JP2006265036A - Conductive aluminum nitride material and production method therefor - Google Patents

Conductive aluminum nitride material and production method therefor Download PDF

Info

Publication number
JP2006265036A
JP2006265036A JP2005085355A JP2005085355A JP2006265036A JP 2006265036 A JP2006265036 A JP 2006265036A JP 2005085355 A JP2005085355 A JP 2005085355A JP 2005085355 A JP2005085355 A JP 2005085355A JP 2006265036 A JP2006265036 A JP 2006265036A
Authority
JP
Japan
Prior art keywords
aluminum nitride
sintered body
nitride sintered
sintering
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005085355A
Other languages
Japanese (ja)
Inventor
Katsutoshi Yoneya
勝利 米屋
Junichi Tadami
純一 多々見
Toru Wakihara
徹 脇原
Takeji Meguro
竹司 目黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama National University NUC
Original Assignee
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama National University NUC filed Critical Yokohama National University NUC
Priority to JP2005085355A priority Critical patent/JP2006265036A/en
Publication of JP2006265036A publication Critical patent/JP2006265036A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive aluminum nitride sintered compact useful as a conductor and a resistor. <P>SOLUTION: The conductive aluminum nitride sintered compact is prepared by molding a mixture containing 0.3 to 12wt.%, in outer percentage, carbon nanotubes (CNT) in an aluminum nitride-rare earth compound, aluminum nitride-alkaline earth compound or aluminum nitride-rare earth compound-alkaline earth compound system and sintering the molding and contains the carbon nanotubes (CNT) in the grain boundaries of the conductive aluminum nitride sintered compact of relative density ≥95%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、カーボンナノチューブ(以下「CNT」という。)を含む窒化アルミニウム焼結体及びその製造方法に関する。この窒化アルミニウム焼結体は導電体や抵抗体等に応用できる。   The present invention relates to an aluminum nitride sintered body containing carbon nanotubes (hereinafter referred to as “CNT”) and a method for producing the same. This aluminum nitride sintered body can be applied to a conductor or a resistor.

窒化アルミニウムは、耐熱性、高熱伝導性、電気絶縁性、耐食性、耐熱衝撃性などの優れた特徴を有するため、機能性セラミックスとして注目され、これまで放熱材としてのIC/LSIの基板パッケージ、半導体製造用の耐食部材、圧電体、樹脂基板用フィラーなどとして注目され利用されている。
しかし、この材料は本質的に電気的に絶縁体であるため、これが逆に使用中に静電気を生じて微粉体を付着させる結果を招き、導電性を期待する用途への応用を阻んできた。そのため導電性の窒化アルミニウムセラミックスの開発が強く求められていた。
Aluminum nitride has attracted attention as a functional ceramic because it has excellent characteristics such as heat resistance, high thermal conductivity, electrical insulation, corrosion resistance, and thermal shock resistance, and so far, IC / LSI substrate packages and semiconductors as heat dissipation materials It is attracting attention and used as a corrosion-resistant member for manufacturing, a piezoelectric body, a filler for resin substrates, and the like.
However, since this material is essentially an electrically insulating material, it causes static electricity during use and causes fine powders to adhere to it, which has hindered its application in applications where electrical conductivity is expected. Therefore, there has been a strong demand for the development of conductive aluminum nitride ceramics.

このような目的の下に、窒化アルミニウム−希土類化合物、窒化アルミニウム−アルカリ土類化合物、窒化アルミニウム−希土類化合物−アルカリ土類化合物系に他の導電性物を添加すること検討されてきたが、この場合はかなり多量の導電体が必要であり、本来の窒化アルミニウムの性質を失ってしまう。
また、導電性炭素物質を添加することも考えられるが、炭素粉末を加えた場合かなり多くの炭素を加えることが必要であり、一方で炭素の添加が窒化アルミニウム−焼結助剤系の緻密化を大幅に阻害するため、緻密体を得ることが極めて難しい。
そこで,窒化アルミニウム−焼結助剤系に通常の炭素繊維を添加することも考えられたが、炭素粉体を用いる以上に緻密化は困難であった。
これまで窒化ケイ素にCNTを配して導電性を向上させた例はあるが、窒化アルミニウム焼結体の粒界にCNTを導入した導電性の窒化アルミニウム焼結体の例は存在しない(特許文献1、2、非特許文献1、2)。
For such purposes, it has been studied to add other conductive materials to the aluminum nitride-rare earth compound, aluminum nitride-alkaline earth compound, and aluminum nitride-rare earth compound-alkaline earth compound system. In this case, a considerably large amount of conductor is required, and the original properties of aluminum nitride are lost.
In addition, it is conceivable to add a conductive carbon material. However, when carbon powder is added, it is necessary to add a large amount of carbon. On the other hand, the addition of carbon densifies the aluminum nitride-sintering aid system. Therefore, it is extremely difficult to obtain a dense body.
Therefore, it has been considered to add ordinary carbon fibers to the aluminum nitride-sintering aid system, but densification is more difficult than using carbon powder.
There has been an example of improving conductivity by arranging CNT in silicon nitride, but there is no example of a conductive aluminum nitride sintered body in which CNT is introduced into the grain boundary of the aluminum nitride sintered body (Patent Literature). 1, 2, Non-Patent Documents 1, 2).

米国公開特許20040029706US Published Patent 20040029706 特開2004-2067JP2004-2067 Cs. Balazsi et al., "Manufacture and examination of C/Si3N4 nanocomposites", Journal of the European Ceramic Society 2004,vol. 24, p3287-3294Cs. Balazsi et al., "Manufacture and examination of C / Si3N4 nanocomposites", Journal of the European Ceramic Society 2004, vol. 24, p3287-3294 Material Science and Engineering C23 (2003) 1133-1137Material Science and Engineering C23 (2003) 1133-1137

本発明は、導電性及び緻密性を有する窒化アルミニウム焼結体を提供することを目的とする。   An object of this invention is to provide the aluminum nitride sintered compact which has electroconductivity and denseness.

窒化アルミニウム焼結体にカーボンナノチューブ(CNT)を含有させると焼結性を低下させるが、この度合いは、使用する原料粉末の粒径、希土類化合物、アルカリ土類酸化物の選択と割合、総量の選定によって変化するので、これらを種々の最適に組み合わせることにより、導電性及び緻密性を有する窒化アルミニウム焼結体を得ることができる。   When carbon nanotubes (CNT) are included in the aluminum nitride sintered body, the sinterability is reduced. This degree depends on the particle size of the raw material powder to be used, the selection and ratio of the rare earth compound and alkaline earth oxide, and the total amount. Since it varies depending on the selection, an aluminum nitride sintered body having conductivity and denseness can be obtained by variously combining them.

即ち、本発明は、相対密度95%以上の窒化アルミニウム焼結体の粒界部にカーボンナノチューブ(CNT)を含む窒化アルミニウム燒結体であって、該窒化アルミニウムに対してCNTを外掛けで0.3〜12重量%含む導電性窒化アルミニウム焼結体である。
また本発明は、窒化アルミニウム−希土類化合物、窒化アルミニウム−アルカリ土類化合物、又は窒化アルミニウム−希土類化合物−アルカリ土類化合物系にCNTを外掛けで0.3〜12重量%含む混合物を成形し、焼結してなる導電性窒化アルミニウム焼結体である。
更に本発明は、上記窒化アルミニウム焼結体から成る導電体又は抵抗体である。
That is, the present invention is an aluminum nitride sintered body containing carbon nanotubes (CNTs) at the grain boundary part of an aluminum nitride sintered body having a relative density of 95% or more, and the CNT is clad to the aluminum nitride to give an O.D. A conductive aluminum nitride sintered body containing 3 to 12% by weight.
Further, the present invention forms an aluminum nitride-rare earth compound, aluminum nitride-alkaline earth compound, or aluminum nitride-rare earth compound-alkaline earth compound based mixture containing 0.3 to 12% by weight of CNT, It is a conductive aluminum nitride sintered body obtained by sintering.
Furthermore, the present invention is a conductor or resistor comprising the aluminum nitride sintered body.

本発明の窒化アルミニウム焼結体は、CNTを含むため導電性であり、かつ、CNTを含むにもかかわらず緻密性が確保されている。従って、このような窒化アルミニウム焼結体は、高熱伝導性と導電性同時に有するもので、その他の性質も従来の特性を低下させるものではない。そのため高熱伝導性を有する導電体として抵抗体や窒化アルミニウム焼結体と接合させて使用することができるなど新たの用途展開が期待され、工業的な価値は極めて高い。また、熱伝導率が必ずしも高くない場合も目的によっては許容される。   Since the aluminum nitride sintered body of the present invention contains CNTs, it is conductive, and denseness is ensured despite containing CNTs. Therefore, such an aluminum nitride sintered body has high thermal conductivity and electrical conductivity at the same time, and other properties do not deteriorate conventional characteristics. Therefore, new applications such as being able to be used as a conductor having high thermal conductivity by being joined to a resistor or an aluminum nitride sintered body are expected, and the industrial value is extremely high. Also, the case where the thermal conductivity is not necessarily high is allowed depending on the purpose.

窒化アルミニウムは難焼結性物質であることから、焼結体の作製にあたっては焼結助剤を中心に、種々の添加剤が用いられている。その主流の組成系としては、イットリアに代表される希土類化合物、或いは酸化カルシウム(カルシア)に代表されるアルカリ土類金属化合物、及びこれらを併用したものが用いられている。
希土類化合物やアルカリ土類化合物などの焼結助剤は焼成過程でおおむね酸化物に変化し、窒化アルミニウムの表面に存在するアルミナと反応してR−Al−O−N化合物、R−M−Al−O−N化合物、R−M−O−N化合物(Rは希土類元素を、Mはアルカリ土類元素を表す)などからなる粒界相を生成し、焼結体を緻密化する。
この窒化アルミニウム焼結体においては、焼結助剤の添加によって、粒界相は、窒化アルミニウム結晶粒に存在する不純物固溶酸素をトラップして窒化アルミニウム結晶粒を高純度化し、高熱伝導化や耐食性の向上をもたらすことができる。
またこの窒化アルミニウム燒結体は、窒化アルミニウムから成る結晶粒を母相とし、希土類元素やアルカリ土類元素を含むアルミネート化合物を主とする粒界相を含む。
Since aluminum nitride is a hard-to-sinter material, various additives, mainly sintering aids, are used in the production of sintered bodies. As the mainstream composition system, a rare earth compound typified by yttria, an alkaline earth metal compound typified by calcium oxide (calcia), and a combination thereof are used.
Sintering aids such as rare earth compounds and alkaline earth compounds generally change to oxides during the firing process and react with alumina present on the surface of the aluminum nitride to react with R-Al-O-N compounds and R-M-Al. A grain boundary phase composed of —O—N compound, R—M—O—N compound (R represents a rare earth element, and M represents an alkaline earth element) or the like is generated, and the sintered body is densified.
In this aluminum nitride sintered body, by adding a sintering aid, the grain boundary phase traps impurity solid solution oxygen present in the aluminum nitride crystal grains, thereby purifying the aluminum nitride crystal grains and increasing the thermal conductivity. Corrosion resistance can be improved.
The aluminum nitride sintered body includes a grain boundary phase mainly composed of an aluminate compound containing a rare earth element or an alkaline earth element.

この窒化アルミニウム燒結体は、焼結助剤である希土類化合物を酸化物換算で10重量%以下、及びアルカリ土類化合物を酸化物換算で5重量%以下含み、残部が酸素含有量が2重量%以下の窒化アルミニウムであることが好ましい。窒化アルミニウムは90重量%以上であることが好ましい。この窒化アルミニウム燒結体は、平均粒子径が1.0μm以下の窒化アルミニウム粉末から成る混合物であって、更にCNTを外掛けで0.3〜12重量%含む混合物を焼結させることにより形成される。   This aluminum nitride sintered body contains 10% by weight or less of a rare earth compound as a sintering aid in terms of oxide and 5% by weight or less of an alkaline earth compound in terms of oxide, with the remainder having an oxygen content of 2% by weight. The following aluminum nitride is preferable. Aluminum nitride is preferably 90% by weight or more. This aluminum nitride sintered body is formed by sintering a mixture made of aluminum nitride powder having an average particle diameter of 1.0 μm or less and further containing 0.3 to 12% by weight of CNT as an outer shell. .

この窒化アルミニウム燒結体の原料(前駆体)としては、具体的には、窒化アルミニウム−希土類化合物、窒化アルミニウム−アルカリ土類化合物、又は窒化アルミニウム−希土類化合物−アルカリ土類化合物系が用いられ、例えば、以下のような組み合わせが用いられる。
(1)AlN(85〜97重量%)−Y(0.5〜10重量%)−CNT(0.3〜12重量%、焼結助剤を単独で添加する場合は下限は0.5重量%)を基本系とする。
(2)AlN(85〜97重量%)−CaCO(0.5〜5重量%(CaO換算))−CNT(0.3〜12重量%、焼結助剤を単独で添加する場合は下限は0.5重量%)を基本系とする。
(3)AlN(85〜97重量%)−Y(0〜10重量%)−CaCO(0〜5重量%(CaO換算))−CNT(0.3〜12重量%、焼結助剤を単独で添加する場合は下限は0.5重量%)を基本系とする。
Specifically, as the raw material (precursor) of the aluminum nitride sintered body, an aluminum nitride-rare earth compound, an aluminum nitride-alkaline earth compound, or an aluminum nitride-rare earth compound-alkaline earth compound system is used, for example. The following combinations are used.
(1) AlN (85 to 97% by weight) -Y 2 O 3 (0.5 to 10% by weight) -CNT (0.3 to 12% by weight, when adding a sintering aid alone, the lower limit is 0 .5 wt%) is the basic system.
(2) AlN (85 to 97% by weight) -CaCO 3 (0.5 to 5% by weight (calculated as CaO))-CNT (0.3 to 12% by weight, lower limit when adding sintering aid alone Is 0.5% by weight).
(3) AlN (85~97 wt%) - Y 2 O 3 ( 0~10 wt%) - CaCO 3 (0~5 wt% (CaO terms)) - CNT (0.3~12 wt%, sintering When an auxiliary agent is added alone, the lower limit is 0.5% by weight).

窒化アルミニウム原料粉末は平均粒子径が1.5μm以下で、かつ酸素含有量が2重量%以下であることが好ましい。このような微細でかつ不純物の少ない窒化アルミニウム粉末を用いることによって、気孔率及び最大気孔径が小さい高密度の窒化アルミニウム焼結体が得易くなる。窒化アルミニウム原料粉末の平均粒子径は0.4〜0.8μmの範囲であることがより好ましい。   The aluminum nitride raw material powder preferably has an average particle size of 1.5 μm or less and an oxygen content of 2% by weight or less. By using such fine aluminum nitride powder with few impurities, a high-density aluminum nitride sintered body having a small porosity and a maximum pore diameter can be easily obtained. The average particle diameter of the aluminum nitride raw material powder is more preferably in the range of 0.4 to 0.8 μm.

希土類化合物は、特に限定されるものではないが、イットリウム(Y)、ランタン(La)、セリウム(Ce)、サマリウム(Sm)、ネオジウム(Nd)、ジスプロシウム(Dy)、エルビウム(Er)などの酸化物、窒化物、硼化物、炭化物、珪化物の少なくとも1種が好ましい。   The rare earth compound is not particularly limited, but oxidation of yttrium (Y), lanthanum (La), cerium (Ce), samarium (Sm), neodymium (Nd), dysprosium (Dy), erbium (Er), etc. At least one of an oxide, a nitride, a boride, a carbide, and a silicide is preferable.

本発明の窒化アルミニウム焼結体は、上記以外の他の成分を含有していてもよい。例えば、窒化アルミニウム焼結体のさらなる緻密化のために、特性を損なわない範囲で他の酸化物、窒化物、硼化物、珪化物やシリカなどを含有していてもよい。これらの化合物の含有量は総量で0.1〜2重量%の程度に抑えることが好ましい。   The aluminum nitride sintered body of the present invention may contain components other than those described above. For example, for further densification of the aluminum nitride sintered body, other oxides, nitrides, borides, silicides, silicas, and the like may be contained within a range that does not impair the characteristics. The total content of these compounds is preferably suppressed to about 0.1 to 2% by weight.

カーボンナノチューブ(CNT)としては、米国特許4663230号、米国特許4663230号、米国特許5165909号、米国特許5171560号、米国特許5578543号、米国特許5589152号、米国特許5650370号、米国特許6235674号等に記載の中空構造で分岐の少ない炭素系繊維をいう。このCNTのサイズは、通常平均直径0.4〜200nm、好ましくは20nm、平均長径1〜1000μm、好ましくは100〜500μmである。その添加量は外掛け(即ち、CNTを含まない窒化アルミニウム焼結体の重量を基準として)で0.3〜12重量%、好ましくは1.2〜4.2重量%であればよく、その量に応じて導電率を制御することができ、本発明の窒化アルミニウム焼結体の導電率は約10−3〜10Sm−1である。CNTが少ないと焼結性は良好であるが、導電率が低くなり、一方、CNTが多いと焼結性が低下するため好ましくない。 The carbon nanotube (CNT) is described in US Pat. No. 4,663,230, US Pat. No. 4,663,230, US Pat. No. 5,165,909, US Pat. No. 5,171,560, US Pat. No. 5,578,543, US Pat. This is a carbon-based fiber having a hollow structure with few branches. The size of the CNT is usually an average diameter of 0.4 to 200 nm, preferably 20 nm, and an average major axis of 1 to 1000 μm, preferably 100 to 500 μm. The addition amount may be 0.3 to 12% by weight, preferably 1.2 to 4.2% by weight (ie, based on the weight of the aluminum nitride sintered body not containing CNT), The conductivity can be controlled according to the amount, and the conductivity of the aluminum nitride sintered body of the present invention is about 10 −3 to 10 3 Sm −1 . If the amount of CNTs is small, the sinterability is good, but the electrical conductivity is low.

次に、本発明の製造方法について説明する。その製造法は特に限定されないが、通常は次のようなプロセスを基本とする。
各添加物粉末を窒化アルミニウム原料粉末に対して所定量添加し、更に有機バインダや分散媒などを加えてよく混合した後、一軸プレスやラバープレスなどの公知の成形法を適用して原料混合体を所望の形状に成形する。各原料粉末の混合にあたっては、各微細粒子の凝集を防ぎ均一に分散させることが必要であり、それによって焼結促進効果が大きくなることが期待される。
Next, the manufacturing method of this invention is demonstrated. The manufacturing method is not particularly limited, but is usually based on the following process.
A predetermined amount of each additive powder is added to the aluminum nitride raw material powder, an organic binder and a dispersion medium are added and mixed well, and then a raw material mixture is applied by applying a known molding method such as uniaxial press or rubber press. Is formed into a desired shape. In mixing the raw material powders, it is necessary to prevent the fine particles from agglomerating and uniformly disperse, which is expected to increase the sintering promoting effect.

次に、上記のように作製した成形体に脱脂処理を施して脱脂成形体を作製する。この脱脂成形体を1600〜2000℃、好ましくは1750〜1900℃で焼結して窒化アルミニウム焼結体が得られる。この温度が低いと緻密化が進みにくく、高いと窒化アルミニウムの分解するため好ましくない。
焼結法としては常圧焼結、雰囲気加圧焼結、ホットプレス焼結、放電プラズマ焼結、マイクロ波焼結、熱間静水圧加圧によるが、とくに、緻密化が困難な場合は、ホットプレス、放電プラズマ焼結、マイクロ波焼結、熱間静水圧加圧を優先的に使用する。
Next, a degreasing process is performed on the molded body produced as described above to produce a degreased molded body. The degreased molded body is sintered at 1600 to 2000 ° C., preferably 1750 to 1900 ° C., to obtain an aluminum nitride sintered body. If this temperature is low, densification is difficult to proceed, and if it is high, aluminum nitride is decomposed, which is not preferable.
Sintering methods are atmospheric pressure sintering, atmospheric pressure sintering, hot press sintering, discharge plasma sintering, microwave sintering, hot isostatic pressing, especially when densification is difficult, Hot press, spark plasma sintering, microwave sintering and hot isostatic pressing are preferentially used.

より高密度の焼結体の作製と焼結体の強度を支配する欠陥を除去するために、無加圧焼結後にHIP処理を行うなど、複数の方法を組合せてもよい。目的に応じて使い分ければよいが、コストの面からは常圧焼結或いは雰囲気加圧焼結が好ましい。   In order to remove a defect governing the strength of the sintered body and manufacture a higher density sintered body, a plurality of methods may be combined, such as HIP treatment after pressureless sintering. Although it may be properly used depending on the purpose, atmospheric pressure sintering or atmospheric pressure sintering is preferable from the viewpoint of cost.

このようにして得られた窒化アルミニウム焼結体は好ましくは以下の性質を持つ。
窒化アルミニウム焼結体の相対密度は95%以上である。CNTは主として粒界相近傍(即ち、粒界部)に存在し、そのアスペクト比は500〜10000であり、その含有量は0.3〜12質量%の範囲にある。この窒化アルミニウム焼結体の3点曲げ強度は300〜400MPa程度である。

以下、実施例にて本発明を例証するが本発明を限定することを意図するものではない。
The aluminum nitride sintered body thus obtained preferably has the following properties.
The relative density of the aluminum nitride sintered body is 95% or more. CNT exists mainly in the vicinity of the grain boundary phase (that is, the grain boundary part), its aspect ratio is 500 to 10,000, and its content is in the range of 0.3 to 12% by mass. The three-point bending strength of this aluminum nitride sintered body is about 300 to 400 MPa.

The following examples illustrate the invention but are not intended to limit the invention.

酸素含有量が1.3重量%、平均粒子径が0.55μmのAlN(窒化アルミニウム)原料粉末(トクヤマーF粉末)95重量%に、焼結助剤として平均粒子径が0.9μmのY(酸化イットリウム)粉末(信越化学工業製)を3.75重量%、平均粒子径が0.7μmのCaCO(炭酸カルシウム)粉末(純正化学製)を1.25重量%(CaO換算)を秤量した。更に、これらの外掛けでCNTを1.8重量%秤量した.これらをエチルアルコール中で96時間湿式混合した後に乾燥して原料混合物を調製した。 Y 2 having an average particle size of 0.9 μm as a sintering aid was added to 95% by weight of AlN (aluminum nitride) raw material powder (Tokuyama F powder) having an oxygen content of 1.3% by weight and an average particle size of 0.55 μm. 3.75% by weight of O 3 (yttrium oxide) powder (manufactured by Shin-Etsu Chemical Co., Ltd.), 1.25% by weight of CaCO 3 (calcium carbonate) powder (manufactured by Junsei Kagaku) having an average particle size of 0.7 μm (CaO equivalent) Was weighed. Furthermore, 1.8 wt% of CNT was weighed with these outer covers. These were wet mixed in ethyl alcohol for 96 hours and then dried to prepare a raw material mixture.

得られた原料混合物に有機バインダを所定量添加して調合造粒粉とした後、50MPaの成形圧力でプレス成形し、曲げ強度測定用サンプルとして直径15mm×厚み5mm及び直径25mm×厚み5mmの円板状成形体を多数作製した。
各成形体を450℃の空気気流中にて4時間脱脂した後、0.1MPaの窒素ガス雰囲気中にて1350℃×1時間の条件で保持した後、0.6MPaの窒素ガス雰囲気中にて1800℃×2時間の条件で焼結して、窒化アルミニウム焼結体を作製した。
この窒化アルミニウム焼結体中の粒界相をX線マイクロアナライザー(日本電子(株)製)で観察したところ、Al−Y−Ca―O−N化合物が主成分であった。
得られた窒化アルミニウム焼結体の導電率は15Sm−1であり、他の特性は概ねCNT無添加と同等であった。
A predetermined amount of an organic binder is added to the obtained raw material mixture to prepare a blended granulated powder, which is then press-molded at a molding pressure of 50 MPa, and a 15 mm diameter x 25 mm x 25 mm x 5 mm thick circle is used as a sample for bending strength measurement. A large number of plate-like molded bodies were produced.
Each molded body was degreased in an air stream at 450 ° C. for 4 hours, then held in a nitrogen gas atmosphere of 0.1 MPa at 1350 ° C. for 1 hour, and then in a nitrogen gas atmosphere of 0.6 MPa. Sintering was performed at 1800 ° C. for 2 hours to produce an aluminum nitride sintered body.
When the grain boundary phase in the aluminum nitride sintered body was observed with an X-ray microanalyzer (manufactured by JEOL Ltd.), the Al—Y—Ca—O—N compound was the main component.
The conductivity of the obtained aluminum nitride sintered body was 15 Sm −1 , and other characteristics were almost the same as those without CNT addition.

実施例2〜12
実施例1で使用した窒化アルミニウム原料粉末、希土類酸化物粉末、導電性を持つCNT等を、それぞれ表1に示す組成比となるように調合して原料混合物を調製し、実施例1と同様に窒化アルミニウム焼結体を作製した。焼成の詳細な条件は表1の注に記す。
Examples 2-12
The aluminum nitride raw material powder, rare earth oxide powder, conductive CNT, and the like used in Example 1 were prepared so as to have the composition ratios shown in Table 1 to prepare a raw material mixture. An aluminum nitride sintered body was produced. Detailed conditions for firing are described in the notes in Table 1.

比較例1〜2
比較例1としてCNTを用いない以外は実施例1と同一条件で窒化ケイ素焼結体を作製
し、同様に窒化アルミニウム製ボールを作製した。
比較例2としてCNTを13重量%添加した以外は実施例1と同一条件で窒化ケイ素焼
結体を作製した。
Comparative Examples 1-2
As Comparative Example 1, a silicon nitride sintered body was produced under the same conditions as in Example 1 except that CNT was not used, and an aluminum nitride ball was similarly produced.
As Comparative Example 2, a silicon nitride sintered body was produced under the same conditions as in Example 1 except that 13% by weight of CNT was added.

このようにして得た実施例及び比較例による各窒化アルミニウム焼結体の組成及び特性を表1に示す。

Figure 2006265036
注:1)Rは希土類元素を表す。
2)CNTの重量はSi3N4, R2O3, CaOの合計重量100に対する重量を表す。 Table 1 shows the compositions and characteristics of the aluminum nitride sintered bodies according to the examples and comparative examples thus obtained.
Figure 2006265036
Note: 1) R represents a rare earth element.
2) The weight of CNT represents the weight with respect to the total weight of Si 3 N 4 , R 2 O 3 and CaO of 100.

表1から明らかなように、本発明の窒化アルミニウム焼結体は、いずれも緻密で優れた導電性が確保されることが認められる。実施例1で得られた窒化アルミニウム焼結体の走査型電子顕微鏡写真(日本電子(株)TSM-5200、二次電子像)を用いて観察した結果、CNTが粒界部に囲まれて存在していることが確認された。
比較例2は導電性は示したが、緻密化が不十分であった。

As is apparent from Table 1, it is recognized that the aluminum nitride sintered body of the present invention is dense and has excellent conductivity. As a result of observation using the scanning electron micrograph (JEOL Co., Ltd. TSM-5200, secondary electron image) of the aluminum nitride sintered body obtained in Example 1, CNT is surrounded by the grain boundary part. It was confirmed that
Comparative Example 2 showed electrical conductivity, but the densification was insufficient.

Claims (8)

相対密度95%以上の窒化アルミニウム焼結体の粒界部にカーボンナノチューブ(CNT)を含む窒化アルミニウム燒結体であって、該窒化アルミニウムに対してCNTを外掛けで0.3〜12重量%含む導電性窒化アルミニウム焼結体。 An aluminum nitride sintered body including carbon nanotubes (CNT) at grain boundary portions of an aluminum nitride sintered body having a relative density of 95% or more, and 0.3 to 12% by weight of CNT with respect to the aluminum nitride. Conductive aluminum nitride sintered body. 窒化アルミニウム−希土類化合物、窒化アルミニウム−アルカリ土類化合物、又は窒化アルミニウム−希土類化合物−アルカリ土類化合物系にカーボンナノチューブ(CNT)を外掛けで0.3〜12重量%含む混合物を成形し、焼結してなる導電性窒化アルミニウム焼結体。 An aluminum nitride-rare earth compound, an aluminum nitride-alkaline earth compound, or an aluminum nitride-rare earth compound-alkaline earth compound system containing carbon nanotubes (CNTs) as an outer coating in an amount of 0.3 to 12% by weight is molded and fired. A conductive aluminum nitride sintered body formed by bonding. 前記窒化アルミニウム燒結体が、焼結助剤である希土類化合物を酸化物換算で10重量%以下、及びアルカリ土類化合物を酸化物換算で5重量%以下含み、残部が酸素含有量が2重量%以下の窒化アルミニウムである請求項1又は2に記載の導電性窒化アルミニウム焼結体。 The aluminum nitride sintered body contains 10% by weight or less of a rare earth compound as a sintering aid in terms of oxide, and 5% by weight or less of an alkaline earth compound in terms of oxide, with the remainder having an oxygen content of 2% by weight. The conductive aluminum nitride sintered body according to claim 1, which is the following aluminum nitride. 窒化アルミニウムから成る結晶粒を母相とし、希土類元素及びアルカリ土類元素を含むアルミネート化合物を主とする粒界相を含む請求項1〜3のいずれか一項に記載の窒化アルミニウム焼結体。 The aluminum nitride sintered body according to any one of claims 1 to 3, comprising a grain boundary phase mainly comprising an aluminate compound containing a rare earth element and an alkaline earth element, the crystal grain comprising aluminum nitride being a parent phase. . 前記CNTの平均直径が0.4〜200nm、平均長径が1〜1000μmである請求項1〜4のいずれか一項に記載の窒化アルミニウム焼結体。 The aluminum nitride sintered body according to any one of claims 1 to 4, wherein the CNT has an average diameter of 0.4 to 200 nm and an average major axis of 1 to 1000 µm. CNTを含む窒化アルミニウム焼結体の前駆体を所望の形状に成形し脱脂する工程、及び該成形体を1600〜2000℃で焼結する工程から成る請求項1〜5のいずれか一項に記載の窒化アルミニウム焼結体の製法。 The aluminum nitride sintered body precursor containing CNTs is molded into a desired shape and degreased, and the molded body is sintered at 1600 to 2000 ° C. 6. A method for producing an aluminum nitride sintered body. 前記焼結が、常圧焼結、雰囲気加圧焼結、ホットプレス焼結、放電プラズマ焼結、マイクロ波焼結、又は熱間静水圧加圧(HIP)により行われれる請求項6に記載の製法。 The sintering is performed by atmospheric pressure sintering, atmospheric pressure sintering, hot press sintering, discharge plasma sintering, microwave sintering, or hot isostatic pressing (HIP). The manufacturing method. 請求項1〜4のいずれか一項に記載の窒化アルミニウム焼結体又は請求項5〜7のいずれか一項に記載の製法により製造された窒化アルミニウム焼結体から成る導電率が10−3〜10Sm−1の導電体又は抵抗体。
The electrical conductivity which consists of the aluminum nitride sintered compact as described in any one of Claims 1-4 or the aluminum nitride sintered compact manufactured by the manufacturing method as described in any one of Claims 5-7 is 10 <-3>. A conductor or resistor of 10 < 3 > Sm < -1 >.
JP2005085355A 2005-03-24 2005-03-24 Conductive aluminum nitride material and production method therefor Pending JP2006265036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005085355A JP2006265036A (en) 2005-03-24 2005-03-24 Conductive aluminum nitride material and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005085355A JP2006265036A (en) 2005-03-24 2005-03-24 Conductive aluminum nitride material and production method therefor

Publications (1)

Publication Number Publication Date
JP2006265036A true JP2006265036A (en) 2006-10-05

Family

ID=37201382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005085355A Pending JP2006265036A (en) 2005-03-24 2005-03-24 Conductive aluminum nitride material and production method therefor

Country Status (1)

Country Link
JP (1) JP2006265036A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013010676A (en) * 2011-06-30 2013-01-17 Sumitomo Electric Ind Ltd Aluminum nitride sintered compact and wafer holder for semiconductor manufacturing device or inspection device using the same
CN115819092A (en) * 2022-10-25 2023-03-21 杭州大和江东新材料科技有限公司 Aluminum nitride ceramic with high volume resistivity and high thermal conductivity and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119739A (en) * 2002-09-26 2004-04-15 Kyocera Corp Electrostatic chuck
JP2005041765A (en) * 2003-07-07 2005-02-17 Ngk Insulators Ltd Aluminum nitride sintered body, electrostatic chuck, electrically conductive component, component for apparatus for manufacturing semiconductor, and method for manufacturing aluminum nitride sintered body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119739A (en) * 2002-09-26 2004-04-15 Kyocera Corp Electrostatic chuck
JP2005041765A (en) * 2003-07-07 2005-02-17 Ngk Insulators Ltd Aluminum nitride sintered body, electrostatic chuck, electrically conductive component, component for apparatus for manufacturing semiconductor, and method for manufacturing aluminum nitride sintered body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013010676A (en) * 2011-06-30 2013-01-17 Sumitomo Electric Ind Ltd Aluminum nitride sintered compact and wafer holder for semiconductor manufacturing device or inspection device using the same
CN115819092A (en) * 2022-10-25 2023-03-21 杭州大和江东新材料科技有限公司 Aluminum nitride ceramic with high volume resistivity and high thermal conductivity and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2006038489A1 (en) Conductive silicon nitride material and process for producing the same
JP2004262750A (en) Aluminum nitride-based material and component for apparatus to manufacture semiconductor
KR20020050710A (en) Aluminum nitride sintered bodies and members for semiconductor producing apparatus
JP2013056809A (en) Alumina ceramic toughened with black zirconia and method for manufacturing the same
JP5481137B2 (en) Silicon nitride / Merilite composite sintered body
JP2006069843A (en) Ceramic member for semiconductor manufacturing apparatus
JP2006265036A (en) Conductive aluminum nitride material and production method therefor
JP4429742B2 (en) Sintered body and manufacturing method thereof
Suzuki et al. Mechanical properties of alkoxy-derived cordierite ceramics
WO2012165291A1 (en) Method for producing silicon carbide-carbon composite
Liu et al. Fabrication of electrically conductive barium aluminum silicate/silicon nitride composites with enhanced strength and toughness
JP2005119934A (en) Silicon nitride porous body and method of manufacturing the same
JP5170612B2 (en) Conductive silicon nitride sintered body and manufacturing method thereof
JP2006182590A (en) Conductive silicon nitride material and its manufacturing method
JP2001151579A (en) Silicon carbide porous body and method of producing the same
JP4565954B2 (en) Conductive silicon nitride material and manufacturing method thereof
JP2000272968A (en) Silicon nitride sintered compact and its production
WO2011115353A1 (en) Alumina bonded unshaped refractory and manufacturing method thereof
Matsuoka et al. Development of CNT-Si3N4 composites with high strength and electrical conductivity by adding HfO2
JP3605632B2 (en) High-strength porous alumina and method for producing the same
JP5398430B2 (en) Aluminum nitride sintered body and method for producing the same
JP2535139B2 (en) Heat dissipation board
JP4761617B2 (en) Aluminum nitride sintered body, method for producing the same, and electronic component using the same
JP2008297135A (en) Boron carbide based sintered compact, its manufacturing method and protective member
Xu et al. Pressureless sintering of carbon nanofibre/SiC composites and their properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100531