JP2006263834A - Grinding method and cylindrical grinder - Google Patents

Grinding method and cylindrical grinder Download PDF

Info

Publication number
JP2006263834A
JP2006263834A JP2005082124A JP2005082124A JP2006263834A JP 2006263834 A JP2006263834 A JP 2006263834A JP 2005082124 A JP2005082124 A JP 2005082124A JP 2005082124 A JP2005082124 A JP 2005082124A JP 2006263834 A JP2006263834 A JP 2006263834A
Authority
JP
Japan
Prior art keywords
grinding
grinding wheel
workpiece
face
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005082124A
Other languages
Japanese (ja)
Inventor
Takayuki Yoshimi
隆行 吉見
Satoshi Okubo
聡 大久保
Hajime Ishiyama
元 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2005082124A priority Critical patent/JP2006263834A/en
Publication of JP2006263834A publication Critical patent/JP2006263834A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grinding method and a cylindrical grinder, grinding the end face of a work at high grade without any increase in scale of the whole cylindrical grinder and without complicating grinding work. <P>SOLUTION: According to this grinding method, the peripheral surface 22 of a cylindrical part 21 and the end face 24 of a flange part 23 in a work 20 having the cylindrical part 21 and the flange part 23 connected to the cylindrical part 21 are ground by this cylindrical grinder using a grinding wheel 10, the end face of which is formed to have a back taper. A dimensional change in the Z-axis direction in the end face 14 of the grinding wheel 10 is calculated from a dimensional change of outside diameter of the grinding wheel 10, and the correction based upon the calculated value is made to grind the end face 24 under the drive control in the Z-axis direction of the grinding wheel 10 to the work 20. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、研削加工方法及び円筒研削盤に関するものであり、詳しくは、端面がバックテーパを有する形状に形成された砥石車を用いてワークに研削加工を施す研削加工方法及び円筒研削盤に関するものである。   The present invention relates to a grinding method and a cylindrical grinder, and more particularly to a grinding method and a cylindrical grinder that grind a workpiece using a grinding wheel whose end face has a back taper shape. It is.

円筒研削盤にてワークの端面に研削加工を施す場合には、ワークの端面(以下、「ワーク端面」という)に砥石車の端面(以下、「砥石端面」という)を接触させるのであるが、ワーク端面に砥石端面を広く面接触させると、研削焼けを生じ易く、良好な研削加工を実現できなくなる虞がある。これは、ワーク端面に砥石端面を広く面接触させた状態では、ワークと砥石車との接触部分にクーラントが良好に侵入しない、ワークと砥石車との接触部分から切屑が良好に排出されない、砥粒によってワークの材料を削り取った後においても砥粒がワークに接触して無用な擦れが生じる、等の種々の要因によるものである。   When grinding the end face of the workpiece with a cylindrical grinder, the end face of the grinding wheel (hereinafter referred to as the “grinding wheel end face”) is brought into contact with the end face of the work (hereinafter referred to as the “work end face”). If the grindstone end face is brought into wide contact with the work end face, grinding burn is likely to occur, and there is a possibility that good grinding cannot be realized. This is because the coolant does not enter the contact portion between the workpiece and the grinding wheel in a state where the grinding wheel end surface is in wide contact with the workpiece end surface, and chips are not discharged well from the contact portion between the workpiece and the grinding wheel. This is due to various factors such as the abrasive grains coming into contact with the workpiece and causing unnecessary rubbing even after the workpiece material is scraped off by the grains.

そこで、例えば図2に示すように、砥石端面14を、砥石車10の内部方向に向かって傾斜した面とする所謂「バックテーパ」を有する形状とし、ワーク端面24と砥石端面14とを線接触に近い状態で接触させることで、研削焼けを生じ難くすることが一般になされている。なお、図2では、ワーク20に対して砥石車10を、ワーク20の軸方向であるスラスト方向(矢印A)に移動させてワーク端面24を研削加工する例を示すが、ワーク20に対して砥石車10を、ワーク20の径方向であるラジアル方向に移動させてワーク端面24を研削加工する場合も同様である。   Therefore, for example, as shown in FIG. 2, the grindstone end surface 14 has a shape having a so-called “back taper” which is a surface inclined toward the inner direction of the grinding wheel 10, and the workpiece end surface 24 and the grindstone end surface 14 are in line contact with each other. Generally, it is made difficult to cause grinding burn by making contact in a state close to. 2 shows an example in which the grinding wheel 10 is moved relative to the workpiece 20 in the thrust direction (arrow A) that is the axial direction of the workpiece 20 to grind the workpiece end surface 24. The same applies to the case where the grinding wheel 10 is moved in the radial direction that is the radial direction of the workpiece 20 to grind the workpiece end surface 24.

上記の背景技術は、一般的な事項であり、本願出願人は、出願時において、この背景技術を特定する記載がなされた文献を特に知見していない。   The above background art is a general matter, and the applicant of the present application does not particularly know a document in which a description specifying the background art is made at the time of filing.

ところで、円筒研削盤にてワークに研削加工を行うに際しては、ワーク端面を専用に研削加工することは稀であり、砥石車の外周面(以下、砥石周面」という)によってワークの外周面(以下、「ワーク周面」という)の研削加工を行うのが一般的である。換言すれば、砥石周面によるワーク周面の研削加工に付随して、砥石端面によるワーク端面の研削加工を行うことが通常なされている。   By the way, when grinding a workpiece with a cylindrical grinder, it is rare to grind the end surface of the workpiece exclusively, and the outer circumferential surface of the workpiece (hereinafter referred to as the grinding wheel circumferential surface) is Hereinafter, it is common to perform grinding of the “work surface”. In other words, it is usual to perform grinding of the workpiece end surface by the grindstone end surface in association with grinding of the workpiece circumferential surface by the grindstone circumferential surface.

このように砥石周面によるワーク周面の研削加工が行われると、研削加工に伴う摩耗や、砥石周面のツルーイングによって、砥石車の外径寸法が減少する。ここで、砥石車の外径寸法が変化すると、砥石端面がバックテーパを有する形状であるため、砥石端面における外周端の位置が変化する。すなわち、砥石車の幅方向の寸法である「Z方向の寸法」が変化する。具体的には、図3に示すように、砥石周面13の直径である砥石車10の外径寸法がφDaであり、砥石端面14における外周端の位置がA点となっている場合には、砥石端面14におけるZ軸方向の寸法がZaであるに対して、砥石車10の外径寸法が減少してφDbとなると、砥石端面14における外周端の位置がB点となり、寸法L分だけ後退して、砥石端面14におけるZ軸方向の寸法がZbとなる。   When the workpiece circumferential surface is ground by the grinding wheel circumferential surface in this way, the outer diameter of the grinding wheel decreases due to wear associated with grinding and truing of the grinding wheel circumferential surface. Here, when the outer diameter dimension of the grinding wheel changes, the position of the outer peripheral end on the grindstone end surface changes because the grindstone end surface has a back taper shape. That is, the “dimension in the Z direction” that is the dimension in the width direction of the grinding wheel changes. Specifically, as shown in FIG. 3, when the outer diameter of the grinding wheel 10 that is the diameter of the grinding wheel peripheral surface 13 is φDa and the position of the outer peripheral end of the grinding wheel end surface 14 is point A. When the outer diameter of the grinding wheel 10 decreases to φDb while the dimension in the Z-axis direction of the grinding wheel end surface 14 is Za, the position of the outer peripheral end of the grinding wheel end surface 14 becomes a point B, which is only the dimension L. Retreating, the dimension in the Z-axis direction on the grindstone end face 14 becomes Zb.

そして、砥石端面におけるZ軸方向の寸法に変化が生じると、ワーク端面の研削において、高度な寸法精度を確保することができなくなる。なお、バックテーパを有する砥石車においては、バックテーパの傾斜角度が大きい程、外径寸法の変化量に対するZ軸方向の寸法の変化量は多くなり、外径寸法の変化量が多い程、当然、Z軸方向の寸法の変化量も多くなる。   And if a change occurs in the dimension in the Z-axis direction on the end face of the grindstone, it becomes impossible to ensure a high degree of dimensional accuracy in grinding the end face of the workpiece. In a grinding wheel having a back taper, the greater the inclination angle of the back taper, the greater the change in the dimension in the Z-axis direction relative to the change in the outer diameter, and the greater the change in the outer diameter. The amount of change in the dimension in the Z-axis direction also increases.

一方、砥石端面によってワーク端面に研削加工を施すと、当然、砥石端面が摩耗し、これにより、砥石端面において、Z軸方向の寸法に変化を生じる。具体的には、図4に示すように、砥石端面14におけるZ軸方向の寸法がZ0であったとしても、研削加工に伴う摩耗により、砥石端面14における外周端の位置が寸法M分だけ後退して、Z軸方向の寸法がZ1となる。よって、研削加工に伴う砥石端面の摩耗によっても、高度な寸法精度の研削加工を行うことができなくなる可能性がある。なお、バックテーパを有する砥石車においては、バックテーパの傾斜角度が大きい程、砥石端面の摩耗によるZ軸方向の寸法の変化量は多くなり、また、砥石車の角部の角度が、より鋭角となるため、砥石端面の摩耗が顕著に生じる。   On the other hand, when the workpiece end surface is ground by the grindstone end surface, the grindstone end surface is naturally worn, and this causes a change in the dimension in the Z-axis direction on the grindstone end surface. Specifically, as shown in FIG. 4, even if the dimension in the Z-axis direction of the grindstone end surface 14 is Z0, the position of the outer peripheral end of the grindstone end surface 14 is retracted by the dimension M due to wear associated with grinding. Thus, the dimension in the Z-axis direction is Z1. Therefore, there is a possibility that grinding with high dimensional accuracy cannot be performed even by wear of the end face of the grindstone accompanying grinding. In a grinding wheel having a back taper, the larger the inclination angle of the back taper, the larger the amount of change in the dimension in the Z-axis direction due to wear of the grinding wheel end surface, and the angle of the corner of the grinding wheel is more acute. Therefore, the wear of the grindstone end face is significantly generated.

このため、従来において、円筒研削盤によりワーク端面に研削加工を行うに際して高度な寸法精度を得ようとする場合には、砥石端面の寸法を正確に測定して、ワークに対する砥石車のZ軸方向の駆動を制御しなければならない。そして、このようにするためには、砥石車のZ軸方向の寸法を実際に計測する計測装置を用いたり、ワーク端面の研削加工を実際に行って、仕上がり寸法から砥石車のZ軸方向の寸法を割り出す等しなければならず、円筒研削盤全体を大掛かりな構造としたり、研削加工作業全体を煩雑化せざるを得なかった。   For this reason, when trying to obtain a high degree of dimensional accuracy when grinding a workpiece end face with a cylindrical grinder, the dimension of the grindstone end face is accurately measured and the grinding wheel Z-axis direction relative to the workpiece is conventionally measured. Must be controlled. And in order to do so, a measuring device that actually measures the dimension of the grinding wheel in the Z-axis direction is used, or grinding of the workpiece end surface is actually performed, and the finished dimension is measured in the Z-axis direction of the grinding wheel. The dimensions have to be determined, and the entire cylindrical grinder has to have a large structure, and the entire grinding work has to be complicated.

本発明は、上記実状を鑑みてなされたものであり、円筒研削盤全体を大掛かりな構造としたり、研削加工作業全体を煩雑化することなく、ワーク端面に高度な研削加工を施すことができる研削加工方法及び円筒研削盤の提供を課題とする。   The present invention has been made in view of the above-described actual situation, and can grind the end surface of the workpiece without making a large-scale structure of the entire cylindrical grinder or complicating the entire grinding operation. It is an object to provide a processing method and a cylindrical grinder.

上記課題を解決するために本発明の採った主要な手段は、まず、研削加工方法としては、
「端面がバックテーパを有する形状に形成された砥石車を用いた円筒研削盤によって、円筒部と該円筒部に続くフランジ部とを有するワークにおける前記円筒部の周面と前記フランジ部の端面とに研削加工を施す研削加工方法であって、
砥石車の外径寸法の変化から該砥石車の端面におけるZ軸方向の寸法の変化を算出し、ワークに対する砥石車のZ軸方向の駆動制御に関して、前記算出した値に基づく補正を行って前記端面に研削加工を施すことを特徴とする研削加工方法」
である。
The main means taken by the present invention to solve the above problems are as follows.
“By a cylindrical grinding machine using a grinding wheel having an end surface with a back taper, a circumferential surface of the cylindrical portion and an end surface of the flange portion in a workpiece having a cylindrical portion and a flange portion following the cylindrical portion, A grinding method for grinding
The change in the Z-axis direction dimension at the end face of the grinding wheel is calculated from the change in the outer diameter of the grinding wheel, and the drive control in the Z-axis direction of the grinding wheel with respect to the workpiece is corrected based on the calculated value, Grinding method characterized by grinding the end face "
It is.

上記研削加工方法では、砥石端面のZ軸方向の変化量として、実際に測定するのではなく、砥石車の外径寸法の変化量から算出した値、換言すれば、砥石車の外径寸法の変化から推定した値、を用い、この値に基づいて、ワークに対して砥石車をZ軸方向の駆動させる際に補正を行うため、円筒研削盤全体を大掛かりな構造としたり、研削加工作業全体を煩雑化することなく、ワーク端面に高度な研削加工を施すことができる。   In the above grinding method, the amount of change in the Z-axis direction of the grindstone end face is not actually measured, but a value calculated from the amount of change in the outside diameter of the grinding wheel, in other words, the outside diameter of the grinding wheel. The value estimated from the change is used, and based on this value, correction is made when the grinding wheel is driven in the Z-axis direction with respect to the workpiece. It is possible to perform advanced grinding on the workpiece end face without complicating the process.

なお、バックテーパが、砥石周面に直交する面に対して一定角度で傾斜する単純な傾斜面であれば、例えば、三角関数を用いた演算により、傾斜角度をθとし、砥石車の外径の変化量にtanθを乗じた値をZ軸方向の変化量として算出することができるが、バックテーパの形状が、例えば、曲面や複数段階で傾斜する等、複雑な傾斜面であれば、この傾斜面の形状に応じて予め定められた演算式を用いて、Z軸方向の変化量を算出すればよい。   In addition, if the back taper is a simple inclined surface that is inclined at a constant angle with respect to a surface orthogonal to the circumferential surface of the grinding wheel, for example, by calculating using a trigonometric function, the inclination angle is θ, and the outer diameter of the grinding wheel Can be calculated as the amount of change in the Z-axis direction, but if the shape of the back taper is a complicated inclined surface such as a curved surface or inclined in multiple stages, this value can be calculated. What is necessary is just to calculate the amount of change in the Z-axis direction using a predetermined arithmetic expression according to the shape of the inclined surface.

上述した手段において、
「Z軸方向において、ワーク1回転当りの送込み量が0.0001〜0.02mmとなる条件にて、ワークの端面に研削加工を施すことを特徴とする研削加工方法」
としてもよい。
In the means described above,
“A grinding method characterized by grinding the end face of the workpiece on the condition that the feed amount per rotation of the workpiece is 0.0001 to 0.02 mm in the Z-axis direction.”
It is good.

砥石の摩耗量は、種々の研削条件によって変化するのであるが、例えば、研削加工に際してのワーク1回転当りの送込み量に応じて変化する。すなわち、一般的には、送込み量が多いと、砥石の摩耗量が増加する一方で、送込み量が少ないと、砥石の摩耗量が減少する。ここで、送込み量が0.02mmを超えると、砥石端面の摩耗が激しくなり、砥石端面のZ軸方向の寸法として、上述したような推定値を用いても、この推定値が実際の寸法と大きくかけ離れてしまい、高度な寸法精度を確保できなくなる虞が生じる。   The amount of wear of the grindstone varies depending on various grinding conditions, but varies depending on, for example, the amount of feed per rotation of the workpiece during grinding. That is, generally, when the feed amount is large, the wear amount of the grindstone increases, while when the feed amount is small, the wear amount of the grindstone decreases. Here, if the feed amount exceeds 0.02 mm, the wear of the grindstone end face becomes severe, and even if the estimated value as described above is used as the dimension of the grindstone end face in the Z-axis direction, this estimated value is the actual dimension. There is a possibility that a high degree of dimensional accuracy cannot be secured.

そこで、上記端面研削加工方法では、Z軸方向におけるワーク1回転当りの送込み量を0.02mm以下とする。これにより、砥石端面のZ軸方向の寸法として、上述したような推定値を用いても、高度な寸法精度を確保することが可能となる。なお、送込み量の上限値としては、0.007mm以下、好ましくは0.005mm以下、より好ましくは0.003mm以下とするのがよい。   Therefore, in the above-described end surface grinding method, the feeding amount per rotation of the workpiece in the Z-axis direction is set to 0.02 mm or less. Thereby, even if the estimated value as described above is used as the dimension in the Z-axis direction of the grindstone end face, it is possible to ensure a high degree of dimensional accuracy. In addition, as an upper limit of the amount of feeding, it is 0.007 mm or less, Preferably it is 0.005 mm or less, More preferably, it is good to set it as 0.003 mm or less.

一方、砥石の摩耗量を減少させるためには、送込み量を少なくすればよく、このためには、研削加工に際してのワークに対する砥石車の移動速度である研削送り速度(一般に、mm/minの単位で示される)を遅くしたり、ワークの回転数(一般に、min−1やrpmの単位で示される)を多くすればよいのであるが、研削送り速度を遅くすると、研削加工に要する時間が長くなってしまうといった弊害を生じる。また、ワークの回転数を多くするには、ワークの形状や円筒研削盤の機械的性能による限度があり、研削送り速度を遅くせざるを得ない場合がある。さらに、研削速度を遅くすることで、ワークの材料に対する砥粒の擦れが無用に生じて、研削焼けを生じたり、砥粒の鋭利な切刃が擦れにより平坦化して砥石の切れ味が悪くなる等の弊害を生じる場合もある。   On the other hand, in order to reduce the wear amount of the grindstone, it is only necessary to reduce the feeding amount. For this purpose, a grinding feed speed (generally, mm / min) which is a moving speed of the grinding wheel with respect to the workpiece during grinding processing. (Represented in units) or the number of rotations of the workpiece (generally expressed in units of min-1 or rpm) may be increased. However, if the grinding feed rate is decreased, the time required for grinding is reduced. It will cause the negative effect of becoming longer. Further, in order to increase the number of rotations of the workpiece, there is a limit due to the shape of the workpiece and the mechanical performance of the cylindrical grinder, and the grinding feed rate may have to be slowed down. Furthermore, by slowing down the grinding speed, rubbing of the abrasive grains against the workpiece material occurs unnecessarily, causing grinding burns, and the sharp cutting edges of the abrasive grains are flattened by rubbing, and the sharpness of the grindstone becomes worse. May cause adverse effects.

そこで、上記研削加工方法では、Z軸方向におけるワーク1回転当りの送込み量を0.0001mm以上とする。これにより、上述の弊害を生じることなく、良好な研削加工を実現することができる。なお、送込み量の下限値としては、0.0003mm以上、好ましくは0.0005mm以上、より好ましくは0.0007mm以上とするのがよい。また、上述の上限値と合わせて、0.001(±20%)とするのが好適である。   Therefore, in the above grinding method, the feeding amount per rotation of the workpiece in the Z-axis direction is set to 0.0001 mm or more. Thereby, favorable grinding can be realized without causing the above-described adverse effects. Note that the lower limit of the feeding amount is 0.0003 mm or more, preferably 0.0005 mm or more, and more preferably 0.0007 mm or more. Moreover, it is suitable to set it as 0.001 (+/- 20%) together with the above-mentioned upper limit.

次に、円筒研削盤としては、
「端面がバックテーパを有する形状に形成された砥石車を用いて、円筒部と該円筒部に続くフランジ部とを有するワークにおける前記円筒部の周面と前記フランジ部の端面とに研削加工を施す円筒研削盤であって、
前記砥石車の外径寸法の変化量に基づいて前記砥石車の端面におけるZ軸方向の寸法の変化量を算出する端面変化量算出手段と、
該端面変化量算出手段での算出値に基づき補正を行ってワークに対する砥石車のZ軸方向の駆動を制御する駆動制御手段と
を備えることを特徴とする円筒研削盤」
である。
Next, as a cylindrical grinder,
“Using a grinding wheel having an end surface with a back taper, grinding is performed on the peripheral surface of the cylindrical portion and the end surface of the flange portion in a workpiece having a cylindrical portion and a flange portion following the cylindrical portion. A cylindrical grinder to be applied,
An end face change amount calculating means for calculating a change amount of a dimension in the Z-axis direction on the end face of the grinding wheel based on a change amount of an outer diameter dimension of the grinding wheel;
A cylindrical grinding machine comprising: drive control means for performing correction based on a value calculated by the end face change amount calculating means to control driving of the grinding wheel in the Z-axis direction with respect to the workpiece "
It is.

上記円筒研削盤は、上述した研削加工方法を好適に実現できるものである。すなわち、端面変化量算出手段によって、砥石端面におけるZ軸方向の寸法の変化量を推定的に算出し、この推定的に算出した値を反映して、駆動制御手段によって、ワークに対する砥石車のZ軸方向の駆動を制御するものであり、上記端面変化量算出手段及び上記駆動制御手段を具備することで、砥石端面におけるZ軸方向の寸法を実際に計測する砥石端面用の計測装置を設けたり、加工後のワーク端面の寸法から砥石端面におけるZ軸方向の寸法を割り出す作業を要することなく、ワーク端面に高度な研削加工を施すことができるようにしたものである。よって、上記円筒研削盤によれば、円筒研削盤全体を大掛かりな構造としたり、研削加工作業全体を煩雑化することなく、ワーク端面に高度な研削加工を施すことができる。   The cylindrical grinding machine can suitably realize the above-described grinding method. That is, the amount of change in the Z-axis direction dimension at the grindstone end face is estimated by the end face change amount calculating means, and the Z value of the grinding wheel with respect to the workpiece is reflected by the drive control means by reflecting this estimated value. Axial direction drive is controlled, and by providing the end face variation calculation means and the drive control means, a measuring device for the grindstone end face that actually measures the dimension in the Z axis direction on the grindstone end face is provided. The workpiece end surface can be subjected to high-grade grinding without requiring an operation for determining the dimension in the Z-axis direction of the grindstone end surface from the dimension of the workpiece end surface after processing. Therefore, according to the above cylindrical grinder, it is possible to perform advanced grinding on the workpiece end surface without making the entire cylindrical grinder large-scale structure or complicating the entire grinding work.

なお、端面変化量算出手段は、入力された砥石車の外径寸法の変化量に基づき、砥石車の端面におけるZ軸方向の寸法の変化量を算出するものであればよいが、入力される砥石車の外径寸法の変化量としては、作業者の手作業によって入力される値であってもよく、或いは、砥石車の外径寸法を実際に計測する計測装置からの入力される値や、加工中のワークの寸法を計測する定寸装置からの信号によって砥石車の実際の外径を割り出す演算装置から入力される値等、手作業によらずに機械的に自動的に入力される値であってもよい。特に、上記計測装置や上記定寸装置等を用いて構成され、砥石車の外径における実際の変化を監視する砥石外径監視手段から、外径の変化量が端面変化量算出手段に自動的に入力されるように構成すると、砥石車の外径の変化をリアルタイムに反映させて(研削加工中に限らず、次のワークでの研削加工に反映させる態様を含む)、ワークに対する砥石車のZ軸方向の移動を制御することができる。   The end face change amount calculation means may be any means that calculates the change amount of the dimension in the Z-axis direction at the end face of the grinding wheel based on the input change amount of the outer diameter of the grinding wheel. The amount of change in the outer diameter of the grinding wheel may be a value input manually by the operator, or may be a value input from a measuring device that actually measures the outer diameter of the grinding wheel. , Such as a value input from an arithmetic unit that calculates the actual outer diameter of the grinding wheel by a signal from a sizing device that measures the dimensions of the workpiece being processed, is automatically input mechanically without relying on manual operations. It may be a value. In particular, the amount of change in the outer diameter is automatically transferred from the grinding wheel outer diameter monitoring means that monitors the actual change in the outer diameter of the grinding wheel to the end face change amount calculation means. If the grinding wheel is configured to be inputted to the grinding wheel, the change in the outer diameter of the grinding wheel is reflected in real time (including not only during grinding but also in the grinding process of the next workpiece), The movement in the Z-axis direction can be controlled.

上述した手段において、
「前記ワークの前記円筒部の外径寸法を計測する定寸装置を備えることを特徴とする円筒研削盤」
としてもよい。
In the means described above,
“A cylindrical grinder comprising a sizing device for measuring the outer diameter of the cylindrical portion of the workpiece”
It is good.

定寸装置は、加工中のワークの外径寸法を計測するものであることから、ワークの外径寸法と、その時の砥石車の位置とにより、砥石車の外径寸法を正確に割り出すことができ、この正確な砥石車の外径寸法から、端面変化量算出手段によって算出される砥石車の端面におけるZ軸方向の寸法の変化量を、より実際の値に近づけることができる。よって、上記円筒研削盤によれば、ワーク端面に、より一層、高度な研削加工を施すことができる。   Since the sizing device measures the outer diameter of the workpiece being processed, the outer diameter of the grinding wheel can be accurately determined by the outer diameter of the workpiece and the position of the grinding wheel at that time. In addition, the amount of change in the dimension in the Z-axis direction on the end face of the grinding wheel calculated by the end face change amount calculation means can be made closer to the actual value from the accurate outer diameter size of the grinding wheel. Therefore, according to the said cylindrical grinder, a further advanced grinding process can be given to a workpiece | work end surface.

上述した手段において、
「前記砥石車の周面においてのツルーイング量を計測するツルーイング量計測装置を備えることを特徴とする円筒研削盤」
としてもよい。
In the means described above,
“A cylindrical grinding machine comprising a truing amount measuring device for measuring a truing amount on the circumferential surface of the grinding wheel”
It is good.

ツルーイング量計測装置は、砥石車の周面のツルーイング量、すなわち、ツルーイングによって除去した量を正確に計測するものであるいことから、ツルーイング量によって、ツルーイング後の砥石車の外径寸法を正確に割り出すことができる。そして、この正確な砥石車の外径寸法から、端面変化量算出手段によって算出される砥石車の端面におけるZ軸方向の寸法の変化量を、より実際の値に近づけることができる。よって、上記円筒研削盤によれば、ワーク端面に、より一層、高度な研削加工を施すことができる。   The truing amount measuring device can accurately measure the truing amount of the peripheral surface of the grinding wheel, that is, the amount removed by truing. Can be determined. Then, the amount of change in the dimension in the Z-axis direction on the end face of the grinding wheel calculated by the end face change amount calculation means can be made closer to the actual value from the accurate outer diameter dimension of the grinding wheel. Therefore, according to the said cylindrical grinder, a further advanced grinding process can be given to a workpiece | work end surface.

上述の通り、本発明によれば、円筒研削盤全体を大掛かりな構造としたり、研削加工作業を煩雑とすることなく、ワーク端面に高度な研削加工を施すことができる研削加工方法及び円筒研削盤を提供することができる。   As described above, according to the present invention, a grinding method and a cylindrical grinding machine capable of performing an advanced grinding process on a workpiece end surface without making the entire cylindrical grinding machine have a large structure or making the grinding work complicated. Can be provided.

次に、本発明に係る研削加工方法及び円筒研削盤の一例を、図面に従って詳細に説明する。なお、以下に説明する円筒研削盤は、本発明の研削加工方法を実現するための構成を具備するものであり、研削加工方法の詳細については、円筒研削盤の適宜構成の説明において述べることとする。   Next, an example of a grinding method and a cylindrical grinding machine according to the present invention will be described in detail with reference to the drawings. The cylindrical grinder described below has a configuration for realizing the grinding method of the present invention, and details of the grinding method will be described in the description of the appropriate configuration of the cylindrical grinder. To do.

図1に、円筒研削盤の機能的構成の概略を示す。なお、この円筒研削盤は、主軸台及び心押し台等の支持装置を有してワークを支持する共に回転させるワークテーブル(図示省略)と、砥石車10が着脱自在に装着される砥石軸、この砥石軸を回動自在に支承する軸受、及び、砥石軸を回転駆動するモータ等の回転駆動装置等を有する砥石台(図示省略)と、ワークテーブルに対して砥石台をZ軸方向に移動駆動させるZ軸駆動装置40、ワークテーブルに対して砥石台をX軸方向に移動駆動させるX軸駆動装置50等、種々の機器を具備する構造において、周知の構造が用いられたものであり、これらの機器についての詳細な説明は省略する。   FIG. 1 shows an outline of a functional configuration of the cylindrical grinder. The cylindrical grinding machine includes a work table (not shown) that supports and rotates a work table having a support device such as a spindle head and a tailstock, a grindstone shaft on which the grinding wheel 10 is detachably mounted, A wheel head (not shown) having a bearing that rotatably supports the wheel shaft and a rotation driving device such as a motor that rotates the wheel shaft, and the wheel head is moved in the Z-axis direction with respect to the work table. A well-known structure is used in a structure including various devices such as a Z-axis drive device 40 to be driven and an X-axis drive device 50 that moves and drives the grindstone table in the X-axis direction with respect to the work table. Detailed description of these devices will be omitted.

この円筒研削盤では、砥石車10として、端面14がバックテーパを有する形状に形成されたものが用いられ、この砥石車10の端面14によって、ワーク20の端面14に研削加工が施される。また、本例では、バックテーパの傾斜角度(周面13と直交する直交面に対して傾斜する角度)が0.1〜10°、より具体的には2〜5°となった砥石車10を用いているが、図示では、便宜上、傾斜角度を誇張して表している。なお、これに限らず、砥石車10のバックテーパの傾斜角度は、任意に設定することができる。   In this cylindrical grinding machine, the grinding wheel 10 having an end surface 14 formed in a shape having a back taper is used, and the end surface 14 of the workpiece 20 is ground by the end surface 14 of the grinding wheel 10. Further, in this example, the grinding wheel 10 in which the inclination angle of the back taper (the angle inclined with respect to the orthogonal surface orthogonal to the circumferential surface 13) is 0.1 to 10 °, more specifically 2 to 5 °. In the drawing, the inclination angle is exaggerated for convenience. However, the present invention is not limited to this, and the inclination angle of the back taper of the grinding wheel 10 can be arbitrarily set.

また、本例において、砥石車10は、円板状に形成された金属製の基盤11と、この基盤11の外周部に固着された砥石12とを具備するものとして構成されており、砥石12として、CBN(立方晶窒化ホウ素)砥石が採用されているが、これに限らず、他の形態の砥石車10や、他の種類の砥石12を採用したものであってもよい。   Further, in this example, the grinding wheel 10 is configured to include a metal base 11 formed in a disc shape and a grinding stone 12 fixed to the outer peripheral portion of the base 11. As described above, a CBN (cubic boron nitride) grindstone is employed. However, the present invention is not limited thereto, and other types of grinding wheels 10 or other types of grindstones 12 may be employed.

一方、本例では、ワーク20として、円筒部21及びフランジ部23を有する形状のものを代表的に示しており、このワーク20では、砥石車10をワーク20の軸方向に移動させる所謂「トラバースカット研削」にて、砥石車10の周面13によって円筒部21の周面22に研削加工が施され、砥石車10の端面14によってフランジ部23の端面24に研削加工が施される。なお、フランジ部23とは、円筒部21から全周に渡って一律に延出する形状のものを狭義に示すものではなく、例えば、クランクシャフトでは、クランクジャーナルやクランクピンの外周面の研削加工に伴って、クランクジャーナルとクランクピンとを連結するクランクアームの端面に研削加工が施される。よって、このうなクランクシャフトのクランクアーム等、円筒部21の全周の少なくとも一部から延出する形状のものも、広義でフランジ部23とする。   On the other hand, in this example, a workpiece 20 having a shape having a cylindrical portion 21 and a flange portion 23 is representatively shown. In this workpiece 20, a so-called “traverse” for moving the grinding wheel 10 in the axial direction of the workpiece 20 is shown. In the “cut grinding”, the peripheral surface 22 of the cylindrical portion 21 is ground by the peripheral surface 13 of the grinding wheel 10, and the end surface 24 of the flange portion 23 is ground by the end surface 14 of the grinding wheel 10. The flange portion 23 does not narrowly indicate a shape that extends uniformly from the cylindrical portion 21 over the entire circumference. For example, in a crankshaft, the outer peripheral surface of a crank journal or a crankpin is ground. Accordingly, grinding is performed on the end surface of the crank arm that connects the crank journal and the crank pin. Accordingly, the flange portion 23 in a broad sense is also a shape that extends from at least a part of the entire circumference of the cylindrical portion 21 such as a crank arm of such a crankshaft.

円筒研削盤は、駆動制御装置30を備えており、この駆動制御装置30によって、夫々、送りねじ機構やリニアモータ等を用いて構成されたZ軸駆動装置40及びX軸駆動装置50の駆動が制御される。また、駆動制御装置30は、演算部31を有するものであり、この演算部31での演算値に基づいて、Z軸駆動装置40及びX軸駆動装置50の夫々の駆動制御に際して補正を行う。なお、駆動制御装置30は、図示省略するが、主軸の回転駆動装置、砥石軸の回転駆動装置等、他の機器の駆動を制御するものであり、CNC装置やNC装置等、コンピュータを用いた適宜の装置によって構成されている。   The cylindrical grinding machine includes a drive control device 30, and the drive control device 30 drives the Z-axis drive device 40 and the X-axis drive device 50 that are configured using a feed screw mechanism, a linear motor, or the like, respectively. Be controlled. In addition, the drive control device 30 includes a calculation unit 31, and corrects each drive control of the Z-axis drive device 40 and the X-axis drive device 50 based on the calculation value in the calculation unit 31. Although not shown in the figure, the drive control device 30 controls the drive of other equipment such as a main shaft rotation drive device and a grindstone shaft rotation drive device, and a computer such as a CNC device or NC device is used. It is configured by an appropriate device.

また、本例の円筒研削盤は、ワーク20の円筒部21の外径寸法を計測する定寸装置60を備えている。ここで、定寸装置60は、ワーク20の円筒部21の外径が研削加工により予め設定された寸法となると、駆動制御装置30に信号を送信する機器等、適宜の機器を用いて構成されている。   In addition, the cylindrical grinding machine of this example includes a sizing device 60 that measures the outer diameter of the cylindrical portion 21 of the workpiece 20. Here, the sizing device 60 is configured using an appropriate device such as a device that transmits a signal to the drive control device 30 when the outer diameter of the cylindrical portion 21 of the workpiece 20 is a dimension set in advance by grinding. ing.

そして、この円筒研削盤では、定寸装置60によって計測された加工中のワーク20における円筒部21の外径の寸法、及び、砥石車10のX軸方向の位置から、駆動制御装置30の演算部31にて、砥石車10の外径寸法を演算し、この演算結果を、現在の加工におけるX軸駆動装置50の駆動制御や、次のワーク20を研削加工する際のX軸駆動装置50の駆動制御に反映させる。   In this cylindrical grinding machine, the operation of the drive control device 30 is calculated from the size of the outer diameter of the cylindrical portion 21 of the workpiece 20 being processed measured by the sizing device 60 and the position of the grinding wheel 10 in the X-axis direction. The outer diameter dimension of the grinding wheel 10 is calculated by the unit 31, and the calculation result is used to drive control of the X-axis drive device 50 in the current machining or the X-axis drive device 50 for grinding the next workpiece 20. This is reflected in the drive control.

なお、図示は省略するが、定寸装置60に加えて、或いは、定寸装置60を省略して別途に、砥石車10の周面13をツルアによってツルーイングした際に、ツルーイングによって除去された量、すなわち「ツルーイング量」を計測するツルーイング量計測装置を具備するものとしてもよい。このようにツルーイング量計測装置によってツルーイング量を正確に計測することで、ツルーイング後の砥石車10の正確な外径寸法を割り出すことができる。ここで、ツルーイング量計測装置としては、ツルアの位置と砥石車10の位置とからツルーイング量や砥石車10の外径寸法を計測するものや、AEセンサ等を用いたもの等、周知のものを適宜、採用することがでできる。   In addition, although illustration is omitted, in addition to the sizing device 60, or by omitting the sizing device 60 and separately truing the peripheral surface 13 of the grinding wheel 10 with a truer, the amount removed by truing That is, a truing amount measuring device for measuring the “truing amount” may be provided. Thus, by accurately measuring the truing amount by the truing amount measuring device, it is possible to determine the accurate outer diameter of the grinding wheel 10 after truing. Here, as a truing amount measuring device, a well-known device such as one that measures the truing amount and the outer diameter of the grinding wheel 10 from the position of the truer and the position of the grinding wheel 10, or that uses an AE sensor or the like is used. It can be adopted as appropriate.

円筒研削盤は、砥石車10の外径寸法の変化量に基づいて砥石車10の端面14におけるZ軸方向の寸法の変化量を算出する端面変化量算出手段と、端面変化量算出手段での算出値に基づき補正を行ってワーク20に対する砥石車10のZ軸方向の駆動を制御する駆動制御手段とを備えており、端面変化量算出手段での算出結果を、現在の加工におけるZ軸駆動装置40の駆動制御や、次のワーク20を研削加工する際のZ軸駆動装置40の駆動制御に反映させる。次に、端面変化量算出手段及び駆動制御手段を説明する。   The cylindrical grinder includes an end face change amount calculating means for calculating a change amount in the Z-axis direction of the end face 14 of the grinding wheel 10 based on a change amount in the outer diameter dimension of the grinding wheel 10, and an end face change amount calculating means. Drive control means for performing correction based on the calculated value to control the driving of the grinding wheel 10 in the Z-axis direction with respect to the workpiece 20, and calculating the result of the end face change amount calculating means based on the Z-axis drive in the current machining. This is reflected in the drive control of the device 40 and the drive control of the Z-axis drive device 40 when the next workpiece 20 is ground. Next, end face change amount calculation means and drive control means will be described.

端面変化量算出手段は、駆動制御装置30の上記演算部31を用いて構成されており、研削加工に伴って変化する砥石車10の外径寸法、或いは、砥石車10の周面13のツルーイングに伴って変化する砥石車10の外径寸法を、常時或いは適時、監視して、外径寸法の変化量から予め設定された演算式に基づいてZ軸方向の寸法の変化量を算出する。   The end face variation calculation means is configured by using the calculation unit 31 of the drive control device 30, and the outer diameter of the grinding wheel 10 that changes with grinding or the truing of the peripheral surface 13 of the grinding wheel 10 is determined. The outside diameter dimension of the grinding wheel 10 that changes with the time is monitored constantly or in a timely manner, and the amount of change in the dimension in the Z-axis direction is calculated from the amount of change in the outside diameter based on a preset arithmetic expression.

また、駆動制御手段は、Z軸駆動装置40の駆動を制御する上記駆動制御装置30を用いて構成されており、演算部31にて算出されたZ軸方向の寸法の変化量に応じた補正を行って、現在の加工におけるZ軸駆動装置40の駆動制御や、次のワークを研削加工する際のZ軸駆動装置40の駆動制御を行う。   Further, the drive control means is configured by using the drive control device 30 that controls the drive of the Z-axis drive device 40, and the correction according to the amount of change in the dimension in the Z-axis direction calculated by the calculation unit 31. The drive control of the Z-axis drive device 40 in the current machining and the drive control of the Z-axis drive device 40 when grinding the next workpiece are performed.

なお、本例では、端面変化量算出手段が、砥石車10の外径を測定する定寸装置60を用いた構成となるが、これに限らず、ツルーイング量計測装置を具備する円筒研削盤では、端面変化量算出手段が、砥石車10の周面13をツルーイングした際に、このツルーイングによる砥石車10の外径の変化量に基づいて、Z軸方向の寸法の変化量を算出するものとなる。そして、このような態様では、Z軸駆動装置40の駆動制御に関して、ツルーイング毎に補正を行うこととすればよい。換言すれば、このような態様では、駆動制御手段を、ツルーイング毎に、端面変化量算出手段での算出値に基づき補正を行って、ワーク20に対する砥石車10のZ軸方向の駆動を制御するものとすればよい。   In this example, the end face variation calculation means has a configuration using the sizing device 60 that measures the outer diameter of the grinding wheel 10, but the present invention is not limited to this, and in a cylindrical grinder equipped with a truing amount measuring device, When the end face change amount calculating means truws the peripheral surface 13 of the grinding wheel 10, the dimensional change amount in the Z-axis direction is calculated based on the change amount of the outer diameter of the grinding wheel 10 due to the truing. Become. In such an aspect, the drive control of the Z-axis drive device 40 may be corrected for each truing. In other words, in such an aspect, the drive control means performs correction based on the value calculated by the end face change amount calculation means for each truing to control the driving of the grinding wheel 10 relative to the workpiece 20 in the Z-axis direction. It should be.

ところで、砥石車10の外径寸法から、砥石車10において変化するZ軸方向の寸法を推定して、上述のようにZ軸駆動装置40の駆動を制御したとしても、実際には、砥石車10の端面に摩耗が生じている。そして、この摩耗が多大となると、端面研削加工において、高度な寸法精度を確保できなくなってしまう。   By the way, even if the Z-axis direction dimension that changes in the grinding wheel 10 is estimated from the outer diameter of the grinding wheel 10 and the driving of the Z-axis drive device 40 is controlled as described above, the grinding wheel is actually used. 10 is worn. And if this wear becomes enormous, high dimensional accuracy cannot be secured in the end face grinding.

そこで、本例では、Z軸方向における送込み量が0.0001〜0.02mmとなるように、ワーク20の回転数及び切削送り速度を設定して研削加工を行う。なお、Z軸方向における送込み量は、ワーク20が1回転する当りでのZ軸方向におけるワーク20と砥石車10との相対的な移動量であり、ワーク20と砥石車10とがZ軸方向及びX軸方向の2軸方向に相対的に移動する場合には、X軸方向の移動量は加味せずに、Z軸方向についてのみを考慮すればよい。何故ならば、X軸方向においては、砥石車10の周面13が摩耗することになり、この摩耗によっては、Z軸方向に寸法について大きな変化が及ぼされないからである。   Therefore, in this example, grinding is performed by setting the rotation speed of the workpiece 20 and the cutting feed speed so that the feed amount in the Z-axis direction is 0.0001 to 0.02 mm. The feed amount in the Z-axis direction is a relative movement amount of the workpiece 20 and the grinding wheel 10 in the Z-axis direction per rotation of the workpiece 20, and the workpiece 20 and the grinding wheel 10 are in the Z-axis direction. In the case of relative movement in the two directions of the direction and the X-axis direction, only the Z-axis direction needs to be considered without taking into account the amount of movement in the X-axis direction. This is because the circumferential surface 13 of the grinding wheel 10 is worn in the X-axis direction, and this wear does not significantly change the size in the Z-axis direction.

このようにZ軸方向における送込み量を設定することで、砥石車10の端面14が多大に摩耗することを防止することができ、砥石車10におけるZ軸方向の寸法変化を推定値としてZ軸駆動装置40の駆動を制御しても、大きな不具合が生じない。   By setting the feed amount in the Z-axis direction in this way, it is possible to prevent the end face 14 of the grinding wheel 10 from being worn significantly, and the dimensional change in the Z-axis direction of the grinding wheel 10 is estimated as Z. Even if the drive of the shaft drive device 40 is controlled, no major problems occur.

なお、一つのワーク20における同一の部位や異なる部位に対して粗研削や仕上研削といった加工品質の異なる複数種類の研削加工を施す場合、粗研削等の低品質の研削加工では、送込み量を多く設定して研削加工時間の短縮化を図る一方で、仕上研削等の高品質の研削加工では、送込み量を少なく設定し、砥石車10の端面14を摩耗し難くして、Z軸方向の寸法変化の推定値を、実際の値に近づけることができるようにしてもよい。そして、この場合においても、最大の送込み量を、上述の範囲に納めるのが好適である。   In addition, when a plurality of types of grinding processes having different processing qualities such as rough grinding and finish grinding are performed on the same part or different parts in one workpiece 20, the amount of feeding is reduced in low-quality grinding such as rough grinding. While a large amount is set to shorten the grinding time, in a high-quality grinding process such as finish grinding, the feed amount is set to be small and the end face 14 of the grinding wheel 10 is hardly worn, so that the Z-axis direction The estimated value of the dimensional change may be made closer to the actual value. Even in this case, it is preferable to keep the maximum feeding amount within the above-mentioned range.

また、一つのワーク10における同一の部位や異なる部位に対して加工品質の異なる複数種類の研削加工を施す場合、上述に限らず、粗研削等の低品質の研削加工においては、砥石車10の端面14におけるZ軸方向の寸法の変化を考慮せず、本発明に係る研削加工方法を適用しないこととする一方で、仕上研削等の高品質の研削加工においては、砥石車10の端面14におけるZ軸方向の寸法の変化を考慮して、本発明に係る研削加工方法を適用することとしてもよい。   In addition, when a plurality of types of grinding processes having different processing qualities are performed on the same part or different parts of one workpiece 10, the grinding wheel 10 is not limited to the above, but in low-quality grinding such as rough grinding. While considering the change in the dimension of the end surface 14 in the Z-axis direction and not applying the grinding method according to the present invention, in the high-quality grinding such as finish grinding, the end surface 14 of the grinding wheel 10 The grinding method according to the present invention may be applied in consideration of a change in dimension in the Z-axis direction.

本発明に係る円筒研削盤の機能的構成を示す概略図である。It is the schematic which shows the functional structure of the cylindrical grinding machine which concerns on this invention. 従来の研削方法を示す概略図である。It is the schematic which shows the conventional grinding method. 砥石車において、外径寸法の変化によりZ軸方向の寸法が変化する状態を示す要部の概略図である。In a grinding wheel, it is the schematic of the principal part which shows the state from which the dimension of a Z-axis direction changes with the change of an outer diameter dimension. 砥石車において、摩耗によりZ軸方向の寸法が変化する状態を示す要部の概略図である。In a grinding wheel, it is the schematic of the principal part which shows the state from which the dimension of a Z-axis direction changes with abrasion.

符号の説明Explanation of symbols

10 砥石車
11 基盤
12 砥石
13 周面
14 端面(砥石端面)
20 ワーク
21 円筒部
22 周面
23 フランジ部
24 端面(ワーク端面)
30 駆動制御装置(駆動制御手段)
31 演算部(端面変化量算出手段)
40 Z軸駆動装置
50 X軸駆動装置
60 定寸装置
DESCRIPTION OF SYMBOLS 10 Grinding wheel 11 Base 12 Grinding wheel 13 Circumferential surface 14 End surface (Whetstone end surface)
20 Work piece 21 Cylindrical part 22 Peripheral surface 23 Flange part 24 End face (work end face)
30 Drive control device (drive control means)
31 calculating part (end surface change amount calculation means)
40 Z-axis drive device 50 X-axis drive device 60 Sizing device

Claims (5)

端面がバックテーパを有する形状に形成された砥石車を用いた円筒研削盤によって、円筒部と該円筒部に続くフランジ部とを有するワークにおける前記円筒部の周面と前記フランジ部の端面とに研削加工を施す研削加工方法であって、
砥石車の外径寸法の変化から該砥石車の端面におけるZ軸方向の寸法の変化を算出し、ワークに対する砥石車のZ軸方向の駆動制御に関して、前記算出した値に基づく補正を行って前記端面に研削加工を施すことを特徴とする研削加工方法。
By a cylindrical grinding machine using a grinding wheel having an end surface with a back taper, a peripheral surface of the cylindrical portion and an end surface of the flange portion in a workpiece having a cylindrical portion and a flange portion following the cylindrical portion. A grinding method for performing grinding,
The change in the Z-axis direction dimension at the end face of the grinding wheel is calculated from the change in the outer diameter of the grinding wheel, and the drive control in the Z-axis direction of the grinding wheel with respect to the workpiece is corrected based on the calculated value, A grinding method characterized by grinding an end face.
Z軸方向において、ワーク1回転当りの送込み量が0.0001〜0.02mmとなる条件にて、前記端面に研削加工を施すことを特徴とする請求項1に記載の研削加工方法。   2. The grinding method according to claim 1, wherein in the Z-axis direction, the end surface is ground under a condition that a feed amount per rotation of the workpiece is 0.0001 to 0.02 mm. 端面がバックテーパを有する形状に形成された砥石車を用いて、円筒部と該円筒部に続くフランジ部とを有するワークにおける前記円筒部の周面と前記フランジ部の端面とに研削加工を施す円筒研削盤であって、
前記砥石車の外径寸法の変化量に基づいて前記砥石車の端面におけるZ軸方向の寸法の変化量を算出する端面変化量算出手段と、
該端面変化量算出手段での算出値に基づき補正を行ってワークに対する砥石車のZ軸方向の駆動を制御する駆動制御手段と
を備えることを特徴とする円筒研削盤。
Grinding is performed on the peripheral surface of the cylindrical portion and the end surface of the flange portion in a workpiece having a cylindrical portion and a flange portion following the cylindrical portion, using a grinding wheel whose end surface has a back taper shape. A cylindrical grinding machine,
An end face change amount calculating means for calculating a change amount of a dimension in the Z-axis direction on the end face of the grinding wheel based on a change amount of an outer diameter dimension of the grinding wheel;
A cylindrical grinding machine comprising: drive control means for performing a correction based on a value calculated by the end face change amount calculating means to control the drive of the grinding wheel in the Z-axis direction with respect to the workpiece.
前記ワークの前記円筒部の外径寸法を計測する定寸装置を備えることを特徴とする請求項3に記載の円筒研削盤。   The cylindrical grinder according to claim 3, further comprising a sizing device for measuring an outer diameter of the cylindrical portion of the workpiece. 前記砥石車の周面においてのツルーイング量を計測するツルーイング量計測装置を備えることを特徴とする請求項3または請求項4に記載の円筒研削盤。   The cylindrical grinding machine according to claim 3 or 4, further comprising a truing amount measuring device that measures a truing amount on a peripheral surface of the grinding wheel.
JP2005082124A 2005-03-22 2005-03-22 Grinding method and cylindrical grinder Pending JP2006263834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005082124A JP2006263834A (en) 2005-03-22 2005-03-22 Grinding method and cylindrical grinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005082124A JP2006263834A (en) 2005-03-22 2005-03-22 Grinding method and cylindrical grinder

Publications (1)

Publication Number Publication Date
JP2006263834A true JP2006263834A (en) 2006-10-05

Family

ID=37200335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005082124A Pending JP2006263834A (en) 2005-03-22 2005-03-22 Grinding method and cylindrical grinder

Country Status (1)

Country Link
JP (1) JP2006263834A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108356614A (en) * 2018-04-25 2018-08-03 三门峡中测量仪有限公司 A kind of excircle of workpiece grinds contactless monitoring device and method
CN117207070A (en) * 2023-09-01 2023-12-12 四川普什宁江机床有限公司 Automatic grinding wheel dressing method based on numerical control machine tool

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108356614A (en) * 2018-04-25 2018-08-03 三门峡中测量仪有限公司 A kind of excircle of workpiece grinds contactless monitoring device and method
CN108356614B (en) * 2018-04-25 2024-04-26 三门峡中测量仪有限公司 Non-contact type monitoring device and method for workpiece cylindrical grinding
CN117207070A (en) * 2023-09-01 2023-12-12 四川普什宁江机床有限公司 Automatic grinding wheel dressing method based on numerical control machine tool
CN117207070B (en) * 2023-09-01 2024-04-23 四川普什宁江机床有限公司 Automatic grinding wheel dressing method based on numerical control machine tool

Similar Documents

Publication Publication Date Title
JP2018511488A (en) Method and grinding machine for grinding workpieces with grooves
JP2008073838A (en) Traverse grinding device and grinding method
JP2008093788A (en) Grinder
JP2006263834A (en) Grinding method and cylindrical grinder
JP2006159314A (en) Crank pin grinding method and grinding machine
JP2005254333A (en) Cylindrical grinding machine and grinding method
JP5039957B2 (en) Grinding wheel for internal grinding device and internal grinding method
JP2008307633A (en) Workpiece grinding method
JP5425570B2 (en) Processing method and apparatus for trunnion of tripod type constant velocity joint
JP5428497B2 (en) Grinding wheel forming method
CN105073341A (en) Method for truing rotary grindstone and grinding machine for implementing method for truing
JP4929790B2 (en) Truing method of grinding wheel
JPH11254277A (en) Internal grinding machine
JP5326661B2 (en) Grinding wheel forming method
JP2012168742A (en) Machining center provided with grindstone wear correction function
US10099342B2 (en) Truer, truing apparatus including truer, grinder, and truing method
JP2007260880A (en) Method of truing grinding wheel, and grinding machine
CN111843622B (en) Grinding method and grinding machine
WO2023047437A1 (en) Processing estimation device
JP2005059141A (en) Grinding method and controller of grinder
JP4225210B2 (en) Truing device and truing method for grinding wheel
JP2513342B2 (en) Retraction grinding method and grinding device in grinding force control grinding
WO2024075284A1 (en) Contact dynamic stiffness calculation system, machining estimation device, and proccessing system
JP2003291064A (en) Grinding method and process
JP2015000469A (en) Grinder and truing method