JP2006259132A - Stair-shaped diffraction element and optical head apparatus - Google Patents

Stair-shaped diffraction element and optical head apparatus Download PDF

Info

Publication number
JP2006259132A
JP2006259132A JP2005075408A JP2005075408A JP2006259132A JP 2006259132 A JP2006259132 A JP 2006259132A JP 2005075408 A JP2005075408 A JP 2005075408A JP 2005075408 A JP2005075408 A JP 2005075408A JP 2006259132 A JP2006259132 A JP 2006259132A
Authority
JP
Japan
Prior art keywords
stepped
light
diffraction element
steps
diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005075408A
Other languages
Japanese (ja)
Other versions
JP4613651B2 (en
Inventor
Toshimasa Kakiuchi
利昌 垣内
Chikashi Takatani
周志 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2005075408A priority Critical patent/JP4613651B2/en
Publication of JP2006259132A publication Critical patent/JP2006259132A/en
Application granted granted Critical
Publication of JP4613651B2 publication Critical patent/JP4613651B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stair-shaped diffraction element and an optical head apparatus by which desired characteristic can be easily obtained. <P>SOLUTION: The stair-shaped diffraction element 100 is equipped with a plurality of stair members 120 having stair-shaped steps of even multiple of an integer (m) of ≥2 and diffracts light of predetermined wavelength λ. The stair members 120 is constituted of a polymer liquid crystal with double refractivity. When refractive index difference between a medium 130 being in contact with the respective stair members 120 and the respective stair members 120 is Δn, level difference (d) between respective stair-shaped steps is equal to λ/(2mΔn) and respective stair-shaped steps are arranged so that width has periodicity of a half period of pitches of the stair-shaped diffraction element 100. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、入射光を回折させて出射する階段状回折素子および光ヘッド装置に関し、特に2次の回折光の強度を抑制できる階段状回折素子および光ヘッド装置に関する。   The present invention relates to a staircase diffractive element and an optical head device that diffracts and emits incident light, and more particularly to a staircase diffractive element and an optical head device that can suppress the intensity of secondary diffracted light.

従来、CD、DVD等の光記録媒体に光学的情報を記録し、光記録媒体に記録された光学的情報を再生する光ヘッド装置において、光学的情報の読み出し、フォーカシングサーボおよびトラッキングサーボを行うために、ピッチの異なる複数の回折格子を有する回折素子が用いられていた(例えば、特許文献1参照。)。図9は、光記録媒体からの戻り光が入射する回折素子と、回折素子からの±1次の回折光を受光する受光器上の受光面の配置を示す説明図である。   Conventionally, in an optical head device that records optical information on an optical recording medium such as a CD and a DVD and reproduces the optical information recorded on the optical recording medium, in order to perform optical information reading, focusing servo, and tracking servo In addition, a diffraction element having a plurality of diffraction gratings having different pitches has been used (for example, see Patent Document 1). FIG. 9 is an explanatory diagram showing the arrangement of the diffraction element on which the return light from the optical recording medium is incident and the light receiving surface on the light receiver that receives the ± 1st order diffracted light from the diffraction element.

図9において、戻り光90は、回折素子70に入射し、±1次の回折光が主成分の回折光となる。ここで、受光面71〜74には、回折素子70からの+1次の回折光91〜94が入射し、受光面75〜78には、回折素子70からの−1次の回折光95〜98が入射するようになっている。光記録媒体に記録された光学的情報の読み取りのためのRF信号と、フォーカシングサーボおよびトラッキングサーボを行うためのサーボ信号との生成は、受光面71〜74と受光面75〜78とで検出された信号を加減(線形結合)して行う。   In FIG. 9, the return light 90 is incident on the diffraction element 70, and ± first-order diffracted light becomes the diffracted light of the main component. Here, the + 1st order diffracted lights 91 to 94 from the diffractive element 70 enter the light receiving surfaces 71 to 74, and the −1st order diffracted lights 95 to 98 from the diffractive element 70 enter the light receiving surfaces 75 to 78. Is incident. Generation of an RF signal for reading optical information recorded on the optical recording medium and a servo signal for performing focusing servo and tracking servo is detected by the light receiving surfaces 71 to 74 and the light receiving surfaces 75 to 78. This is done by adding or subtracting (linearly combining) the received signals.

ここで、ブレーズド回折格子を用いた場合、例えば図9に示すように、2次の回折光99が迷光となって、いずれか1つ以上の受光面(図9では、受光面75、76)に入射し、光ヘッド装置の誤動作を生じさせることがある。係る誤動作がなく、+1次の回折光と−1次の回折光との回折効率の比を所定値に設定するための回折素子として、例えば特許文献1に記載の、4ステップの擬似ブレーズド回折格子を有する回折素子がある。この回折素子は、各ステップの幅が1つおきに同一の4ステップからなる回折格子からなる。
特開2004−139728号公報
Here, when a blazed diffraction grating is used, for example, as shown in FIG. 9, the second-order diffracted light 99 becomes stray light, and one or more light receiving surfaces (in FIG. 9, light receiving surfaces 75 and 76). May cause a malfunction of the optical head device. As a diffractive element for setting the ratio of the diffraction efficiency of the + 1st order diffracted light and the −1st order diffracted light to a predetermined value without such malfunction, for example, a four-step pseudo-blazed diffraction grating described in Patent Document 1 There is a diffractive element having This diffractive element is composed of a diffraction grating composed of four steps having the same width of every step.
JP 2004-139728 A

しかし、このような従来の階段状回折素子では、階段部材の材料にニオブ酸リチウム等の複屈折性を示す無機物を用いているため、所望の形状の段差を形成し難いという問題があった。ステップの幅の精度、ステップの形状等に応じて回折効率が大きく変化してしまい、所望の特性の階段状回折素子を作製することが困難であった。また、4ステップを超えるステップ数の擬似ブレーズド回折格子を有する従来の階段状回折素子は、ステップの幅が均等であるため、例えば+1次光のみが発生し、−1次光は発生しないため、別途、ウォラストンプリズムを用いてビームを分岐する必要があるという問題があった。   However, such a conventional stepped diffraction element has a problem that it is difficult to form a step having a desired shape because an inorganic material such as lithium niobate is used as the material of the step member. The diffraction efficiency changes greatly depending on the accuracy of the step width, the shape of the step, etc., and it is difficult to produce a stepped diffraction element having desired characteristics. In addition, the conventional stepped diffraction element having the pseudo-blazed diffraction grating having the number of steps exceeding 4 steps has a uniform step width, so that, for example, only the + 1st order light is generated and the −1st order light is not generated. There was another problem that it was necessary to split the beam using a Wollaston prism.

本発明はこのような問題を解決するためになされたもので、所望の特性を容易に得ることが可能な階段状回折素子および光ヘッド装置を提供するものである。   The present invention has been made to solve such a problem, and provides a stepped diffraction element and an optical head device capable of easily obtaining desired characteristics.

以上の点を考慮して、請求項1に係る発明は、等方性材料からなる透明基板と、前記透明基板上に設けられ、2以上の整数mの偶数倍の段状ステップからなる階段状の断面形状を有する階段部材が回折格子状に複数配置された階段状回折格子と、前記階段状回折格子の階段部分を埋めるように配置されていて、光学的等方性材料および光学的異方性材料のいずれかからなる光学媒質とを備え、所定の波長λの光を回折させる階段状回折素子であって、前記階段部材が、複屈折性を有する高分子液晶によって構成され、前記階段部材の長手方向に偏光した直線偏光に対する前記階段状回折格子と前記光学媒質との屈折率差をΔnとするとき、各前記段状ステップ間の段差dがλ/(2mΔn)に等しく、前記階段部材の段の低い方からmステップとこれに引き続くmステップとで対応する段状ステップの幅が相互に等しい構成を有している。   In view of the above points, the invention according to claim 1 is a stepped structure comprising a transparent substrate made of an isotropic material, and stepped steps provided on the transparent substrate and an even multiple of an integer m of 2 or more. A step-like diffraction grating in which a plurality of step members having a cross-sectional shape are arranged in a diffraction grating shape, and an optically isotropic material and an optically anisotropic material arranged so as to fill the stepped portion of the step-like diffraction grating And a stair-like diffractive element that diffracts light of a predetermined wavelength λ, wherein the stair member is composed of a polymer liquid crystal having birefringence, and the stair member When the refractive index difference between the stepped diffraction grating and the optical medium for linearly polarized light polarized in the longitudinal direction is Δn, the step d between the stepped steps is equal to λ / (2mΔn), and the step member M steps from the lowest step The width of the corresponding stepped steps are of equal construction to each other and subsequent m steps thereto.

この構成により、階段部材が、複屈折性を有する高分子液晶によって構成されるため、所望の形状の段差を容易に形成でき、所望の特性を容易に得ることが可能な階段状回折素子を実現できる。高分子液晶は、無機材料と比べて加工性が良いことに加え、特許文献1に記載されているようなプロトン交換領域等を必要とせず、屈折率を調整するだけで容易に2次の回折光を抑制できる。また、複屈折性を有する部分の厚さが薄いので、偏光方向が所望の方向から多少ずれても2次の回折が生じにくくなっている。さらに、偏光方向に依存する特性を付与できる。   With this configuration, since the staircase member is composed of a birefringent polymer liquid crystal, a stepped diffractive element that can easily form a step with a desired shape and easily obtain a desired characteristic is realized. it can. The polymer liquid crystal has good workability compared to inorganic materials, and does not require a proton exchange region as described in Patent Document 1, and can easily perform second-order diffraction simply by adjusting the refractive index. Light can be suppressed. Further, since the thickness of the portion having birefringence is thin, even if the polarization direction is slightly deviated from the desired direction, it is difficult for second-order diffraction to occur. Furthermore, characteristics depending on the polarization direction can be imparted.

また、請求項2に係る発明は、請求項1において、前記光学媒質が液晶によって構成される。   According to a second aspect of the present invention, in the first aspect, the optical medium is composed of a liquid crystal.

この構成により、請求項1の効果に加え、液晶に印加する電圧を切り替えることによって液晶の屈折率を切り替えることができ、複数の波長の光に対して機能する階段状回折素子を実現できる。   With this configuration, in addition to the effect of the first aspect, the refractive index of the liquid crystal can be switched by switching the voltage applied to the liquid crystal, and a stepped diffraction element that functions for light of a plurality of wavelengths can be realized.

また、請求項3に係る発明は、請求項1または2において、前記階段部材の長手方向に直交する方向に偏光した直線偏光に対する前記階段状回折格子と前記光学媒質の屈折率が相互に等しい構成を有している。   The invention according to claim 3 is the structure according to claim 1 or 2, wherein the refractive indices of the stepped diffraction grating and the optical medium are equal to each other for linearly polarized light polarized in a direction orthogonal to the longitudinal direction of the stepped member. have.

この構成により、請求項1または2の効果に加え、往復の光路で偏光方向が直交する直線偏光の光を通過させる構成の光学系内に配置し、往復のいずれかの光のみを回折させることが可能な階段状回折素子を実現できる。   According to this configuration, in addition to the effect of claim 1 or 2, it is arranged in an optical system configured to pass linearly polarized light whose polarization direction is orthogonal in the reciprocating optical path, and only one of the reciprocating light is diffracted. Can be realized.

また、請求項4に係る発明は、請求項1から3までのいずれか1項において、前記整数mが、2、3および4のいずれかである構成を有している。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the integer m is any one of 2, 3, and 4.

この構成により、請求項1から3までのいずれか1項の効果に加え、段状ステップの数が4、6および8と少ないため、容易に作成することが可能な階段状回折素子を実現できる。   With this configuration, in addition to the effect of any one of claims 1 to 3, since the number of stepped steps is as small as 4, 6, and 8, a stepped diffraction element that can be easily formed can be realized. .

また、請求項5に係る発明は、請求項1から4までのいずれか1項において、前記整数mが2で、隣り合う段状ステップの幅の比が3:7となっている構成を有している。   The invention according to claim 5 has a configuration in which, in any one of claims 1 to 4, the integer m is 2, and the width ratio of adjacent stepped steps is 3: 7. is doing.

この構成により、段状ステップの数が4で、隣り合う段状ステップの幅の比が3:7となっているため、+1次の回折光と−1次の回折光との強度を9:1程度にすることが可能な階段状回折素子を実現できる。   With this configuration, since the number of stepped steps is 4 and the ratio of the width of adjacent stepped steps is 3: 7, the intensity of the + 1st order diffracted light and the −1st order diffracted light is 9: A stepped diffraction element that can be reduced to about 1 can be realized.

また、請求項6に係る発明は、前記透明基板上に設けられ、3以上の整数mの偶数倍の段状ステップからなる階段状の断面形状の階段部材が回折格子状に複数の配置された階段状回折格子とを備え、所定の波長λの光を回折させる階段状回折素子であって、前記段状ステップに接する媒質と前記階段状回折格子との屈折率差をΔnとするとき、各前記段状ステップ間の段差dがλ/(2mΔn)に等しく、前記階段部材の段の低い方からmステップとこれに引き続くmステップとで対応する段状ステップの幅が相互に等しい構成を有している。   Further, the invention according to claim 6 is provided on the transparent substrate, and a plurality of step members having a step-like cross-sectional shape including stepped steps of an even number multiple of an integer m of 3 or more are arranged in a diffraction grating shape. A stepped diffraction element that diffracts light of a predetermined wavelength λ, and when the refractive index difference between the medium in contact with the stepped step and the stepped diffraction grating is Δn, The step d between the stepped steps is equal to λ / (2mΔn), and the widths of the corresponding stepped steps from the lower step of the stepped member to the step m are equal to each other. is doing.

この構成により、段状ステップの数が6以上で、各段状ステップ間の段差dがλ/(2mΔn)に等しく、各段状ステップの幅が階段状回折素子のピッチの半分の周期の周期性を有するため、設計の自由度を有すると共に、±2次の回折光を抑制することが可能な階段状回折素子を実現できる。ここで、階段状回折素子のピッチとは、階段状回折格子の長手方向に直交する方向における、ある段状ステップから隣り合う同一の高さの段状ステップまでの距離をいう。また、m=2で最大の回折効率が81.1%であるのに対して、m=3およびm=4で最大の回折効率をそれぞれで91.2%および95%にでき、回折効率を高くすることができる。   With this configuration, the number of stepped steps is 6 or more, the step d between the stepped steps is equal to λ / (2mΔn), and the width of each stepped step is a period of half the pitch of the stepped diffraction element. Therefore, it is possible to realize a stepped diffraction element that has a degree of freedom in design and can suppress ± second-order diffracted light. Here, the pitch of the stepped diffraction element refers to a distance from a stepped step to an adjacent stepped step having the same height in a direction orthogonal to the longitudinal direction of the stepped diffraction grating. Further, the maximum diffraction efficiency is 81.1% at m = 2, whereas the maximum diffraction efficiency can be 91.2% and 95% at m = 3 and m = 4, respectively. Can be high.

また、請求項7に係る発明は、請求項6において、前記階段状回折格子の階段部分を埋めるように配置された液晶を備える構成を有している。   The invention according to claim 7 has a configuration comprising liquid crystal arranged in claim 6 so as to fill a stepped portion of the stepped diffraction grating.

この構成により、請求項6の効果に加え、液晶に印加する電圧を切り替えることによって液晶の屈折率を切り替えることができ、複数の波長の光に対して機能する階段状回折素子を実現できる。   With this configuration, in addition to the effect of the sixth aspect, the refractive index of the liquid crystal can be switched by switching the voltage applied to the liquid crystal, and a stepped diffraction element that functions for light of a plurality of wavelengths can be realized.

また、請求項8に係る発明は、請求項6または7において、前記整数mが、3または4である構成を有している。   The invention according to claim 8 has a configuration in which the integer m is 3 or 4 in claim 6 or 7.

この構成により、請求項6または7の効果に加え、段状ステップの数が6または8と少ないため、容易に作成することが可能な階段状回折素子を実現できる。また、m=2で最大の回折効率が81.1%であるのに対して、m=3およびm=4で最大の回折効率をそれぞれで91.2%および95%にでき、回折効率を高くすることができる。   With this configuration, in addition to the effect of the sixth or seventh aspect, the number of stepped steps is as small as 6 or 8, and therefore a stepped diffraction element that can be easily formed can be realized. Further, the maximum diffraction efficiency is 81.1% at m = 2, whereas the maximum diffraction efficiency can be 91.2% and 95% at m = 3 and m = 4, respectively. Can be high.

また、請求項9に係る発明は、光源と、前記光源からの出射光を光記録媒体へ集光する対物レンズと、前記対物レンズによって集光され前記光記録媒体により反射された戻り光を検出する光検出器とを備える光ヘッド装置において、前記光検出器と前記光源との間の光路中に、請求項1から8までのいずれか1項に記載の階段状回折素子が配置されている構成を有している。   According to a ninth aspect of the invention, there is provided a light source, an objective lens that condenses the light emitted from the light source onto an optical recording medium, and return light that is collected by the objective lens and reflected by the optical recording medium. An optical head device comprising a photodetector that performs the step-like diffraction element according to any one of claims 1 to 8, wherein the stepped diffraction element is disposed in an optical path between the photodetector and the light source. It has a configuration.

この構成により、請求項1から8までのいずれか1項の効果を有していて、光利用効率の高い光ヘッド装置を実現できる。   With this configuration, the optical head device having the effect of any one of claims 1 to 8 and having high light utilization efficiency can be realized.

本発明は、階段部材が、複屈折性を有する高分子液晶によって構成されるため、所望の形状の段差を容易に形成でき、所望の特性を容易に得ることができるという効果を有する階段状回折素子および光ヘッド装置を提供できる。さらに、段状ステップの数が4以上で、各段状ステップ間の段差dがλ/(2mΔn)に等しく、各段状ステップの幅が階段状回折素子のピッチの半分の周期の周期性を有するため、設計の自由度を有すると共に、±2次の回折光を抑制することができ、所望の特性を容易に得ることができる。また、偏光型の階段状回折素子を偏光ビームスプリッタと対物レンズとの間に設置することは、光ヘッド装置内でスペースを確保しやすいため、軸調整も容易であって、その特性を充分に発揮させることができる。   In the present invention, since the staircase member is composed of a polymer liquid crystal having birefringence, a stepped diffraction having an effect that a step having a desired shape can be easily formed and a desired characteristic can be easily obtained. An element and an optical head device can be provided. Further, the number of stepped steps is 4 or more, the step d between the stepped steps is equal to λ / (2mΔn), and the width of each stepped step has a periodicity that is half the pitch of the stepped diffraction element. Therefore, it has a degree of freedom in design and can suppress ± second-order diffracted light, and can easily obtain desired characteristics. In addition, installing a polarization-type stepped diffraction element between the polarizing beam splitter and the objective lens makes it easy to secure space in the optical head device, so that the axis can be easily adjusted, and its characteristics are sufficient. It can be demonstrated.

以下、本発明の実施の形態について、図面を用いて説明する。
(実施の形態)
図1は、本発明の実施の形態に係る階段状回折素子の模式的な構成を示す断面図である。図1(a)において、階段状回折素子100は、平行に配置された1対の透明基板111、112と、透明基板111上に設けられた4以上の偶数(図1(a)では4。)の段状ステップを有する複数の階段部材120と、透明基板111および階段部材120と透明基板112との間に充填された、屈折率が等方的な光学媒質130と、光学媒質130を密閉するためのシール140とを備え、偏光型の回折素子を構成する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Embodiment)
FIG. 1 is a cross-sectional view showing a schematic configuration of a stepped diffraction element according to an embodiment of the present invention. In FIG. 1A, a stepped diffraction element 100 includes a pair of transparent substrates 111 and 112 arranged in parallel and four or more even numbers (4 in FIG. 1A) provided on the transparent substrate 111. A plurality of step members 120 having stepped steps), an optical medium 130 having an isotropic refractive index filled between the transparent substrate 111 and the step member 120 and the transparent substrate 112, and the optical medium 130 sealed. And a polarization type diffraction element.

図1(a)において、透明基板111、112としては、耐久性、信頼性等の点からガラス基板が好適である。ただし、軽量で安価なことから、アクリル系樹脂、エポキシ系樹脂、塩化ビニル系樹脂、ポリカーボネート等の有機物質からなるものを用いてもよい。   In FIG. 1A, as the transparent substrates 111 and 112, glass substrates are preferable from the viewpoint of durability, reliability, and the like. However, since it is lightweight and inexpensive, an organic resin such as an acrylic resin, an epoxy resin, a vinyl chloride resin, or polycarbonate may be used.

階段部材120は、複屈折性を有し、図1(a)に示す断面と垂直な方向に長手方向が向き、回折格子をなすように透明基板111上に周期的に形成される。ここで、階段部材120は、異常光屈折率の方向が例えば上記の長手方向を向くようになっている。また、図2(a)に示すように、階段部材120の各段状ステップ121〜124は、各段状ステップ間の段差(以下、ステップ間段差という。)がdである。   The staircase member 120 has birefringence and is periodically formed on the transparent substrate 111 so that its longitudinal direction is in a direction perpendicular to the cross section shown in FIG. 1A and forms a diffraction grating. Here, the staircase member 120 is configured such that the direction of the extraordinary light refractive index is, for example, the above-described longitudinal direction. Moreover, as shown to Fig.2 (a), as for each step-like step 121-124 of the staircase member 120, the level | step difference (henceforth a step difference between steps) between each step-like step is d.

ここで、階段部材120を構成する段状ステップの個数が2m個のとき、厚さの最も薄い段状ステップから連続してm個の段状ステップを第1の段状ステップ群といい、残りの厚いm個の段状ステップを第2の段状ステップ群という。また、第1の段状ステップ群を構成する各段状ステップの幅の比を厚さの薄い方からr11:r12:・・・:r1mとし、第2の段状ステップ群を構成する各段状ステップの幅の比を厚さの薄い方からr21:r22:・・・:r2mとし、第1の段状ステップ群125と第2の段状ステップ群126とは同一の幅となっているものとする。ここで、ステップの幅とは、断面形状が階段となっているときの幅をいう。 Here, when the number of stepped steps constituting the staircase member 120 is 2 m, the m stepped steps starting from the thinnest stepped step are referred to as a first stepped step group, and the rest The thick m stepped steps are referred to as a second stepped step group. Further, the ratio of the widths of the stepped steps constituting the first stepped step group is set to r 11 : r 12 :...: R 1 m from the smallest thickness to form the second stepped step group. The ratio of the width of each stepped step is set to r 21 : r 22 :...: R 2m from the smallest thickness, and the first stepped step group 125 and the second stepped step group 126 are the same. It is assumed that it is the width of. Here, the width of the step refers to the width when the cross-sectional shape is a staircase.

m=2の例である上記の階段部材120は、各段状ステップ121〜124がr11:r12=r21:r22となっている。換言すれば、第1の段状ステップ群125と第2の段状ステップ群126とは、段状ステップ121〜124の幅が回折格子のピッチpの半分の周期p/2の周期性を有する。具体的には、第1の段状ステップ121と第3の段状ステップ123の幅がともにwで、第2の段状ステップ122と第4の段状ステップ124の幅がともに(p/2)−wになっている。 It said stair member 120 is an example of m = 2, each stepped steps 121 to 124 r 11: r 12 = r 21 : has a r 22. In other words, the first stepped step group 125 and the second stepped step group 126 have a periodicity of a period p / 2 in which the width of the stepped steps 121 to 124 is half the pitch p of the diffraction grating. . Specifically, the widths of the first stepped step 121 and the third stepped step 123 are both w, and the widths of the second stepped step 122 and the fourth stepped step 124 are both (p / 2). ) -W.

階段部材120には、例えばアクリル系の高分子液晶を用いることができる。[化1]に示す液晶化合物(1)、(2)、(3)および(4)をモル比14:14:36:36で混合した光重合性液晶化合物を調整し、高分子液晶を形成する。   For the staircase member 120, for example, an acrylic polymer liquid crystal can be used. A liquid crystal compound (1), (2), (3) and (4) shown in [Chemical Formula 1] is mixed at a molar ratio of 14: 14: 36: 36 to prepare a polymer liquid crystal. To do.

Figure 2006259132
Figure 2006259132

この場合、液晶化合物を透明基板111上に塗布し、UV光等を照射し固化させて高分子液晶とし、フォトリソグラフィ技術とエッチング技術を用いて上記の階段状の形状とする。高分子液晶はフォトリソグラフィ技術とエッチング技術を用いて所望の形状を得るのが容易な材料であるため、高分子液晶を用いて階段部材の階段状の断面形状を容易に形成することができる。   In this case, a liquid crystal compound is applied on the transparent substrate 111, irradiated with UV light or the like to be solidified to obtain a polymer liquid crystal, and the above stepped shape is formed by using a photolithography technique and an etching technique. Since the polymer liquid crystal is a material that can easily obtain a desired shape by using a photolithography technique and an etching technique, the stepped cross-sectional shape of the staircase member can be easily formed using the polymer liquid crystal.

また、高分子液晶の配向方向は、不図示の配向膜を設け、配向膜のラビング方向等を調節することによって設定できるほか、SiO等を斜め蒸着すること、イオンビームを照射すること等によっても設定することができる。以下、階段部材120には高分子液晶を用い、透明基板111と階段部材120との界面には、ラビング処理された配向膜が形成されているものとする。 In addition, the alignment direction of the polymer liquid crystal can be set by providing an alignment film (not shown) and adjusting the rubbing direction of the alignment film, or by obliquely depositing SiO 2 or the like, irradiating an ion beam, etc. Can also be set. Hereinafter, it is assumed that a polymer liquid crystal is used for the staircase member 120 and a rubbing alignment film is formed on the interface between the transparent substrate 111 and the staircase member 120.

光学媒質130は、ポリエステル系、アクリル系等の材料からなり、いわゆる充填材として用いることができる。ここで、例えば階段部材120の常光屈折率と光学媒質130の屈折率は略一致するようになっている。また、階段部材120のステップ間段差dは、階段部材120と光学媒質130との屈折率の差Δn(>0。以下、階段部材屈折率差という。)に応じて決定される。   The optical medium 130 is made of a material such as polyester or acrylic, and can be used as a so-called filler. Here, for example, the ordinary light refractive index of the staircase member 120 and the refractive index of the optical medium 130 are substantially matched. The step difference d between the steps of the staircase member 120 is determined in accordance with the refractive index difference Δn between the staircase member 120 and the optical medium 130 (> 0, hereinafter referred to as a staircase member refractive index difference).

具体的には、入射光の波長をλとするとき、階段部材120のステップ間段差dは、λ/(4Δn)になっている。また、一般の場合、すなわち、段状ステップの個数が2m個のとき、ステップ間段差dはλ/(2mΔn)になっている。この段差によって、λ/(2m)光路長差が発生するようになっている。   Specifically, when the wavelength of the incident light is λ, the step difference d between steps of the staircase member 120 is λ / (4Δn). In the general case, that is, when the number of stepped steps is 2 m, the step difference d between steps is λ / (2mΔn). Due to this step, a λ / (2 m) optical path length difference is generated.

シール140は、透明基板112の光学的有効領域の外に印刷法を用いて形成され、透明基板111と透明基板112とを張り合わせることによって透明基板111、112間の間隔が一定に保持されるように設けられる。シール140として、エポキシ樹脂等の熱硬化型高分子、紫外線硬化型樹脂等を用いることができ、所望のセル間隔を得るためにシール140にガラスファイバ等のスペーサを数%混入させるのでもよい。   The seal 140 is formed outside the optically effective area of the transparent substrate 112 using a printing method, and the distance between the transparent substrates 111 and 112 is kept constant by bonding the transparent substrate 111 and the transparent substrate 112 together. It is provided as follows. As the seal 140, a thermosetting polymer such as an epoxy resin, an ultraviolet curable resin, or the like can be used, and a spacer such as a glass fiber may be mixed into the seal 140 in order to obtain a desired cell interval.

図2(c)は、第1の段状ステップ121の比率(以下、幅比率という。)r11に対する、+1次の回折光と−1次の回折光の強度の和、+1次の回折光と−1次の回折光の強度比、+2次の回折光と+1次の回折光の強度比、および、−2次の回折光と−1次の回折光の強度比を示す表である。+1次の回折光と−1次の回折光の強度の和は、入射光に対する比で表す。図2(d)は、図2(c)に示す幅比率r11に対する+1次の回折光と−1次の回折光の強度比の関係を示す図である。 FIG. 2C shows the sum of the intensities of the + 1st order diffracted light and the −1st order diffracted light, and the + 1st order diffracted light with respect to the ratio (hereinafter referred to as width ratio) r 11 of the first stepped step 121. 4 is a table showing the intensity ratio of -1st order diffracted light, the intensity ratio of + 2nd order diffracted light and + 1st order diffracted light, and the intensity ratio of -2nd order diffracted light and -1st order diffracted light. The sum of the intensities of the + 1st order diffracted light and the −1st order diffracted light is expressed as a ratio to the incident light. FIG. 2D is a diagram showing the relationship between the intensity ratio of the + 1st order diffracted light and the −1st order diffracted light with respect to the width ratio r 11 shown in FIG.

ここで、図2(a)に示すように、波長λは0.405μm、ステップ間段差dは約2.154μm、高分子液晶の常光屈折率nおよび異常光屈折率nはそれぞれ1.541および1.588であり、光学媒質130の屈折率は1.541である。また、ピッチpは26.1μmである。図2(c)および図2(d)から、+1次の回折光と−1次の回折光の強度比は、幅比率r11が0.15近傍または0.35近傍で、10となることが分かる。 Here, as shown in FIG. 2 (a), each wavelength lambda 0.405 .mu.m, the level difference d between steps about 2.154Myuemu, the ordinary refractive index n o and extraordinary index n e of the polymer liquid crystal 1. 541 and 1.588, and the refractive index of the optical medium 130 is 1.541. The pitch p is 26.1 μm. From FIGS. 2 (c) and 2 (d), + 1-order intensity ratio of the diffracted light and -1-order diffracted light, the width ratio r 11 is 0.15 or near 0.35 neighborhood, be a 10 I understand.

図3(c)は、m=3のときの図2(c)に対応する図であり、r12が0.1に固定されている。図3(d)は、図3(c)に示す幅比率r11に対する+1次の回折光と−1次の回折光の強度比の関係を示す図である。ここで、図3(a)に示すように、波長λは0.405μm、ステップ間段差dは約1.436μm、高分子液晶の常光屈折率nおよび異常光屈折率nはそれぞれ1.541および1.588であり、等方光学媒質の屈折率は1.541である。図3(c)および図3(d)から、+1次の回折光と−1次の回折光の強度比は、幅比率r11が0.08近傍または0.32近傍で、10となることが分かり、+1次の回折光と−1次の回折光の強度比の変化がm=2のときのものよりも小さくなっていることが分かる。このように強度比の変化を小さくできるため、プロセス上のマージンを広げることが可能となり、階段状回折素子を容易に作製できるようにできる。 3 (c) is a view corresponding to FIG. 2 (c) in the case of m = 3, r 12 is fixed to 0.1. FIG. 3D is a diagram showing the relationship between the intensity ratio of the + 1st order diffracted light and the −1st order diffracted light with respect to the width ratio r 11 shown in FIG. Here, as shown in FIG. 3 (a), each wavelength lambda 0.405 .mu.m, the level difference d between steps about 1.436Myuemu, the ordinary refractive index n o and extraordinary index n e of the polymer liquid crystal 1. 541 and 1.588, and the refractive index of the isotropic optical medium is 1.541. From FIG. 3C and FIG. 3D, the intensity ratio of the + 1st order diffracted light and the −1st order diffracted light is 10 when the width ratio r 11 is about 0.08 or about 0.32. It can be seen that the change in the intensity ratio of the + 1st order diffracted light and the −1st order diffracted light is smaller than that when m = 2. Since the change in the intensity ratio can be reduced in this way, the process margin can be widened, and the stepped diffraction element can be easily manufactured.

図4(c)は、m=4のときの図2(c)に対応する図であり、r12およびr13がともに0.05に固定されている。図4(d)は、図4(c)に示す幅比率r11に対する+1次の回折光と−1次の回折光の強度比の関係を示す図である。ここで、図4(a)に示すように、波長λは0.405μm、ステップ間段差dは約1.077μm、高分子液晶の常光屈折率nおよび異常光屈折率nはそれぞれ1.541および1.588であり、等方光学媒質の屈折率は1.541である。図4(c)および図4(d)から、+1次の回折光と−1次の回折光の強度比は、幅比率r11が0.11近傍または0.28近傍で、10となることが分かり、+1次の回折光と−1次の回折光の強度比の変化がm=2のときのものよりも小さくなっていることが分かる。このように強度比の変化を小さくできるため、プロセス上のマージンを広げることが可能となり、階段状回折素子を容易に作製できるようにできる。 FIG. 4C corresponds to FIG. 2C when m = 4, and both r 12 and r 13 are fixed to 0.05. FIG. 4 (d) is a diagram showing the relationship of FIG. 4 +1 order diffracted light to the width ratio r 11 shown in (c) and -1-order diffracted light intensity ratio of. Here, as shown in FIG. 4 (a), each wavelength lambda 0.405 .mu.m, the level difference d between steps about 1.077Myuemu, the ordinary refractive index n o and extraordinary index n e of the polymer liquid crystal 1. 541 and 1.588, and the refractive index of the isotropic optical medium is 1.541. From FIG. 4 (c) and FIG. 4 (d), + 1-order intensity ratio of the diffracted light and -1-order diffracted light, the width ratio r 11 0.11 near or 0.28 neighborhood, be a 10 It can be seen that the change in the intensity ratio of the + 1st order diffracted light and the −1st order diffracted light is smaller than that when m = 2. Since the change in the intensity ratio can be reduced in this way, the process margin can be widened, and the stepped diffraction element can be easily manufactured.

上記では、光学媒質130が充填材等の屈折率が等方的な材料で構成される例について説明したが、光学媒質130が所定の液晶によって構成されるのでもよい。ここで、光学媒質130として用いる液晶は、常光屈折率と異常光屈折率の差が階段部材120の常光屈折率と異常光屈折率の差よりも大きいものとする。また、光学媒質130として用いる液晶と階段部材120の常光屈折率は、ほぼ等しくなっているものとする。   In the above description, the example in which the optical medium 130 is made of an isotropic material such as a filler has been described. However, the optical medium 130 may be made of a predetermined liquid crystal. Here, the liquid crystal used as the optical medium 130 has a difference between the ordinary light refractive index and the extraordinary light refractive index larger than the difference between the ordinary light refractive index and the extraordinary light refractive index of the step member 120. Further, it is assumed that the ordinary light refractive indexes of the liquid crystal used as the optical medium 130 and the staircase member 120 are substantially equal.

このような構成と同等の構成の階段状回折素子200を図1(b)に示す。この場合、図1(b)に示すように、液晶からなる光学媒質131と透明基板111との間、および、階段部材132と透明基板112との間に、液晶に電圧を印加するための透明電極141および透明電極142が設けられるのでもよい。光学媒質131を構成する液晶は、回折格子の長手方向に配向しているものとする。図5(a1)〜図5(a3)は、m=2のときに、波長λ0.405μm、0.66μmの各光に対して、図2(c)および図2(d)に示す特性と同様の特性を得るための構成を示す図である。ここで、図5(a3)に示すΔneeは、光学媒質131を構成する液晶の異常光屈折率から階段部材120を構成する高分子液晶の異常光屈折率を引いたものである。また、図5(a1)に示す階段部材屈折率差Δnは、透明電極141、142間に印加する電圧を調整して得られる。すなわち、波長λが405nmの場合は、液晶に電圧を印加して液晶の屈折率nを1.674にすることによって階段部材屈折率差Δnを0.086とし、波長λが660nmの場合は、液晶に電圧を印加せず階段部材屈折率差Δnを0.139とする。 FIG. 1B shows a stepped diffraction element 200 having a configuration equivalent to such a configuration. In this case, as shown in FIG. 1B, a transparent for applying a voltage to the liquid crystal between the optical medium 131 made of liquid crystal and the transparent substrate 111, and between the staircase member 132 and the transparent substrate 112. An electrode 141 and a transparent electrode 142 may be provided. It is assumed that the liquid crystal constituting the optical medium 131 is aligned in the longitudinal direction of the diffraction grating. FIGS. 5 (a1) to 5 (a3) show the characteristics shown in FIGS. 2 (c) and 2 (d) for light of wavelengths λ0.405 μm and 0.66 μm when m = 2. It is a figure which shows the structure for obtaining the same characteristic. Here, Δn ee shown in FIG. 5A3 is obtained by subtracting the extraordinary refractive index of the polymer liquid crystal composing the step member 120 from the extraordinary refractive index of the liquid crystal composing the optical medium 131. The step member refractive index difference Δn shown in FIG. 5A1 is obtained by adjusting the voltage applied between the transparent electrodes 141 and 142. That is, when the wavelength λ is 405 nm, a voltage is applied to the liquid crystal to set the refractive index n of the liquid crystal to 1.664, thereby setting the step member refractive index difference Δn to 0.086, and when the wavelength λ is 660 nm, No voltage is applied to the liquid crystal, and the step member refractive index difference Δn is set to 0.139.

また、上記では、光学媒質130を充填する構成について説明したが、図1(c)に示すように光学媒質130のない構成、すなわち階段状回折素子300が透明基板111と階段部材133によって構成されるのでもよい。また、mが3以上の場合、上記で示したように、+1次の回折光と−1次の回折光の強度比の幅比率r11に対する変化がm=2のときのものよりも小さくなっているため、ステップ間段差dをλ/(2mΔn)にし、階段部材133として固体の光学部材を用いるのでも、所望の+1次の回折光と−1次の回折光の強度比を従来よりも容易に得ることができると共に、+2次の回折光と+1次の回折光の強度比、および、−2次の回折光と−1次の回折光の強度比を略0にすることができる。 In the above description, the configuration in which the optical medium 130 is filled has been described. However, as illustrated in FIG. 1C, the configuration without the optical medium 130, that is, the stepped diffraction element 300 is configured by the transparent substrate 111 and the stepped member 133. It may be. Further, when m is 3 or more, as indicated above, changes to width ratio r 11 of the intensity ratio of + 1-order diffracted light and -1-order diffracted light becomes smaller than that in the case of m = 2 Therefore, even if the step difference d between steps is set to λ / (2mΔn) and a solid optical member is used as the staircase member 133, the intensity ratio of desired + 1st order diffracted light and −1st order diffracted light is made higher than before. In addition to being easily obtainable, the intensity ratio of + 2nd order diffracted light and + 1st order diffracted light and the intensity ratio of −2nd order diffracted light and −1st order diffracted light can be made substantially zero.

図5(b1)および図5(b2)は、階段部材133として固体の光学部材を用い、m=3のときに、波長λ0.405μmの光に対して、図3(c)および図3(d)に示す特性と同様の特性を得るための構成を示す図である。同様に、図5(c1)および図5(c2)は、階段部材133として固体の光学部材を用い、m=4のときに、波長λ0.405μmの光に対して、図4(c)および図4(d)に示す特性と同様の特性を得るための構成を示す図である。上記では、偏光型の階段状回折素子について説明したが、階段部材133を、屈折率が等方的な材料を用いて形成し、無偏光型の階段状回折素子とするのでもよい。   5 (b1) and 5 (b2) use a solid optical member as the staircase member 133. When m = 3, FIG. 3 (c) and FIG. It is a figure which shows the structure for obtaining the characteristic similar to the characteristic shown to d). Similarly, FIGS. 5 (c1) and 5 (c2) use a solid optical member as the step member 133, and when m = 4, FIG. 4 (c) and FIG. It is a figure which shows the structure for obtaining the characteristic similar to the characteristic shown in FIG.4 (d). In the above description, the polarization type stepped diffraction element has been described. However, the step member 133 may be formed using a material having an isotropic refractive index to form a non-polarization type stepwise diffraction element.

以下、本発明の実施の形態に係る階段状回折素子100の作用について説明する。以下、幅比率r11は0.15に設定されているものとする。階段状回折素子100に入射した光は、80%程度が+1次の回折光と−1次の回折光に振り分けられ、階段状回折素子100から出射する。一方、±2次の回折光は、各段状ステップ121〜124間の各段差がλ/(4Δn)になっているため、殆ど0に抑えられる。 Hereinafter, the operation of the stepped diffraction element 100 according to the embodiment of the present invention will be described. Hereinafter, the width ratio r 11 is assumed to be set to 0.15. About 80% of the light incident on the stepped diffraction element 100 is divided into + 1st order diffracted light and −1st order diffracted light, and is emitted from the stepped diffraction element 100. On the other hand, the ± second-order diffracted light is suppressed to almost 0 because each step between the stepped steps 121 to 124 is λ / (4Δn).

図6は、本発明の実施の形態に係る光ヘッド装置のブロック構成を示す図である。図6において、光ヘッド装置1は、光源11と、光源11からの発散光を平行光束化するコリメータ12と、偏光ビームスプリッタ13と、階段状回折素子600と、1/4波長板14と、対物レンズ15と、集光レンズ16と、受光器60とによって構成される。ここで、階段状回折素子600は偏光型の回折格子を有するものとする。   FIG. 6 is a diagram showing a block configuration of the optical head device according to the embodiment of the present invention. In FIG. 6, the optical head device 1 includes a light source 11, a collimator 12 that converts the divergent light from the light source 11 into a parallel beam, a polarization beam splitter 13, a stepped diffraction element 600, a quarter-wave plate 14, The objective lens 15, the condenser lens 16, and the light receiver 60 are configured. Here, the stepped diffraction element 600 has a polarization type diffraction grating.

光源11は、例えば半導体レーザからなり、所定の波長の発散光を出射する。階段状回折素子600は、例えば図7に示すように、ピッチが相互に異なる擬似ブレーズド回折格子101〜104を、長手方向を一致させて配列した構成を有するのでもよい。ここで、擬似ブレーズド回折格子101〜104は、相互に接する部分にシールがないことを除けば、階段状回折素子100と同様の構成を有する。   The light source 11 is made of a semiconductor laser, for example, and emits divergent light having a predetermined wavelength. For example, as shown in FIG. 7, the stepped diffraction element 600 may have a configuration in which pseudo-blazed diffraction gratings 101 to 104 having different pitches are arranged with their longitudinal directions aligned. Here, the pseudo blazed diffraction gratings 101 to 104 have the same configuration as that of the stepped diffraction element 100 except that there is no seal at the portions in contact with each other.

ここで、受光器60は+1次の回折光と−1次の回折光を受光する受光面61〜68を有する。具体的には、受光面61〜64が+1次の回折光を受光し、受光面65〜68が−1次の回折光を受光するようになっている。このように構成することによって、各回折格子からの±1次の回折光を対物レンズ15をフォーカシングおよびトラッキングするためのサーボ信号用の光束とすることが可能となる。   Here, the light receiver 60 has light receiving surfaces 61 to 68 that receive the + 1st order diffracted light and the −1st order diffracted light. Specifically, the light receiving surfaces 61 to 64 receive + 1st order diffracted light, and the light receiving surfaces 65 to 68 receive −1st order diffracted light. With this configuration, the ± first-order diffracted light from each diffraction grating can be used as a light beam for a servo signal for focusing and tracking the objective lens 15.

以下、本発明の実施の形態に係る光ヘッド装置1の作用について説明する。光源11から出射された直線偏光(以下、P偏光とする。)の光は、コリメータ12、偏光ビームスプリッタ13および階段状回折素子600を透過して1/4波長板14に入射する。1/4波長板14に入射した光は、円偏光となって対物レンズ15に向けて1/4波長板14を出射し、光記録媒体10の情報記録面上に集光される。光記録媒体10に入射した光は、光記録媒体10で反射し、戻り光となって対物レンズ15と透過して1/4波長板14に入射する。1/4波長板14に入射した戻り光は、円偏光から、P偏光に直交する偏光方向であるS偏光の戻り光となって階段状回折素子600に向けて1/4波長板14を出射する。階段状回折素子600に入射したS偏光の戻り光は、階段状回折素子600で各擬似ブレーズド回折格子101〜104のピッチに応じた回折角の±1次の回折光となり、偏光ビームスプリッタ13に向けて階段状回折素子600を出射する。偏光ビームスプリッタ13に入射した戻り光の±1次の回折光は、反射されて集光レンズ16を透過し、受光器60の所定の受光点61〜68上に集光される。   The operation of the optical head device 1 according to the embodiment of the present invention will be described below. Light of linearly polarized light (hereinafter referred to as P-polarized light) emitted from the light source 11 passes through the collimator 12, the polarizing beam splitter 13, and the stepped diffraction element 600 and enters the quarter-wave plate 14. The light incident on the quarter wavelength plate 14 becomes circularly polarized light, exits the quarter wavelength plate 14 toward the objective lens 15, and is condensed on the information recording surface of the optical recording medium 10. The light incident on the optical recording medium 10 is reflected by the optical recording medium 10, becomes return light, passes through the objective lens 15, and enters the quarter-wave plate 14. The return light incident on the quarter-wave plate 14 is converted from circularly-polarized light to S-polarized return light that is a polarization direction orthogonal to the P-polarized light, and exits the quarter-wave plate 14 toward the stepped diffraction element 600. To do. The S-polarized return light incident on the stepped diffraction element 600 becomes ± first-order diffracted light having a diffraction angle corresponding to the pitch of the pseudo blazed diffraction gratings 101 to 104 by the stepped diffraction element 600, and enters the polarization beam splitter 13. The stair-like diffraction element 600 is emitted. The ± first-order diffracted light of the return light incident on the polarization beam splitter 13 is reflected and transmitted through the condensing lens 16 and collected on predetermined light receiving points 61 to 68 of the light receiver 60.

図8は、無偏光型の階段状回折素子を搭載した光ヘッド装置のブロック構成を示す図である。図8に示す光ヘッド装置2の構成では、無偏光型の階段状回折素子800が集光レンズ16と受光器80との間に設けられている。図8に示す光ヘッド装置2の構成では、1/4波長板14に入射した戻り光がS偏光の戻り光となり、偏光ビームスプリッタ13で反射されて、集光レンズ16を透過し、階段状回折素子800で回折して受光器80の所定の受光点81〜88上に集光される。   FIG. 8 is a diagram showing a block configuration of an optical head device equipped with a non-polarization type stepped diffraction element. In the configuration of the optical head device 2 shown in FIG. 8, a non-polarization type stepped diffraction element 800 is provided between the condenser lens 16 and the light receiver 80. In the configuration of the optical head device 2 shown in FIG. 8, the return light incident on the quarter-wave plate 14 becomes S-polarized return light, is reflected by the polarization beam splitter 13, passes through the condenser lens 16, and is stepped. The light is diffracted by the diffraction element 800 and collected on predetermined light receiving points 81 to 88 of the light receiver 80.

なお、上記(図6)では、階段状回折素子600が偏光ビームスプリッタ13と1/4波長板14との間に設けられている構成について説明したが、階段状回折素子600は、偏光ビームスプリッタ13と集光レンズ16との間の、その他の所定の光路上に設けるのでもよい。また、上記では、階段状回折素子800が集光レンズ16と受光器80との間に設けられている構成について説明したが、階段状回折素子800は、偏光ビームスプリッタ13と集光レンズ16との間の、その他の所定の光路上に設けるのでもよい。   In the above (FIG. 6), the configuration in which the stepped diffraction element 600 is provided between the polarizing beam splitter 13 and the quarter wavelength plate 14 has been described. It may be provided on another predetermined optical path between 13 and the condenser lens 16. In the above description, the stepped diffraction element 800 is described as being provided between the condenser lens 16 and the light receiver 80. However, the stepped diffraction element 800 includes the polarization beam splitter 13, the condenser lens 16, and the like. May be provided on another predetermined optical path.

以上説明したように、本発明の実施の形態に係る階段状回折素子は、階段部材が、複屈折性を有する高分子液晶によって構成されるため、所望の形状の段差を容易に形成でき、所望の特性を容易に得ることができる。   As described above, in the staircase diffraction element according to the embodiment of the present invention, since the staircase member is composed of a polymer liquid crystal having birefringence, a step having a desired shape can be easily formed and desired. These characteristics can be easily obtained.

また、高分子液晶からなる段状ステップの数が4、6および8と少ないため、容易に作成することができる。   Further, since the number of stepped steps made of polymer liquid crystal is as small as 4, 6 and 8, it can be easily formed.

また、高分子液晶からなる段状ステップの数が4で、隣り合う段状ステップの幅の比が3:7となっているため、+1次の回折光と−1次の回折光との強度を9:1程度にすることができる。   Further, since the number of stepped steps made of polymer liquid crystal is 4 and the width ratio of adjacent stepped steps is 3: 7, the intensity of the + 1st order diffracted light and the −1st order diffracted light Can be about 9: 1.

また、階段部材に高分子液晶を用いない構成であっても、段状ステップの数が6以上で、各段状ステップ間の段差dがλ/(2mΔn)に等しく、各段状ステップの幅が階段状回折素子のピッチの半分の周期の周期性を有するため、設計の自由度を有すると共に、±2次の回折光を抑制することができる。   Further, even when the liquid crystal is not used for the staircase member, the number of stepped steps is 6 or more, the step d between the stepped steps is equal to λ / (2mΔn), and the width of each stepped step. Has a periodicity with a period that is half the pitch of the step-like diffractive element, so that it has a degree of freedom in design and can suppress ± second-order diffracted light.

また、階段部材に高分子液晶を用いない構成であっても、段状ステップの数が6または8と少ないため、容易に作成することができる。   Moreover, even if it is the structure which does not use a polymer liquid crystal for a staircase member, since the number of stepped steps is as few as 6 or 8, it can be created easily.

また、本発明の実施の形態に係る光ヘッド装置は、上記の効果を有すると共に、光利用効率を向上することができる。   In addition, the optical head device according to the embodiment of the present invention has the above effects and can improve the light utilization efficiency.

上記の本発明の実施の形態に基づく具体的な実施例を以下に説明する。
(実施例)
図1(a)は、本発明の実施例に係る階段状回折素子の模式的な構成を示す断面図である。まず、透明基板111、112としてはガラス基板を用いる。階段部材120には、常光屈折率nが1.541で異常光屈折率がnが1.588の高分子液晶を用い、光学媒質130には屈折率が1.541の充填剤を用いた。以下に、階段状回折素子の作成方法について説明する。
Specific examples based on the above-described embodiments of the present invention will be described below.
(Example)
Fig.1 (a) is sectional drawing which shows the typical structure of the step-shaped diffraction element based on the Example of this invention. First, glass substrates are used as the transparent substrates 111 and 112. Use the stairs member 120, ordinary extraordinary refractive index using the polymer liquid crystal of n e is 1.588 in the refractive index n o is 1.541, the refractive index in the optical medium 130 is a filler 1.541 It was. Below, the preparation method of a stair-like diffraction element is demonstrated.

まず、所定の基板(以下、取替え基板という。)の1つの基板面に配向膜を形成し、ラビング法によって配向処理を施す。ラビング方向は、回折格子の長手方向である。次に、シール140用の材料としてエポキシ樹脂系接着剤を用い、エポキシ樹脂系接着剤を、取替え基板の配向膜が形成された基板面の光学的有効領域の外周に印刷する。同様に、透明基板111の1つの基板面に配向膜を形成し、ラビング法によって配向処理を施す。次に、配向膜を形成した面が対向するように、取替え基板と透明基板111とを対向させて熱圧着し、シール140を形成し、セルを作製する。   First, an alignment film is formed on one substrate surface of a predetermined substrate (hereinafter referred to as a replacement substrate), and an alignment process is performed by a rubbing method. The rubbing direction is the longitudinal direction of the diffraction grating. Next, an epoxy resin adhesive is used as the material for the seal 140, and the epoxy resin adhesive is printed on the outer periphery of the optically effective area of the substrate surface on which the alignment film of the replacement substrate is formed. Similarly, an alignment film is formed on one substrate surface of the transparent substrate 111, and alignment processing is performed by a rubbing method. Next, the replacement substrate and the transparent substrate 111 are opposed to each other so that the surfaces on which the alignment films are formed are opposed to each other, and the seal 140 is formed, whereby a cell is manufactured.

次に、このセルに、真空注入法で、上記の高分子液晶を注入してUV露光を行い、固化させて高分子液晶とする。次に、取替え基板を除去し、フォトリソグラフィ技術とエッチング技術を用いて高分子液晶をエッチングし、mが2、ピッチpが26.1μm、31.8μm、40.7μmおよび56.5μm、幅比率r11が0.15の階段状の形状とする。最後に、充填材を高分子液晶上に充填して透明基板112を取り付けて階段状回折素子とする。 Next, the above polymer liquid crystal is injected into this cell by a vacuum injection method, UV-exposed, and solidified to obtain a polymer liquid crystal. Next, the replacement substrate is removed, and the polymer liquid crystal is etched using photolithography technology and etching technology, m is 2, pitch p is 26.1 μm, 31.8 μm, 40.7 μm and 56.5 μm, width ratio. A stepped shape with r 11 of 0.15 is assumed. Finally, a filler is filled on the polymer liquid crystal, and the transparent substrate 112 is attached to form a staircase diffraction element.

上記のように構成された階段状回折素子100に、波長405nmで、回折格子の長手方向に平行な偏光方向の直線偏光(S偏光)のレーザ光を入射させると、+1次と−1次の回折効率の比が略9:1の回折光を得ることができる。これに対して、P偏光のレーザ光を入射させると、回折せずに透過する。また、+2次の回折光と+1次の回折光との強度比はほぼ0となり、−2次の回折光と−1次の回折光との強度比も同様にほぼ0となる。   When linearly polarized (S-polarized) laser light having a wavelength of 405 nm and a polarization direction parallel to the longitudinal direction of the diffraction grating is incident on the stepped diffraction element 100 configured as described above, the + 1st order and −1st order are incident. Diffracted light with a diffraction efficiency ratio of approximately 9: 1 can be obtained. On the other hand, when P-polarized laser light is incident, it is transmitted without being diffracted. The intensity ratio between the + 2nd order diffracted light and the + 1st order diffracted light is substantially 0, and the intensity ratio between the −2nd order diffracted light and the −1st order diffracted light is also substantially 0.

図6は、本発明の実施例に係る光ヘッド装置のブロック構成を示す図である。まず、光源11として、半導体レーザを用いる。階段状回折素子600は、図7に示すように異なる4種類のピッチの擬似ブレーズド回折格子からなり、各擬似ブレーズド回折格子101〜104が接する境界面にシールが設けられていない点を除き、上記の実施例に示す階段状回折素子100と同様に作製される。ここで、階段状回折素子100を構成する擬似ブレーズド回折格子のピッチは、擬似ブレーズド回折格子101〜104について、それぞれ21.6μm、31.8μm、40.7μmおよび56.5μmである。   FIG. 6 is a diagram showing a block configuration of the optical head device according to the embodiment of the present invention. First, a semiconductor laser is used as the light source 11. As shown in FIG. 7, the stepped diffraction element 600 is composed of pseudo-blazed diffraction gratings having four different pitches, except that no seal is provided on the boundary surface where the pseudo-blazed diffraction gratings 101 to 104 are in contact with each other. It is fabricated in the same manner as the stepped diffraction element 100 shown in the embodiment. Here, the pitches of the pseudo-blazed diffraction gratings constituting the stair-like diffraction element 100 are 21.6 μm, 31.8 μm, 40.7 μm, and 56.5 μm for the pseudo-blazed diffraction gratings 101 to 104, respectively.

上記のように構成された光ヘッド装置1において、光源11を出射した波長405nm、回折格子の長手方向に垂直な偏光方向の直線偏光(P偏光)のレーザ光は、コリメータ12、偏光ビームスプリッタ13、階段状回折素子600を回折せず透過して、1/4波長板14に入射する。1/4波長板14に入射した光は、円偏光となり、対物レンズ15を透過して光記録媒体10によって反射され、戻り光となる。光記録媒体10からの戻り光は、1/4波長板14によってS偏光の光となり、階段状回折素子600で各回折格子のピッチに応じた回折角度で回折して、偏光ビームスプリッタ13に出射する。偏光ビームスプリッタ13に入射した光は、偏光ビームスプリッタ13で反射し、集光レンズ16で受光器60上の各受光面61〜68に入射する。   In the optical head device 1 configured as described above, linearly polarized (P-polarized) laser light having a wavelength of 405 nm emitted from the light source 11 and a polarization direction perpendicular to the longitudinal direction of the diffraction grating is collimator 12 and polarization beam splitter 13. Then, the light passes through the stepped diffraction element 600 without being diffracted and enters the quarter-wave plate 14. The light incident on the quarter-wave plate 14 becomes circularly polarized light, passes through the objective lens 15 and is reflected by the optical recording medium 10, and becomes return light. The return light from the optical recording medium 10 is converted to S-polarized light by the quarter-wave plate 14, and is diffracted by the step-like diffraction element 600 at a diffraction angle corresponding to the pitch of each diffraction grating and output to the polarization beam splitter 13. To do. The light incident on the polarization beam splitter 13 is reflected by the polarization beam splitter 13 and is incident on the light receiving surfaces 61 to 68 on the light receiver 60 by the condenser lens 16.

本発明に係る階段状回折素子は、2次の回折光を抑制できると共に、+1次の回折光と−1次の回折光の光量比を所望の値に設定できる等、所望の特性を容易に得ることができるという効果が有用な階段状回折素子およびノイズの少ない光ヘッド装置等の用途にも適用できる。   The step-like diffractive element according to the present invention can easily suppress the second-order diffracted light and can easily set desired characteristics such as a light amount ratio between the + 1st-order diffracted light and the −1st-order diffracted light. The present invention can also be applied to uses such as a stair-like diffractive element having a useful effect and an optical head device with less noise.

本発明の実施の形態に係る階段状回折素子の模式的な構成を示す断面図Sectional drawing which shows the typical structure of the step-shaped diffraction element which concerns on embodiment of this invention 本発明の実施の形態に係る階段状回折素子の第1の構成および特性を説明するための図The figure for demonstrating the 1st structure and characteristic of the step-shaped diffraction element which concerns on embodiment of this invention 本発明の実施の形態に係る階段状回折素子の第2の構成および特性を説明するための図The figure for demonstrating the 2nd structure and characteristic of the step-shaped diffraction element which concerns on embodiment of this invention 本発明の実施の形態に係る階段状回折素子の第3の構成および特性を説明するための図The figure for demonstrating the 3rd structure and characteristic of the step-shaped diffraction element which concerns on embodiment of this invention 本発明の実施の形態に係る階段状回折素子の階段部材を液晶と高分子液晶を用いて構成したときの構成および特性(a)、6ステップの透明部材で構成したときの構成および特性(b)、8ステップの透明部材で構成したときの構成および特性(c)を説明するための図Configuration and characteristics (a) when the staircase member of the staircase diffraction element according to the embodiment of the present invention is configured using liquid crystal and polymer liquid crystal, and configuration and characteristics (b) when configured with a six-step transparent member ), A diagram for explaining the configuration and characteristics (c) when configured with an 8-step transparent member 本発明の実施の形態に係る光ヘッド装置の第1のブロック構成を示す図The figure which shows the 1st block configuration of the optical head apparatus which concerns on embodiment of this invention. 図6に示す階段状回折素子600の平面構造を説明するための図The figure for demonstrating the planar structure of the stair-like diffraction element 600 shown in FIG. 本発明の実施の形態に係る光ヘッド装置の第2のブロック構成を示す図The figure which shows the 2nd block configuration of the optical head apparatus which concerns on embodiment of this invention. 光記録媒体からの戻り光が入射する回折素子と、回折素子からの±1次の回折光を受光する受光器上の受光面の配置を示す説明図Explanatory drawing which shows arrangement | positioning of the light-receiving surface on the light receiving device which receives the diffraction element into which the return light from an optical recording medium injects, and the ± 1st order diffracted light from a diffraction element

符号の説明Explanation of symbols

1、2 光ヘッド装置
10 光記録媒体
11 光源
12 コリメータ
13 偏光ビームスプリッタ
14 1/4波長板
15 対物レンズ
16 集光レンズ
60、80 受光器
61〜68、71〜78、81〜88 受光面
70、100、200、300、600、800 階段状回折素子
90 戻り光
91〜99 回折光
111、112 透明基板
120、132 階段部材
121〜124 段状ステップ
131 液晶からなる光学媒質
133 階段部材または等方的な屈折率の部材
DESCRIPTION OF SYMBOLS 1, 2 Optical head apparatus 10 Optical recording medium 11 Light source 12 Collimator 13 Polarizing beam splitter 14 1/4 wavelength plate 15 Objective lens 16 Condensing lens 60, 80 Light receiver 61-68, 71-78, 81-88 Light-receiving surface 70 , 100, 200, 300, 600, 800 Stepped diffraction element 90 Return light 91-99 Diffracted light 111, 112 Transparent substrate 120, 132 Step member 121-124 Stepped step 131 Optical medium consisting of liquid crystal 133 Step member or isotropic Refractive index member

Claims (9)

等方性材料からなる透明基板と、
前記透明基板上に設けられ、2以上の整数mの偶数倍の段状ステップからなる階段状の断面形状を有する階段部材が回折格子状に複数配置された階段状回折格子と、
前記階段状回折格子の階段部分を埋めるように配置されていて、光学的等方性材料および光学的異方性材料のいずれかからなる光学媒質とを備え、所定の波長λの光を回折させる階段状回折素子であって、
前記階段部材が、複屈折性を有する高分子液晶によって構成され、前記階段部材の長手方向に偏光した直線偏光に対する前記階段状回折格子と前記光学媒質との屈折率差をΔnとするとき、各前記段状ステップ間の段差dがλ/(2mΔn)に等しく、前記階段部材の段の低い方からmステップとこれに引き続くmステップとで対応する段状ステップの幅が相互に等しいことを特徴とする階段状回折素子。
A transparent substrate made of an isotropic material;
A step-like diffraction grating provided on the transparent substrate, wherein a plurality of step members having a step-like cross-sectional shape composed of even-numbered steps of an integer m of 2 or more are arranged in a diffraction grating shape;
An optical medium made of one of an optically isotropic material and an optically anisotropic material, and arranged to fill the stepped portion of the stepped diffraction grating, and diffracts light of a predetermined wavelength λ A stepped diffraction element,
When the stepped member is made of a polymer liquid crystal having birefringence, and the refractive index difference between the stepped diffraction grating and the optical medium with respect to linearly polarized light polarized in the longitudinal direction of the stepped member is Δn, The step d between the stepped steps is equal to λ / (2mΔn), and the widths of the corresponding stepped steps from the lower step of the stepped member to the step m are equal to each other. Stepwise diffraction element.
前記光学媒質が液晶によって構成される請求項1に記載の階段状回折素子。   The step-like diffraction element according to claim 1, wherein the optical medium is composed of liquid crystal. 前記階段部材の長手方向に直交する方向に偏光した直線偏光に対する前記階段状回折格子と前記光学媒質の屈折率が相互に等しい請求項1または2に記載の階段状回折素子。   3. The stepped diffraction element according to claim 1, wherein refractive indexes of the stepped diffraction grating and the optical medium with respect to linearly polarized light polarized in a direction orthogonal to a longitudinal direction of the stepped member are equal to each other. 前記整数mが、2、3および4のいずれかである請求項1から3までのいずれか1項に記載の階段状回折素子。   The step-like diffractive element according to any one of claims 1 to 3, wherein the integer m is any one of 2, 3, and 4. 前記整数mが2で、隣り合う段状ステップの幅の比が3:7となっている請求項1から4までのいずれか1項に記載の階段状回折素子。   The stepped diffraction element according to any one of claims 1 to 4, wherein the integer m is 2 and a ratio of widths of adjacent stepped steps is 3: 7. 等方性材料からなる透明基板と、
前記透明基板上に設けられ、3以上の整数mの偶数倍の段状ステップからなる階段状の断面形状の階段部材が回折格子状に複数の配置された階段状回折格子とを備え、所定の波長λの光を回折させる階段状回折素子であって、
前記段状ステップに接する媒質と前記階段状回折格子との屈折率差をΔnとするとき、各前記段状ステップ間の段差dがλ/(2mΔn)に等しく、前記階段部材の段の低い方からmステップとこれに引き続くmステップとで対応する段状ステップの幅が相互に等しいことを特徴とする階段状回折素子。
A transparent substrate made of an isotropic material;
A stepped diffraction grating provided on the transparent substrate and having a stepped cross-sectional shape composed of stepped steps of an even number multiple of an integer m of 3 or more, and a plurality of stepped diffraction gratings arranged in a diffraction grating shape; A stepped diffraction element for diffracting light of wavelength λ,
When the difference in refractive index between the medium in contact with the stepped step and the stepped diffraction grating is Δn, the step d between the stepped steps is equal to λ / (2mΔn), and the lower step of the stepped member A stepped diffraction element characterized in that widths of stepped steps corresponding to m steps and m steps subsequent thereto are equal to each other.
前記階段状回折格子の階段部分を埋めるように配置された液晶を備える請求項6に記載の階段状回折素子。   The staircase-like diffraction element according to claim 6, further comprising a liquid crystal arranged to fill a staircase portion of the staircase-like diffraction grating. 前記整数mが、3または4である請求項6または7に記載の階段状回折素子。   The step-like diffraction element according to claim 6 or 7, wherein the integer m is 3 or 4. 光源と、前記光源からの出射光を光記録媒体へ集光する対物レンズと、前記対物レンズによって集光され前記光記録媒体により反射された戻り光を検出する光検出器とを備える光ヘッド装置において、前記光検出器と前記光源との間の光路中に、請求項1から8までのいずれか1項に記載の階段状回折素子が配置されていることを特徴とする光ヘッド装置。   An optical head device comprising: a light source; an objective lens that condenses light emitted from the light source onto an optical recording medium; and a photodetector that detects return light that is collected by the objective lens and reflected by the optical recording medium. An optical head device according to claim 1, wherein the stepped diffraction element according to any one of claims 1 to 8 is disposed in an optical path between the photodetector and the light source.
JP2005075408A 2005-03-16 2005-03-16 Staircase diffraction element and optical head device Expired - Fee Related JP4613651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005075408A JP4613651B2 (en) 2005-03-16 2005-03-16 Staircase diffraction element and optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005075408A JP4613651B2 (en) 2005-03-16 2005-03-16 Staircase diffraction element and optical head device

Publications (2)

Publication Number Publication Date
JP2006259132A true JP2006259132A (en) 2006-09-28
JP4613651B2 JP4613651B2 (en) 2011-01-19

Family

ID=37098490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005075408A Expired - Fee Related JP4613651B2 (en) 2005-03-16 2005-03-16 Staircase diffraction element and optical head device

Country Status (1)

Country Link
JP (1) JP4613651B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127977A (en) * 2008-11-25 2010-06-10 Asahi Glass Co Ltd Diffraction element, optical head device, and projection type display device
JP2011060393A (en) * 2009-09-11 2011-03-24 Ricoh Co Ltd Diffraction optical element and optical pickup
CN103080729A (en) * 2010-08-19 2013-05-01 西铁城控股株式会社 Refractive index measurement device and refractive index measurement method
CN106324898A (en) * 2016-10-28 2017-01-11 京东方科技集团股份有限公司 Display panel and display device
WO2018216575A1 (en) * 2017-05-26 2018-11-29 Agc株式会社 Diffraction optical element, projection device, and measuring device
JP2019028083A (en) * 2017-07-25 2019-02-21 Agc株式会社 Optical element
CN110418986A (en) * 2017-03-17 2019-11-05 大日本印刷株式会社 Diffraction optical element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023027523A1 (en) * 2021-08-27 2023-03-02 경북대학교 산학협력단 Method for controlling wavelength band characteristic of micro-optic mach-zehnder interferometer to have desired form

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62238519A (en) * 1986-04-10 1987-10-19 Canon Inc Optical modulator
JPH11110787A (en) * 1997-10-02 1999-04-23 Asahi Glass Co Ltd Diffraction element and optical head device
JP2001174614A (en) * 1999-12-15 2001-06-29 Asahi Glass Co Ltd Diffraction device for two wavelength and optical head device
JP2004139728A (en) * 2003-11-17 2004-05-13 Nec Corp Optical head device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62238519A (en) * 1986-04-10 1987-10-19 Canon Inc Optical modulator
JPH11110787A (en) * 1997-10-02 1999-04-23 Asahi Glass Co Ltd Diffraction element and optical head device
JP2001174614A (en) * 1999-12-15 2001-06-29 Asahi Glass Co Ltd Diffraction device for two wavelength and optical head device
JP2004139728A (en) * 2003-11-17 2004-05-13 Nec Corp Optical head device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127977A (en) * 2008-11-25 2010-06-10 Asahi Glass Co Ltd Diffraction element, optical head device, and projection type display device
JP2011060393A (en) * 2009-09-11 2011-03-24 Ricoh Co Ltd Diffraction optical element and optical pickup
CN103080729A (en) * 2010-08-19 2013-05-01 西铁城控股株式会社 Refractive index measurement device and refractive index measurement method
US10444558B2 (en) 2016-10-28 2019-10-15 Boe Technology Group Co., Ltd. Display panel and display device
CN106324898A (en) * 2016-10-28 2017-01-11 京东方科技集团股份有限公司 Display panel and display device
CN106324898B (en) * 2016-10-28 2017-08-25 京东方科技集团股份有限公司 Display panel and display device
CN110418986A (en) * 2017-03-17 2019-11-05 大日本印刷株式会社 Diffraction optical element
CN110662989A (en) * 2017-05-26 2020-01-07 Agc株式会社 Diffractive optical element, projection device, and measurement device
WO2018216575A1 (en) * 2017-05-26 2018-11-29 Agc株式会社 Diffraction optical element, projection device, and measuring device
JPWO2018216575A1 (en) * 2017-05-26 2020-03-26 Agc株式会社 Diffractive optical element, projection device, and measurement device
TWI754059B (en) * 2017-05-26 2022-02-01 日商Agc股份有限公司 Diffractive Optical Elements
JP7136094B2 (en) 2017-05-26 2022-09-13 Agc株式会社 Diffractive optical element, projection device and measurement device
US11598972B2 (en) 2017-05-26 2023-03-07 AGC Inc. Diffractive optical element, projection device and measuring device
JP2019028083A (en) * 2017-07-25 2019-02-21 Agc株式会社 Optical element

Also Published As

Publication number Publication date
JP4613651B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
KR0144569B1 (en) Optical elements and optical pick-up device comprising it
JP4613651B2 (en) Staircase diffraction element and optical head device
KR101105186B1 (en) Polarizing diffraction element and optical head device
JP4534907B2 (en) Optical head device
KR100656000B1 (en) Optical diffraction device and optical information processing device
JP4474706B2 (en) Optical head device
JP2002311242A (en) Polarized light separating element, semiconductor laser unit and optical pickup device
JP4478398B2 (en) Polarizing optical element, optical element unit, optical head device, and optical disk drive device
JP2002196123A (en) Dual-wavelength diffraction optical element, dual wavelength light source device and optical head device
JP3711652B2 (en) Polarization diffraction element and optical head device using the same
JP4985799B2 (en) Polarization diffraction element and laminated optical element
JP4599763B2 (en) Optical head device
JP4337510B2 (en) Diffraction element and optical head device
JP2001014714A (en) Optical element and optical disk device
JP3851253B2 (en) Diffraction grating and optical pickup
JPH0792319A (en) Optical element and optical device using the same
JP2004212552A (en) Polarizing optical element, diffractive optical element, optical element unit, optical pickup device, and optical disk drive system
JP2006099947A (en) Optical head device
JP4877375B2 (en) Optical head device
JP2004212553A (en) Polarizing diffractive optical element, optical pickup device, and optical disk drive system
JP2006012202A (en) Optical path correcting apparatus and optical pickup using the same
JPH11353728A (en) Magneto-optical head
JP2000011424A5 (en)
JP2005302082A (en) Optical path correcting apparatus and optical pickup using the same
JPH06274927A (en) Optical device, optical head and magneto-optical storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101004

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees