JP2006264288A - 針状体の製造方法 - Google Patents

針状体の製造方法 Download PDF

Info

Publication number
JP2006264288A
JP2006264288A JP2005103197A JP2005103197A JP2006264288A JP 2006264288 A JP2006264288 A JP 2006264288A JP 2005103197 A JP2005103197 A JP 2005103197A JP 2005103197 A JP2005103197 A JP 2005103197A JP 2006264288 A JP2006264288 A JP 2006264288A
Authority
JP
Japan
Prior art keywords
needle
mold
metal fine
fine particle
dispersed polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005103197A
Other languages
English (en)
Inventor
Kotaro Kuroda
浩太郎 黒田
Hiromasa Yagyu
裕聖 柳生
Shigehiko Hayashi
茂彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP2005103197A priority Critical patent/JP2006264288A/ja
Publication of JP2006264288A publication Critical patent/JP2006264288A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 十分な強度を有し、かつ先端が鋭利で、細く高アスペクト比の針状体を製造する針状体の製造方法を提供する。
【解決手段】 ベースとその上に設置した針状部からなる針状体の製造方法において、(1)金属微粒子分散高分子膜体を形成する工程、(2)金属微粒子分散高分子膜体の表面にレーザ光を照射して凹部を形成し、マスタ型を作製する工程、(3)マスタ型を転写し、針状凸部を有する転写型を形成する工程、(4)転写型上にメッキ構造体を形成し、金型を作製する工程、(5)金型上に針状体を形成する工程、及び(6)金型から針状体を剥離する工程からなる針状体の製造方法であって、前記工程(2)において、金属微粒子分散高分子膜体表面に垂直な方向に異なる焦点位置を有するレーザ光を同一位置に逐次的に照射することによって段階的に凹部を形成することを特徴とする針状体の製造方法である。
【選択図】 図2

Description

本発明は、生体医療やマイクロメカニクスに用いられる針状体の製造方法に関し、詳しくは高強度で高アスペクト比の針状体の製造方法に関する。
検体表皮を通して血液を採取したり薬剤を注入したりする手段として、マイクロニードルと呼ばれる微小な針状体があり、その製造方法として、シリコンウェハに移動マスクを用いて放射光を露光する方法が知られている。しかし、所望のテーパ形状を得るためにはマスクの作製が困難であり、大掛かりな装置が必要であるという問題があった。
また、特許文献1に開示されているように、シリコンウェハにエッチングを施して針状体を製造する方法があるが、この方法においては深さ方向の加工に限界があるため高アスペクト比の針状体が得られないという問題があった。
大型で高価な装置を必要とすることなく薄膜にマイクロメートルオーダーの微細加工を行う技術として、絞り込んだレーザ光を任意のパターンに従って薄膜に照射する方法がある。金属微粒子を高分子膜中に分散させた金属微粒子分散高分子膜は、金属微粒子に特有の光吸収特性を有するため、特定の波長域に発振波長を有する絞り込んだレーザ光を所定パターンに従って照射すれば、照射部分に形成される凹部からなる任意の微細構造を作製することができる。本出願人は、特許文献2において、この技術を応用した高アスペクト比の針状体の製造方法を開示している。
特開平5−10753号公報 特開2004−114552号公報
しかし、特許文献2に開示された方法を用いても、先端が鋭利で細く、高アスペクト比の針状体の製造にあたっては、凹部から転写によって形成される樹脂製の針状体に十分な強度が付与されず、その根元から折れてしまうという問題があった。その対策として、レーザ光照射時の焦点位置を調節することによって根元径の太い針状体を形成することが考えられるが、根元径を太くするにつれて針状体高さが低下し、高アスペクト比の針状体あるいは十分な高さを有しながら十分太い根元径を有する針状体を製造することが困難であるという問題があった。
本発明は、このような問題点を解決するためになされたものであり、太い根元径によって十分な強度が付与され、かつ先端が鋭利で、細く高アスペクト比の針状体を製造する針状体の製造方法を提供することを目的とする。
すなわち本願請求項1記載の発明は、ベース部とその上に設置した針状部からなる針状体の製造方法において、(1)金属微粒子分散高分子膜体を形成する工程、(2)金属微粒子分散高分子膜体の表面にレーザ光を照射して凹部を形成し、マスタ型を作製する工程、(3)マスタ型を転写し、針状凸部を有する転写型を形成する工程、(4)転写型上にメッキ構造体を形成し、金型を作製する工程、(5)金型上に針状体を形成する工程、及び(6)金型から針状体を剥離する工程からなる針状体の製造方法であって、前記工程(2)において、金属微粒子分散高分子膜体表面に垂直な方向に異なる焦点位置を有するレーザ光を同一位置に逐次的に照射することによって段階的に凹部を形成することを特徴とする針状体の製造方法である。
請求項2記載の発明は、前記凹部が、入口側のベース孔とその奥に位置する針状凹部からなる請求項1記載の針状体の製造方法ある。
請求項3記載の発明は、前記凹部が2回のレーザ光照射によって形成される請求項1または2記載の針状体の製造方法である。
請求項4記載の発明は、前記凹部が3回のレーザ光照射によって形成される請求項1または2記載の針状体の製造方法である。
請求項5記載の発明は、前記金属微粒子分散高分子膜体が、金属微粒子分散液、高分子、及び溶剤を混練した混合物を粉砕加工した金属微粒子分散高分子微粉体を金型に充填して加圧・加熱することによって形成される請求項1乃至4いずれかに記載の針状体の製造方法である。
請求項6記載の発明は、前記金属微粒子が金微粒子で、かつ前記高分子がエチルセルロースである請求項1乃至5いずれかに記載の針状体の製造方法である。
請求項7記載の発明は、前記工程(5)において、針状体が射出圧縮成形によって形成される請求項1乃至6いずれかに記載の針状体の製造方法である。
本願各請求項記載の発明によれば、太い根元径によって十分な強度が付与され、かつ先端が鋭利で、細く高アスペクト比の針状体を製造する針状体を製造することができる。
以下、針状体の製造方法について詳細に説明する。
本発明の針状体の製造方法は、(1)金属微粒子分散高分子膜体を形成する工程、(2)金属微粒子分散高分子膜体の表面にレーザ光を照射して凹部を形成し、マスタ型を作製する工程、(3)マスタ型を転写し、転写型を形成する工程、(4)転写型上にメッキ構造体を形成し、金型を作製する工程、(5)金型上に針状体を形成する工程、及び(6)金型から針状体を剥離する工程からなる。
(1)金属微粒子分散高分子膜体を形成する工程
金属微粒子分散高分子膜体は、金属微粒子分散液、高分子、及び溶剤からなる。金属微粒子分散液は、粒径100nm以下の金、銀、白金、パラジウム等の金属微粒子が溶媒中に分散されたものであって、特許第2561537号に開示されたガス中蒸発法、特開平11−319538号に開示された金属の塩からの還元析出法等によって作製される。これらの金属微粒子分散液は、特開2002−121606号に開示されているように、アルキルアミン、カルボン酸アミド、アミノカルボン酸塩等の分散剤を用いて分散安定性を増大させることもできる。金属の種類としては、低出力のグリーンレーザの波長に対応する吸収を示す金微粒子が最も好ましい。
高分子は、金属微粒子を高濃度にかつ凝集させることなく分散させることができる高分子が好ましく、エチルセルロース、エチルヒドロキシエチルセルロース、ポリエチルメタクリレート(PEMA)、ポリメチルメタクリレート(PMMA)等が好ましく、中でも一定量以上の金属微粒子を均一に分散させるためにはエチルセルロースあるいはエチルヒドロキシエチルセルロースが特に好ましい。
溶剤は前記高分子を良好に溶解するものであれば特に限定されず、具体的にはp−キシレンあるいはトルエンが好ましい。
前記金属微粒子分散液と、前記高分子と、前記溶剤とを混合し、十分に混練して混合物を得る。溶媒分散金属微粒子の高分子に対する混合量は特に限定されないが、高分子に対して10質量%〜20質量%の金属微粒子が含まれるようになるように調整するのが好ましい。溶剤の量も同様に限定されないが、後工程で乾燥することを考慮に入れれば、高分子を溶解するために必要な最低限の量であることが好ましい。
前記混合物を室温で乾燥させ、続いて冷凍粉砕機で粉砕し、金属微粒子分散高分子微粉体を作製する。冷凍粉砕機の専用容器に金属微粒子分散高分子を封入し、液体窒素温度下で磁気的に駆動する衝撃子によって粉砕し、粉末状の金属微粒子分散高分子、即ち金属微粒子分散高分子微粉体を得る。金属微粒子分散高分子微粉体の粒径は特に限定されないが、均一な金属微粒子分散高分子膜を得るためには1mm以下であることが好ましい。
得られた金属微粒子分散高分子微粉体を、100℃前後の温度に保持した平金型の下金型に充填する。続いて上金型で1MPa以上の圧力までプレスし、5分間以上保持しながら金型の温度を上昇させる。ここで金型の温度は、金属微粒子分散高分子微粉体が十分に溶解する温度以上で、金属微粒子の凝集が発生しない程度の温度未満である必要がある。この温度範囲は使用する高分子によって変動し、例えばエチルセルロースの場合は140℃以上、150℃未満である。所定時間のプレスを終えた後、平金型を開放し、室温下で放置して冷却し、金属微粒子分散高分子膜体を得る。なお、プレス温度が低いと、得られる金属微粒子分散高分子膜体表面に粉末状の金属微粒子分散高分子が残存し、良好な金属微粒子分散高分子膜体を得ることができない。
金属微粒子分散高分子膜体を形成するにあたって、汎用のスピンコート法では、十分な膜厚の金属微粒子分散高分子膜体が得られないため、転写型を形成する際に前記金属微粒子分散高分子膜体が基板から剥離してしまう恐れがある。また、スピンコート法を用いて数百μm以上の膜厚の金属微粒子分散高分子膜体を作製することは可能ではあるが、スピンコートを数十回繰返す必要があり、工数が非常に多くかかるだけではなく、重ね塗りに伴って発生する表面のむらのため、良好な金属微粒子分散高分子膜体を得ることが極めて困難であるといった問題がある。
(2)金属微粒子分散高分子膜体の表面にレーザ光を照射して凹部を形成し、マスタ型を作製する工程
金属微粒子分散高分子膜体の表面に、金属微粒子の種類に応じて選択されるレーザ光を照射すると、金属微粒子が吸収した光エネルギーが熱エネルギーに変換され、その熱エネルギーが金属微粒子周辺の高分子の物性に変化を与え、金属微粒子分散高分子膜中に凹部が形成される。金属微粒子分散高分子膜体の表面へのレーザ光の照射は、例えば図1に示す装置が用いられる。レーザ光源11として、出力は数十ミリワット程度の、例えば波長532nmのグリーンレーザが好適に用いられる。レーザ光12は複数のミラー13及びハーフミラー14を介して、金属微粒子分散高分子膜体1が載置された光学顕微鏡15内に導かれる。モーター駆動により3次元方向に移動可能なXYZステージ16上に載置された金属微粒子分散高分子膜体1の表面は、直上の対物レンズ17及びCCDカメラ18を通してTVモニター19で、あるいは図示しない接眼レンズを通して肉眼で観察される。レーザ光12を遮断した状態でマスク材2の表面の状態を確認した後、金属微粒子分散高分子膜体1にレーザ光12を導入する。レーザ光12は、対物レンズ17によって金属微粒子分散高分子膜体1上で最小1μm程度にまで絞り込まれて所定時間照射され、金属微粒子分散高分子膜体1上に凹部が形成され、これがマスタ型となる。
ここで、前記レーザ光照射は、金属微粒子分散高分子膜体表面に垂直な方向に異なる焦点位置を有するレーザ光を同一位置に逐次的に照射することからなり、それによってベース孔及び針状部からなる凹部が段階的に形成される。レーザ光照射は、具体的には図2に示すように行われる。図2(a)は、第1焦点位置F1を有する光束である第1レーザ光L1を金属微粒子分散高分子膜体1表面に照射することによって、同表面にベース孔21が形成された状態を示し、図2(b)は、第1レーザ光L1の照射に続いて、第2焦点位置F2を有する光束である第2レーザ光L2をベース孔21に向けて照射することによって、ベース孔21の奥に針状凹部22が形成された状態を示す。鈍角な先端を有するベース孔21と鋭角な先端を有する針状凹部22とを段階的に形成することによって、十分な根元径を有し、かつ高アスペクト比の凹部を形成することができる。
ここで、第1焦点位置F1及び第2焦点位置F2は、図1に示すXYZステージ16あるいはレンズ17を駆動することによって、金属微粒子分散高分子膜体1の表面に垂直な方向に異なる位置に設定される。第1焦点位置F1及び第2焦点位置F2は、レーザ光源11あるいはレンズ17の特性によって変動するものであり、特に限定されるものではないが、金属微粒子分散高分子膜体1の表面を0として、上下にそれぞれプラス、マイナスの方向を規定すると、第1焦点位置F1は、例えば+500μm〜−500μmに設定され、第2焦点位置F2は、例えば+400μmから−400μmに設定される。ここで、第1焦点位置F1と第2焦点位置F2は逆であってもよい。
レーザ光の照射は、前記のように2回に限定されることなく、3回であってもよい。3回照射の場合は、前記第1・第2焦点位置に加えて第3焦点位置が設定される。3回照射を行うことによって、所望の形状への加工が可能になり、さらに高さを増すことが可能になる。
なお、より高い針状凸部、具体的には高さ250〜300μmの針状凸部の加工に際しては、強度を確保するためにより太い根元径、具体的には150μm程度の根元径が必要となるが、そのためには、ベース孔21を形成するための第1レーザ光を金属微粒子分散高分子膜体表面の所定位置及びそれに近接する複数の位置に逐次的に照射してもよい。ここで、所定位置及びそれに近接する複数の位置とは、具体的には例えば複数の格子点で表される。ここで、各格子点間の距離は、1回のレーザ光照射によって形成される孔の直径の半分以下であることが望ましい。このようにして得られたベース孔21に対して前記の2回あるいは3回の第2レーザ光照射を行うことにより、所望の根元径及び高さからなる高アスペクト比を有する針状凸部を得ることができる。
各レーザ光の照射時間は、出力数十ミリワットのレーザ光を使用する場合、各0.5秒以下であることが好ましい。
(3)マスタ型を転写し、針状凸部を有する転写型を形成する工程
図3(a)に示すように、工程(2)で得られたマスタ型2を転写し、針状凸部を有する転写型3を形成する。転写型3は、エポキシ樹脂、シリコン樹脂、フェノール樹脂、メラミン樹脂等をマスタ型に注型した後、この転写体の表面に後工程の電気メッキのために電極層を形成し、針状凸部を有する転写型3とする。電極層の形成方法としては、化学メッキ、真空蒸着法、スピンコート法、ディップ法などの薄膜形成方法が用いられる。もしくは、エポキシ樹脂、シリコン樹脂、フェノール樹脂、メラミン樹脂などに導電物質を配合した導電性組成物を注型してマスタ型を転写し、転写型を作製してもよい。表面の導電物質がメッキ析出の核として作用するため、特別な前処理を必要とすることなく容易に電気メッキからなるメッキ構造体を形成することができる。
(4)転写型上にメッキ構造体を形成し、金型を作製する工程
前記転写型3を用いて、図3(b)に示すようにメッキ構造体4を形成する。メッキ構造体4を形成する方法としては電気メッキがあり、メッキ可能な金属としては、単金属ではニッケル、銅、クロム、亜鉛、金、白金、銀、合金では、銅−亜鉛、亜鉛−ニッケル、ニッケル−鉄などが挙げられるが、金型としての強度、耐食性、熱伝導率等を考慮するとニッケルが最も好ましい。メッキ時間は特に限定されないが、金型として十分な膜厚のメッキ構造体4を形成するためには10時間以上が好ましい。
所定時間放置した後、転写型3を除去することによって金型を作製する。転写型3とメッキ構造体4の両者を剥離してもよく、また転写型3をエタノール、トルエン等の溶剤によって溶解してもよい。
(5)金型上に針状体を形成する工程
図3(c)に示すように、前記工程により得られた金型5を用いて、金型5上に針状体6を形成する。針状体6を形成する方法としては、ポリエチレン樹脂等の針状体原料を用いて射出成形、圧縮成形、射出圧縮成形を行うことが考えられるが、通常用いられる射出成形では注入時に圧力が加わるため針状体原料の移動速度が速くなり、微小な凹部に針状体原料が入りにくく、転写率が悪いといった不具合がある。この転写率を向上させるには、射出圧縮成形を選択することが好ましい。射出圧縮成形とは射出成形と圧縮成形を組み合わせた手法であって、高速充填ならびに均一加圧による成形によって微細な形状の転写が可能である。
(6)金型から針状体を剥離する工程
金型5から針状体6を剥離する。剥離を物理的に行う場合は、金型の微細な凹部に針状体が入り込んでいるため、充分な冷却時間を経てから脱型することが好ましい。また裏面より金型5をエッチング除去して、針状体6を得てもよい。
以下、本発明の針状体の製造方法について、実施例を示しながらさらに詳細に説明する。
20質量%金含有トルエン分散金微粒子(真空冶金製パーフェクトゴールド)、エチルセルロース、p−キシレンを用意し、金微粒子対エチルセルロースの重量比が0.2:1となるように秤量されたトルエン分散金微粒子及びエチルセルロースを少量のp−キシレンと共に乳鉢で混練し、混合物を作製した。前記混合物を冷凍粉砕機(SPEX社製Mill6750)で粉砕し、60℃で1時間乾燥した後、平均一次粒径1mm以下の金微粒子分散エチルセルロース微粉体を得た。
得られた金微粒子分散エチルセルロース微粉体を直径φ20mmの平金型で150、3MPaの圧力でプレスし、10分経過後、成形品を取り出して室温下で放置し、膜厚約500μmの金微粒子分散エチルセルロース膜体を得た。
図1に示すレーザ光照射系を用い、金微粒子分散エチルセルロース膜体に対して表1に示す焦点位置にグリーンレーザ光(波長:532nm、照射強度:55mW)を対物レンズ(NA0.26×10)で集光し、各焦点位置において照射時間125msで照射し、凹部を形成した(実施例1〜5)。
加工後の金微粒子分散エチルセルロース膜体をエポキシ樹脂に転写し、得られた針状凸部を観察した。表1に実施例1〜5の針状凸部のサイズを示す。また、図4(a)、(b)、(c)、(d)、(e)にそれぞれ実施例1、2、3、4、5のSEM(走査型電子顕微鏡)写真を示す。
Figure 2006264288
実施例1〜3において、50μm程度の根元径を維持しながら、3.0を超える高アスペクト比の針状凸部が得られ、実施例2、3においては、高アスペクト比に加えて、先端径1μm程度の鋭利な先端も得られた。また、実施例4、5においては、100μmを超える十分太い根元径に対して200μmを超える高さを有する針状凸部が得られた。
得られた針状凸部からなる転写型を用いれば、金型の作製を経て、高アスペクト比あるいは所望の形状の針状体の形成が可能となる。
(比較例)
レーザ光照射が、焦点位置が+500μmあるいは−500μmの1回の照射のみである比較例1及び比較例3においては、得られた針状凸部のアスペクト比は3.0未満に止まった。さらに各比較例での焦点位置を固定した状態で同一条件のレーザ光照射を5回繰り返した比較例2及び比較例4においてもアスペクト比はほとんど改善されず、先端径が肥大する結果となった。図5(a)、(b)にそれぞれ比較例1、2のSEM写真を示す。
生体試料の微量化学分析に有効な十分な強度が付与された高アスペクト比あるいは所望形状の針状体を製造する針状体の製造方法を提供することができる。
レーザ光照射系の概略図である。 (a)金属微粒子分散高分子膜体に第1焦点位置を有する第1レーザ光を照射し、ベース孔を形成した状態の断面図である。(b)金属微粒子分散高分子膜体に第2焦点位置を有する第2レーザ光を照射し、針状凹部を形成した状態の断面図である。 (a)金属微粒子分散高分子膜体上に転写型を形成した状態の断面図である。(b)転写型上にメッキ構造体を形成した状態の断面図である。(c)金型上に針状体を形成した状態の断面図である。 (a)、(b)、(c)、(d)、(e)は、順に実施例1、2、3、4、5の針状凸部のSEM写真である。 (a)、(b)は、順に比較例1、2のSEM写真である。
符号の説明
L1、L2 第1・第2レーザ光
F1、F2 第1・第2焦点位置
1 金属微粒子分散高分子膜体
2 マスタ型
3 転写型
4 メッキ構造体
5 金型
6 針状体
21 ベース孔
22 針状凹部

Claims (7)

  1. ベース部とその上に設置した針状部からなる針状体の製造方法において、(1)金属微粒子分散高分子膜体を形成する工程、(2)金属微粒子分散高分子膜体の表面にレーザ光を照射して凹部を形成し、マスタ型を作製する工程、(3)マスタ型を転写し、針状凸部を有する転写型を形成する工程、(4)転写型上にメッキ構造体を形成し、金型を作製する工程、(5)金型上に針状体を形成する工程、及び(6)金型から針状体を剥離する工程からなる針状体の製造方法であって、前記工程(2)において、金属微粒子分散高分子膜体表面に垂直な方向に異なる焦点位置を有するレーザ光を同一位置に逐次的に照射することによって段階的に凹部を形成することを特徴とする針状体の製造方法。
  2. 前記凹部が、入口側のベース孔とその奥に位置する針状凹部からなる請求項1記載の針状体の製造方法。
  3. 前記凹部が2回のレーザ光照射によって形成される請求項1または2記載の針状体の製造方法。
  4. 前記凹部が3回のレーザ光照射によって形成される請求項1または2記載の針状体の製造方法。
  5. 前記金属微粒子分散高分子膜体が、金属微粒子分散液、高分子、及び溶剤を混練した混合物を粉砕加工した金属微粒子分散高分子微粉体を金型に充填して加圧・加熱することによって形成される請求項1乃至4いずれかに記載の針状体の製造方法。
  6. 前記金属微粒子が金微粒子で、かつ前記高分子がエチルセルロースである請求項1乃至5いずれかに記載の針状体の製造方法。
  7. 前記工程(5)において、針状体が射出圧縮成形によって形成される請求項1乃至6いずれかに記載の針状体の製造方法。


JP2005103197A 2004-09-30 2005-03-31 針状体の製造方法 Pending JP2006264288A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005103197A JP2006264288A (ja) 2004-09-30 2005-03-31 針状体の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004287865 2004-09-30
JP2005052471 2005-02-28
JP2005103197A JP2006264288A (ja) 2004-09-30 2005-03-31 針状体の製造方法

Publications (1)

Publication Number Publication Date
JP2006264288A true JP2006264288A (ja) 2006-10-05

Family

ID=37200736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005103197A Pending JP2006264288A (ja) 2004-09-30 2005-03-31 針状体の製造方法

Country Status (1)

Country Link
JP (1) JP2006264288A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246492A (ja) * 2007-03-29 2008-10-16 Toppan Printing Co Ltd フェムト秒レーザ加工による針状体アレイの製造方法
JP2009083125A (ja) * 2007-09-27 2009-04-23 Fujifilm Corp 機能性膜の製造方法および製造装置
US8383027B2 (en) 2008-03-12 2013-02-26 Fujifilm Corporation Method of fabricating a template for a concave array mold, a concave array mold and a needle array sheet
JP2014037153A (ja) * 2012-08-10 2014-02-27 Tokai Rika Co Ltd ウェビング巻取装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246492A (ja) * 2007-03-29 2008-10-16 Toppan Printing Co Ltd フェムト秒レーザ加工による針状体アレイの製造方法
JP2009083125A (ja) * 2007-09-27 2009-04-23 Fujifilm Corp 機能性膜の製造方法および製造装置
US8383027B2 (en) 2008-03-12 2013-02-26 Fujifilm Corporation Method of fabricating a template for a concave array mold, a concave array mold and a needle array sheet
JP2014037153A (ja) * 2012-08-10 2014-02-27 Tokai Rika Co Ltd ウェビング巻取装置

Similar Documents

Publication Publication Date Title
Liebig et al. Deposition of gold nanotriangles in large scale close-packed monolayers for X-ray-based temperature calibration and SERS monitoring of plasmon-driven catalytic reactions
CN102795596B (zh) 超小2nm直径金属纳米孔的超快激光脉冲法制备
Jiang et al. Ultrashort picosecond laser processing of micro-molds for fabricating plastic parts with superhydrophobic surfaces
KR101247619B1 (ko) 금속 나노입자 극미세 레이저 소결 장치 및 방법
KR100600938B1 (ko) 금 나노 구조체 및 그의 제조 방법
Jhonsi Carbon quantum dots for bioimaging
Pastoriza‐Santos et al. Synthetic routes and plasmonic properties of noble metal nanoplates
JP2006264288A (ja) 針状体の製造方法
TW200932668A (en) Fabricating method for an applied substrate employing photo-thermal effect
Rajput et al. Solution-cast high-aspect-ratio polymer structures from direct-write templates
CN105755463B (zh) 疏水表面固相单层均匀sers基底的制备方法
Raveendran et al. Ultra-fast microwave aided synthesis of gold nanocages and structural maneuver studies
JP2006096002A (ja) 針状体の製造方法
CN105908220A (zh) 一种液相电沉积制备微纳米银枝晶的方法
Ginestra et al. Micro-structuring of titanium collectors by laser ablation technique: a promising approach to produce micro-patterned scaffolds for tissue engineering applications
Shen et al. Fabrication of periodical micro-stripe structure of polyimide by laser interference induced forward transfer technique
JP2004114552A (ja) 針状体の製造方法および針状体
JP2008246394A (ja) ナノ粒子製造方法およびナノ粒子製造装置
JP4307794B2 (ja) 微細構造を有する型およびこの型を用いる成形体の製造方法
Lin et al. Rapid fabrication of silver nanowires through photoreduction of silver nitrate from an anodic-aluminum-oxide template
JP4132837B2 (ja) 金属製型の製造方法
Bai et al. Ultraminiaturized Microfluidic Electrochemical Surface‐Enhanced Raman Scattering Chip for Analysis of Neurotransmitters Fabricated by Ship‐in‐a‐Bottle Integration
JP2004148452A (ja) 三次元微細加工方法並びに針状体形成用マスタ型の製造方法
CN114554708B (zh) 一种液态金属微纳米电路及其制备方法与应用
JP2003285334A (ja) 微細加工型の製造方法及び微細パターンを有する成形体の製造方法