JP2006261563A - METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL SUBSTRATE - Google Patents

METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL SUBSTRATE Download PDF

Info

Publication number
JP2006261563A
JP2006261563A JP2005079818A JP2005079818A JP2006261563A JP 2006261563 A JP2006261563 A JP 2006261563A JP 2005079818 A JP2005079818 A JP 2005079818A JP 2005079818 A JP2005079818 A JP 2005079818A JP 2006261563 A JP2006261563 A JP 2006261563A
Authority
JP
Japan
Prior art keywords
etching
single crystal
crystal substrate
gas
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005079818A
Other languages
Japanese (ja)
Other versions
JP4427472B2 (en
Inventor
Takashi Aigo
崇 藍郷
Tatsuo Fujimoto
辰雄 藤本
Masakazu Katsuno
正和 勝野
Mitsuru Sawamura
充 澤村
Hiroshi Tsuge
弘志 柘植
Masashi Nakabayashi
正史 中林
Hirokatsu Yashiro
弘克 矢代
Noboru Otani
昇 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005079818A priority Critical patent/JP4427472B2/en
Publication of JP2006261563A publication Critical patent/JP2006261563A/en
Application granted granted Critical
Publication of JP4427472B2 publication Critical patent/JP4427472B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a silicon carbide single crystal substrate which exhibits no zone affected by surface treatment or residue or surface roughness caused by the removal of ion damage and has a surface exhibiting a high degree of cleanness and flatness. <P>SOLUTION: The method for manufacturing the silicon carbide single crystal substrate has a process for removing zones affected by treatment on the surface of the silicon carbide single crystal substrate by etching by using reactive gas excluding fluorine base gas. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、炭化珪素(SiC)単結晶基板の表面に存在する加工変質部やイオン損傷部が除去され、かつその除去処理に伴う残渣や表面荒れが無く、清浄で平坦性に優れた表面を有する基板の製造方法に関するものである。   The present invention eliminates the work-affected parts and ion-damaged parts existing on the surface of the silicon carbide (SiC) single crystal substrate, and eliminates the residue and surface roughness associated with the removal process, and provides a clean and flat surface. It is related with the manufacturing method of the board | substrate which has.

炭化珪素(SiC)は、耐熱性及び機械的強度に優れ、物理的、化学的に安定なことから、耐環境性半導体材料として注目されている。また、近年、高周波高耐圧電子デバイス等の基板としてSiC単結晶基板の需要が高まっている。   Silicon carbide (SiC) has attracted attention as an environmentally resistant semiconductor material because it is excellent in heat resistance and mechanical strength and is physically and chemically stable. In recent years, demand for SiC single crystal substrates has increased as substrates for high-frequency, high-voltage electronic devices and the like.

SiC単結晶のインゴットからSiC単結晶基板を加工する工程は、まず前記インゴットをスライスしてウエハ状に切り出す工程と、所定の厚さまで荒削りする研削工程と、基板の両面を平坦かつ鏡面に仕上げる研磨工程と、上記各工程で基板に付着した汚れを除去する洗浄工程と、加工工程で導入された表面加工変質部を除去する工程とからなる。   The process of processing a SiC single crystal substrate from a SiC single crystal ingot is a process of first slicing the ingot into a wafer, a grinding process of roughing to a predetermined thickness, and polishing to finish both sides of the substrate to a flat and mirror surface. A process, a cleaning process for removing dirt adhered to the substrate in each of the above processes, and a process for removing the surface-processed altered portion introduced in the processing process.

このようなSiC単結晶基板を用いて、電力デバイス、高周波デバイス等を作製する場合には、通常基板上に熱CVD法(熱化学蒸着法)と呼ばれる方法を用いてSiC薄膜をエピタキシャル成長させたり、イオン注入法により直接ドーパントを打ち込んだりするのが一般的である。   When producing a power device, a high-frequency device, etc. using such a SiC single crystal substrate, a SiC thin film is epitaxially grown on a normal substrate using a method called a thermal CVD method (thermochemical vapor deposition method) In general, a dopant is directly implanted by an ion implantation method.

この際、SiC単結晶基板の表面に、上記加工変質部が残存していると、正常なエピタキシャル成長を阻害したり、打ち込まれたドーパントの活性化率が低下したりする等の問題が発生することが知られており、さらに、その変質部が電流のリークパスになり、デバイスの性能を落とすこと等も考えられる。   At this time, if the above-mentioned altered part remains on the surface of the SiC single crystal substrate, problems such as inhibiting normal epitaxial growth or reducing the activation rate of the implanted dopant may occur. Further, it is conceivable that the altered portion becomes a current leakage path, which degrades the performance of the device.

通常、SiC単結晶基板の表面は、ダイヤモンド砥粒等による研磨加工による仕上げがされているが、近年のデバイスの微細化に伴い、さらに表面の平坦化が求められているため、メカノケミカル研磨等も行われている。このような基板の表面には、研磨による加工変質部が数百nm存在し、これが十分に除去されていないと、上記のような問題を引き起こすことが想定されるため、通常は、Siとの反応性が高いフッ素系反応性ガスを用いたエッチングにより、この加工変質部を取り除いている。   Usually, the surface of the SiC single crystal substrate is finished by polishing with diamond abrasive grains, etc., but with the recent miniaturization of devices, further planarization of the surface is required, so mechanochemical polishing, etc. Has also been done. On the surface of such a substrate, there are several hundred nanometers of damaged portions due to polishing, and if this is not sufficiently removed, it is assumed that the above problems are caused. This work-affected zone is removed by etching using a highly reactive fluorine-based reactive gas.

図1は、このようにして加工変質部を取り除いた基板表面の10μm×10μm部分を原子間力顕微鏡(AFM)で観察した像である。エッチングに用いた反応性ガスはCFであり、このガスは、酸化シリコンや窒化シリコン等の絶縁膜のエッチングにも用いられる、半導体プロセスにおいては、一般的なガスである。図1において、表面に針状の異物として見えているのが、エッチング後の表面の荒れ、あるいは残渣であり、一度このような残渣が生じてしまうと、その後に酸素ガスプラズマ処理あるいはRCA洗浄等のプロセスを通しても除去することは難しい。この残渣は、フッ素系のガスを用いることによるフロロカーボン系の反応生成物が表面に残ったものと考えられる(非特許文献1)。 FIG. 1 is an image obtained by observing, with an atomic force microscope (AFM), a 10 μm × 10 μm portion of the substrate surface from which the work-affected portions have been removed. The reactive gas used for the etching is CF 4 , and this gas is a general gas in a semiconductor process that is also used for etching an insulating film such as silicon oxide or silicon nitride. In FIG. 1, what appears as a needle-like foreign material on the surface is a rough surface or residue after etching. Once such a residue occurs, oxygen gas plasma treatment or RCA cleaning is performed thereafter. It is difficult to remove even through this process. This residue is considered to be a fluorocarbon-based reaction product left on the surface by using a fluorine-based gas (Non-Patent Document 1).

このような表面では、表面粗さを表すRa値がRa=1.48nmであり、デバイスの微細化に求められるRa<1nmはクリアできず、また、残渣がある場合には、その上に形成されるデバイスの特性にも悪影響を及ぼす。一方、不活性ガスを用いたエッチング(スパッタエッチング)によって加工変質部を除去すれば、上記反応生成物は防げると考えられるが、この場合は、イオン損傷部が残存してしまい、これを除去するためには、やはり反応性ガスエッチングが必要になる。したがって、最終的には、表面の荒れや残渣の問題は避けられず、図1と同様な表面状態になる。   On such a surface, the Ra value representing the surface roughness is Ra = 1.48 nm, and Ra <1 nm required for device miniaturization cannot be cleared. If there is a residue, it is formed on the surface. The device characteristics will also be adversely affected. On the other hand, it is thought that the reaction product can be prevented by removing the work-affected part by etching using an inert gas (sputter etching). In this case, however, the ion-damaged part remains and is removed. For this purpose, reactive gas etching is still necessary. Therefore, finally, the problem of surface roughness and residue is inevitable, and the surface state is the same as in FIG.

特許文献1に記載の発明も、CFによるエッチングを行っており、SiC表面のダメージ部が選択的にエッチングされないよう、スパッタ性の強いエッチング条件を用いている。しかし、CFの反応性ガスを用いている以上、表面に反応生成物が残ることは避けられず、スパッタ性の強いエッチング条件であることから、加えてイオン損傷部が発生する問題もある。 The invention described in Patent Document 1 also performs etching with CF 4 , and uses etching conditions with strong sputtering properties so that the damaged portion on the SiC surface is not selectively etched. However, as long as the reactive gas of CF 4 is used, it is inevitable that a reaction product remains on the surface, and since it is an etching condition with a strong sputtering property, there is also a problem that an ion damage portion is generated.

また、特許文献2に記載の発明も、反応性ガスを用いたエッチングで表面の加工変質部を除去する方法を開示しているが、使用するガスがNFをベースとしているため、やはりフッ素に起因するフロロカーボン系の反応生成物の生成は避けられない。 Further, the invention described in Patent Document 2 also discloses a method for removing a process-affected portion on the surface by etching using a reactive gas. However, since the gas used is based on NF 3 , it is still in fluorine. The generation of the resulting fluorocarbon-based reaction product is inevitable.

したがって、研磨によって平坦な表面が得られたとしても、表面の加工変質部を取り除くため、あるいは、スパッタエッチングによって加工変質部を除去した場合には、その後のイオン損傷部を取り除くため、最終的には反応性ガスを用いたエッチングが必要になる。従来方法ではフッ素系の反応性ガスを用いてエッチングを行っていたため、表面には再び荒れあるいは残渣が生じてしまい、デバイス作成に必要な変質部が無くかつ清浄、平坦な表面を得ることは難しかった。
特開平6−188163号公報 米国特許第4946547号明細書 大森正道編、菅野卓雄監修、超高速化合物半導体デバイス、p.222 (1986) 培風館
Therefore, even if a flat surface is obtained by polishing, in order to remove the work-affected part on the surface or when the work-affected part is removed by sputter etching, the subsequent ion damage part is removed. Requires etching using a reactive gas. In the conventional method, etching was performed using a fluorine-based reactive gas, so that the surface was roughened or a residue was generated again, and it was difficult to obtain a clean and flat surface without the altered portion necessary for device fabrication. It was.
JP-A-6-188163 U.S. Pat. No. 4,946,547 Edited by Masamichi Omori, supervised by Takuo Kanno, super high-speed compound semiconductor device, p. 222 (1986) Baifukan

本発明は、上記表面加工変質部あるいはイオン損傷部の除去処理に伴う残渣や表面荒れが無く、清浄で平坦性に優れた表面を有するSiC単結晶基板の製造方法を提供するものである。   The present invention provides a method for producing a SiC single crystal substrate having a surface that is clean and excellent in flatness, free from residues and surface roughness associated with the removal treatment of the surface-processed altered portion or ion-damaged portion.

本発明は、表面加工変質部あるいはイオン損傷部除去処理のための反応性イオンエッチングにおいて、エッチングに用いるガス種を考慮することにより、上記課題を解決できることを見出し、完成したものである。即ち、本発明は、
(1) SiC単結晶基板表面の加工変質部を、フッ素系ガスを除く反応性ガスを用いたエッチングによって、除去する工程を有することを特徴とするSiC単結晶基板の製造方法、
(2) SiC単結晶基板表面の加工変質部を、不活性ガスを用いたエッチングによって除去し、前記エッチングの際に生じるイオン損傷部を、フッ素系ガスを除く反応性ガスを用いたエッチングによって除去する工程を有することを特徴とするSiC単結晶基板の製造方法、
(3) 前記反応性ガス、不活性ガスを用いたエッチングを行う装置として、反応性イオンエッチング装置を用いる(1)又は(2)に記載のSiC単結晶基板の製造方法、
(4) 前記反応性ガスを用いたエッチングを行う際に使用するガスが、塩素ガス(Cl)である(1)又は(2)に記載のSiC単結晶基板の製造方法、
(5) 前記不活性ガスを用いたエッチングを行う際に使用するガスがアルゴンガス(Ar)である(2)記載のSiC単結晶基板の製造方法、
(6) 前記エッチング後に、酸素ガス(O)プラズマを用いて、表面清浄化処理を行う(1)又は(2)に記載のSiC単結晶基板の製造方法、
である。
The present invention has been completed by finding that the above-mentioned problems can be solved by considering the gas species used for etching in reactive ion etching for removing a surface-processed altered portion or ion-damaged portion. That is, the present invention
(1) A method for producing a SiC single crystal substrate, comprising a step of removing a work-affected portion on the surface of the SiC single crystal substrate by etching using a reactive gas excluding a fluorine-based gas,
(2) Process-affected portions on the surface of the SiC single crystal substrate are removed by etching using an inert gas, and ion-damaged portions generated during the etching are removed by etching using a reactive gas excluding a fluorine-based gas. A method for producing a SiC single crystal substrate, characterized by comprising:
(3) The method for producing an SiC single crystal substrate according to (1) or (2), wherein a reactive ion etching apparatus is used as an apparatus for performing etching using the reactive gas and the inert gas,
(4) The method for producing an SiC single crystal substrate according to (1) or (2), wherein a gas used when etching using the reactive gas is chlorine gas (Cl 2 ),
(5) The method for producing an SiC single crystal substrate according to (2), wherein a gas used when etching using the inert gas is an argon gas (Ar),
(6) The method for producing a SiC single crystal substrate according to (1) or (2), wherein a surface cleaning treatment is performed using oxygen gas (O 2 ) plasma after the etching.
It is.

この発明によれば、SiC単結晶基板の表面に存在する加工変質部あるいはイオン損傷部が除去され、かつ、その除去処理に伴う残渣や表面荒れが無く、清浄で平坦性に優れた表面を有するSiC単結晶基板を作成することが可能である。   According to this invention, a work-affected part or an ion-damaged part existing on the surface of a SiC single crystal substrate is removed, and there is no residue or surface roughness associated with the removal process, and the surface has a clean and excellent flatness. It is possible to produce a SiC single crystal substrate.

まず、SiC単結晶のインゴットからSiC単結晶基板を加工する工程についての概略を説明する。SiC単結晶のインゴットを作製後、それをスライスして、ウエハ状の基板に切り出し、所定の厚さまで荒削りを行う。その後、基板の両面を平坦かつ鏡面に仕上げるための研磨を行い、続いて、基板に付着した汚れを除去するための洗浄を行う。最後に、上記各工程で基板に導入された表面加工変質部を除去する工程となるが、この工程が本発明が対象としている工程である。   First, an outline of a process of processing a SiC single crystal substrate from an SiC single crystal ingot will be described. After producing the SiC single crystal ingot, it is sliced, cut into a wafer-like substrate, and roughed to a predetermined thickness. Thereafter, polishing is performed to finish both surfaces of the substrate to a flat and mirror surface, followed by cleaning to remove dirt attached to the substrate. Finally, it becomes a step of removing the surface-processed altered portion introduced into the substrate in each of the above steps, and this step is a step targeted by the present invention.

本発明では、反応性ガスを用いたエッチングによってSiC単結晶基板表面の加工変質部を除去する際に、使用するガス種を考慮したものである。SiCに対してエッチング性を有するガスとしては、CF、CHF等のフッ素系のガスやCl等の塩素系ガスがあるが、フッ素系のガスでは、Fに起因するフロロカーボン系の反応生成物が表面に残り、それが残渣になるのではないかと考え、Fを含まないガスでエッチングを行うことを試みた。また、塩素系ガスでも純塩素(Cl)を使用すれば、エッチングに寄与するイオンが塩素のみであり、SiCとは蒸気圧の高い反応生成物が形成されるため、SiC表面での残渣、汚染等を考慮する必要はなく、最適であると判断された。 In the present invention, the type of gas used is taken into consideration when removing the work-affected portion on the surface of the SiC single crystal substrate by etching using a reactive gas. Gases having etching properties with respect to SiC include fluorine-based gases such as CF 4 and CHF 3 and chlorine-based gases such as Cl 2. In the case of fluorine-based gases, fluorocarbon-based reaction products caused by F Considering that an object may remain on the surface and become a residue, an attempt was made to perform etching using a gas containing no F. Further, if pure chlorine (Cl 2 ) is used even in a chlorine-based gas, only ions that contribute to etching are chlorine, and a reaction product with a high vapor pressure is formed with SiC. There was no need to consider contamination, etc., and it was judged to be optimal.

そこで、本発明の内容は、フッ素系ガスを除く反応性ガス、特に、Clを用いて、SiC単結晶基板表面の加工変質部のエッチングを行う、場合によっては、エッチングを行った後、酸素ガス(O)を用いて、表面清浄化処理を行うものである。また、上記加工変質部をAr等の不活性ガスによるスパッタエッチングで除去した際には、それに伴うイオン損傷部をフッ素系ガスを除く反応性ガス、特に、Clのエッチングで除去、場合によっては、エッチング後Oによる表面清浄化処理を行うものである。実際に使用した装置は、通常の平行平板型の電極を有する反応性イオンエッチング装置であり、フッ素系ガスを除く反応性ガスを用いる場合のエッチング条件の例としては、エッチング時の圧力が5〜50Pa、ガス流量が毎分10〜50cm、入力パワーが0.5〜1.0W/cmである。Clのエッチング条件としては、エッチング時の圧力が5〜10Pa、Cl流量が毎分20〜30cm、入力パワーが1.0W/cmであることが望ましい。この条件は、エッチング後の残渣の発生を極力避けるために、エッチングのスパッタ性を高め、かつ生産性を落とさない程度にSiCに対して適度なエッチング速度を有すると言う観点から設定されたものであり、SiCに対するエッチング速度は毎分40〜50nmである。 Therefore, the content of the present invention is to etch a work-affected portion on the surface of a SiC single crystal substrate using a reactive gas excluding a fluorine-based gas, particularly Cl 2 , and in some cases, after etching, oxygen A surface cleaning process is performed using gas (O 2 ). In addition, when the above-mentioned affected part is removed by sputter etching using an inert gas such as Ar, the accompanying ion damage part is removed by reactive gas excluding fluorine-based gas, particularly Cl 2 etching. Then, a surface cleaning process using O 2 is performed after the etching. The apparatus actually used is a reactive ion etching apparatus having a normal parallel plate type electrode. As an example of etching conditions when a reactive gas excluding a fluorine-based gas is used, an etching pressure of 5 to 5 is used. 50 Pa, the gas flow rate is 10 to 50 cm 3 / min, and the input power is 0.5 to 1.0 W / cm 2 . As the etching conditions of Cl 2, the pressure during etching 5~10Pa, Cl 2 flow rate per minute 20 to 30 cm 3, it is desirable that the input power is 1.0 W / cm 2. This condition was set from the viewpoint of having an appropriate etching rate with respect to SiC to the extent that the sputterability of etching is increased and productivity is not reduced in order to avoid the generation of residues after etching as much as possible. Yes, the etching rate for SiC is 40-50 nm per minute.

また、不活性ガスによるエッチングの条件の例としては、エッチング時の圧力が1〜50Pa、ガス流量が毎分10〜50cm、入力パワーが0.2〜1.0W/cmである。Arのスパッタエッチング条件としては、エッチング時の圧力が5〜10Pa、Ar流量が毎分20〜30cm、入力パワーが0.25W/cmであり、Oプラズマを用いた表面清浄化処理の条件は、処理時の圧力が40〜50Pa、O流量が毎分30〜40cm、入力パワーが1.0W/cmであることが好ましい。上記の条件で、フッ素系ガスを除く反応性ガス、特に、Clによるエッチングを行ったところ、処理後の表面には殆ど残渣は残らず、Ra値も良好であった。さらに、Oプラズマを用いて表面清浄化処理を追加すると、残渣をほぼ完全に除去することができた。なお、SiC表面は化学的に安定であり、Oプラズマ処理後の表面に酸化膜による干渉色が観察されなかったことからも、処理後の表面が酸化膜で覆われていることは無かった。 Moreover, as an example of the conditions for etching with an inert gas, the pressure during etching is 1 to 50 Pa, the gas flow rate is 10 to 50 cm 3 per minute, and the input power is 0.2 to 1.0 W / cm 2 . As for the Ar sputter etching conditions, the pressure during etching is 5 to 10 Pa, the Ar flow rate is 20 to 30 cm 3 / min, the input power is 0.25 W / cm 2 , and surface cleaning treatment using O 2 plasma is performed. It is preferable that the pressure during processing is 40 to 50 Pa, the O 2 flow rate is 30 to 40 cm 3 per minute, and the input power is 1.0 W / cm 2 . Under the above-mentioned conditions, etching with a reactive gas excluding a fluorine-based gas, particularly Cl 2 was performed. As a result, almost no residue remained on the treated surface, and the Ra value was good. Furthermore, when a surface cleaning treatment was added using O 2 plasma, the residue could be removed almost completely. Note that the SiC surface was chemically stable, and no interference color due to the oxide film was observed on the surface after the O 2 plasma treatment, so that the surface after the treatment was not covered with the oxide film. .

(実施例1)
図2は、SiC単結晶インゴットからウエハ状にスライスし、粒径の大きいダイヤモンド研磨剤から順次粒径を小さくして研磨していき、最終的に平均粒径1μmのダイヤモンド研磨剤で研磨した後のSiC単結晶基板に、Arによるスパッタエッチングを行い、その後Clによる反応性エッチングを行った場合の表面のAFM像である。具体的なエッチング条件としては、Arについては、流量が毎分20cm、エッチング時の真空度が6.7Pa、入力パワーが0.25W/cmであり、Clについては、流量が毎分30cm、エッチング時の真空度が6.7Pa、入力パワーが1.0W/cmである。図1で、針状の異物として見えていたエッチング後の表面の荒れあるいは残渣が、図2においては、かなり除去されていることから、Clを用いた効果が明瞭に現れており、Ra値もRa=0.38nmと良好である。
Example 1
FIG. 2 shows a wafer sliced from a SiC single crystal ingot, and after polishing with a diamond abrasive having an average particle size of 1 μm after polishing with a diamond abrasive having a large particle size. 3 is an AFM image of the surface when a SiC single crystal substrate is subjected to sputter etching with Ar and then reactive etching with Cl 2 . As specific etching conditions, for Ar, the flow rate is 20 cm 3 / min, the degree of vacuum during etching is 6.7 Pa, the input power is 0.25 W / cm 2 , and for Cl 2 , the flow rate is per minute 30 cm 3 , the degree of vacuum during etching is 6.7 Pa, and the input power is 1.0 W / cm 2 . In FIG. 1, the roughened surface or residue after etching, which was seen as needle-like foreign matter, is considerably removed in FIG. 2, so that the effect of using Cl 2 appears clearly, and the Ra value Also, Ra = 0.38 nm is favorable.

(実施例2)
実施例1によって得られた表面に、さらに、Oプラズマによる清浄化処理を追加した後のAFM像を図3に示す。処理条件としては、Oの流量が毎分40cm、処理時の真空度が50Pa、入力パワーが1.0W/cmであり、図2で多少見られていたエッチング後の残渣が、ほぼ完全に除去されており、Ra値もRa=0.30nmと更に改善された。
(Example 2)
FIG. 3 shows an AFM image after the surface obtained in Example 1 is further cleaned with O 2 plasma. As the processing conditions, the flow rate of O 2 is 40 cm 3 per minute, the degree of vacuum during processing is 50 Pa, the input power is 1.0 W / cm 2 , and the residue after etching, which is somewhat seen in FIG. It was completely removed and the Ra value was further improved to Ra = 0.30 nm.

(実施例3)
実施例1で用いたのと同様の表面状態を有するSiC単結晶基板に、Clによる反応性エッチングのみを行った場合の表面のAFM像を図4に示す。エッチングの条件は、実施例1の場合と同じである。この場合も、表面に残渣は殆ど見られず、Ra値もRa=0.34nmと良好であり、Clのみでも効果のあることは明らかである。
なお、本実施例においては、Clによる反応性エッチングについて示したが、HCl、BCl等の塩素系ガスについても同様であることも確認している。
(Example 3)
FIG. 4 shows an AFM image of the surface when the SiC single crystal substrate having the same surface state as used in Example 1 is subjected only to reactive etching with Cl 2 . Etching conditions are the same as in the first embodiment. In this case as well, almost no residue is observed on the surface, the Ra value is also good, Ra = 0.34 nm, and it is clear that Cl 2 alone is effective.
In this embodiment, reactive etching using Cl 2 is shown, but it has been confirmed that the same applies to chlorine-based gases such as HCl and BCl 3 .

(比較例)
比較例として、フッ素系の反応性ガスを用いてエッチングを行った場合の表面のAFM像を図1に示す。ガスとしては、CFとOの混合ガスを用いており、CFについては、流量が毎分20cm、Oは、流量が毎分40cmで、エッチング時の真空度が50Pa、入力パワーが0.25W/cmである。Ra値がRa=1.48nmであり、実施例1〜3で得られた表面状態に比べ、明らかに劣っている。
(Comparative example)
As a comparative example, FIG. 1 shows an AFM image of the surface when etching is performed using a fluorine-based reactive gas. As the gas, a mixed gas of CF 4 and O 2 is used. As for CF 4 , the flow rate is 20 cm 3 / min, O 2 has a flow rate of 40 cm 3 / min, and the degree of vacuum during etching is 50 Pa. The power is 0.25 W / cm 2 . The Ra value is Ra = 1.48 nm, which is clearly inferior to the surface states obtained in Examples 1 to 3.

本発明によれば、SiC単結晶基板の表面に存在する加工変質部やイオン損傷部が除去され、かつ、その除去処理に伴う残渣や表面荒れが無く、清浄で平坦性に優れた表面を有する基板を作成することが可能である。そのため、このような基板上に電子デバイスを形成すれば、デバイスの特性が向上することが期待できる。   According to the present invention, a work-affected part or an ion-damaged part existing on the surface of a SiC single crystal substrate is removed, and there is no residue or surface roughness associated with the removal process, and the surface has a clean and excellent flatness It is possible to create a substrate. Therefore, if an electronic device is formed on such a substrate, it can be expected that the characteristics of the device are improved.

従来技術によって表面処理されたSiC単結晶基板のAFM像の一例Example of AFM image of SiC single crystal substrate surface-treated by conventional technology 実施例1で表面処理されたSiC単結晶基板AFM像の一例Example of SiC single crystal substrate AFM image surface-treated in Example 1 実施例2で表面処理されたSiC単結晶基板AFM像の他の例Another example of SiC single crystal substrate AFM image surface-treated in Example 2 実施例3で表面処理されたSiC単結晶基板AFM像の他の例Another example of SiC single crystal substrate AFM image surface-treated in Example 3

Claims (6)

炭化珪素単結晶基板表面の加工変質部を、フッ素系ガスを除く反応性ガスを用いたエッチングによって除去する工程を有することを特徴とする炭化珪素単結晶基板の製造方法。   A method for producing a silicon carbide single crystal substrate, comprising the step of removing a work-affected portion on the surface of the silicon carbide single crystal substrate by etching using a reactive gas excluding a fluorine-based gas. SiC単結晶基板表面の加工変質部を、不活性ガスを用いたエッチングによって除去し、前記エッチングの際に生じるイオン損傷層を、フッ素系ガスを除く反応性ガスを用いたエッチングによって除去する工程を有することを特徴とする炭化珪素単結晶基板の製造方法。   A process of removing a work-affected portion on the surface of the SiC single crystal substrate by etching using an inert gas, and removing an ion damage layer generated during the etching by etching using a reactive gas excluding a fluorine-based gas. A method for producing a silicon carbide single crystal substrate, comprising: 前記反応性ガス、不活性ガスを用いたエッチングを行う装置として、反応性イオンエッチング装置を用いる請求項1又は2に記載の炭化珪素単結晶基板の製造方法。   The method for manufacturing a silicon carbide single crystal substrate according to claim 1, wherein a reactive ion etching apparatus is used as an apparatus for performing etching using the reactive gas and the inert gas. 前記反応性ガスを用いたエッチングを行う際に使用するガスが塩素ガス(Cl)である請求項1又は2に記載の炭化珪素単結晶基板の製造方法。 3. The method for manufacturing a silicon carbide single crystal substrate according to claim 1, wherein a gas used when performing etching using the reactive gas is chlorine gas (Cl 2 ). 前記不活性ガスを用いたエッチングを行う際に使用するガスがアルゴンガス(Ar)である請求項2記載の炭化珪素単結晶基板の製造方法。   The method for producing a silicon carbide single crystal substrate according to claim 2, wherein a gas used when etching using the inert gas is argon gas (Ar). 前記エッチング後に、酸素ガス(O)プラズマを用いて表面清浄化処理を行う請求項1又は2に記載の炭化珪素単結晶基板の製造方法。 The method for manufacturing a silicon carbide single crystal substrate according to claim 1, wherein after the etching, surface cleaning treatment is performed using oxygen gas (O 2 ) plasma.
JP2005079818A 2005-03-18 2005-03-18 Method for manufacturing SiC single crystal substrate Active JP4427472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005079818A JP4427472B2 (en) 2005-03-18 2005-03-18 Method for manufacturing SiC single crystal substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005079818A JP4427472B2 (en) 2005-03-18 2005-03-18 Method for manufacturing SiC single crystal substrate

Publications (2)

Publication Number Publication Date
JP2006261563A true JP2006261563A (en) 2006-09-28
JP4427472B2 JP4427472B2 (en) 2010-03-10

Family

ID=37100429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005079818A Active JP4427472B2 (en) 2005-03-18 2005-03-18 Method for manufacturing SiC single crystal substrate

Country Status (1)

Country Link
JP (1) JP4427472B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164445A (en) * 2008-01-09 2009-07-23 Mitsubishi Electric Corp Etching processing method and method of manufacturing silicon carbide semiconductor device
WO2010064382A1 (en) 2008-12-02 2010-06-10 昭和電工株式会社 Semiconductor device and semiconductor device manufacturing method
WO2010087518A1 (en) 2009-01-30 2010-08-05 新日本製鐵株式会社 Epitaxial silicon carbide single crystal substrate and mehtod for producing same
JP2011219297A (en) * 2010-04-07 2011-11-04 Nippon Steel Corp Silicon carbide single crystal substrate, silicon carbide epitaxial wafer, and thin film epitaxial wafer
WO2012157679A1 (en) * 2011-05-18 2012-11-22 ローム株式会社 Semiconductor device and method for producing same
WO2013161591A1 (en) 2012-04-27 2013-10-31 三井金属鉱業株式会社 SiC SINGLE CRYSTAL SUBSTRATE
JP2014027093A (en) * 2012-07-26 2014-02-06 Sumitomo Electric Ind Ltd Method for manufacturing silicon carbide substrate
JP2016171171A (en) * 2015-03-12 2016-09-23 新日鐵住金株式会社 Method for producing silicon carbide single crystal substrate
CN110299403A (en) * 2014-11-27 2019-10-01 住友电气工业株式会社 Silicon carbide substrate
CN115799061A (en) * 2023-01-09 2023-03-14 浙江大学杭州国际科创中心 SiC wafer cutting piece processing method and SiC wafer cutting piece processing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534808B (en) * 2010-12-14 2014-11-05 北京天科合达蓝光半导体有限公司 Method for obtaining high-quality silicon carbide surfaces

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164445A (en) * 2008-01-09 2009-07-23 Mitsubishi Electric Corp Etching processing method and method of manufacturing silicon carbide semiconductor device
US8513674B2 (en) 2008-12-02 2013-08-20 Showa Denko K.K. Semiconductor device and method of manufacturing the same
WO2010064382A1 (en) 2008-12-02 2010-06-10 昭和電工株式会社 Semiconductor device and semiconductor device manufacturing method
WO2010087518A1 (en) 2009-01-30 2010-08-05 新日本製鐵株式会社 Epitaxial silicon carbide single crystal substrate and mehtod for producing same
JP2011219297A (en) * 2010-04-07 2011-11-04 Nippon Steel Corp Silicon carbide single crystal substrate, silicon carbide epitaxial wafer, and thin film epitaxial wafer
US9111769B2 (en) 2011-05-18 2015-08-18 Rohm Co., Ltd. Semiconductor device and method for producing same
US9548353B2 (en) 2011-05-18 2017-01-17 Rohm Co., Ltd. Wide band-gap semiconductor device including schotky electrode and method for producing same
CN103534810A (en) * 2011-05-18 2014-01-22 罗姆股份有限公司 Semiconductor device and method for producing same
JP2019176165A (en) * 2011-05-18 2019-10-10 ローム株式会社 Semiconductor device
JPWO2012157679A1 (en) * 2011-05-18 2014-07-31 ローム株式会社 Semiconductor device and manufacturing method thereof
WO2012157679A1 (en) * 2011-05-18 2012-11-22 ローム株式会社 Semiconductor device and method for producing same
JP2016066813A (en) * 2011-05-18 2016-04-28 ローム株式会社 Semiconductor device and method of manufacturing the same
US9391148B2 (en) 2012-04-27 2016-07-12 Mitsui Mining & Smelting Co., Ltd. SiC single crystal substrate
WO2013161591A1 (en) 2012-04-27 2013-10-31 三井金属鉱業株式会社 SiC SINGLE CRYSTAL SUBSTRATE
JP2014027093A (en) * 2012-07-26 2014-02-06 Sumitomo Electric Ind Ltd Method for manufacturing silicon carbide substrate
CN110299403A (en) * 2014-11-27 2019-10-01 住友电气工业株式会社 Silicon carbide substrate
CN110299403B (en) * 2014-11-27 2022-03-25 住友电气工业株式会社 Silicon carbide substrate
JP2016171171A (en) * 2015-03-12 2016-09-23 新日鐵住金株式会社 Method for producing silicon carbide single crystal substrate
CN115799061A (en) * 2023-01-09 2023-03-14 浙江大学杭州国际科创中心 SiC wafer cutting piece processing method and SiC wafer cutting piece processing device
CN115799061B (en) * 2023-01-09 2023-09-05 浙江大学杭州国际科创中心 SiC wafer dicing sheet processing method and SiC wafer dicing sheet processing apparatus

Also Published As

Publication number Publication date
JP4427472B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
JP4427472B2 (en) Method for manufacturing SiC single crystal substrate
JP4678039B2 (en) SiC substrate
EP1827871B1 (en) Methods for removing black silicon and black silicon carbide from surfaces of silicon and silicon carbide electrodes for plasma processing apparatuses
JP4148105B2 (en) Method for manufacturing SiC substrate
TW200524833A (en) Methods of finishing quartz glass surfaces and components made by the methods
JP2006328455A (en) Epitaxial silicon carbide single crystal substrate, and its manufacturing method
KR102499512B1 (en) Manufacturing method of bonded SOI wafer
JP2007204286A (en) Method for manufacturing epitaxial wafer
JP2006032655A (en) Manufacturing method of silicon carbide substrate
JP6380245B2 (en) Manufacturing method of SOI wafer
JP5522175B2 (en) Manufacturing method of SOI wafer
JP4584592B2 (en) Improved method for etching vias
JPH06188163A (en) Sic single-crystal substrate for manufacturing semiconductor device and its manufacture
JP2014028723A (en) Group 13 element nitride substrate and method for producing the same
US20230052218A1 (en) METHOD OF SiC WAFER PROCESSING
JP2010171330A (en) Method of manufacturing epitaxial wafer, defect removing method, and the epitaxial wafer
JP7160469B2 (en) METHOD FOR REDUCING METAL CONTAMINATION ON THE SURFACE OF A SUBSTRATE
TWI483350B (en) SOI wafer manufacturing method and glass cleaning method
JP6415360B2 (en) Method for manufacturing silicon carbide single crystal substrate
WO2007049435A1 (en) Semiconductor wafer manufacturing method and semiconductor wafer cleaning method
JP2007019323A (en) Method for regenerating bond wafer and bond wafer, and method for manufacturing ssoi wafer
CN117393422B (en) Method for manufacturing silicon carbide composite substrate
TWI802406B (en) METHOD OF SiC WAFER PROCESSING
WO2015056386A1 (en) Bonded wafer manufacturing method
WO2022091831A1 (en) Method for producing support substrate for bonded wafer, and support substrate for bonded wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R151 Written notification of patent or utility model registration

Ref document number: 4427472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350