JP2006265404A - Gas hydrate generator and generation method - Google Patents

Gas hydrate generator and generation method Download PDF

Info

Publication number
JP2006265404A
JP2006265404A JP2005086737A JP2005086737A JP2006265404A JP 2006265404 A JP2006265404 A JP 2006265404A JP 2005086737 A JP2005086737 A JP 2005086737A JP 2005086737 A JP2005086737 A JP 2005086737A JP 2006265404 A JP2006265404 A JP 2006265404A
Authority
JP
Japan
Prior art keywords
gas hydrate
reaction vessel
water surface
water
spiral path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005086737A
Other languages
Japanese (ja)
Other versions
JP4523466B2 (en
Inventor
Yuichi Kato
裕一 加藤
Takashi Arai
新井  敬
Shigeru Nagamori
茂 永森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2005086737A priority Critical patent/JP4523466B2/en
Publication of JP2006265404A publication Critical patent/JP2006265404A/en
Application granted granted Critical
Publication of JP4523466B2 publication Critical patent/JP4523466B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas hydrate generator capable of safely and continuously taking out gas hydrate slurry of almost uniform slurry content from a reaction vessel. <P>SOLUTION: The gas hydrate generator has a constitution of setting the inside of a reaction vessel 1 at a predetermined temperature and pressure, generating gas hydrate 22 by bringing a raw material gas 18 into contact with water 16 in the reaction vessel, accumulating the generated gas hydrate on the water surface of the reaction vessel, and taking out the gas hydrate remaining on the water surface, outside the reaction vessel through a means 14, wherein a helical cylinder 32 having a helical path 30 linked to a vessel wall 3 from the center of the reaction vessel is set to extend from above water surface to underwater at the water surface part where the gas hydrate remains, and a takeout hole 12 of a takeout means is set at a position communicated with the helical path at the vessel wall 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、反応容器内が所定の温度及び圧力に設定され、該反応容器内で原料ガスと水の接触によってガスハイドレートが生成され、生成されたガスハイドレートは該反応容器内の水面上に溜まり、該水面上に溜まるガスハイドレートは抜き出し手段によって反応容器外に抜き出される構成のガスハイドレート生成装置及び生成方法に関する。   In the present invention, the inside of a reaction vessel is set to a predetermined temperature and pressure, and gas hydrate is generated by contact of raw material gas and water in the reaction vessel, and the generated gas hydrate is on the water surface in the reaction vessel. The present invention relates to a gas hydrate generating apparatus and a generating method in which gas hydrate collected on the water surface is extracted out of a reaction vessel by extraction means.

ガスハイドレートは、水分子が結合して形成された立体構造の籠の内部に、例えば天然ガスの成分であるメタン、エタン、プロパン、ブタン等の炭化水素や二酸化炭素等のガス分子が取り込まれて形成される包接(クラスレート)水和物(ハイドレート)の総称である。すなわち、ガスハイドレートは、原料ガス分子と水分子からなる氷状の固体物質であり、水分子が形成する立体的な籠状構造の内部に原料ガス分子を包接した安定な包接化合物の一種である。このガスハイドレートは、ガス包蔵量が比較的大きいと共に、大きな生成・分解エネルギーや、ハイドレート化ガスの選択性等の特徴ある性質を有しているため、例えば、天然ガス等の輸送・貯蔵手段や、蓄熱システム、アクチュエータ、特定成分ガスの分離回収等の多様な用途が可能であり、盛んに研究がなされている。   In gas hydrate, gas molecules such as hydrocarbons such as methane, ethane, propane, and butane, which are natural gas components, and carbon dioxide are taken into the interior of the three-dimensional structure formed by combining water molecules. It is a general term for clathrate hydrates (hydrates) formed in this way. That is, the gas hydrate is an ice-like solid substance composed of source gas molecules and water molecules, and is a stable clathrate compound in which source gas molecules are included inside a three-dimensional cage structure formed by water molecules. It is a kind. This gas hydrate has a relatively large gas storage capacity, and has characteristic properties such as large generation / decomposition energy and selectivity of hydrated gas. For example, transportation and storage of natural gas, etc. Various applications such as means, heat storage systems, actuators, and separation and recovery of specific component gases are possible, and research is actively conducted.

ガスハイドレートは、通常、高圧・低温条件の下で生成される。生成方法として、以下の方式が良く知られている。原料ガスを高圧に充填した反応容器の上部から冷却した水を散水(スプレー)することにより、水滴が原料ガス中を落下する際に水滴表面にガスハイドレートを生成させる、いわゆる「スプレー方式」や、原料ガスを水中に気泡として導入(バブリング)することにより、原料ガスの気泡が水中を上昇する際に気泡表面にガスハイドレートを生成させる、いわゆる「バブリング方式」等である。   Gas hydrate is usually generated under high pressure and low temperature conditions. The following methods are well known as generation methods. By spraying water cooled from the upper part of the reaction vessel filled with the raw material gas at a high pressure, when the water droplets fall in the raw material gas, gas hydrate is generated on the surface of the water droplets. A so-called “bubbling method” or the like in which a gas hydrate is generated on the surface of a bubble when the bubble of the source gas rises in the water by introducing the raw material gas as bubbles in the water (bubbling).

前者のスプレー方式を用いたガスハイドレート生成装置の一例として、特許文献1(特開2000−264852号公報)に記載の装置が挙げられる。反応容器内で原料ガスとスプレー水を接触させて生成したガスハイドレートは、一般に水より比重が小さいため、また微細な気泡がハイドレートに付着するため、反応容器内の水面上に浮いてガスハイドレートの層を形成する。前記接触反応を継続させることにより、このガスハイドレートは水面上に次第に溜まっていくと共に濃縮されて濡縮スラリーとなる。このガスハイドレートの濃縮スラリーを、水面近くの容器壁部に抜き出し口が配置された抜き出し装置によって抜き出すようになっている。   As an example of the former gas hydrate generation apparatus using the spray method, there is an apparatus described in Patent Document 1 (Japanese Patent Laid-Open No. 2000-264852). The gas hydrate produced by contacting the raw material gas and spray water in the reaction vessel generally has a specific gravity smaller than that of water, and fine bubbles adhere to the hydrate. Therefore, the gas hydrate floats on the water surface in the reaction vessel. A hydrate layer is formed. By continuing the contact reaction, the gas hydrate gradually accumulates on the surface of the water and is concentrated to become a wet shrink slurry. The concentrated slurry of gas hydrate is extracted by an extraction device in which an extraction port is arranged in the container wall near the water surface.

また、バブリング方式を用いたガスハイドレート生成装置も、図5及び図6に示した如く、反応容器1内の水面下で生成したガスハイドレート10は水面上に溜まり、それを水面近くの容器壁部に抜き出し口12が配置された抜き出し装置14によって抜き出すようになっている点ではスプレー方式と変わらない。図において、符号16は貯留された水を示す。   In addition, as shown in FIGS. 5 and 6, the gas hydrate generating apparatus using the bubbling method also collects the gas hydrate 10 generated below the water surface in the reaction vessel 1 on the water surface, and stores it in a container near the water surface. It is the same as the spray system in that it is extracted by an extraction device 14 in which an extraction port 12 is arranged on the wall. In the figure, reference numeral 16 indicates stored water.

特開2000−264852号公報JP 2000-264852 A

従来のガスハイドレート生成装置は、反応容器1内の水面に浮いたガスハイドレート10の濃縮スラリーを水面近くの容器壁部に抜き出し口12が配置された抜き出し装置14にて反応容器1外に抜き出すようになっているため、抜き出し口12近くの濃縮スラリーが抜き出されるとその後は水16が多くなり、抜き出されたガスハイドレートスラリーの濃度が一定せず、ばらつく問題があった。反応容器外に抜き出されたガスハイドレートスラリーは、通常、次工程で更に濃縮装置にかけられるが、この濃縮装置にかけるに際して、望ましいスラリー濃度範囲がある。前記反応容器から取り出したスラリー濃度が一定せず、ばらつくと、次工程の望ましいスラリー濃度範囲から外れてしまう問題があった。すなわち、従来の構造では、濃縮スラリーを安定して連続的に反応容器外に抜き出すことはできない問題があった。   In the conventional gas hydrate generator, the concentrated slurry of the gas hydrate 10 floating on the water surface in the reaction vessel 1 is removed from the reaction vessel 1 by an extraction device 14 in which an extraction port 12 is arranged on the vessel wall near the water surface. Since the concentrated slurry near the extraction port 12 is extracted, the water 16 increases thereafter, and the concentration of the extracted gas hydrate slurry is not constant and varies. The gas hydrate slurry extracted out of the reaction vessel is usually further applied to a concentrator in the next step, and there is a desirable slurry concentration range when applied to the concentrator. If the slurry concentration taken out from the reaction vessel is not constant and varies, there is a problem that the slurry concentration falls outside the desirable slurry concentration range of the next step. That is, the conventional structure has a problem that the concentrated slurry cannot be stably and continuously extracted from the reaction vessel.

本発明の目的は、ほぼ均一なスラリー濃度のガスハイドレートスラリーを安定して且つ連続的に反応容器外に抜き出すことのできるガスハイドレートの生成装置および生成方法を提供することにある。   An object of the present invention is to provide a gas hydrate production apparatus and production method capable of stably and continuously extracting a gas hydrate slurry having a substantially uniform slurry concentration from the reaction vessel.

上記目的を達成するため、本発明の第1の態様に係るガスハイドレート生成装置は、反応容器内が所定の温度及び圧力に設定され、該反応容器内で原料ガスと水の接触によってガスハイドレートが生成され、生成されたガスハイドレートは該反応容器内の水面上に溜まり、該水面上に溜まるガスハイドレートは抜き出し手段によって反応容器外に抜き出される構成のガスハイドレート生成装置であって、生成された前記ガスハイドレートが溜まる水面部分に、反応容器の中央部から容器壁部に繋がる螺旋路を有する螺旋状筒体が水面上から水面下に跨るように設けられ、前記抜き出し手段の抜き出し口は前記容器壁部における前記螺旋路に連通する位置に設けられていることを特徴とするものである。   In order to achieve the above object, the gas hydrate generator according to the first aspect of the present invention is configured such that the inside of a reaction vessel is set to a predetermined temperature and pressure, and gas hydrate is brought into contact with the raw material gas and water in the reaction vessel. The generated gas hydrate is collected on the water surface in the reaction vessel, and the gas hydrate accumulated on the water surface is extracted from the reaction vessel by the extraction means. A helical cylinder having a spiral path connected from the center of the reaction vessel to the vessel wall is provided on the water surface portion where the generated gas hydrate accumulates, and extends from the water surface to the water surface, The extraction opening is provided at a position communicating with the spiral path in the container wall.

本発明によれば、生成したガスハイドレートが溜まる水面部分に、螺旋路を有する螺旋状筒体が水面上から水面下に跨るように設けられ、抜き出し手段の抜き出し力が抜き出し口から螺旋状筒体の螺旋路に閉じられた状態で伝わるように構成されているので、螺旋状筒体内のガスハイドレートを前記螺旋路に沿って移動させて反応容器外に安定して連続的に抜き出すことができる。   According to the present invention, a spiral cylinder having a spiral path is provided on the water surface portion where the generated gas hydrate accumulates so as to straddle from above the water surface to below the water surface, and the extraction force of the extraction means is provided from the extraction port to the spiral cylinder. Since it is configured to be transmitted in a closed state to the spiral path of the body, the gas hydrate in the spiral cylinder can be moved along the spiral path to be stably and continuously extracted out of the reaction vessel. it can.

本発明の第2の態様に係るガスハイドレート生成装置は、第1の態様において、反応容器内の水に前記螺旋路と同じ向きに旋回流を生じさせる旋回流形成手段が設けられていることを特徴とするものである。
本発明によれば、旋回流形成手段によって形成された旋回流は、螺旋路内の流速に寄与するため、水面上のガスハイドレートに対して、遠心分離作用ではなく、螺旋路内を前記抜き出し口に向かって円滑に移動させる作用を発現するようになる。従って、第1の態様による作用効果に加えて、螺旋状筒体内のガスハイドレートを前記螺旋路に沿って移動させて反応容器外に抜き出すことを、一層安定して連続的に行えるようになる。
The gas hydrate generator according to the second aspect of the present invention, in the first aspect, is provided with swirl flow forming means for generating a swirl flow in the same direction as the spiral path in the water in the reaction vessel. It is characterized by.
According to the present invention, the swirl flow formed by the swirl flow forming means contributes to the flow velocity in the spiral path, and therefore, the gas hydrate on the water surface is not subjected to centrifugal separation, but is extracted from the spiral path. The action of smoothly moving toward the mouth is expressed. Therefore, in addition to the operational effects of the first aspect, the gas hydrate in the spiral cylinder can be moved along the spiral path and extracted out of the reaction vessel more stably and continuously. .

本発明の第3の態様に係るガスハイドレート生成装置は、第1の態様において、原料ガスと水の接触が反応容器内に水を噴霧して行われるスプレー方式のガスハイドレート生成装置であり、前記抜き出し手段が有する吸引手段の吸引力によって前記螺旋路内のガスハイドレートが螺旋路に沿って移動して抜き出されるように構成されていることを特徴とするものである。   A gas hydrate generator according to a third aspect of the present invention is a spray-type gas hydrate generator according to the first aspect, wherein the contact between the raw material gas and water is performed by spraying water into the reaction vessel. The gas hydrate in the spiral path is moved and extracted along the spiral path by the suction force of the suction means included in the extraction means.

本発明は、攪拌機のような旋回流形成手段を設置しないスプレー式のガスハイドレート生成装置に特に有効である。抜き出し手段が有するポンプ等の吸引手段の吸引力が、抜き出し口から螺旋状筒体の螺旋路に閉じられた状態で伝わるので、ガスハイドレートが螺旋路に沿って移動して抜き出される。   INDUSTRIAL APPLICABILITY The present invention is particularly effective for a spray-type gas hydrate generator that does not have a swirl flow forming means such as a stirrer. Since the suction force of the suction means such as a pump included in the extraction means is transmitted from the extraction port to the spiral path of the spiral cylindrical body, the gas hydrate moves along the spiral path and is extracted.

本発明の第4の態様に係るガスハイドレート生成方法は、反応容器内を所定の温度及び圧力に設定し、該反応容器内で原料ガスと水を接触させてガスハイドレートを生成し、生成したガスハイドレートは該反応容器内の水面上に溜まり、該水面上に溜まるガスハイドレートを抜き出し手段によって反応容器外に抜き出して生成するガスハイドレート生成方法であって、前記ガスハイドレートが溜まる水面部分に反応容器の中央部から容器壁部に繋がる螺旋路を有する螺旋状筒体が水面上から水面下に跨るように設けられた当該螺旋状筒体を用いて、前記抜き出し手段により前記螺旋状筒体内のガスハイドレートを前記螺旋路に沿って移動させて反応容器外に抜き出すことを特徴とするものである。
本発明によれば、第1の態様と同様の作用効果が得られる。
In the gas hydrate production method according to the fourth aspect of the present invention, the inside of the reaction vessel is set to a predetermined temperature and pressure, and the raw material gas is brought into contact with water in the reaction vessel to produce gas hydrate. The gas hydrate is accumulated on the water surface in the reaction vessel, and the gas hydrate production method for producing the gas hydrate accumulated on the water surface by extracting the gas hydrate from the reaction vessel by extracting means, wherein the gas hydrate is accumulated. A spiral cylinder having a spiral path connected to the vessel wall from the central part of the reaction vessel on the water surface portion is provided by using the spiral cylinder provided so as to extend from above the water surface to below the water surface. The gas hydrate in the cylindrical body is moved along the spiral path and extracted out of the reaction vessel.
According to the present invention, the same effect as the first aspect can be obtained.

本発明によれば、ほぼ均一なスラリー濃度のガスハイドレートスラリーを螺旋状筒体の螺旋路に沿って安定して且つ連続的に反応容器外に抜き出すことができる。   According to the present invention, a gas hydrate slurry having a substantially uniform slurry concentration can be stably and continuously extracted outside the reaction vessel along the spiral path of the spiral cylindrical body.

以下、図面に基づいて本発明の実施の形態を説明する。
[実施例1]
図1は本発明に係るバブリング方式の天然ガスハイドレート生成装置の一実施例を示す概略断面図であり、図2は図1のII−II線断面図、図3は螺旋状筒体を示す一部切欠の斜視図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Example 1]
FIG. 1 is a schematic cross-sectional view showing an embodiment of a bubbling-type natural gas hydrate generator according to the present invention, FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 1, and FIG. It is a perspective view of a notch.

反応容器1内の水16中に天然ガスより成る原料ガス18を気泡として供給する原料ガス供給手段を構成するスパージャ20が設けられている。このスパージャ20は、図示しないガス供給源に連通され、制御された噴射量で原料ガス18を前記水16内に供給するようになっている。反応容器1内は、公知の方法により、所定の温度及び圧力に調整される。本実施例では、温度は1℃〜5℃、圧力は4MPa〜8MPa、好ましくは温度は2℃〜4℃、圧力は5MPa〜6MPaである。この温度及び圧力の下で、前記原料ガス18の気泡と前記水16が接触して天然ガスハイドレート22が生成するようになっている。   A sparger 20 is provided which constitutes a raw material gas supply means for supplying a raw material gas 18 made of natural gas into the water 16 in the reaction vessel 1 as bubbles. The sparger 20 is communicated with a gas supply source (not shown) and supplies the raw material gas 18 into the water 16 with a controlled injection amount. The inside of the reaction vessel 1 is adjusted to a predetermined temperature and pressure by a known method. In this embodiment, the temperature is 1 ° C. to 5 ° C., the pressure is 4 MPa to 8 MPa, preferably the temperature is 2 ° C. to 4 ° C., and the pressure is 5 MPa to 6 MPa. Under this temperature and pressure, the bubbles of the raw material gas 18 and the water 16 come into contact with each other so that a natural gas hydrate 22 is generated.

図1において、符号24は回転翼を示し、該回転翼24は反応容器1の中心に配置された回転軸26を介して駆動装置28に取り付けられている。回転翼24が回転することによりスパージャ20から水16中に供給された原料ガス18の気泡を更に微細化して、水との接触反応性を高める役割を果たす。また同時に、反応容器1内の水16に旋回流を形成して生成した天然ガスハイドレート22をスラリー化する。図1はこのスラリー化した天然ガスハイドレート22が水面上に浮いて濃縮スラリーになっている状態を示している。   In FIG. 1, reference numeral 24 denotes a rotary blade, and the rotary blade 24 is attached to a drive device 28 via a rotary shaft 26 disposed at the center of the reaction vessel 1. By rotating the rotary blade 24, the bubbles of the raw material gas 18 supplied from the sparger 20 into the water 16 are further miniaturized to increase the contact reactivity with water. At the same time, the natural gas hydrate 22 generated by forming a swirling flow in the water 16 in the reaction vessel 1 is slurried. FIG. 1 shows a state where the slurryed natural gas hydrate 22 floats on the water surface to become a concentrated slurry.

本発明においては、生成された天然ガスハイドレート22が溜まる水面部分に、反応容器1の中央部から容器壁部3に繋がる螺旋路30を有する螺旋状筒体32が、水面上から水面下に跨るように設けられている。抜き出し装置14の抜き出し口12は、容器壁部3における螺旋路30に連通する位置に設けられている。螺旋状筒体32は、図2及び図3に示したように、最外周端部34が反応容器1の容器壁部3に固定されることで、その位置に保持されている。以上の如く構成することにより、抜き出し装置14の抜き出し力が抜き出し口12から螺旋状筒体32の螺旋路30に閉じられた状態で伝わるようになっている。   In the present invention, a spiral cylindrical body 32 having a spiral path 30 connected from the center of the reaction vessel 1 to the vessel wall 3 is formed on the water surface portion where the generated natural gas hydrate 22 is accumulated from above the water surface to below the water surface. It is provided to straddle. The extraction port 12 of the extraction device 14 is provided at a position communicating with the spiral path 30 in the container wall 3. As shown in FIG. 2 and FIG. 3, the outermost peripheral end 34 is fixed to the container wall 3 of the reaction vessel 1, and the helical cylinder 32 is held at that position. With the above configuration, the extraction force of the extraction device 14 is transmitted from the extraction port 12 to the spiral path 30 of the spiral cylindrical body 32 in a closed state.

該螺旋状筒体32は上端及び下端が図3に示したように開放されている。螺旋状体32の水面からの沈み込みの深さ、すなわち水面下の長さは、生成される天然ガスハイドレート22の量に対応して変更するのが適当であるが、通常、反応容器1の底からの水面高さの1/5〜1/2(回転翼24が水面高さの1/3の場合)とすることで、対応できる。螺旋の間隔は、螺旋路30内の流速が全長にわたってほぼ一定となるように、中心部で狭く、容器壁部3に近づくにつれて次第に幅広となるように構成されている。
以上により、水面近くにある濃縮された天然ガスハイドレートスラリーがほぼ均一濃度で反応容器1外に抜き出すことが可能になっている。
The upper and lower ends of the spiral cylindrical body 32 are opened as shown in FIG. It is appropriate to change the depth of submergence of the spiral body 32 from the water surface, that is, the length below the water surface, in accordance with the amount of the natural gas hydrate 22 to be produced. This can be achieved by setting the water level to 1/5 to 1/2 of the water level from the bottom (when the rotary blade 24 is 1/3 of the water level). The space between the spirals is configured to be narrow at the center so that the flow velocity in the spiral path 30 is substantially constant over the entire length, and gradually becomes wider as the container wall 3 is approached.
As described above, the concentrated natural gas hydrate slurry near the water surface can be extracted out of the reaction vessel 1 at a substantially uniform concentration.

本実施例では、反応容器1内の水16に螺旋路30と同じ向きに旋回流を生じさせる旋回流形成装置36が設けられている。そして、該旋回流形成装置36は前記回転翼24が兼ねるように構成されている。尚、図1において、符号38は水の補給口、符号40は吸引ポンプを示す。   In the present embodiment, a swirling flow forming device 36 is provided that generates a swirling flow in the same direction as the spiral path 30 in the water 16 in the reaction vessel 1. The swirl flow forming device 36 is configured so that the rotary blade 24 also serves. In FIG. 1, reference numeral 38 denotes a water supply port, and reference numeral 40 denotes a suction pump.

次に実施例1の作用を説明する。
本実施例によれば、生成した天然ガスハイドレート22が溜まる水面部分に、螺旋路30を有する螺旋状筒体32が水面上から水面下に跨るように設けられ、抜き出し装置14の抜き出し力が抜き出し口12から螺旋状筒体32の螺旋路30に閉じられた状態で伝わるように構成されているので、螺旋状筒体32内の天然ガスハイドレート22を前記螺旋路30に沿って移動させて反応容器1外に安定して連続的に抜き出すことができる。
Next, the operation of the first embodiment will be described.
According to the present embodiment, the spiral cylindrical body 32 having the spiral path 30 is provided on the water surface portion where the generated natural gas hydrate 22 is accumulated so as to straddle the water surface from below the water surface, and the extraction force of the extraction device 14 is increased. Since it is configured to be transmitted from the outlet 12 to the spiral path 30 of the spiral cylinder 32 in a closed state, the natural gas hydrate 22 in the spiral cylinder 32 is moved along the spiral path 30. Thus, it can be extracted stably and continuously outside the reaction vessel 1.

また、旋回流形成装置36によって旋回流を形成した場合は、反応容器1内の水16に螺旋路30と同じ向きに旋回流を生じさせようになっているので、螺旋路30内の流速に寄与することになり、水面上の天然ガスハイドレート22に対して、遠心分離作用ではなく、螺旋路30内を前記抜き出し口12に向かって円滑に移動させる作用を発現するようになる。従って、螺旋状筒体32内の天然ガスハイドレート22を螺旋路30に沿って移動させて反応容器1外に抜き出すことを、一層安定して連続的に行えるようになる。   Further, when the swirl flow is formed by the swirl flow forming device 36, the swirl flow is generated in the water 16 in the reaction vessel 1 in the same direction as the spiral path 30. This contributes to the natural gas hydrate 22 on the water surface, not the centrifugal separation action, but the action of smoothly moving the inside of the spiral path 30 toward the extraction port 12. Accordingly, the natural gas hydrate 22 in the spiral cylindrical body 32 can be moved along the spiral path 30 and extracted out of the reaction vessel 1 more stably and continuously.

[実施例2]
図4は本発明に係るスプレー方式の天然ガスハイドレート生成装置の一実施例を示す概略断面図である。前記実施例1と同様の構成については同一部分に同一符号を付してその説明は省略する。
[Example 2]
FIG. 4 is a schematic sectional view showing an embodiment of a spray-type natural gas hydrate generating apparatus according to the present invention. About the same structure as the said Example 1, the same code | symbol is attached | subjected to the same part and the description is abbreviate | omitted.

本実施例2に係るガスハイドレート生成装置は、反応容器1の上部に設けられたガスノズル45から供給される原料ガス18と水16の接触が、反応容器1内に水16をノズル50から散水して行われるスプレー方式のガスハイドレート生成装置である。ノズル50から散水される水16は、反応容器1内に貯留された水16を取り出し口52から取り出して熱交換機54で冷却した後、散水される。図4において、符号56は水循環用ポンプを示す。そして、旋回流は作らずに、抜き出し装置14が有する吸引ポンプ40の吸引力によって前記螺旋路30内の天然ガスハイドレート22が螺旋路30に沿って移動して抜き出されるように構成されている。   In the gas hydrate generator according to the second embodiment, the contact between the raw material gas 18 supplied from the gas nozzle 45 provided at the upper part of the reaction vessel 1 and the water 16 causes water 16 to be sprinkled from the nozzle 50 into the reaction vessel 1. This is a spray-type gas hydrate generating apparatus. The water 16 sprayed from the nozzle 50 is sprinkled after the water 16 stored in the reaction vessel 1 is taken out from the outlet 52 and cooled by the heat exchanger 54. In FIG. 4, reference numeral 56 denotes a water circulation pump. And it is comprised so that the natural gas hydrate 22 in the said spiral path 30 may move along the spiral path 30 with the suction | attraction force of the suction pump 40 which the extraction device 14 has, without making a swirl flow. Yes.

実施例2においては、抜き出し装置14が有するポンプ40の吸引力が、抜き出し口12から螺旋状筒体32の螺旋路30に閉じられた状態で伝わるので、天然ガスハイドレート22が螺旋路30に沿って移動して抜き出される。このように、回転翼24のような撹拌手段或いは旋回流形成装置36を設置しないスプレー式のガスハイドレート生成装置に特に有効である。   In the second embodiment, the suction force of the pump 40 of the extraction device 14 is transmitted from the extraction port 12 to the spiral path 30 of the spiral cylindrical body 32, so that the natural gas hydrate 22 is transferred to the spiral path 30. Moved along and extracted. As described above, the present invention is particularly effective for a spray-type gas hydrate generating apparatus in which the stirring means such as the rotary blade 24 or the swirl flow forming device 36 is not installed.

本発明は、反応容器内で所定の温度及び圧力条件の下、原料ガスと水を接触させてガスハイドレートを生成するガスハイドレート生成装置及び生成方法に利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be used for a gas hydrate generating apparatus and a generating method for generating gas hydrate by bringing a raw material gas into contact with water under a predetermined temperature and pressure condition in a reaction vessel.

本発明に係るバブリング方式の天然ガスハイドレート生成装置の一実施例を示す概略断面図である。It is a schematic sectional drawing which shows one Example of the bubbling type natural gas hydrate production | generation apparatus which concerns on this invention. 図1のII−II線断面図である。It is the II-II sectional view taken on the line of FIG. 螺旋状筒体を示す一部切欠の斜視図である。It is a perspective view of a notch showing a spiral cylinder. 本発明に係るスプレー方式の天然ガスハイドレート生成装置の一実施例を示す概略断面図である。It is a schematic sectional drawing which shows one Example of the natural gas hydrate production | generation apparatus of the spray system which concerns on this invention. 従来のバブリング方式の天然ガスハイドレート生成装置の一実施例を示す概略断面図である。It is a schematic sectional drawing which shows one Example of the conventional natural gas hydrate production | generation apparatus of a bubbling system. 図5のVI−VI線断面図である。FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. 5.

符号の説明Explanation of symbols

1 反応容器
3 容器壁部
12 抜き出し口
14 抜き出し装置
16 水
18 原料ガス
22 天然ガスハイドレート
24 回転翼
30 螺旋路
32 螺旋状筒体
34 最外周端部
36 旋回流形成装置
40 吸引ポンプ
DESCRIPTION OF SYMBOLS 1 Reaction container 3 Container wall part 12 Extraction port 14 Extraction apparatus 16 Water 18 Raw material gas 22 Natural gas hydrate 24 Rotary blade 30 Spiral path 32 Spiral cylindrical body 34 Outermost peripheral edge part 36 Swirling flow formation apparatus 40 Suction pump

Claims (4)

反応容器内が所定の温度及び圧力に設定され、該反応容器内で原料ガスと水の接触によってガスハイドレートが生成され、生成されたガスハイドレートは該反応容器内の水面上に溜まり、該水面上に溜まるガスハイドレートは抜き出し手段によって反応容器外に抜き出される構成のガスハイドレート生成装置であって、
生成された前記ガスハイドレートが溜まる水面部分に、反応容器の中央部から容器壁部に繋がる螺旋路を有する螺旋状筒体が水面上から水面下に跨るように設けられ、
前記抜き出し手段の抜き出し口は前記容器壁部における前記螺旋路に連通する位置に設けられていることを特徴とするガスハイドレート生成装置。
The inside of the reaction vessel is set to a predetermined temperature and pressure, and gas hydrate is generated in the reaction vessel by contact with the raw material gas and water, and the generated gas hydrate accumulates on the water surface in the reaction vessel, and A gas hydrate generator configured to be extracted from the reaction vessel by extraction means, the gas hydrate accumulated on the water surface,
In the water surface portion where the generated gas hydrate accumulates, a spiral cylinder having a spiral path connected from the center of the reaction vessel to the vessel wall is provided so as to straddle from above the water surface to below the water surface,
The gas hydrate generator according to claim 1, wherein an extraction port of the extraction means is provided at a position communicating with the spiral path in the container wall.
請求項1において、反応容器内の水に前記螺旋路と同じ向きに旋回流を生じさせる旋回流形成手段が設けられていることを特徴とするガスハイドレート生成装置。   2. The gas hydrate generator according to claim 1, further comprising a swirl forming means for generating swirl in the same direction as the spiral path in the water in the reaction vessel. 請求項1において、原料ガスと水の接触が反応容器内に水を散水して行われるスプレー方式のガスハイドレート生成装置であり、前記抜き出し手段が有する吸引手段の吸引力によって前記螺旋路内のガスハイドレートが螺旋路に沿って移動して抜き出されるように構成されていることを特徴とするガスハイドレート生成装置。   2. The spray-type gas hydrate generating device according to claim 1, wherein the contact between the source gas and water is performed by sprinkling water into the reaction vessel, and the inside of the spiral path is caused by the suction force of the suction means included in the extraction means. A gas hydrate generating apparatus characterized in that the gas hydrate moves along a spiral path and is extracted. 反応容器内を所定の温度及び圧力に設定し、該反応容器内で原料ガスと水を接触させてガスハイドレートを生成し、生成したガスハイドレートは該反応容器内の水面上に溜まり、該水面上に溜まるガスハイドレートを抜き出し手段によって反応容器外に抜き出して生成するガスハイドレート生成方法であって、
前記ガスハイドレートが溜まる水面部分に反応容器の中央部から容器壁部に繋がる螺旋路を有する螺旋状筒体が水面上から水面下に跨るように設けられた当該螺旋状筒体を用いて、前記抜き出し手段により前記螺旋状筒体内のガスハイドレートを前記螺旋路に沿って移動させて反応容器外に抜き出すことを特徴とするガスハイドレート生成方法。
The inside of the reaction vessel is set to a predetermined temperature and pressure, and the raw material gas and water are brought into contact with each other in the reaction vessel to produce gas hydrate. The produced gas hydrate is accumulated on the water surface in the reaction vessel, and A gas hydrate production method for producing gas hydrate accumulated on the water surface by extracting the gas hydrate from the reaction vessel with an extraction means,
Using the helical cylinder provided in such a manner that a helical cylinder having a spiral path connected from the central part of the reaction vessel to the vessel wall part in the water surface part where the gas hydrate is accumulated, straddles the water surface from below the water surface, A gas hydrate generating method, wherein the gas hydrate in the spiral cylinder is moved along the spiral path by the extracting means and extracted out of the reaction vessel.
JP2005086737A 2005-03-24 2005-03-24 Gas hydrate generating apparatus and generating method Expired - Fee Related JP4523466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005086737A JP4523466B2 (en) 2005-03-24 2005-03-24 Gas hydrate generating apparatus and generating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005086737A JP4523466B2 (en) 2005-03-24 2005-03-24 Gas hydrate generating apparatus and generating method

Publications (2)

Publication Number Publication Date
JP2006265404A true JP2006265404A (en) 2006-10-05
JP4523466B2 JP4523466B2 (en) 2010-08-11

Family

ID=37201698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005086737A Expired - Fee Related JP4523466B2 (en) 2005-03-24 2005-03-24 Gas hydrate generating apparatus and generating method

Country Status (1)

Country Link
JP (1) JP4523466B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321686A (en) * 2002-04-30 2003-11-14 Ishikawajima Harima Heavy Ind Co Ltd Method for continuously producing gas hydrate and apparatus therefor
JP2006111760A (en) * 2004-10-15 2006-04-27 Mitsui Eng & Shipbuild Co Ltd Gas hydrate generation apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321686A (en) * 2002-04-30 2003-11-14 Ishikawajima Harima Heavy Ind Co Ltd Method for continuously producing gas hydrate and apparatus therefor
JP2006111760A (en) * 2004-10-15 2006-04-27 Mitsui Eng & Shipbuild Co Ltd Gas hydrate generation apparatus

Also Published As

Publication number Publication date
JP4523466B2 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
US9302239B2 (en) Gas-liquid circulating type of hydrate reactor
JP4151942B2 (en) Gas hydrate generating apparatus, manufacturing apparatus, and manufacturing method
JP2009539582A (en) Hydrate desalination and vaporization cooling using a compound permeation suppression panel
JP5156903B2 (en) Continuous production and dehydration apparatus and method of gas hydrate by centrifugal principle
JP2006282694A (en) Gas hydrate production apparatus
US9707534B2 (en) Antibubble generator and preparation method
KR100932471B1 (en) Reaction Chamber of Gas Hydrate Generator
JP4798887B2 (en) Gas-liquid counter-flow type gas hydrate manufacturing apparatus and manufacturing method
JP4575805B2 (en) Gas hydrate manufacturing apparatus and gas hydrate manufacturing method
JP4523466B2 (en) Gas hydrate generating apparatus and generating method
JP4463233B2 (en) Gravity dehydration apparatus, gravity dehydration method, and gas hydrate manufacturing apparatus
JP4261813B2 (en) Gas hydrate undersea generation method, gas hydrate generation apparatus, and carbon dioxide underwater storage system
JP4620440B2 (en) Gas hydrate generating apparatus and generating method
JP4620439B2 (en) Gas hydrate generating apparatus and generating method
KR101571250B1 (en) Apparatus for manufacturing for sodium bicarbonate and method for manufacturing the same
JP2009119463A (en) Method for generating gas hydrate in sea and gas hydrate generator
JP2004217487A (en) Device and method for manufacturing hydrogen gas inclusion hydrate
JP2007238674A (en) Apparatus for producing gas hydrate
JP2007262185A (en) Gas hydrate production apparatus
JP2006152027A (en) Apparatus for producing gas hydrate
JP5514197B2 (en) Gas purification apparatus and gas purification method
JP2009242607A (en) Manufacturing apparatus for gas hydrate
JP2006111776A (en) Apparatus for producing gas hydrate
JP4909787B2 (en) Method and apparatus for producing natural gas hydrate
KR20110123150A (en) Apparatus for reducing voc and ship including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100527

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140604

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees