost and can be used in various fields such as food and industrial fields. In addition, since starch has been used for a long time as a food, it is extremely excellent in economic efficiency and safety as a water-absorbing processed starch. In particular, when the water-absorbing processed starch is added to food, it hardly affects the taste, and is suitable for use as a food addition, for example. In addition, when the water-absorbing treated starch is used as a hygroscopic product or a water-absorbing agent for a soil conditioner as described above, the starch is used as a raw material so that it has biodegradability and reduces the burden on the environment. From the viewpoint of disposal after use, etc., it is very easy to handle.

前記食品添加用途として、具体的には、前記吸水性処理デンプンよりなる食品用結着剤が挙げられる。前記食品用結着剤は、通常、パン、うどん、ケーキなどの生地へ添加されて前記生地の食品組成物の安定化剤、及び顆粒状、塊状等の成形食品の成形性を向上させるもの等として、また、ソーセージなどの肉・魚肉製品の加工の際に、保水力や弾力を高めるため等に使用される。さらに、前記パン等以外には粉末状の食品として鶏がらスープ、粉末抹茶、食塩、香辛料やグルタミン酸Na、ビタミン類及び薬品等の安定化剤、及び顆粒状、塊状等への成形性を向上する。また、その他の食品用結着剤と併用しても可能となる。この食品用結着剤として、粉末状、粒状等の前記吸水性処理デンプンがそのまま使用されたり、あるいは前記吸水性処理デンプンが水分等に溶解されて液状、ゲル状等とされるなど、添加する食品に応じて適宜選択されて用いられる。   Specific examples of the food additive use include a food binder comprising the water-absorbing treated starch. The food binder is usually added to doughs such as bread, udon, cakes, etc. to improve the food composition stabilizer of the dough, and improve the moldability of shaped foods such as granules and lumps In addition, it is used to increase water retention and elasticity when processing meat and fish products such as sausages. In addition to bread, etc., chicken powder soup, powdered green tea, salt, spices, sodium glutamate, stabilizers such as vitamins and drugs, and moldability to granules, lumps, etc. are improved as powdered foods. . It can also be used in combination with other food binders. As the binder for food, the water-absorbing processed starch in powder form or granular form is used as it is, or the water-absorbing processed starch is dissolved in water or the like to be liquid, gelled, or the like. It is appropriately selected and used depending on the food.

例えば、パンの製造において、強力粉、砂糖等の原料と共に粉末状の前記食品用結着剤を混練してパン生地を作製すると、前記パン生地の安定が早まり、混練が容易になるなどの好適な機械適性が得られる。また、焼成後のパンにおいて、経時変化によるパン生地の固化が抑制され、口当たりのよさが持続的に保持されるという格別な効果を得ることができる。   For example, in the manufacture of bread, when the dough is prepared by kneading the powdered food binder together with raw materials such as strong flour and sugar, the suitable machine suitability such that the dough is quickly stabilized and kneading becomes easy. Is obtained. Moreover, in the bread after baking, the solidification of the bread dough by a time-dependent change is suppressed, and the special effect that the palatability is maintained continuously can be acquired.

次に、この発明の吸水性処理デンプンの実施例に基づいてさらに詳細に説明するが、この発明はかかる実施例のみに限定されるものではない。なお、各実施例の吸水性処理デンプン及び比較例の試料等の各種特性については、下記のとおり評価、測定を行った。   Next, although it demonstrates still in detail based on the Example of the water absorbing process starch of this invention, this invention is not limited only to this Example. In addition, about various characteristics, such as the water absorbing process starch of each Example, and the sample of a comparative example, it evaluated and measured as follows.

まず、実施例の吸水性処理デンプン又は比較例となる試料の作製途中に得られる液状物あるいは糊化物について、粘度測定及び乾燥性評価を下記の通り行った。
[粘度測定・粘度低下率]
粘度測定は、各実施例において、原料デンプンを糊化したデンプン(糊化物)の初発粘度(mPa・s)及び超音波照射後の液状物の粘度(mPa・s)について行った。また、比較例については、糊化物の初発粘度(mPa・s)について粘度測定を行った。ここで、初発粘度とは、後述するミニクッカー(糊化装置)を出た後の粘度とする。これらの粘度測定は、B型回転粘度計(東機産業株式会社製「TVB−10M」)を使用して80℃にて行い、測定は日本薬局方における粘度測定法に準じた。また、各実施例についての粘度低下率(%)を下式(iii)に基づいて算出した。
First, viscosity measurement and drying property evaluation were performed as follows for the water-absorbing treated starch of the example or the liquid or gelatinized product obtained in the middle of the preparation of the sample to be a comparative example.
[Viscosity measurement / Viscosity reduction rate]
In each Example, the viscosity measurement was performed on the initial viscosity (mPa · s) of starch (gelatinized product) obtained by gelatinizing the raw material starch and the viscosity (mPa · s) of the liquid after ultrasonic irradiation. Moreover, about the comparative example, the viscosity measurement was performed about the initial viscosity (mPa * s) of gelatinized material. Here, the initial viscosity is the viscosity after exiting a mini-cooker (gelatinizer) described later. These viscosity measurements were performed at 80 ° C. using a B-type rotational viscometer (“TVB-10M” manufactured by Toki Sangyo Co., Ltd.), and the measurement was performed according to the viscosity measurement method in the Japanese Pharmacopoeia. Moreover, the viscosity reduction rate (%) for each example was calculated based on the following formula (iii).

Figure 2009143977
Figure 2009143977

[乾燥性の評価]
乾燥性の評価は、各実施例において、糊化物に対する超音波照射後の液状物、あるいは比較例における糊化物について以下の手法で行った。ステンレス製バット(縦21.5cm、 横15cm、 深さ2.5cm)に、前記液状物あるいは糊化物を300ml入れ、100℃の乾燥機にて乾燥を行った。その状態により、次のような評価基準に基づいて簡易的に乾燥性の評価を行った。前記評価基準としては、表面に皮膜ができることなくおよそ半日程度にて乾燥できたものを「非常に容易」、およそ一日程度にて乾燥できたものを「容易」とした。また、皮膜を破壊することで、およそ一日半程度にて乾燥できたものを「やや容易」、およそ二日程度にて乾燥できたものを「困難」、およそ二日以上にて乾燥できたものを「非常に困難」と評価した。
[Evaluation of dryness]
In each Example, the drying property was evaluated by the following method for the liquid material after the ultrasonic irradiation of the gelatinized material or the gelatinized material in the comparative example. 300 ml of the liquid or gelatinized material was placed in a stainless steel vat (length 21.5 cm, width 15 cm, depth 2.5 cm) and dried with a dryer at 100 ° C. According to the state, the drying property was simply evaluated based on the following evaluation criteria. As the evaluation criteria, those that could be dried in about half a day without forming a film on the surface were “very easy”, and those that could be dried in about one day were “easy”. Also, by destroying the film, it was “slightly easy” for what was dried in about half a day, “difficult” for what was dried in about two days, and could be dried in about two days or more. The thing was rated as “very difficult”.

次に、得られた実施例の吸水性処理デンプンあるいは比較例の試料について、以下の測定、評価等を行った。
[冷水可溶分]
冷水可溶分(%)の測定方法としては、実施例の吸水性処理デンプンあるいは比較例の試料を3g(無水換算)精秤して、20℃の純水300gを加え、電磁式スターラーミキサーを用いて600rpmで2.5分間撹拌した。ついで、NO.5C濾紙にて分散液全量についてろ過を行った。このうち約40mlを精秤したろ液の重量A(g)を測定し、105℃で蒸発乾固して、固形分重量B(g)を求め、下式(ii)に基づき冷水可溶分を算出した。
Next, the following measurement, evaluation, etc. were performed on the water-absorbing treated starch of the obtained example or the sample of the comparative example.
[Cooling water soluble content]
As a method for measuring the cold water soluble content (%), weighed 3 g (anhydrous equivalent) of the water-absorbing treated starch of the example or the comparative sample, added 300 g of pure water at 20 ° C., and used an electromagnetic stirrer mixer. And stirred at 600 rpm for 2.5 minutes. Subsequently, it filtered about the whole dispersion liquid with NO.5C filter paper. The weight A (g) of the filtrate obtained by accurately weighing about 40 ml was measured and evaporated to dryness at 105 ° C. to obtain the solid content weight B (g). Was calculated.

Figure 2009143977
Figure 2009143977

[膨潤容積]
膨潤容積(ml/g)の測定方法としては、実施例の吸水性処理デンプンあるいは比較例の試料1g(無水換算)を20℃、75mlの純水を入れたビーカー中に、スターラーで撹拌しつつ添加し、均一に分散させて分散液とする。ついで、前記分散液を100mlメスシリンダーに全量移し、さらに純水を加えて100mlとした後、室温で12時間放置したときの沈降体積を読み取った数値を膨潤容積とする。
[Swelling volume]
As a method for measuring the swelling volume (ml / g), the water-absorbed treated starch of the example or 1 g of the sample of the comparative example (anhydrous conversion) was stirred in a beaker containing 75 ml of pure water at 20 ° C. with a stirrer. Add and disperse uniformly to make a dispersion. Next, the entire amount of the dispersion is transferred to a 100 ml graduated cylinder, and after further adding pure water to 100 ml, the value obtained by reading the sedimentation volume when left at room temperature for 12 hours is taken as the swelling volume.

[膨潤重量]
膨潤重量(g/g)の測定方法は、JISK7223(ティーバッグ法)から理解されるような類似の手法であって、ナイロン製開口255メッシュ(57μm)を、100×400mmの長方形に切断し、200×100mmとなるように折り曲げて長辺側をヒートシールして200±2×90±2mm容量の上部が開口した袋状としたもの(ティーバッグ)を作成し、前記吸水性処理デンプンあるいは比較例の試料の約1g(無水換算。このときの吸水性処理デンプンの重量をaとする。)を前記ティーバッグの底部に均一になるように入れ、ままこ(継粉)が生じないように静かに前記ティーバッグの下部150mmを25℃の純水1Lに24時間浸漬する。そして、前記ティーバッグの底部が傾斜するように10分間上部開口部の端を釣り糸でつるして水切りした後、直ちに重量を測る(このときの重量をbとする。)。一方、吸水性処理デンプンを入れないティーバッグを上記のように、25℃の純水1Lに24時間浸漬して、同様に10分間ティーバッグの底が傾斜するように上部開口部の端を釣り糸でつるして水切りした後の重量を3回測定して平均値を求め(このときの重量をcとする。)、下記式(i)に基づいて算出した値を膨潤重量とする。
[Swelling weight]
The method for measuring the swelling weight (g / g) is a similar method as understood from JISK7223 (tea bag method), and a nylon opening 255 mesh (57 μm) is cut into a rectangle of 100 × 400 mm, Folded to 200x100mm and heat-sealed the long side to create a bag shape (tea bag) with an opening of 200 ± 2x90 ± 2mm capacity (tea bag). About 1 g of an example sample (anhydrous conversion. The weight of the water-absorbing treated starch at this time is assumed to be a) is placed uniformly at the bottom of the tea bag so that no leftovers (spoiling) occur. Gently immerse the lower 150 mm of the tea bag in 1 L of 25 ° C. pure water for 24 hours. Then, the end of the upper opening is suspended with a fishing line for 10 minutes so that the bottom of the tea bag is inclined, and then the weight is immediately measured (the weight at this time is defined as b). On the other hand, a tea bag not containing water-absorbing treated starch is immersed in 1 L of pure water at 25 ° C. for 24 hours as described above, and the end of the upper opening portion is similarly fishing line so that the bottom of the tea bag is inclined for 10 minutes. The weight after hanging and draining was measured three times to obtain an average value (the weight at this time is c), and the value calculated based on the following formula (i) is taken as the swelling weight.

なお、この手法によれば、粒径57μm以下の粒子はシート外に流出するため、およそ粒径20μm程度とされる無処理の原料デンプンは、測定不能であった。なお、無処理の原料デンプンについては、20℃程度の水においては吸水せず、原料デンプン種によって異なるが70℃程度の加温により吸水膨潤が生じる。この温度は特に糊化開始温度と称される。これをさらに加熱することでデンプン粒は崩壊し、固有の糊状を呈するようになる。この状態がいわゆるデンプン糊である。   In addition, according to this technique, particles having a particle size of 57 μm or less flow out of the sheet, and thus untreated raw starch having a particle size of about 20 μm cannot be measured. In addition, about unprocessed raw material starch, it does not absorb water in about 20 degreeC water, and although it changes with raw material starch seed | species, water absorption swelling will arise by heating about 70 degreeC. This temperature is particularly referred to as the gelatinization start temperature. When this is further heated, the starch granules are disintegrated and become a unique paste. This state is so-called starch paste.

Figure 2009143977
Figure 2009143977

上記(i)式において、a、b及びcは上記膨潤重量の測定方法で測定した値であって、aは吸水性処理デンプンの重量、bは吸水性処理デンプンを入れたティーバッグを24時間浸漬し、水切りした後の重量、cは吸水性処理デンプンを入れていないティーバッグを24時間浸漬し、水切り後の重量を3回測定して求めた平均値である。   In the above formula (i), a, b and c are values measured by the method for measuring swelling weight, wherein a is the weight of the water-absorbed processed starch, and b is a tea bag containing the water-absorbed processed starch for 24 hours. The weight after immersion and draining, c is an average value obtained by immersing a tea bag without water-absorbing treated starch for 24 hours and measuring the weight after draining three times.

[吸水性処理デンプンの粒子観察]
実施例5の吸水性処理デンプンについて、吸水前後における吸水性処理デンプン粒子、粒径の相違について、スカラー株式会社製「デジタルマイクロスコープ DG−3」にて観察を行った。なお、前記吸水性処理デンプンについては、市販ヨードチンキ液により染色して明瞭な観察が出来るよう処理を行った。
[Observation of water-absorbed starch particles]
Regarding the water-absorbing treated starch of Example 5, the difference in water-absorbing-treated starch particles and particle sizes before and after water absorption was observed with “Digital Microscope DG-3” manufactured by Scalar Corporation. In addition, about the said water absorption processed starch, it processed so that it could dye | stain with a commercially available iodine tincture liquid and a clear observation might be performed.

[総合評価]
実施例及び比較例における前記糊化物あるいは液状物の性状、乾燥性や実施例の前記吸水性処理デンプン及び比較例についての冷水可溶分、膨潤容積等の測定、評価結果から総合評価を行った。
[Comprehensive evaluation]
The properties of the gelatinized or liquid material in Examples and Comparative Examples, the drying properties, the water-absorbed treated starch in Examples and the measurements of water-soluble content and swelling volume of the comparative examples, and the overall evaluation were performed. .

[実施例1]
原料デンプンとして、コーンスターチ(フタムラスターチ株式会社製)を用いた。前記原料デンプンを、ミニクッカー(ノリタケエンジニアリング株式会社製)によって、温度120℃の温水に溶解、糊化して糊化物を得た。前記糊化物中の原料デンプンの配合量(濃度)は10.3(wt%)とした。次に、超音波分散機(株式会社ギンセン製「GSCVP1200」)を用い、前記糊化物に対して超音波照射を行って液状物を得た後、前記液状物の乾燥を行った。前記液状物をステンレス製バットに広げ、温度100℃の乾燥機にて加熱乾燥を行い、乾燥物とした。続いて、前記乾燥物をミキサー(テスコム株式会社製「TML24」)にて粉砕し、20メッシュ標準ふるいにて篩別して、実施例1の吸水性処理デンプンを得た。
[Example 1]
Corn starch (manufactured by Futamura Starch Co., Ltd.) was used as the raw material starch. The said raw material starch was melt | dissolved and gelatinized in the hot water of the temperature of 120 degreeC with the mini cooker (made by Noritake Engineering Co., Ltd.), and gelatinized material was obtained. The blending amount (concentration) of the raw material starch in the gelatinized product was 10.3 (wt%). Next, using an ultrasonic disperser (“GSCVP1200” manufactured by Ginsen Co., Ltd.), the gelatinized material was irradiated with ultrasonic waves to obtain a liquid material, and then the liquid material was dried. The liquid material was spread on a stainless steel vat and dried by heating in a dryer at a temperature of 100 ° C. to obtain a dried product. Subsequently, the dried product was pulverized with a mixer (“TML24” manufactured by Tescom Co., Ltd.) and sieved with a 20-mesh standard sieve to obtain a water-absorbing treated starch of Example 1.

[実施例2]
前記実施例1において、前記原料デンプンとしてワキシーコーンスターチ(日本食品化工株式会社製)を用いたこと以外、実施例1と同様の処理方法によって、実施例2の吸水性処理デンプンを得た。
[Example 2]
In Example 1, the water-absorbent treated starch of Example 2 was obtained by the same treatment method as in Example 1 except that waxy corn starch (manufactured by Nippon Shokuhin Kako Co., Ltd.) was used as the raw material starch.

[実施例3]
前記実施例1において、前記原料デンプンとして甘藷澱粉(全国農業共同組合連合会製)を用いたこと以外、実施例1と同様の処理方法によって、実施例3の吸水性処理デンプンを得た。
[Example 3]
In Example 1, the water-absorbing treated starch of Example 3 was obtained by the same treatment method as in Example 1, except that sweet potato starch (manufactured by National Federation of Agricultural Cooperatives) was used as the raw material starch.

[実施例4]
前記実施例1において、原料デンプンとして馬鈴薯澱粉(東海澱粉株式会社製)を用いたこと以外、実施例1と同様の処理方法によって、実施例4の吸水性処理デンプンを得た。
[Example 4]
In Example 1, the water-absorbing treated starch of Example 4 was obtained by the same treatment method as in Example 1 except that potato starch (manufactured by Tokai Starch Co., Ltd.) was used as the raw material starch.

[比較例1]
前記実施例1において、前記糊化物に超音波照射を行わなかったこと、そのため前記糊化物のままの状態で乾燥を行ったこと以外、実施例1と同様の処理方法によって比較例1の試料を得た。
[Comparative Example 1]
In Example 1, the sample of Comparative Example 1 was subjected to the same treatment method as Example 1 except that the gelatinized product was not irradiated with ultrasonic waves, and thus was dried in the state of the gelatinized product. Obtained.

[比較例2]
前記実施例2において、前記糊化物に超音波照射を行わなかったこと、そのため前記糊化物のままの状態で乾燥を行ったこと以外、実施例2と同様の処理方法によって比較例2の試料を得た。
[Comparative Example 2]
In Example 2, the sample of Comparative Example 2 was treated by the same treatment method as in Example 2 except that the gelatinized material was not irradiated with ultrasonic waves, and thus dried in the state of the gelatinized material. Obtained.

[比較例3]
前記実施例3において、前記糊化物に超音波照射を行わなかったこと、そのため前記糊化物のままの状態で乾燥を行ったこと以外、実施例3と同様の処理方法によって比較例3の試料を得た。
[Comparative Example 3]
In Example 3, the sample of Comparative Example 3 was prepared by the same treatment method as in Example 3 except that the gelatinized product was not irradiated with ultrasonic waves, and thus dried in the state of the gelatinized product. Obtained.

[比較例4]
前記実施例4において、前記糊化物に超音波照射を行わなかったこと、そのため前記糊化物のままの状態で乾燥を行ったこと以外、実施例4と同様の処理方法によって比較例4の試料を得た。
[Comparative Example 4]
In Example 4, the sample of Comparative Example 4 was prepared by the same treatment method as in Example 4 except that the gelatinized product was not irradiated with ultrasonic waves, and thus dried in the state of the gelatinized product. Obtained.

以上のようにして得られた実施例1ないし4において、用いた原料デンプンの種類 、前記原料デンプンの配合量(wt%)、糊化物の初発粘度(mPa・s)、前記実施 例についての超音波照射後の液状物の粘度(mPa・s)、粘度低下率(%)及び前記 加熱乾燥における乾燥性の評価結果について表1に示し、比較例1ないし4において 、用いた原料デンプンの種類、前記原料デンプンの配合量(wt%)、糊化物の粘度 (mPa・s)及び前記加熱乾燥における乾燥性の評価結果について表2に示す。また 、比較例1ないし4において糊化物の粘度は実施例1ないし4における同条件において 超音波処理時間よりはるかに長い時間経過しても粘度は変わらず、表2の「糊化物の粘 度(mPa・s,80℃)」とほぼ同じ値となる。   In Examples 1 to 4 obtained as described above, the type of raw material starch used, the blending amount of the raw material starch (wt%), the initial viscosity (mPa · s) of the gelatinized product, Table 1 shows the viscosity (mPa · s), viscosity reduction rate (%) of the liquid after sonication, and the evaluation results of the drying property in the heat drying. In Comparative Examples 1 to 4, the type of raw starch used, Table 2 shows the blending amount (wt%) of the raw starch, the viscosity (mPa · s) of the gelatinized product, and the evaluation results of the drying property in the heat drying. Further, in Comparative Examples 1 to 4, the viscosity of the gelatinized product did not change even when a time much longer than the ultrasonic treatment time passed under the same conditions in Examples 1 to 4, and the viscosity of gelatinized product ( mPa · s, 80 ° C.) ”.

Figure 2009143977
Figure 2009143977

Figure 2009143977
Figure 2009143977

上記表1に示されるように、実施例1ないし4において、前記糊化物に超音波照射を行うことによって、著しい粘度低下が生じて前記液状物が得られた。そのため、前記糊化物に超音波照射を行って前記液状物とすることで、極めて容易に液状物の乾燥を行うことができた。特に、原料デンプンとしてコーンスターチを用いた実施例1において、糊化物から超音波照射して得られた液状物の乾燥性は非常に優れ、表面に被膜が生じることなく半日程度で乾燥することが可能であった。   As shown in Table 1 above, in Examples 1 to 4, when the gelatinized material was irradiated with ultrasonic waves, the viscosity decreased significantly and the liquid material was obtained. Therefore, it was possible to dry the liquid material very easily by irradiating the gelatinized material with ultrasonic waves to obtain the liquid material. In particular, in Example 1 using corn starch as a raw material starch, the drying property of the liquid material obtained by ultrasonic irradiation from the gelatinized material is very excellent, and can be dried in about half a day without forming a film on the surface. Met.

一方、上記表2に示される比較例1ないし4においては、前記糊化物に超音波照射を行わないため、高粘度状態の糊化物のままで、バットでの加熱乾燥を行った。そのため、表面のみが乾燥されて被膜が生じ、内部まで乾燥が進まなかった。内部まで乾燥させるには、表面の乾燥膜、被膜を適宜破砕する必要があり、前記被膜を破砕しても上記実施例の場合と比較して乾燥までに概ね倍の日数を要し、表2に示されるように、乾燥性の評価としては「困難」あるいは「非常に困難」であった。   On the other hand, in Comparative Examples 1 to 4 shown in Table 2 above, since the gelatinized product was not irradiated with ultrasonic waves, it was heat-dried with a vat while the gelatinized product was in a highly viscous state. Therefore, only the surface was dried to form a film, and drying did not proceed to the inside. In order to dry to the inside, it is necessary to appropriately crush the dry film and the coating on the surface, and even if the coating is crushed, it takes approximately twice as many days to dry as in the above examples. As shown in the above, the dryness evaluation was “difficult” or “very difficult”.

また、前記実施例1ないし4の吸水性処理デンプン及び比較例1ないし4の試料についての冷水可溶分(%)、膨潤容積(ml/g)及び膨潤重量(g/g)の測定結果及び表1及び表2を踏まえた総合評価について下記表3及び表4に示す。   The measurement results of the cold water soluble content (%), swelling volume (ml / g) and swelling weight (g / g) of the water-absorbing treated starch of Examples 1 to 4 and the samples of Comparative Examples 1 to 4 and The overall evaluation based on Tables 1 and 2 is shown in Tables 3 and 4 below.

Figure 2009143977
Figure 2009143977

Figure 2009143977
Figure 2009143977

前記表3に示されるように、実施例1ないし4の吸水性処理デンプンは、いずれも膨潤容積が3.0ml/gから12.0ml/g、膨潤重量が0.5g/gから3.5g/gであり、吸水性の付与が確認できた。また、原料デンプンとしてコーンスターチを用いた実施例1の吸水性処理デンプンは、前述のように表1に示した乾燥性の結果を鑑み、総合評価として「非常に良好」であると判断した。さらに、実施例3及び4は「良好」、ワキシースターチを原料デンプンとした実施例2は、冷水可溶分が高いため「実施可」と評価した。   As shown in Table 3, each of the water-absorbing treated starches of Examples 1 to 4 has a swelling volume of 3.0 ml / g to 12.0 ml / g and a swelling weight of 0.5 g / g to 3.5 g. / G, and it was confirmed that water absorption was imparted. In addition, the water-absorbing treated starch of Example 1 using corn starch as a raw material starch was determined to be “very good” as a comprehensive evaluation in view of the drying results shown in Table 1 as described above. Furthermore, Examples 3 and 4 were evaluated as “good”, and Example 2 in which waxy starch was used as a raw material starch was evaluated as “practical” because of its high soluble content in cold water.

他方、比較例1ないし4の試料は、膨潤容積、膨潤重量が高いものの、いずれも前記糊化物に対して超音波照射を行っていない糊化物のままの状態であるため、粘度が非常に高く、表2及び前述の通り、乾燥が極めて困難であった。したがって、比較例1ないし4の試料については、総合評価としていずれも不適とした。特に、実際の生産ラインにおいて大量の糊化物を乾燥させて粉状物を得ることは、工程管理上、移動性、操作性、乾燥性等の観点から著しく困難であり、実際の実施も非常に難しい。   On the other hand, although the samples of Comparative Examples 1 to 4 have a high swelling volume and swelling weight, both of them are in a state of a gelatinized product that is not subjected to ultrasonic irradiation with respect to the gelatinized product, so that the viscosity is very high. As shown in Table 2 and above, drying was extremely difficult. Therefore, the samples of Comparative Examples 1 to 4 were all unsuitable for comprehensive evaluation. In particular, it is extremely difficult to obtain a powdery product by drying a large amount of gelatinized material in an actual production line from the viewpoint of process control, mobility, operability, drying property, etc. difficult.

続いて、表3の総合評価が「非常に良好」であった原料デンプンがコーンスターチの実施例1について、さらに、超音波照射の程度を変化させ、乾燥方法としてスプレードライヤーを用いて下記実施例5ないし7の吸水性処理デンプンを作製して以下の検討を行った。   Subsequently, the raw material starch whose comprehensive evaluation in Table 3 was “very good” was changed to Example 1 of corn starch, and the degree of ultrasonic irradiation was further changed, and a spray dryer was used as a drying method, and the following Example 5 No. 7 to 7 water-absorbing treated starches were prepared and examined as follows.

[実施例5]
前記実施例1において、前記液状物の乾燥方法をスプレードライヤーにて行ったこと以外、実施例1と同様の処理方法によって、実施例5の吸水性処理デンプンを得た。なお、実施例5の糊化物は、原料デンプンであるコーンスターチの配合量が10.9wt%、初発粘度が4000mPa・s(80℃)であり、前記糊化物に対する超音波照射は、粘度1200mPa・sの液状物となるまで行った。なお、上述したように前記各粘度は80℃における測定値であり、以下の実施例についても同様である。
[Example 5]
In Example 1, the water-absorbing treated starch of Example 5 was obtained by the same treatment method as in Example 1, except that the liquid was dried using a spray dryer. In addition, the gelatinized material of Example 5 has a blending amount of corn starch as a raw material starch of 10.9 wt% and an initial viscosity of 4000 mPa · s (80 ° C.), and ultrasonic irradiation of the gelatinized material has a viscosity of 1200 mPa · s. It went until it became a liquid substance. As described above, the respective viscosities are measured values at 80 ° C., and the same applies to the following examples.

[実施例6]
前記実施例5と同様の処理方法によって、実施例6の吸水性処理デンプンを得た。ただし、実施例6の糊化物は、コーンスターチの配合量が11.1wt%、初発粘度が4200mPa・sであり、前記糊化物に対する超音波照射は、粘度が60mPa・s(80℃)の液状物となるまで行った。
[Example 6]
The water-absorbing treated starch of Example 6 was obtained by the same treatment method as in Example 5. However, the gelatinized product of Example 6 has a corn starch content of 11.1 wt% and an initial viscosity of 4200 mPa · s. Ultrasonic irradiation of the gelatinized product is a liquid with a viscosity of 60 mPa · s (80 ° C.). I went until.

[実施例7]
前記実施例5と同様の処理方法によって、実施例7の吸水性処理デンプンを得た。ただし、実施例7の糊化物は、コーンスターチの配合量が13.1wt%、80℃において初発粘度が4760mPa・sであり、前記糊化物に対する超音波照射は、粘度150mPa・sの液状物となるまで行った。
[Example 7]
The water-absorbing treated starch of Example 7 was obtained by the same treatment method as in Example 5. However, the gelatinized material of Example 7 has a corn starch blending amount of 13.1 wt% and an initial viscosity of 4760 mPa · s at 80 ° C., and ultrasonic irradiation of the gelatinized material becomes a liquid having a viscosity of 150 mPa · s. Went up.

前記実施例5ないし7において、用いた原料デンプンの種類、糊化物における前記原料デンプンの配合量(wt%)、糊化物の初発粘度(mPa・s)、前記糊化物に対する超音波照射後の液状物の粘度(mPa・s)、そのときの粘度低下率(%)を下記表5に示す。   In Examples 5 to 7, the type of raw starch used, the blending amount (wt%) of the raw starch in the gelatinized product, the initial viscosity (mPa · s) of the gelatinized product, and the liquid after ultrasonic irradiation of the gelatinized product Table 5 below shows the viscosity (mPa · s) of the product and the viscosity reduction rate (%) at that time.

Figure 2009143977
Figure 2009143977

また、以上のようにして得られた前記実施例5ないし7の吸水性処理デンプンの冷水可溶分(%)、膨潤容積(ml/g)及び膨潤重量(g/g)の測定結果について下記表6に示す。さらに、実施例5の吸水性処理デンプンについて、吸水前及び吸水後の各吸水性処理デンプンの粒子の膨潤による形態変化について図2に示す。   The measurement results of the cold water soluble content (%), swelling volume (ml / g) and swelling weight (g / g) of the water-absorbing treated starches of Examples 5 to 7 obtained as described above are as follows. Table 6 shows. Furthermore, about the water absorbing process starch of Example 5, it shows in FIG. 2 about the form change by the swelling of each water absorbing process starch before water absorption and after water absorption.

Figure 2009143977
Figure 2009143977

上記表5及び表6の結果から、実施例5ないし7のいずれにおいても、前記糊化物に対する超音波照射によって液状物が得られ、前記液状物を量産性の高いスプレードライヤーによって乾燥して粉状物を得ることができた。この場合において、得られた粉状物である吸水性処理デンプンは、吸水性処理デンプンとしての性質が損なわれることはなく、膨潤容積及び膨潤重量が大きくなり、むしろ吸水性の向上が認められた。   From the results of Table 5 and Table 6, in any of Examples 5 to 7, a liquid material is obtained by ultrasonic irradiation of the gelatinized material, and the liquid material is dried by a spray dryer having high mass productivity and is powdery. I was able to get things. In this case, the water-absorbing processed starch, which was a powdery product, did not lose its properties as a water-absorbing processed starch, the swelling volume and swelling weight were increased, and rather the water absorption was improved. .

加えて、図2からよく理解されるように、実施例5の吸水性処理デンプンは、吸水前は20μm程度の粒径(原料デンプンであるコーンスターチの粒径と同程度)を保っているが、湿潤状態におかれると、速やかに膨潤するのが観察された。それに対し、通常のデンプン糊の乾燥物は、湿潤状態におかれると粒状を保つことができず、粒が崩壊してしまうために、流動的な糊状物として観察されることが知られている。このことから、実施例の吸水性処理デンプンは、通常のデンプン糊の乾燥物と、その性状が大きく異なることが確認できた。   In addition, as is well understood from FIG. 2, the water-absorbed treated starch of Example 5 maintains a particle size of about 20 μm (approximately the same as the particle size of corn starch, which is a raw material starch) before water absorption. Swelling was observed rapidly when placed in a wet state. On the other hand, it is known that a dried product of ordinary starch paste cannot be kept granular when placed in a wet state and is observed as a fluid paste because the particles collapse. Yes. From this, it was confirmed that the water-absorbing treated starch of the example was greatly different in properties from the dried product of ordinary starch paste.

続いて、前記吸水性処理デンプンの利用例として、実施例7の吸水性処理デンプンを食品用結着剤として用いた試作例を以下に示す。まず、以下のように試作例1のパンを焼成、調製した。また、試作例1の比較として、下記対比例1ないし3のパンの作製も行った。   Subsequently, as a use example of the water-absorbing treated starch, a trial example using the water-absorbing treated starch of Example 7 as a binder for food is shown below. First, the bread of Prototype Example 1 was baked and prepared as follows. In addition, as a comparison with Prototype Example 1, breads of the following comparative 1 to 3 were also produced.

[試作例1]
パンの原料として、強力粉200g、ドライイースト小さじ1、砂糖10g、塩少々、牛乳100cc、卵小1個、バター20g及び食品用結着剤として実施例7の吸水性処理デンプン10gをボウルに入れて混合した。そして、20分間混練してドウ(パン生地)を形成させ、170℃のオーブンにて15分焼成して試作例1のパンを得た。なお、前記試作例1及び以下の対比例1ないし3の各原料の配合量を下記表7に示す。
[Prototype Example 1]
As a raw material of bread, 200 g of strong flour, 1 teaspoon of dry yeast, 10 g of sugar, a little salt, 100 cc of milk, 1 egg egg, 20 g of butter and 10 g of the water-absorbing processed starch of Example 7 as a binder for food are put in a bowl. Mixed. The dough (bread dough) was formed by kneading for 20 minutes, and baked in an oven at 170 ° C. for 15 minutes to obtain bread of prototype example 1. In addition, Table 7 below shows the blending amounts of the respective raw materials of Prototype Example 1 and Comparative Examples 1 to 3 below.

[対比例1]
前記試作例1において、実施例7の吸水性処理デンプン(食品用結着剤)を用いなかったこと以外、試作例1と同様にして対比例1のパンを得た。
[Comparison 1]
In Prototype Example 1, comparative 1 bread was obtained in the same manner as in Prototype Example 1 except that the water-absorbing treated starch (food binder) of Example 7 was not used.

[対比例2]
前記試作例1において、実施例7の吸水性処理デンプン(食品用結着剤)の代わりに比較例1の試料(糊化物を乾燥させたもの)を用いたこと以外、試作例1と同様にして対比例2のパンを得た。
[Comparison 2]
Prototype Example 1 was the same as Prototype Example 1 except that the sample of Comparative Example 1 (dried gelatinized material) was used in place of the water-absorbing treated starch of Example 7 (binder for food). As a result, bread of contrast 2 was obtained.

[対比例3]
前記試作例1において、実施例7の吸水性処理デンプン(食品用結着剤)の代わりにコーンスターチ原料由来の粉末水飴HLD(フタムラスターチ株式会社製)を用いたこと以外、試作例1と同様にして対比例3のパンを得た。
[Comparison 3]
In Prototype Example 1, the same procedure as in Prototype Example 1 was used except that powdered starch syrup HLD derived from corn starch raw material (made by Phutamura Starch Co., Ltd.) was used instead of the water-absorbing treated starch (binder for food) of Example 7. As a result, 3 breads were obtained.

Figure 2009143977
Figure 2009143977

前記試作例1及び対比例1ないし3において、前記パン生地(ドウ)の混練中において5分ごと、および焼成直後のパン及び一日放置後のパンの硬さをゲル強度にて測定した。前記ゲル強度の測定は、JISK6503に基づいて行った。このときの前記パン生地の強度変化を下記表8及び図3に示す。また、焼成直後のパン及び一日放置後のパンの硬さを下記表9及び図4に示す。   In Prototype Example 1 and Comparative Examples 1 to 3, the hardness of the bread dough (dough) was measured by gel strength every 5 minutes and immediately after baking and after standing for a day. The gel strength was measured based on JISK6503. The change in strength of the bread dough at this time is shown in Table 8 and FIG. Moreover, the hardness of the bread immediately after baking and the bread after leaving for one day is shown in following Table 9 and FIG.

Figure 2009143977
Figure 2009143977

Figure 2009143977
Figure 2009143977

図3及び前記表8からわかるように、試作例1と対比例1で、生地の混練中の5分ごとの生地の硬さの変化を比べると、混練開始の5分後から試作例1の生地が程よく硬くなっており、対比例1及び対比例3に比べてボウルへの生地の付着も少なく混練が容易であった。また、対比例2においては混練開始5分後からかなり硬く、混練は比較的容易であるものの、10分後にはさらに硬くなり、混練するのにかなりの力が必要となりうまく生地を混練することが非常に困難であった。   As can be seen from FIG. 3 and Table 8 above, when the change in the hardness of the dough every 5 minutes during the kneading of the dough is compared with the example 1 of the trial example 1, the sample of the example 1 of the trial example 1 starts 5 minutes after the start of kneading. The dough was reasonably hard, and kneading was easy with less sticking of the dough to the bowl as compared to Comparative 1 and Comparative 3. In contrast 2, the kneading is fairly hard after 5 minutes from the start of kneading and is relatively easy to knead. However, after 10 minutes, the kneading becomes even harder and requires a considerable force to knead the dough. It was very difficult.

また、図4及び表9から焼成したパンにおいて、焼成直後のパンの硬さは対比例2以外については、ほぼ同等であった。しかしながら、1日経過後の硬さにおいては、対比例1と比べ、対比例2及び対比例3はかなり硬くなっている。さらに、試作例1においては対比例1〜3に比べて硬くなる割合が小さく柔らかい。即ち試作例1のパンの方が経時変化が少ないことが認められた。   Moreover, in the bread baked from FIG. 4 and Table 9, the bread | hardness of the bread immediately after baking was substantially the same except for the proportionality 2. However, in the hardness after the passage of one day, the proportional 2 and the proportional 3 are considerably harder than the proportional 1. Further, in Prototype Example 1, the ratio of hardening is small and soft as compared with Comparative Examples 1-3. That is, it was recognized that the bread of Prototype Example 1 had less change with time.

続いて、前記食品用結着剤の別の試作例について説明する。実施例7の吸水性処理デンプンを食品用結着剤として用いて、以下のように粉末スープ等の造粒確認試験を行った。   Next, another trial example of the food binder will be described. Using the water-absorbing treated starch of Example 7 as a binder for food, a granulation confirmation test for powder soup and the like was performed as follows.

[試作例2]
200mlのビーカーに、粉末鶏がらスープ1gと実施例7の吸水性処理デンプン7gを入れ、スポイト等で少しずつ水を加えてよく混ぜた試料を注射器(テルモシリンジ針なし1mlの先端を切り取ったもの)に詰め込み10kg/cm2程度の力を加え、一定の力で押出した成形物をステンレス製のバットに載せ乾燥機(100℃)にて乾燥させた。乾燥させた成形物について指の腹で押しつぶして造粒性能の評価を下記表10に示す。強く押しつぶすと崩れるものを「〇」、軽く押しつぶすと崩れるものを「△」、成形できないものを「×」として評価した。
[Prototype example 2]
In a 200 ml beaker, put 1 g of powdered chicken pork soup and 7 g of the water-absorbing treated starch of Example 7, add a little water with a dropper etc. and mix well. ) the packing 10 kg / cm 2 force of about added, and dried over placing the molded product was extruded with a constant force in a stainless steel tray dryer (100 ° C.). Table 10 below shows the evaluation of granulation performance by crushing the dried molded product with the finger pad. Evaluation was made with “◯” for those that collapsed when strongly crushed, “△” for those that collapsed when lightly crushed, and “×” for those that could not be molded.

[対比例4]
前記試作例2において、実施例7の吸水性処理デンプン(食品用結着剤)の代わりにコーンスターチ(フタムラスターチ株式会社製)を用いたこと以外、試作例2と同様にして対比例4の試料を得た。乾燥させた成形物について造粒性能の評価を下記表10に示す。
[Comparison 4]
In the prototype 2, the sample of the comparative 4 was used in the same manner as in the prototype 2 except that corn starch (Futamura Starch Co., Ltd.) was used instead of the water-absorbing treated starch of Example 7 (binder for food). Got. Table 10 below shows the evaluation of granulation performance of the dried molded product.

[対比例5]
前記試作例2において、実施例7の吸水性処理デンプン(食品用結着剤)の代わりに比較例1の試料(糊化物を乾燥させたもの)を用いたこと以外、試作例2と同様にして対比例5の試料を得た。乾燥させた成形物について造粒性能の評価を下記表10に示す。
[Comparison 5]
Prototype Example 2 was the same as Prototype Example 2 except that the sample of Comparative Example 1 (dried gelatinized material) was used in place of the water-absorbing treated starch of Example 7 (binder for food). Thus, a sample of 5 in comparison was obtained. Table 10 below shows the evaluation of granulation performance of the dried molded product.

Figure 2009143977
Figure 2009143977

表10より、試作例2については少量の水を加えることにより吸水して他の粒子と結着し、注射器より押出された成形物は形を保ち押さえつけただけでは崩れなかった。しかし、対比例4については、少量の水を加えても吸水せず結着性能を有しないため、注射器より押出された成形物は脆くて容易に崩れてしまった。また、対比例5については成形する際に注射器から押出すことができず造粒は困難となった。なお、上述したように、生産ラインにおいて大量の糊化物を乾燥させて粉状物を得ることは、工程管理上、移動性、操作性、乾燥性等の観点から著しく困難であり、実際の実施も非常に難しい。   As shown in Table 10, with respect to Prototype Example 2, water was absorbed by adding a small amount of water to bind with other particles, and the molded product extruded from the syringe did not collapse just by holding the shape and pressing. However, as for Comparative Example 4, since even if a small amount of water is added, it does not absorb water and has no binding performance, the molded product extruded from the syringe is brittle and easily collapses. Further, with respect to Comparative 5, it was difficult to extrude from the syringe during molding, and granulation became difficult. As described above, it is extremely difficult to obtain a powdery product by drying a large amount of gelatinized product in the production line from the viewpoint of process control, mobility, operability, drying property, etc. Is also very difficult.

この発明の吸水性処理デンプンの製法の一例を示す概略工程図である。It is a schematic process drawing which shows an example of the manufacturing method of the water absorbing process starch of this invention. 吸水前後の吸水性処理デンプンの粒子状態を示す図である。It is a figure which shows the particle state of the water absorption process starch before and behind water absorption. 試作例1及び対比例1の混練時間に対する生地強度を示す図である。It is a figure which shows the dough intensity | strength with respect to the kneading | mixing time of Prototype Example 1 and proportional 1. 試作例1及び対比例1の時間に伴うパン硬さの変化を示す図である。It is a figure which shows the change of bread hardness with the time of the prototype 1 and the comparative 1 time.

Claims (4)

原料デンプンの糊化物に超音波を照射して乾燥したことを特徴とする吸水性処理デンプン。   A water-absorbing processed starch, characterized in that the gelatinized material starch is dried by irradiation with ultrasonic waves. 下記(I)膨潤容積測定方法により測定される膨潤容積Vaが、3≦Va≦20を満たし、下記(II)膨潤重量測定方法により測定され、式(i)により示される膨潤重量Waが、1.5≦Wa≦10を満たす請求項1に記載の吸水性処理デンプン。
((I)膨潤容積測定方法:吸水性処理デンプン1g(無水換算)を20℃、75mlの純水を入れたビーカー中に、スターラーで撹拌しつつ添加し、均一に分散させて分散液とする。ついで、前記分散液を100mlメスシリンダーに全量移し、さらに純水を加えて100mlとした後、室温で12時間放置したときの沈降体積を読み取った数値を膨潤容積Vaとする。)
((II)膨潤重量測定方法:ナイロン製開口255メッシュ(57μm)を、100×400mmの長方形に切断し、200×100mmとなるように折り曲げて長辺側をヒートシールして200±2×90±2mm容量の上部が開口した袋状としたもの(ティーバッグ)を作成し、吸水性処理デンプン約1g(無水換算。このときの吸水性処理デンプンの重量をaとする。)を前記ティーバッグの底部に均一になるように入れ、ままこ(継粉)が生じないように静かに前記ティーバッグの下部150mmを25℃の純水1Lに24時間浸漬する。そして、前記ティーバッグの底部が傾斜するように10分間上部開口部の端を釣り糸でつるして水切りした後、直ちに重量を測る(このときの重量をbとする。)。一方、吸水性処理デンプンを入れないティーバッグを上記のように、25℃の純水1Lに24時間浸漬して、同様に10分間ティーバッグの底が傾斜するように上部開口部の端を釣り糸でつるして水切りした後の重量を3回測定して平均値を求め(このときの重量をcとする。)、下記式(i)に基づいて算出した値を膨潤重量Waとする。)
Figure 2009143977
((i)式において、a、b及びcは上記(II)膨潤重量測定方法で測定した値であって、aは吸水性処理デンプンの重量、bは吸水性処理デンプンを入れたティーバッグを24時間浸漬し、水切りした後の重量、cは吸水性処理デンプンを入れていないティーバッグを24時間浸漬し、水切り後の重量を3回測定して求めた平均値である。)
(I) below swelling volume V a which is measured by swelling volume measurement method, 3 ≦ V meet a ≦ 20, it is determined by the following (II) Swelling gravimetric method, swelling weight W a represented by the formula (i) The water-absorbing processed starch according to claim 1, satisfying 1.5 ≦ W a ≦ 10.
((I) Swelling volume measurement method: 1 g of water-absorbing treated starch (anhydrous conversion) is added to a beaker containing 75 ml of pure water at 20 ° C. while stirring with a stirrer, and uniformly dispersed to obtain a dispersion. . incidentally, the dispersion is transferred the total amount to 100ml graduated cylinder after a 100ml further added pure water, and numerically the swelling volume V a obtained by reading the sedimentation volume when left at room temperature for 12 hours.)
((II) Swelling weight measuring method: Nylon opening 255 mesh (57 μm) is cut into a rectangle of 100 × 400 mm, bent to 200 × 100 mm, and the long side is heat sealed to 200 ± 2 × 90 A bag (tea bag) having an open top of ± 2 mm capacity is prepared, and about 1 g of water-absorbed processed starch (anhydrous conversion. The weight of the water-absorbed processed starch at this time is a) is the tea bag. The bottom of the tea bag is gently soaked in 1 L of pure water at 25 ° C. for 24 hours so as not to leave a lump (powder), and the bottom of the tea bag is The end of the upper opening is hung with a fishing line for 10 minutes so as to incline, and then immediately weighed (weight is b). The weight after immersing a non-tea bag in 1 L of pure water at 25 ° C. for 24 hours as described above, and then draining the end of the top opening with fishing line so that the bottom of the tea bag is inclined for 10 minutes. measured 3 times the average value (the weight at this time is c.), the value calculated according to the following formula (i) swelling the weight W a.)
Figure 2009143977
(In the formula (i), a, b and c are values measured by the above (II) swelling weight measurement method, where a is the weight of the water-absorbed processed starch, and b is a tea bag containing the water-absorbed processed starch. The weight after immersion for 24 hours and draining, c is an average value obtained by immersing a tea bag without water-absorbing treated starch for 24 hours and measuring the weight after draining three times.)
前記原料デンプンがコーンスターチである請求項1又は2のいずれか1項に記載の吸水性処理デンプン。   The water-absorbing processed starch according to any one of claims 1 and 2, wherein the raw starch is corn starch. 請求項1ないし3のいずれか1項に記載の吸水性処理デンプンよりなることを特徴とする食品用結着剤。   A binder for food, comprising the water-absorbing treated starch according to any one of claims 1 to 3.
JP2007319612A 2007-12-11 2007-12-11 Binder for food Expired - Fee Related JP5300254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007319612A JP5300254B2 (en) 2007-12-11 2007-12-11 Binder for food

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007319612A JP5300254B2 (en) 2007-12-11 2007-12-11 Binder for food

Publications (2)

Publication Number Publication Date
JP2009143977A true JP2009143977A (en) 2009-07-02
JP5300254B2 JP5300254B2 (en) 2013-09-25

Family

ID=40914977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007319612A Expired - Fee Related JP5300254B2 (en) 2007-12-11 2007-12-11 Binder for food

Country Status (1)

Country Link
JP (1) JP5300254B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2773225B1 (en) 2011-11-04 2016-11-30 Unilever N.V. Shaped food concentrate
WO2021085445A1 (en) * 2019-10-30 2021-05-06 株式会社日清製粉グループ本社 Method for manufacturing pregelatinized cereal flour
WO2022230839A1 (en) * 2021-04-28 2022-11-03 株式会社日清製粉グループ本社 Bakery mix production method
WO2022230841A1 (en) * 2021-04-28 2022-11-03 株式会社日清製粉グループ本社 Method for producing mix for takoyaki or okonomiyaki
WO2022230840A1 (en) * 2021-04-28 2022-11-03 株式会社日清製粉グループ本社 Production method for noodles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171474A (en) * 1984-09-14 1986-04-12 Pioneer Electronic Corp Recording disc information reproducing device
JPH06511273A (en) * 1991-10-01 1994-12-15 レヴォザーン−ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing starch degradation products with narrow molecular weight distribution
JP2006231219A (en) * 2005-02-25 2006-09-07 Futamura Chemical Co Ltd Method for producing liquid material from gelatinous material and method for producing powdery material
JP2008093657A (en) * 2006-09-15 2008-04-24 Futamura Chemical Co Ltd Emulsion stabilizer
JP2008248082A (en) * 2007-03-30 2008-10-16 Futamura Chemical Co Ltd Sparingly digestible treatment starch
JP2009108426A (en) * 2007-10-26 2009-05-21 Futamura Chemical Co Ltd Method for producing starch fiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171474A (en) * 1984-09-14 1986-04-12 Pioneer Electronic Corp Recording disc information reproducing device
JPH06511273A (en) * 1991-10-01 1994-12-15 レヴォザーン−ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing starch degradation products with narrow molecular weight distribution
JP2006231219A (en) * 2005-02-25 2006-09-07 Futamura Chemical Co Ltd Method for producing liquid material from gelatinous material and method for producing powdery material
JP2008093657A (en) * 2006-09-15 2008-04-24 Futamura Chemical Co Ltd Emulsion stabilizer
JP2008248082A (en) * 2007-03-30 2008-10-16 Futamura Chemical Co Ltd Sparingly digestible treatment starch
JP2009108426A (en) * 2007-10-26 2009-05-21 Futamura Chemical Co Ltd Method for producing starch fiber

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2773225B1 (en) 2011-11-04 2016-11-30 Unilever N.V. Shaped food concentrate
WO2021085445A1 (en) * 2019-10-30 2021-05-06 株式会社日清製粉グループ本社 Method for manufacturing pregelatinized cereal flour
CN114554865A (en) * 2019-10-30 2022-05-27 株式会社日清制粉集团本社 Method for producing gelatinized cereal flour
JP7564116B2 (en) 2019-10-30 2024-10-08 株式会社日清製粉グループ本社 Manufacturing method of gelatinized flour
WO2022230839A1 (en) * 2021-04-28 2022-11-03 株式会社日清製粉グループ本社 Bakery mix production method
WO2022230841A1 (en) * 2021-04-28 2022-11-03 株式会社日清製粉グループ本社 Method for producing mix for takoyaki or okonomiyaki
WO2022230840A1 (en) * 2021-04-28 2022-11-03 株式会社日清製粉グループ本社 Production method for noodles

Also Published As

Publication number Publication date
JP5300254B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
KR102168623B1 (en) Composition, and batter material, food, drink and feed, using same, and process for manufacturing composition
Wani et al. Physicochemical properties of native and γ-irradiated wild arrowhead (Sagittaria sagittifolia L.) tuber starch
CN107250164A (en) For manufacturing the method for combining high elastic modulus and absorbefacient hydrogel
JP5300254B2 (en) Binder for food
CN101124276B (en) Water dispersible xanthan gum containing compositions
EP2404506A1 (en) Instant dry noodles and method for producing same
JP2015171352A (en) Production method of granular soup containing starch
JP5016405B2 (en) Control method for exudation of fats and oils from oil-containing granules
JP2018174925A (en) Foods and manufacturing method thereof
JP4801122B2 (en) Easily soluble thickened soup, method for producing the soup, and thickener
JP5993325B2 (en) Retort food and production method thereof
JP7099858B2 (en) Food and its manufacturing method
JPWO2013054461A1 (en) Granules, food and beverage using the same, and method for producing the granules
JP4775809B2 (en) Method for preparing hydrogel component-containing composition and use thereof
JP2018023311A (en) Edible film
JPH0431657B2 (en)
JPH0841105A (en) Method for granulating water-soluble polysaccharide
JPS61280244A (en) Production of starch for processing
JP3354518B2 (en) Method for producing heat-sterilized sauce
JP7382676B1 (en) Agent for preventing punctures during baking or elongation after baking in starch dough derived from grains or potatoes
CN104918501B (en) The method for reducing the oil and/or fat absorption of fried food
RU2785127C2 (en) Pregelatinized starches with high technological stability and methods for their production and use
JP7586077B2 (en) Instant soup pasta
JP2010081867A (en) Gelatinized product for konnyaku-using food, to be gelatinized with alkali, the konnyaku-using food obtained from the same, and method for producing the gelatinized product
JPH03292866A (en) Dry mashed potato-like raw material and production thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100305

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130618

R150 Certificate of patent or registration of utility model

Ref document number: 5300254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees