JP2006258434A - Thermal flowmeter - Google Patents

Thermal flowmeter Download PDF

Info

Publication number
JP2006258434A
JP2006258434A JP2005072367A JP2005072367A JP2006258434A JP 2006258434 A JP2006258434 A JP 2006258434A JP 2005072367 A JP2005072367 A JP 2005072367A JP 2005072367 A JP2005072367 A JP 2005072367A JP 2006258434 A JP2006258434 A JP 2006258434A
Authority
JP
Japan
Prior art keywords
circuit
temperature
series
upstream
bridge circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005072367A
Other languages
Japanese (ja)
Other versions
JP4904008B2 (en
Inventor
Yoshimasa Takahashi
良昌 高橋
Yukihiro Itani
幸博 井谷
Koichi Yoshida
考一 吉田
Masanori Harada
昌紀 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kofloc KK
Original Assignee
Kofloc KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kofloc KK filed Critical Kofloc KK
Priority to JP2005072367A priority Critical patent/JP4904008B2/en
Publication of JP2006258434A publication Critical patent/JP2006258434A/en
Application granted granted Critical
Publication of JP4904008B2 publication Critical patent/JP4904008B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal flow meter capable of constituting the detection circuit simply and capable of detecting precisely. <P>SOLUTION: The 1st series circuit 1 connected serially with a pair of upstream and down stream temperature sensitive electric resistances (Ru, Rd) and the fixed resistance (Ra), and the 2nd series circuit 2 connected serially with the temperature measurement resistance (Rt), and the fixed resistances (Rb, Rc) constitute an electric bridge circuit (BC). The 1st operational amplifier circuit (A1) for detecting the balance of the bridge circuit (BC) controls the potential Vc of the point c of the bridge circuit BC, and the 2nd operation amplifier (A2) for detecting difference of the voltage Ve of the connection point e of the upstream and the downstream pair sensors and the specific voltage V2 controls the voltage Vd of the point d of the bridge circuit BC. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、熱式の流量計、特に流路の上下流にそれぞれに温度依存性電気抵抗体センサ素子を配置する熱式の流量計に関する。   The present invention relates to a thermal type flow meter, and more particularly to a thermal type flow meter in which temperature-dependent electrical resistance sensor elements are arranged upstream and downstream of a flow path, respectively.

一般に、熱式の流量計として、流路に沿って上流と下流に一対の温度依存性電気抵抗体センサ素子を配置し、両センサ素子に電力を供給し発熱させたうえ、流体に熱的に作用させ、上流と下流センサ相互間の熱量の授受の関係を利用して、その質量流量を測定するものが知られている。この種の流量計において、電力を供給する方式には、被測定流体流量の変化に対して、1.上下流センサに同一一定の電流または電圧を供給する方法、2.上下流センサ素子各々の抵抗値したがって温度を同一の温度に保持する方法、3.上下流センサのトータルの平均温度を一定に保持する方法が知られている(例えば特許文献1参照)。このうち2,3の方式は、温度センサを具備し、温度センサ素子の検出温度に対して温度センサ検出温度と流量センサ温度との差を制御して流量検出の温度変化に対応している
図5に、上記3の上下流センサのトータルの平均温度を一定に保持する方式の具体的な実施回路を示す。図5において、上流と下流に設けられる一対の温度依存性の電気抵抗体センサ素子Ru,Rdと固定抵抗器Raが直列に接続される直列回路1と、流体又は周囲温度を検出する測温抵抗素子Rtと固定抵抗器Rc,及びRbが直列に接続される直列回路2により、電橋(ブリッジ)回路BCが構成されている。
In general, as a thermal flow meter, a pair of temperature-dependent electrical resistance sensor elements are arranged upstream and downstream along the flow path, and power is supplied to both sensor elements to generate heat, and the fluid is thermally It is known to measure the mass flow rate by utilizing the relationship between the amount of heat exchanged between the upstream and downstream sensors. In this type of flow meter, the method of supplying electric power is as follows: 1. a method of supplying the same constant current or voltage to the upstream and downstream sensors; 2. a method for maintaining the resistance value of each of the upstream and downstream sensor elements and hence the temperature at the same temperature; A method of keeping the total average temperature of the upstream and downstream sensors constant is known (see, for example, Patent Document 1). Among these, the methods 2 and 3 are provided with a temperature sensor, and control the difference between the temperature sensor detected temperature and the flow rate sensor temperature with respect to the detected temperature of the temperature sensor element to cope with the temperature change of the flow rate detection. FIG. 5 shows a specific implementation circuit of the system for keeping the total average temperature of the above three upstream and downstream sensors constant. In FIG. 5, a series circuit 1 in which a pair of temperature-dependent electric resistance sensor elements Ru, Rd and a fixed resistor Ra provided upstream and downstream are connected in series, and a resistance temperature detector for detecting a fluid or ambient temperature. An electric bridge (bridge) circuit BC is constituted by the series circuit 2 in which the element Rt and the fixed resistors Rc and Rb are connected in series.

電橋回路BCの温度依存性電気抵抗体センサ素子Rdと固定抵抗器Raの接続点aが演算増幅器A1のー入力端に接続され、固定抵抗器Rcと固定抵抗器Rbの接続点bが演算増幅器A1の+入力端に接続され、演算増幅器A1の出力端が電橋回路BCの直列回路1と直列回路2の一方の接続点cに接続されている。また、電橋回路BCの直列回路1と直列回路2の他方の接続点dと電気抵抗体センサ素子RuとRdの接続点eが演算増幅器A2の入力端に接続され、電橋回路BCの接続点eと接続点aが差動増幅器A4の入力端に接続され、さらに、演算増幅器A2の出力端と差動増幅器A4の出力端が差動増幅器A3の入力端に接続されている。   The connection point a between the temperature-dependent electrical resistor sensor element Rd and the fixed resistor Ra of the bridge circuit BC is connected to the input terminal of the operational amplifier A1, and the connection point b between the fixed resistor Rc and the fixed resistor Rb is calculated. The amplifier A1 is connected to the + input terminal, and the output terminal of the operational amplifier A1 is connected to one connection point c of the series circuit 1 and the series circuit 2 of the bridge circuit BC. The other connection point d of the series circuit 1 and the series circuit 2 of the bridge circuit BC and the connection point e of the electric resistance sensor elements Ru and Rd are connected to the input terminal of the operational amplifier A2, and the connection of the bridge circuit BC. The point e and the connection point a are connected to the input terminal of the differential amplifier A4, and the output terminal of the operational amplifier A2 and the output terminal of the differential amplifier A4 are connected to the input terminal of the differential amplifier A3.

電橋回路BCは、(Ru+Rd)/Ra=(Rt+Rc)/Rbで平衡する。この回路では、流体又は周囲温度を検出する測温抵抗素子Rtが一定の場合、したがって流体又は周囲温度が一定の場合、被測定流体流量の変化に対して温度依存性電気抵抗体センサ素子Ru,Rdの和Rsが、つまり上下流電気抵抗体センサ素子Ru,Rdのトータルの平均温度が一定値を保つようにその印加電圧Es=Eu+Edを制御する。   The bridge circuit BC is balanced by (Ru + Rd) / Ra = (Rt + Rc) / Rb. In this circuit, when the resistance temperature detector Rt for detecting the fluid or the ambient temperature is constant, and therefore the fluid or ambient temperature is constant, the temperature-dependent electrical resistance sensor element Ru, The applied voltage Es = Eu + Ed is controlled so that the sum Rs of Rd, that is, the total average temperature of the upstream and downstream electric resistance sensor elements Ru, Rd is kept constant.

この場合、流量出力信号は上流側のセンサ素子Ruのセンサ電圧Euと下流側のセンサ素子Rdのセンサ電圧Edの差dEs=Eu―Edから得られる。流量信号の測温抵抗素子温度Taによる影響は、流体または周囲温度Taが変化した場合は、測温抵抗素子Rtの温度Taの変化に対しては
Rs=Ru+Rd=Rso(1+αs*Ts)={Rto(1+αt*Ta)+Rc}(Ra/Rb)であり、
Ts={(1+αt*Ta+Rc/Rt0)(Ra/Rb)(Rto/Rso)−1}/αsから、流体または周囲温度Taの変化に対して上下流温度依存性電気抵抗体センサ素子の平均温度Tsを変化させることによって、被測定流量に対する出力特性温度依存性を補償する。
In this case, the flow rate output signal is obtained from the difference dEs = Eu−Ed between the sensor voltage Eu of the upstream sensor element Ru and the sensor voltage Ed of the downstream sensor element Rd. The influence of the temperature measuring resistance element temperature Ta on the flow rate signal is that when the fluid or the ambient temperature Ta changes, the change in the temperature Ta of the temperature measuring resistance element Rt is Rs = Ru + Rd = Rso (1 + αs * Ts) = { Rto (1 + αt * Ta) + Rc} (Ra / Rb)
From Ts = {(1 + αt * Ta + Rc / Rt0) (Ra / Rb) (Rto / Rso) −1} / αs, the average temperature of the upstream and downstream temperature-dependent electric resistance sensor elements with respect to changes in fluid or ambient temperature Ta By changing Ts, the output characteristic temperature dependency on the measured flow rate is compensated.

被測定流体の流量は、流体による上下流温度依存性電気抵抗体センサ素子RuとRdからの伝導熱量の差から検出される、流体に対する上流温度依存性電気抵抗体センサ素子Ruの熱伝導量が下流温度依存性電気抵抗体センサ素子Rdの熱伝導量に比べ大きく、また上下流温度依存性電気抵抗体センサ素子RuとRdの和Rs=Ru+Rdが一定であることから、流量による上下流温度依存性電気抵抗体センサ素子の抵抗は、Ru=(Rs−dRs)/2、Rd=(Rs+dRs)/2、 ただし、dRsは流量に対して増減相伴う値となる。一方、上下流温度依存性電気抵抗体センサ素子に流れる電流Isは上下共通で(流量が多いほど大きくなる)、したがって、上下流温度依存性電気抵抗体センサ素子電圧は、それぞれ、Esu=IsRsu、Esd=IsRsdとすると、流量信号出力はdEs=Esd−Esu=Is(Rsd―Rsu)=Is*dRsとして得られる。
特開2002−122454号公報
The flow rate of the fluid to be measured is determined by the amount of heat conduction of the upstream temperature-dependent electrical resistance sensor element Ru with respect to the fluid, which is detected from the difference in conduction heat amount between the upstream and downstream temperature-dependent electrical resistance sensor elements Ru and Rd. It is larger than the heat conduction amount of the downstream temperature-dependent electrical resistance sensor element Rd, and the sum Rs = Ru + Rd of the upstream and downstream temperature-dependent electrical resistance sensor elements Ru and Rd is constant. The resistance of the resistive electrical sensor element is Ru = (Rs−dRs) / 2, Rd = (Rs + dRs) / 2, where dRs is a value accompanying an increase / decrease phase with respect to the flow rate. On the other hand, the currents Is flowing through the upstream and downstream temperature-dependent electrical resistance sensor elements are common to the upper and lower sides (the larger the flow rate, the higher the current). Therefore, the upstream and downstream temperature-dependent electrical resistance sensor element voltages are Esu = IsRsu, Assuming that Esd = IsRsd, the flow signal output is obtained as dEs = Esd−Esu = Is (Rsd−Rsu) = Is * dRs.
JP 2002-122454 A

上記した従来の流量計回路では、一方のセンサ電圧Euは汎用の演算増幅機器を一個使った回路で容易に変換できるが、他方のセンサ電圧Edは両方の電圧の和Eu+Edから電圧Euを差し引いて求める差動増幅回路が必要となって回路が複雑になり、センサ電圧に比し1/100から1/1000と、極めて微小な電圧差を検出するには問題が多い。   In the conventional flow meter circuit described above, one sensor voltage Eu can be easily converted by a circuit using one general-purpose operational amplification device, while the other sensor voltage Ed is obtained by subtracting the voltage Eu from the sum Eu + Ed of both voltages. The required differential amplifier circuit is required and the circuit becomes complicated, and there are many problems in detecting an extremely small voltage difference of 1/100 to 1/1000 compared to the sensor voltage.

また、市販の演算増幅器の同相入力電圧は、その演算増幅器の供給電源の両端電位から1〜から1.5Vの内側に入る必要があり、従来回路では、電橋回路の平衡検出端の電位がこの範囲に入る必要があり、各温度センサに加えられる電圧範囲が約2Vから3V分狭められ、必要な流量検出電圧感度が得られなくなる。特に、市販乾電池の使用最終電圧は電池1個当たり0.9Vであり、電池を2個あるいは3個使用するとして、最低電源電圧として1.8Vから2,7Vが要求され、使用演算増幅器の入力端電圧(共通電位)が問題となる。   In addition, the common-mode input voltage of a commercially available operational amplifier needs to be within 1 to 1.5 V from the potential at both ends of the power supply of the operational amplifier. In the conventional circuit, the potential at the balanced detection end of the bridge circuit is It is necessary to enter this range, and the voltage range applied to each temperature sensor is narrowed by about 2V to 3V, and the required flow rate detection voltage sensitivity cannot be obtained. In particular, the final use voltage of commercially available dry batteries is 0.9V per battery. If two or three batteries are used, the minimum power supply voltage is required from 1.8V to 2,7V. The end voltage (common potential) becomes a problem.

この発明は、上記問題点に着目してなされたものであって、検出回路を簡素に構成でき、かつ高精度に検出し得、さらに電池駆動などに対応してより低い電源電圧で、より少ない電源電力で作動し得る熱式流量計を提供することを目的とする。   The present invention has been made paying attention to the above-mentioned problems, and the detection circuit can be simply configured and can be detected with high accuracy, and can be reduced with a lower power supply voltage corresponding to battery driving or the like. An object of the present invention is to provide a thermal flow meter that can operate with power supply power.

この発明の熱式流量計は、流体の流路に沿って、上流と下流に一対の温度依存性電気抵抗体センサ素子(Ru,Rd)を配置し、この両センサ素子に電圧を印加し流体に熱的に作用させ、前記上流と下流のセンサ素子相互間の熱量の授受の関係を利用して、その質量流量を測定する熱式流量計であって、流量変化に対しては前記上下流センサ素子(Ru,Rd)の平均温度を不変とし、周囲温度あるいは流体の温度に対しては前記センサ素子平均温度と流体の間の温度差を制御するものにおいて、上流と下流一対の温度依存性電気抵抗体センサ素子(Ru、Rd)と固定抵抗器(Ra)が直列に接続される第1の直列回路(1)と、温度センサ素子(Rt)と固定抵抗器(Rb,Rc)が直列に接続される第2の直列回路(2)とを両辺とする電橋回路(BC)を構成し、この電橋回路の平衡を検出する第1の演算増幅回路(A1)によってこの電橋回路の一方の電位(Vc)を制御し、前記上下流対センサ素子の接続点と所定の電位の差を検出する第2の演算増幅器(A2)によって前記電橋回路の他方の電位(Vd)を制御することを特徴とする。   In the thermal flow meter of the present invention, a pair of temperature-dependent electric resistance sensor elements (Ru, Rd) are arranged upstream and downstream along a fluid flow path, and a voltage is applied to both of the sensor elements to provide fluid. A thermal flowmeter that measures the mass flow rate by utilizing the relationship between the amount of heat exchanged between the upstream and downstream sensor elements, and the upstream and downstream sides of the flow rate change. The average temperature of the sensor elements (Ru, Rd) is not changed, and the temperature dependence between the sensor element average temperature and the fluid is controlled with respect to the ambient temperature or the fluid temperature. A first series circuit (1) in which an electric resistance sensor element (Ru, Rd) and a fixed resistor (Ra) are connected in series, a temperature sensor element (Rt) and a fixed resistor (Rb, Rc) in series. The second series circuit (2) connected to the two sides A first operational amplifier circuit (A1) that constitutes a bridge circuit (BC) and detects the balance of the bridge circuit controls one potential (Vc) of the bridge circuit, and the upstream and downstream pair sensor elements The other potential (Vd) of the bridge circuit is controlled by a second operational amplifier (A2) that detects a difference between the connection point of the voltage and a predetermined potential.

また、この発明において、上流と下流一対の温度依存性電気抵抗体センサ素子と固定抵抗器が直列接続される第1の直列回路と、前記温度センサ素子と固定抵抗器が直列接続される第2の直列回路とを両辺とする電橋回路の平衡を検出する第1の演算増幅回路の入力電位が演算増幅器の電位条件を満足するよう電橋回路の平衡検出端に同一の電圧を加減する手段を設けることが出来る。   In the present invention, a first series circuit in which a pair of temperature-dependent electrical resistance sensor elements and a fixed resistor are connected in series in the upstream and downstream, and a second in which the temperature sensor element and the fixed resistor are connected in series. Means for adjusting the same voltage at the balance detection end of the bridge circuit so that the input potential of the first operational amplifier circuit for detecting the balance of the bridge circuit with both sides of the series circuit satisfies the potential condition of the operational amplifier. Can be provided.

また、この発明において、前記電圧加減手段は、例えば前記第1の直列回路の温度依存性電気抵抗体センサ素子と固定抵抗器の接続点と所定電位間に設けられる第1の加算回路と、前記第2の直列回路の前記温度センサ素子と固定抵抗器の接続点と所定電位間に設けられる第2の加算回路とからなり、前記第1と第2の加算回路の出力を前記第1の演算増幅回路の入力に受けるようにするとよい。   In the present invention, the voltage adjusting means includes, for example, a first addition circuit provided between a connection point between the temperature-dependent electrical resistance sensor element of the first series circuit and the fixed resistor and a predetermined potential, A second adder circuit provided between a connection point of the temperature sensor element and the fixed resistor of the second series circuit and a predetermined potential, and outputs the first and second adder circuits to the first calculation It is good to receive at the input of the amplifier circuit.

請求項1に係る発明によれば、上下流センサの接続点に対する電位差と下流センサの上下流センサの接続点に対する電位差を、簡単な抵抗による加算回路で検出して、容易に流量出力を得ることが出来る。   According to the first aspect of the present invention, the potential difference between the connection point of the upstream and downstream sensors and the potential difference between the connection point of the upstream and downstream sensors are detected by the addition circuit using a simple resistor, and the flow rate output can be easily obtained. I can do it.

また、請求項2、請求項3に係る発明によれば、この種の装置の供給電源電圧を制限する演算増幅器電源に対して電橋回路の有効電圧範囲が大幅に拡大でき、演算増幅器電源に対する電橋回路の有効範囲の差に伴う無効電圧に伴う電力の低減が可能となり、特に電池駆動など供給電源が低くなるまで使用したい場合に特に、有効である。   Further, according to the inventions according to claims 2 and 3, the effective voltage range of the bridge circuit can be greatly expanded with respect to the operational amplifier power supply for limiting the supply power supply voltage of this type of device. It is possible to reduce the power accompanying the reactive voltage due to the difference in the effective range of the bridge circuit, and it is particularly effective when it is desired to use the battery until the power supply becomes low, such as battery driving.

以下、実施の形態により、この発明をさらに詳細に説明する。図1は、この発明の一実施形態である熱式流量計の検知回路を示す回路図である。図1において、上流と下流に設けられる一対の温度依存性の電気抵抗体センサ素子Ru,Rdと固定抵抗器Raが直列に接続される直列回路1と、流体又は周囲温度を検出する測温抵抗素子(温度センサ素子)Rtと固定抵抗器Rc,及びRbが直列に接続される直列回路2により、これら直列回路1,2を両辺とする電橋回路BCが構成されている。この電橋回路BCを構成する各素子のうち温度依存性の電気抵抗体センサ素子Ruは、図2に示すように流体が流される流路11に配置され、温度依存性の電気抵抗体センサ素子Rdは、流路11で電気抵抗体センサ素子Ruより下流側に配置されている。測温抵抗素子Rtは流体の温度を検出する場合は、温度依存性電気抵抗体センサ素子RuとRdの発熱の影響を受けない流路11の中で、温度依存性電気抵抗体センサ素子Ruの更に上流に、また周囲温度を検出する場合は、流路11外に配置される。さらに、固定抵抗器Ra、Rb,Rcは流路11外に設けられる。 Hereinafter, the present invention will be described in more detail with reference to embodiments. FIG. 1 is a circuit diagram showing a detection circuit of a thermal flow meter according to an embodiment of the present invention. In FIG. 1, a series circuit 1 in which a pair of temperature-dependent electrical resistance sensor elements Ru, Rd and a fixed resistor Ra provided upstream and downstream are connected in series, and a resistance temperature detector for detecting fluid or ambient temperature A bridge circuit BC having the series circuits 1 and 2 as both sides is constituted by the series circuit 2 in which the element (temperature sensor element) Rt and the fixed resistors Rc and Rb are connected in series. The temperature-dependent electric resistance sensor element Ru among the elements constituting the bridge circuit BC is arranged in the flow path 11 through which a fluid flows as shown in FIG. 2, and the temperature-dependent electric resistance sensor element. Rd is disposed downstream of the electric resistance sensor element Ru in the flow path 11. When the temperature measuring resistance element Rt detects the temperature of the fluid, the temperature-dependent electric resistance sensor element Ru is not affected by the heat generation of the temperature-dependent electric resistance sensor elements Ru and Rd. Further, when detecting the ambient temperature upstream, it is arranged outside the flow path 11. Further, the fixed resistors Ra, Rb, and Rc are provided outside the flow path 11.

電橋回路BCの直列回路1と直列回路2の一方の接続点cには、+V1電源がトランジスタQ1のコレクタ、エミッタを介して接続され、また、電橋回路BCの直列回路1と直列回路2の他方の接続点dがトランジスタQ2のコレクタ、エミッタを介してー電源V3に接続されている。   The + V1 power source is connected to one connection point c between the series circuit 1 and the series circuit 2 of the bridge circuit BC via the collector and emitter of the transistor Q1, and the series circuit 1 and the series circuit 2 of the bridge circuit BC are connected. Is connected to the power source V3 via the collector and emitter of the transistor Q2.

また、演算増幅器A1は、+入力端が電橋回路BCの電気抵抗体センサ素子Rdと固定抵抗器Raの接続点aに接続され、―入力端が電橋回路BCの固定抵抗器RcとRbの接続点bに接族され、演算増幅器A1の出力端がトランジスタQ1のベースに接続されている。また、この演算増幅器A1は、電橋回路BCの平衡を検出する演算増幅器であり、Va=Vbとなり、(Ru+Rd)=(Ra/Rb)*(Rc+Rt)となるよう、その出力をトランジスタQ1のベースに入力し、電橋回路BCへの供給電圧のうち、電位Vcを制御する。   The operational amplifier A1 has a + input terminal connected to the connection point a between the electric resistor sensor element Rd and the fixed resistor Ra of the bridge circuit BC, and a negative input terminal connected to the fixed resistors Rc and Rb of the bridge circuit BC. And the output terminal of the operational amplifier A1 is connected to the base of the transistor Q1. The operational amplifier A1 is an operational amplifier that detects the balance of the bridge circuit BC. The output of the transistor Q1 is such that Va = Vb and (Ru + Rd) = (Ra / Rb) * (Rc + Rt). Input to the base and control the potential Vc of the supply voltage to the bridge circuit BC.

また、演算増幅器A2は、―入力端が基準比較電圧V2に接続され、+入力端が電橋回路BCの電気抵抗体センサ素子RuとRdの接続点eに接続され、演算増幅器A2の出力端がトランジスタQ2のベースに接続されている。また、この演算増幅器A2は、上流側の電気抵抗体センサ素子Ruと,下流側の電気抵抗体素子Rdの接続点eの電位Veを所定の電位V2と等しくなるよう、もう一方(他方)の電橋回路供給電源の電位Vdを制御する。電橋回路BCの接続点aが抵抗器Rpdを介して、電橋回路BCの接続点dが抵抗器Rpuを介して、いずれも演算増幅器A3の+入力端に接続されている。   The operational amplifier A2 has a negative input terminal connected to the reference comparison voltage V2, a positive input terminal connected to a connection point e between the electric resistance sensor elements Ru and Rd of the bridge circuit BC, and an output terminal of the operational amplifier A2. Is connected to the base of transistor Q2. In addition, the operational amplifier A2 is configured so that the potential Ve at the connection point e between the upstream electrical resistance sensor element Ru and the downstream electrical resistance element Rd is equal to a predetermined potential V2. The electric potential Vd of the power supply for the bridge circuit is controlled. The connection point a of the bridge circuit BC is connected to the positive input terminal of the operational amplifier A3 via the resistor Rpd, and the connection point d of the bridge circuit BC is connected to the positive input terminal of the operational amplifier A3.

以上の演算増幅器A1、A2の制御により、演算増幅器A1の作動においては、上下流電気抵抗体センサ素子の平均温度Tsu+Tsdは、被測定流体流量にかかわらず温度センサRtの関数となり、所要の温度補償が行える。更に演算増幅器A2の作動では、上下流温度依存性電気抵抗体センサ素子Ru,Rdの接続点eの電位Veが常に基準電位V2に保持され、図1におけるa点の電位Vaが基準電位V2に下流側電気抵抗体センサ素子Rdの電圧Edを加えた値Va=V2+Edとなり、また図1におけるd点の電位Vdが基準電位V2に上流側の温度依存性電気抵抗体センサ素子Ruの電圧Euを差し引いた値Vd=V2−Euとなる。この結果、上下流温度依存性電気抵抗体センサ素子Ru,Rdの流量に対するセンサ出力信号dEs=Ed−Eu=Va+Vdであるから、図1におけるa点及びb点の簡単な加算回路で得ることができる。図1の抵抗器Rpu、Rpdと演算増幅器A3の加算回路では,dVs=(Ed―Eu)/2となる。   By controlling the operational amplifiers A1 and A2, in the operation of the operational amplifier A1, the average temperature Tsu + Tsd of the upstream and downstream electrical resistor sensor elements becomes a function of the temperature sensor Rt regardless of the fluid flow rate to be measured, and the required temperature compensation is performed. Can be done. Further, in the operation of the operational amplifier A2, the potential Ve at the connection point e of the upstream and downstream temperature-dependent electric resistance sensor elements Ru and Rd is always held at the reference potential V2, and the potential Va at the point a in FIG. The value Va = V2 + Ed obtained by adding the voltage Ed of the downstream side electric resistor sensor element Rd, and the potential Vd at the point d in FIG. 1 becomes the reference potential V2, and the voltage Eu of the upstream temperature dependent electric resistor sensor element Ru is set to the reference potential V2. The subtracted value Vd = V2−Eu. As a result, since the sensor output signal dEs = Ed−Eu = Va + Vd with respect to the flow rates of the upstream and downstream temperature-dependent electric resistance sensor elements Ru and Rd, it can be obtained by a simple addition circuit of points a and b in FIG. it can. In the adding circuit of the resistors Rpu and Rpd and the operational amplifier A3 in FIG. 1, dVs = (Ed−Eu) / 2.

図3は、この発明の他の実施形態回路を示す回路図である。この実施形態回路は、図1に示す回路において、さらに、電橋回路BCの接続点a点と電位V4との間に抵抗R1,R2からなる加算回路(分圧回路)3を設けると共に、電橋回路BCの接続点bと電位V4との間に抵抗r1,r2からなる加算回路(分圧回路)4を設け、抵抗R1と抵抗R2の接続点(加算回路3の出力)を演算増幅器A1の+入力端に接続し、抵抗r1と抵抗r2の接続点(加算回路4の出力)を演算増幅器A1のー入力端に接続している。演算増幅器A1の出力は、トランジスタQ1のベースに接続されている。   FIG. 3 is a circuit diagram showing a circuit according to another embodiment of the present invention. In the circuit of this embodiment, in addition to the circuit shown in FIG. 1, an adder circuit (voltage dividing circuit) 3 including resistors R1 and R2 is further provided between the connection point a of the bridge circuit BC and the potential V4. An adder circuit (voltage dividing circuit) 4 including resistors r1 and r2 is provided between the connection point b of the bridge circuit BC and the potential V4, and the connection point of the resistors R1 and R2 (output of the adder circuit 3) is connected to the operational amplifier A1. Are connected to the positive input terminal of the operational amplifier A1, and the connection point of the resistors r1 and r2 (the output of the adder circuit 4) is connected to the negative input terminal of the operational amplifier A1. The output of the operational amplifier A1 is connected to the base of the transistor Q1.

この実施形態回路では、加算回路3、4の抵抗R1,R2,r1,r2は、R1/R2=r1/r2とし、理想的にはR1/r1=R2/r2=Ra/Rbとするが、各抵抗値が電橋回路BCの各抵抗に比し大きければR1/R2=r1/r2であれば良い。   In the circuit of this embodiment, the resistors R1, R2, r1, and r2 of the adder circuits 3 and 4 are R1 / R2 = r1 / r2, and ideally R1 / r1 = R2 / r2 = Ra / Rb. If each resistance value is larger than each resistance of the bridge circuit BC, R1 / R2 = r1 / r2.

加算回路3,4の出力va,vbは、va=(Va+V4*R1/R2)/(R1/R2+1)、vb=(Vb+V4*r1/r2)/(r1/r2+1)であるから、R1/R2=r1/r2であり、va=vbとなれば、Va=Vbとなる。   Since the outputs va and vb of the adder circuits 3 and 4 are va = (Va + V4 * R1 / R2) / (R1 / R2 + 1) and vb = (Vb + V4 * r1 / r2) / (r1 / r2 + 1), R1 / R2 When r = r1 / r2 and va = vb, Va = Vb.

この実施形態回路では、加算回路3、4の出力を演算増幅器A1で比較し、その比較出力でトランジスタQ1を制御し、電橋回路BCの平衡を行う。電位Vbと電位V4との間の所定電位を、演算増幅器A1に入力できる。   In the circuit of this embodiment, the outputs of the adder circuits 3 and 4 are compared by the operational amplifier A1, the transistor Q1 is controlled by the comparison output, and the bridge circuit BC is balanced. A predetermined potential between the potential Vb and the potential V4 can be input to the operational amplifier A1.

図4は、この発明のさらに他の実施形態回路を示す回路図である。この実施形態回路は、図1に示す回路において、さらに、電橋回路BCの接続点a点と電橋回路BCの接続点d(電位Vd)との間に抵抗R1,R2からなる加算回路(分圧回路)3を設けると共に、電橋回路BCの接続点b点と電橋回路BCの接続点d(電位Vd)との間に抵抗r1,r2からなる加算回路(分圧回路)4を設け、抵抗R1と抵抗R2の接続点(加算回路3の出力)を演算増幅器A1の+入力端に接続し、抵抗r1と抵抗r2の接続点(加算回路4の出力)を演算増幅器A1のー入力端に接続している。   FIG. 4 is a circuit diagram showing a circuit according to still another embodiment of the present invention. This embodiment circuit further comprises an adder circuit comprising resistors R1 and R2 between a connection point a of the bridge circuit BC and a connection point d (potential Vd) of the bridge circuit BC in the circuit shown in FIG. Voltage divider circuit) 3 and an adder circuit (voltage divider circuit) 4 comprising resistors r1 and r2 between a connection point b of the bridge circuit BC and a connection point d (potential Vd) of the bridge circuit BC. The connection point between the resistors R1 and R2 (output of the adder circuit 3) is connected to the + input terminal of the operational amplifier A1, and the connection point between the resistors r1 and r2 (output of the adder circuit 4) is Connected to the input end.

この実施形態回路も、図3の回路と同様、加算回路3,4の抵抗R1,R2,r1,r2の抵抗値は、R1/R2=r1/r2とし、理想的にはR1/r1=R2/r2=Ra/Rbとするが、各抵抗値が各電橋回路の抵抗に比し大きければR1/R2=r1/r2であれば良い。   In the circuit of this embodiment as well, the resistance values of the resistors R1, R2, r1, and r2 of the adder circuits 3 and 4 are R1 / R2 = r1 / r2, and ideally R1 / r1 = R2 as in the circuit of FIG. / R2 = Ra / Rb, but R1 / R2 = r1 / r2 may be used as long as each resistance value is larger than the resistance of each bridge circuit.

加算回路3、4の出力va,vbはva=(Va+Vd*R1/R2)/(R1/R2+1)、vb=(Vb+Vd*r1/r2)/(r1/r2+1)であるから、R1/R2=r1/r2であり、va=vbとなれば、Va=Vbとなる。   Since the outputs va and vb of the adder circuits 3 and 4 are va = (Va + Vd * R1 / R2) / (R1 / R2 + 1) and vb = (Vb + Vd * r1 / r2) / (r1 / r2 + 1), R1 / R2 = If r1 / r2 and va = vb, then Va = Vb.

この実施形態回路でも加算回路出力を演算増幅器A1で比較し、その比較出力でトランジスタQ1を制御し、電橋回路BCの平衡を行う。   Also in the circuit of this embodiment, the output of the adder circuit is compared by the operational amplifier A1, the transistor Q1 is controlled by the comparison output, and the bridge circuit BC is balanced.

本発明の一実施形態に係る熱式流量計の検出部の回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of the detection part of the thermal type flow meter which concerns on one Embodiment of this invention. 同実施形態熱式流量計の電橋回路を構成する各素子の流路内外の配置を説明する図である。It is a figure explaining arrangement | positioning inside and outside the flow path of each element which comprises the electric bridge circuit of the thermal flow meter of the embodiment. 本発明の他の同実施形態に係る熱式流量計の検出部の回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of the detection part of the thermal type flow meter which concerns on the other same embodiment of this invention. 本発明のさらに他の実施形態に係る熱式流量計の検出部の回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of the detection part of the thermal type flow meter which concerns on further another embodiment of this invention. 従来の熱式流量計の検出部の回路構成の一例を示す回路図である。It is a circuit diagram which shows an example of the circuit structure of the detection part of the conventional thermal type flow meter.

符号の説明Explanation of symbols

Ru 上流側の温度依存性電気抵抗体センサ素子
Rd 下流側の温度依存性電気抵抗体センサ素子
Rt 測温抵抗素子(温度センサ素子)
Ra,Rb,Rc 電橋回路用の固定抵抗器
R1,R2 加算回路用の固定抵抗器
r1,r2 加算回路用の固定抵抗器
A1,A2,A3 演算増幅器
Q1,Q2 トランジスタ
・ 電橋回路用の直列回路
・ 加算回路
11 流路
Ru Temperature-dependent electrical resistor sensor element Rd on the upstream side Temperature-dependent electrical resistor sensor element Rt on the downstream side Temperature measuring resistance element (temperature sensor element)
Ra, Rb, Rc Fixed resistor R1, R2 for the bridge circuit Fixed resistor r1, r2 for the adder circuit Fixed resistor A1, A2, A3 for the adder circuit Operational amplifier Q1, Q2 For transistor / bridge circuit Series circuit / adder circuit 11

Claims (3)

流体の流路に沿って、上流と下流に一対の温度依存性電気抵抗体センサ素子を配置し、両センサ素子に電圧を印加し流体に熱的に作用させ、前記上流と下流のセンサ素子相互間の熱量の授受の関係を利用して、その質量流量を測定する熱式流量計であって、流量変化に対しては前記上下流センサ素子の平均温度を不変とし、周囲温度あるいは流体の温度に対しては前記センサ素子平均温度と流体の間の温度差を制御する熱式流量計において、
上流と下流一対の温度依存性電気抵抗体センサ素子と固定抵抗器が直列に接続される第1の直列回路と、温度センサ素子と固定抵抗器が直列に接続される第2の直列回路とを両辺とする電橋回路を構成し、
この電橋回路の平衡を検出する第1の演算増幅回路によってこの電橋回路の一方の電位を制御し、
前記上下流対センサ素子の接続点と所定の電位の差を検出する第2の演算増幅回路によって前記電橋回路の他方の電位を制御する
ことを特徴とする熱式流量計。
A pair of temperature-dependent electrical resistance sensor elements are arranged upstream and downstream along the fluid flow path, and a voltage is applied to both sensor elements to thermally act on the fluid so that the upstream and downstream sensor elements are connected to each other. A thermal flow meter that measures the mass flow rate using the relationship between the amount of heat exchanged between them, and the average temperature of the upstream and downstream sensor elements remains unchanged with respect to the flow rate change, and the ambient temperature or fluid temperature In the thermal flow meter for controlling the temperature difference between the sensor element average temperature and the fluid,
A first series circuit in which a pair of upstream and downstream temperature-dependent electrical resistance sensor elements and a fixed resistor are connected in series, and a second series circuit in which the temperature sensor element and the fixed resistor are connected in series Configure a bridge circuit on both sides,
The first operational amplifier circuit that detects the balance of the bridge circuit controls one potential of the bridge circuit,
A thermal flow meter, wherein the other potential of the bridge circuit is controlled by a second operational amplifier circuit that detects a difference between a connection point of the upstream / downstream pair sensor element and a predetermined potential.
前記上流と下流一対の温度依存性電気抵抗体センサ素子と固定抵抗器が直列接続される第1の直列回路と、前記温度センサ素子と固定抵抗器が直列接続される第2の直列回路とを両辺とする電橋回路の平衡を検出する第1の演算増幅回路の入力電位が演算増幅器の電位条件を満足するよう前記電橋回路の平衡検出端に同一の電圧を加減する手段を設けたことを特徴とする請求項1記載の熱式流量計。   A first series circuit in which a pair of temperature-dependent electrical resistance sensor elements and a fixed resistor are connected in series; and a second series circuit in which the temperature sensor element and a fixed resistor are connected in series. Means for adjusting the same voltage at the balance detection end of the bridge circuit is provided so that the input potential of the first operational amplifier circuit for detecting the balance of the bridge circuit on both sides satisfies the potential condition of the operational amplifier. The thermal flow meter according to claim 1. 前記電圧加減手段は、前記温度依存性電気抵抗体センサ素子と固定抵抗器の接続点と所定電位間に設けられる第1の加算回路と、前記第2の直列回路の前記温度センサ素子と固定抵抗器の接続点と所定電位間に設けられる第2の加算回路とからなり、前記第1と第2の加算回路の出力を前記第1の演算増幅回路の入力に受けることを特徴とする請求項2記載の熱式流量計。   The voltage adjusting means includes a first adder circuit provided between a connection point of the temperature-dependent electrical resistor sensor element and the fixed resistor and a predetermined potential, and the temperature sensor element and the fixed resistor of the second series circuit. And a second adder circuit provided between a connection point of the capacitor and a predetermined potential, and the outputs of the first and second adder circuits are received at the input of the first operational amplifier circuit. 2. The thermal flow meter according to 2.
JP2005072367A 2005-03-15 2005-03-15 Thermal flow meter Active JP4904008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005072367A JP4904008B2 (en) 2005-03-15 2005-03-15 Thermal flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005072367A JP4904008B2 (en) 2005-03-15 2005-03-15 Thermal flow meter

Publications (2)

Publication Number Publication Date
JP2006258434A true JP2006258434A (en) 2006-09-28
JP4904008B2 JP4904008B2 (en) 2012-03-28

Family

ID=37097885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005072367A Active JP4904008B2 (en) 2005-03-15 2005-03-15 Thermal flow meter

Country Status (1)

Country Link
JP (1) JP4904008B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06341877A (en) * 1993-06-02 1994-12-13 Hitachi Ltd Air flowmeter
JP2002162273A (en) * 2000-11-22 2002-06-07 Nippon M K S Kk Mass flow rate sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06341877A (en) * 1993-06-02 1994-12-13 Hitachi Ltd Air flowmeter
JP2002162273A (en) * 2000-11-22 2002-06-07 Nippon M K S Kk Mass flow rate sensor

Also Published As

Publication number Publication date
JP4904008B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
US8225652B2 (en) Thermal flow meter measuring flow rate based on temperature difference measurement and driving energy of the heater
US7651263B2 (en) Method and apparatus for measuring the temperature of a gas in a mass flow controller
WO2003029759A1 (en) Flow rate measuring instrument
JP2006201077A (en) Thermal air flowmeter
JP3726261B2 (en) Thermal flow meter
US9116028B2 (en) Thermal flow sensor and method of generating flow rate detection signal by the thermal flow sensor
JP4904008B2 (en) Thermal flow meter
JP3575573B2 (en) Thermal air flow meter
JP5221182B2 (en) Thermal flow meter
JP2007285849A (en) Gas concentration detector
JP4052378B2 (en) Thermal flow meter
WO2019031329A1 (en) Wind speed measurement device and air flow measurement device
JPH10148557A (en) Flow rate sensor circuit, and method for adjusting its sensor output
JP4450958B2 (en) Thermal flow sensor
JP5062720B2 (en) Flow detection device
JP5511120B2 (en) Gas concentration detector
JP3470942B2 (en) Flow sensor
JP2004093321A (en) Bridge circuit type detector
JP4751259B2 (en) Flow velocity measurement method, flow measurement method, flow meter, and flow meter
JP2003097990A (en) Thermal flowmeter
JP4801501B2 (en) Thermal flow meter
JP3968324B2 (en) Gas property measurement device
KR20020080137A (en) Sensor for detecting the mass flow rate and device and method for controlling mass flow rate using it
JP2011153972A (en) Dynamic quantity sensor
JP3019009U (en) Mass flow meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120106

R150 Certificate of patent or registration of utility model

Ref document number: 4904008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250