JP2006257046A - New alicyclic diamine compound and method for producing alicyclic diamine compound - Google Patents

New alicyclic diamine compound and method for producing alicyclic diamine compound Download PDF

Info

Publication number
JP2006257046A
JP2006257046A JP2005079203A JP2005079203A JP2006257046A JP 2006257046 A JP2006257046 A JP 2006257046A JP 2005079203 A JP2005079203 A JP 2005079203A JP 2005079203 A JP2005079203 A JP 2005079203A JP 2006257046 A JP2006257046 A JP 2006257046A
Authority
JP
Japan
Prior art keywords
diamine compound
alicyclic diamine
catalyst
general formula
integer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005079203A
Other languages
Japanese (ja)
Inventor
Takaaki Sone
孝明 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Chemical Industries Ltd
Original Assignee
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Chemical Industries Ltd filed Critical Arakawa Chemical Industries Ltd
Priority to JP2005079203A priority Critical patent/JP2006257046A/en
Publication of JP2006257046A publication Critical patent/JP2006257046A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alicyclic diamine compound useful as a raw material for a polyimide, a polyamide, an epoxy resin or the like for an electronic material and an optical material; and to provide a method for inexpensively and readily producing the alicyclic diamine compound in good yield. <P>SOLUTION: The alicyclic diamine compound represented by general formula (3) is produced by hydrogenating an aromatic diamine compound represented by general formula (2) in the presence of a ruthenium catalyst or the like in an ether-based solvent in the coexistence of an alkali metal hydroxide and/or an alkaline earth metal hydroxide. (In the formulas, R and R' are each a 1-4C alkyl group; and n and n' are each an integer of 0-4). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、新規な脂環式ジアミン化合物および脂環式ジアミン化合物の製造方法に関する。 The present invention relates to a novel alicyclic diamine compound and a method for producing an alicyclic diamine compound.

ジアミン化合物は、例えば電子材料や光学材料用のポリイミド、ポリアミド、ポリベンゾオキサゾール、ポリアミドイミドおよびエポキシ樹脂等の原料として有用である。 The diamine compound is useful as a raw material for, for example, polyimide, polyamide, polybenzoxazole, polyamideimide, and epoxy resin for electronic materials and optical materials.

従来、これらの用途では芳香族ジアミン化合物が使用されているが、芳香環を有する化合物は、一般的に電子密度が高く、その結果、特に高周波域での誘電率が高いといった欠点や、芳香環どうしの分子間パッキングが強く、光透過率が低くなるなどの欠点がある。 Conventionally, aromatic diamine compounds have been used in these applications. However, compounds having an aromatic ring generally have a high electron density, and as a result, there are disadvantages such as a high dielectric constant particularly in a high frequency range, and aromatic rings. There are drawbacks such as strong intermolecular packing and low light transmittance.

そこで、芳香環を有しない、例えば脂環式のジアミン化合物が新規な材料として検討されている(例えば、特許文献1参照)が、脂環式ジアミン化合物を効率よく製造する方法は知られておらず、その効率的な製造方法の開発が望まれていた。 Thus, for example, an alicyclic diamine compound having no aromatic ring has been studied as a novel material (see, for example, Patent Document 1), but a method for efficiently producing an alicyclic diamine compound is not known. Therefore, development of an efficient manufacturing method has been desired.

特開2003−313294号公報JP 2003-313294 A

本発明は、脂環式ジアミン化合物を、安価で、簡便に、収率よく製造する方法を提供することを目的とする。 An object of this invention is to provide the method of manufacturing an alicyclic diamine compound cheaply, simply and with sufficient yield.

本発明者は、上記課題を解決するため、鋭意検討を行った結果、特定の芳香族化合物を特定条件で核水素化することにより、新規な脂環式ジアミン化合物が製造できることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventor has found that a novel alicyclic diamine compound can be produced by nuclear hydrogenation of a specific aromatic compound under specific conditions. Was completed.

すなわち、本発明は、一般式(1):   That is, the present invention relates to the general formula (1):

Figure 2006257046
Figure 2006257046

で表される脂環式ジアミン化合物;一般式(2): An alicyclic diamine compound represented by the general formula (2):

Figure 2006257046
Figure 2006257046

(式中Rは、炭素数1〜4のアルキル基、中R´は、炭素数1〜4のアルキル基、nは0〜4の整数、n´は0〜4の整数を表す。)で表される化合物をエーテル系溶剤の存在下、水素化することにより一般式(3): (In the formula, R represents an alkyl group having 1 to 4 carbon atoms, R ′ represents an alkyl group having 1 to 4 carbon atoms, n represents an integer of 0 to 4, and n ′ represents an integer of 0 to 4). The compound represented by the general formula (3) is hydrogenated in the presence of an ether solvent:

Figure 2006257046
Figure 2006257046

(式中Rは、炭素数1〜4のアルキル基、中R´は、炭素数1〜4のアルキル基、nは0〜4の整数、n´は0〜4の整数を表す。)で表される脂環式ジアミン化合物を製造する方法に関する。 (In the formula, R represents an alkyl group having 1 to 4 carbon atoms, R ′ represents an alkyl group having 1 to 4 carbon atoms, n represents an integer of 0 to 4, and n ′ represents an integer of 0 to 4). The present invention relates to a method for producing the represented alicyclic diamine compound.

本発明によれば、新規な脂環式ジアミン化合物を提供することができる。また、本発明の製造方法によれば、収率良く脂環式ジアミン化合物を製造することができる。なお、本発明では低温で反応を進行させることができるため、副反応を抑制できる。 According to the present invention, a novel alicyclic diamine compound can be provided. Moreover, according to the manufacturing method of this invention, an alicyclic diamine compound can be manufactured with sufficient yield. In addition, in this invention, since reaction can be advanced at low temperature, a side reaction can be suppressed.

本発明の脂環式ジアミン化合物の製造方法は、一般式(2): The production method of the alicyclic diamine compound of the present invention is represented by the general formula (2):

Figure 2006257046
Figure 2006257046

(式中Rは、炭素数1〜4のアルキル基、中R´は、炭素数1〜4のアルキル基、nは0〜4の整数、n´は0〜4の整数を表す。)で表されるものであり、具体的には、例えば、2,2´−ジメチル−4,4´−ジアミノビシクロヘキシル、2,2´−ジエチル−4,4´−ジアミノビシクロヘキシル、2,2´−ジプロピル−4,4´−ジアミノビシクロヘキシル、2,2´−ジブチル−4,4´−ジアミノビシクロヘキシルなどがあげられる。 (In the formula, R represents an alkyl group having 1 to 4 carbon atoms, R ′ represents an alkyl group having 1 to 4 carbon atoms, n represents an integer of 0 to 4, and n ′ represents an integer of 0 to 4). Specifically, for example, 2,2′-dimethyl-4,4′-diaminobicyclohexyl, 2,2′-diethyl-4,4′-diaminobicyclohexyl, 2,2 ′ -Dipropyl-4,4'-diaminobicyclohexyl, 2,2'-dibutyl-4,4'-diaminobicyclohexyl and the like.

本発明では水素化反応に用いる水素化触媒として、ルテニウム触媒、ロジウム触媒、パラジウム触媒、イリジウム触媒および白金触媒からなる群より選ばれる少なくとも一種を用いることができる。ルテニウム触媒としては、活性金属種としてのルテニウムを含むものであれば特に限定されず、公知のものを用いることができるが、不活性担体に担持したルテニウム担持触媒を用いれば、取り扱い性が容易である。ロジウム触媒としては、活性金属種としてのロジウムを含むものであれば特に限定されず、公知のものを用いることができるが、不活性担体に担持したロジウム担持触媒を用いれば、取り扱い性が容易である。パラジウム触媒としては、活性金属種としてのパラジウムを含むものであれば特に限定されず、公知のものを用いることができるが、不活性担体に担持したパラジウム担持触媒を用いれば、取り扱い性が容易である。イリジウム触媒としては、活性金属種としてのイリジウムを含むものであれば、特に限定されず公知のものを用いることができるが、不活性担体に担持したイリジウム担持触媒を用いれば、取り扱い性が容易である。白金触媒としては、活性金属種としての白金を含むものであれば、特に限定されず公知のものを用いることができるが、不活性担体に担持した白金担持触媒を用いれば、取り扱い性が容易である。不活性担体としては例えばカーボン、シリカ、アルミナ、シリカアルミナ、マグネシア等が好ましく、カーボンまたはアルミナが特に好ましい。担体へのルテニウム等の金属の担持は含浸法、沈殿法等の公知の方法により行うことができる。ルテニウム等の金属の担持量は、特に限定されるものではないが、通常0.5〜10重量%程度とすることが好ましい。これらの水素化触媒は市販されている担持触媒をそのまま使用してもよい。なお、これら水素化触媒の中では、ルテニウム担持触媒、ロジウム担持触媒を用いることが好ましい。 In the present invention, as the hydrogenation catalyst used in the hydrogenation reaction, at least one selected from the group consisting of a ruthenium catalyst, a rhodium catalyst, a palladium catalyst, an iridium catalyst, and a platinum catalyst can be used. The ruthenium catalyst is not particularly limited as long as it contains ruthenium as an active metal species, and any known catalyst can be used. is there. The rhodium catalyst is not particularly limited as long as it contains rhodium as an active metal species, and a known one can be used. is there. The palladium catalyst is not particularly limited as long as it contains palladium as an active metal species, and a known catalyst can be used. However, if a palladium-supported catalyst supported on an inert carrier is used, handling is easy. is there. The iridium catalyst is not particularly limited as long as it contains iridium as an active metal species, and any known iridium catalyst can be used. is there. The platinum catalyst is not particularly limited as long as it contains platinum as an active metal species, and any known catalyst can be used. However, if a platinum-supported catalyst supported on an inert carrier is used, handling is easy. is there. As the inert carrier, for example, carbon, silica, alumina, silica alumina, magnesia and the like are preferable, and carbon or alumina is particularly preferable. Supporting a metal such as ruthenium on the support can be performed by a known method such as an impregnation method or a precipitation method. The loading amount of a metal such as ruthenium is not particularly limited, but is usually preferably about 0.5 to 10% by weight. As these hydrogenation catalysts, commercially available supported catalysts may be used as they are. Among these hydrogenation catalysts, it is preferable to use a ruthenium supported catalyst or a rhodium supported catalyst.

水素化触媒の使用量は、特に限定されないが、通常は、原料の重量に対し、活性金属種として0.01〜2重量%程度とすることが好ましく、0.05〜1重量%が特に好ましい。 The amount of the hydrogenation catalyst used is not particularly limited, but usually it is preferably about 0.01 to 2% by weight, particularly preferably 0.05 to 1% by weight as the active metal species based on the weight of the raw material. .

本発明では前記水素化触媒に、助触媒としてアルカリ金属水酸化物および/またはアルカリ土類金属水酸化物を使用することが好ましい。アルカリ金属水酸化物および/またはアルカリ土類金属水酸化物を水素化触媒と組み合わせて使用することにより、水素化触媒を単独で使用する場合に比較して、目的の核水素化物の選択率や反応速度を改善することができる。使用するアルカリ金属水酸化物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等が挙げられるが、本発明では目的物の収率が向上するという点から、水酸化リチウムを用いることが特に好ましい。アルカリ土類金属水酸化物としては、例えば、水酸化バリウム、水酸化マグネシウム、水酸化カルシウム等があげられるが、本発明では、目的物の収率が向上するという点から、水酸化カルシウムを用いることが、特に好ましい。アルカリ金属水酸化物および/またはアルカリ土類金属水酸化物の使用量は、特に限定されないが、その添加効果が十分に得られる範囲および経済的観点から、通常は、芳香族ジアミン化合物の10重量部に対し0.5〜1重量部程度用いることが好ましい。 In the present invention, it is preferable to use an alkali metal hydroxide and / or an alkaline earth metal hydroxide as a co-catalyst for the hydrogenation catalyst. By using an alkali metal hydroxide and / or alkaline earth metal hydroxide in combination with a hydrogenation catalyst, the selectivity of the target nuclear hydride can be improved compared to the case where the hydrogenation catalyst is used alone. The reaction rate can be improved. Examples of the alkali metal hydroxide to be used include lithium hydroxide, sodium hydroxide, and potassium hydroxide. In the present invention, lithium hydroxide is used because the yield of the target product is improved. Is particularly preferred. Examples of the alkaline earth metal hydroxide include barium hydroxide, magnesium hydroxide, calcium hydroxide, and the like. In the present invention, calcium hydroxide is used because the yield of the target product is improved. It is particularly preferred. The amount of the alkali metal hydroxide and / or alkaline earth metal hydroxide used is not particularly limited, but is usually 10% by weight of the aromatic diamine compound from the range where the addition effect is sufficiently obtained and from an economical viewpoint. About 0.5 to 1 part by weight is preferably used with respect to parts.

本発明では、目的物の収率を向上させるために、水素化反応の際、エーテル系溶媒を用いる。エーテル系溶媒としては、例えば、メチルターシャリーブチルエーテル、ジプロピルエーテル、ジブチルエーテル、メチラール、ジメトキシエタン、ジエトキシエタン、テトラヒドロフラン、テトラヒドロピラン、ジオキサン、ジオキソラン等が挙げられ、これらの中でもテトラヒドロフラン、テトラヒドロピラン、ジオキサン、ジオキソラン等の飽和環状エーテル類が好ましく、テトラヒドロフランまたはジオキサンが収率の点から特に好ましい。なお、必要に応じて、エーテル系溶媒に加え、原料化合物や触媒等と反応しない公知の溶媒を併用することもできる。   In the present invention, an ether solvent is used in the hydrogenation reaction in order to improve the yield of the target product. Examples of the ether solvent include methyl tertiary butyl ether, dipropyl ether, dibutyl ether, methylal, dimethoxyethane, diethoxyethane, tetrahydrofuran, tetrahydropyran, dioxane, dioxolane and the like. Among these, tetrahydrofuran, tetrahydropyran, Saturated cyclic ethers such as dioxane and dioxolane are preferred, and tetrahydrofuran or dioxane is particularly preferred from the viewpoint of yield. In addition to the ether solvent, a known solvent that does not react with the raw material compound or the catalyst can be used in combination as necessary.

反応溶媒を使用する場合の反応溶媒の使用量は特に限定されないが、通常は原料の芳香族ジアミン化合物1重量部に対し、0.5〜20重量部程度用いることが好ましく、芳香族ジアミン化合物1重量部に対し、2〜10重量部用いることがさらに好ましい。 The amount of the reaction solvent used in the case of using the reaction solvent is not particularly limited, but it is usually preferable to use about 0.5 to 20 parts by weight with respect to 1 part by weight of the aromatic diamine compound as a raw material. It is more preferable to use 2 to 10 parts by weight with respect to parts by weight.

本発明における反応温度および反応圧力(水素圧)は特に限定されず、適宜決定することができるが、通常は、反応温度130〜200℃程度、好ましくは150〜190℃、水素圧2〜20MPa程度、好ましくは7〜18MPaである。なお、反応時間は特に限定されないが、通常2〜20時間程度である。   The reaction temperature and reaction pressure (hydrogen pressure) in the present invention are not particularly limited and can be appropriately determined. Usually, the reaction temperature is about 130 to 200 ° C, preferably 150 to 190 ° C, and the hydrogen pressure is about 2 to 20 MPa. , Preferably 7 to 18 MPa. The reaction time is not particularly limited, but is usually about 2 to 20 hours.

以上のような水素化条件で前記一般式(2)で表される化合物を水素化することによって、一般式(3):   By hydrogenating the compound represented by the general formula (2) under the hydrogenation conditions as described above, the general formula (3):

Figure 2006257046
Figure 2006257046

(式中Rは、炭素数1〜4のアルキル基、中R´は、炭素数1〜4のアルキル基、nは0〜4の整数、n´は0〜4の整数を表す。)で表される脂環式ジアミン化合物を高濃度に含む反応液が得られ、当該反応液から、触媒および溶媒を分離すれば容易に目的の化合物を得ることができる。
特に一般式(4):
(In the formula, R represents an alkyl group having 1 to 4 carbon atoms, R ′ represents an alkyl group having 1 to 4 carbon atoms, n represents an integer of 0 to 4, and n ′ represents an integer of 0 to 4). A reaction solution containing the alicyclic diamine compound represented at a high concentration is obtained, and the target compound can be easily obtained by separating the catalyst and the solvent from the reaction solution.
In particular, the general formula (4):

Figure 2006257046
Figure 2006257046

で表される化合物を原料として用いることにより得られる一般式(1): General formula (1) obtained by using a compound represented by the formula:

Figure 2006257046
Figure 2006257046

は新規化合物であり、電子材料や光学材料用のポリイミド、ポリアミド、ポリベンゾオキサゾール、ポリアミドイミドおよびエポキシ樹脂等の原料として有用である。当該一般式(1)で表される化合物は、反応溶液を減圧濃縮後、再結晶精製することにより白色結晶で得られる。 Is a novel compound and is useful as a raw material for polyimides, polyamides, polybenzoxazoles, polyamideimides, epoxy resins and the like for electronic materials and optical materials. The compound represented by the general formula (1) is obtained as white crystals by recrystallization purification after concentration of the reaction solution under reduced pressure.

本発明によれば、通常、原料からの選択率80%以上で目的の核水素化物が得られる。なお、反応生成物には少量の水素化分解物や反応中間体が含まれるため、必要に応じて通常の蒸留あるいは再結晶等の手段により精製することにより、更に高純度の脂環式ジアミン化合物を得ることができる。 According to the present invention, the desired nuclear hydride is usually obtained with a selectivity of 80% or more from the raw material. In addition, since the reaction product contains a small amount of hydrocracked product and reaction intermediate, it can be purified by means such as ordinary distillation or recrystallization as necessary to obtain a higher purity alicyclic diamine compound. Can be obtained.

以下、実施例によって本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to these Examples.

実施例1
1000mlのオートクレーブに2,2’−ジメチル−4,4’ジアミノ−1,1’−ビフェニル120g、テトラヒドロフラン600ml、5%ルテニウム−カーボン担持触媒(エヌ・イー ケムキャット(株)製、B型50%含水品)12.0g、水酸化リチウム・1水和物を12.0g仕込み、系内を水素で置換した後、温度を150℃、圧力を18MPaとし、攪拌しながら8時間反応させた。得られた反応溶液を、ろ過して触媒を除去し、ガスクロマトグラフィー((株)島津製作所製、GC−17A(FID検出器)、ジーエルサイエンス(株)製、TC−1キャピラリーカラム使用;以下同じでGCと略記する)で分析したところ、2,2’ジメチル−4,4’−ジアミノ−ビシクロヘキシルの選択率は92.1%であった。なお、選択率は、GC分析により得られた各成分のピーク面積より計算した値である。ろ液を減圧濃縮して得た固形物125.3gをエタノール250mlに加温して溶解し、不溶物をろ過して除き−30℃まで冷却晶析した。
Example 1
In a 1000 ml autoclave, 2,2′-dimethyl-4,4′diamino-1,1′-biphenyl 120 g, tetrahydrofuran 600 ml, 5% ruthenium-carbon supported catalyst (manufactured by N.E. Chemcat Co., Ltd., B-type 50% water content Product) 12.0 g and 12.0 g of lithium hydroxide monohydrate were charged, and the system was replaced with hydrogen. Then, the temperature was set to 150 ° C. and the pressure was set to 18 MPa. The obtained reaction solution was filtered to remove the catalyst, and gas chromatography (manufactured by Shimadzu Corporation, GC-17A (FID detector), manufactured by GL Sciences Inc., using a TC-1 capillary column; the same applies hereinafter) And abbreviated as GC), the selectivity of 2,2′dimethyl-4,4′-diamino-bicyclohexyl was 92.1%. The selectivity is a value calculated from the peak area of each component obtained by GC analysis. 125.3 g of a solid obtained by concentrating the filtrate under reduced pressure was dissolved by heating in 250 ml of ethanol, and the insoluble matter was removed by filtration, followed by cooling to -30 ° C for crystallization.

析出した結晶をろ取して冷エタノールで洗浄後、水酸化カリウムデシケーター上で減圧乾燥して、GC純度99.4%の白色結晶を44.8g得た。GC−MS(質量分析)の結果、この結晶の分子量は224であることを確かめた。また、当該化合物のH-NMRスペクトル(溶媒:CDCl,ppm,バリアン社製300MHz-NMR)を図−1に示す。各ピークの帰属は以下の通りである。0.80−0.85(d,6H)、0.90−1.27(m,12H)、1.60−1.65(d,2H)、1.70−1.78(dd,2H)、1.83−1.92(b.d,2H)、2.06(b.s,2H)、2.74−2.86(m,2H) The precipitated crystals were collected by filtration, washed with cold ethanol, and dried under reduced pressure on a potassium hydroxide desiccator to obtain 44.8 g of white crystals having a GC purity of 99.4%. As a result of GC-MS (mass spectrometry), it was confirmed that the molecular weight of this crystal was 224. In addition, FIG. 1 shows a 1 H-NMR spectrum (solvent: CDCl 3 , ppm, 300 MHz-NMR manufactured by Varian) of the compound. The attribution of each peak is as follows. 0.80-0.85 (d, 6H), 0.90-1.27 (m, 12H), 1.60-1.65 (d, 2H), 1.70-1.78 (dd, 2H) ), 1.83-1.92 (b.d, 2H), 2.06 (bs, 2H), 2.74-2.86 (m, 2H)

実施例2
200mlのオートクレーブに2,2’−ジメチル−4,4’ジアミノ−1,1’−ビフェニル5.00g、テトラヒドロフラン100ml、5%ルテニウム−カーボン担持触媒(エヌ・イー ケムキャット(株)製、B型含水品)0.50g、水酸化リチウム・1水和物を0.50g仕込み、系内を水素で置換した後、温度を150℃、圧力を18MPaとし、攪拌しながら8時間反応させた。得られた反応溶液を、ろ過して触媒を除去し、GC分析したところ、2,2’ジメチル−4,4’−ジアミノ−ビシクロヘキシルの選択率は91.5%であった。
Example 2
In a 200 ml autoclave, 2.00 g of 2,2′-dimethyl-4,4′diamino-1,1′-biphenyl, 100 ml of tetrahydrofuran, 5% ruthenium-carbon supported catalyst (manufactured by N.E. Article) 0.50 g and 0.50 g of lithium hydroxide monohydrate were charged, and the system was replaced with hydrogen. The temperature was 150 ° C., the pressure was 18 MPa, and the reaction was allowed to proceed for 8 hours with stirring. The obtained reaction solution was filtered to remove the catalyst, and GC analysis was performed. As a result, the selectivity for 2,2′dimethyl-4,4′-diamino-bicyclohexyl was 91.5%.

実施例3〜5
使用した触媒種および使用量、反応温度、添加塩基種および使用量、THF溶媒量を表1に記載したように変更した他は実施例2と同様にして反応を行った。結果を表1に示す。
Examples 3-5
The reaction was conducted in the same manner as in Example 2 except that the catalyst species and amount used, reaction temperature, added base species and amount, and THF solvent amount were changed as described in Table 1. The results are shown in Table 1.

Figure 2006257046
Figure 2006257046

表中、5%Ru−C(B)は、エヌ・イー ケムキャット(株)製のルテニウムカーボン担持触媒B型(50%含水品)、5%Ru−C(A)は、エヌ・イー ケムキャット(株)製のルテニウムカーボン担持触媒A型(50%含水品)、5%Rh−Cは、エヌ・イー ケムキャット(株)製のロジウムカーボン担持触媒(50%含水品)、5%Ru−アルミナは、和光純薬工業(株)製のルテニウムアルミナ担持触媒を表す。LiOHは水酸化リチウム・1水和物を表す。 In the table, 5% Ru-C (B) is a ruthenium carbon supported catalyst B type (50% water-containing product) manufactured by N.E. Chemcat Co., Ltd., and 5% Ru-C (A) is N.E. Ruthenium carbon supported catalyst A type (50% water-containing product) manufactured by Co., Ltd., 5% Rh-C is a rhodium carbon supported catalyst (50% water-containing product) manufactured by N.E. Represents a ruthenium alumina-supported catalyst manufactured by Wako Pure Chemical Industries, Ltd. LiOH represents lithium hydroxide monohydrate.

実施例1で得られた2,2’−ジメチル−4,4’−ジアミノビシクロヘキシルのH−NMRスペクトルである。2 is a 1 H-NMR spectrum of 2,2′-dimethyl-4,4′-diaminobicyclohexyl obtained in Example 1. FIG.

Claims (4)

一般式(1):
Figure 2006257046
で表される脂環式ジアミン化合物。
General formula (1):
Figure 2006257046
The alicyclic diamine compound represented by these.
一般式(2):
Figure 2006257046

(式中Rは、炭素数1〜4のアルキル基、中R´は、炭素数1〜4のアルキル基、nは0〜4の整数、n´は0〜4の整数を表す。)で表される化合物をエーテル系溶剤の存在下、水素化することにより一般式(3):
Figure 2006257046
(式中Rは、炭素数1〜4のアルキル基、中R´は、炭素数1〜4のアルキル基、nは0〜4の整数、n´は0〜4の整数を表す。)で表される脂環式ジアミン化合物を製造する方法。
General formula (2):
Figure 2006257046

(In the formula, R represents an alkyl group having 1 to 4 carbon atoms, R ′ represents an alkyl group having 1 to 4 carbon atoms, n represents an integer of 0 to 4, and n ′ represents an integer of 0 to 4). The compound represented by the general formula (3) is hydrogenated in the presence of an ether solvent:
Figure 2006257046
(In the formula, R represents an alkyl group having 1 to 4 carbon atoms, R ′ represents an alkyl group having 1 to 4 carbon atoms, n represents an integer of 0 to 4, and n ′ represents an integer of 0 to 4). A method for producing the represented alicyclic diamine compound.
水素化を、ルテニウム触媒、ロジウム触媒、パラジウム触媒、イリジウム触媒および白金触媒から選ばれる少なくとも一種を用いて行う請求項2に記載の脂環式ジアミン化合物の製造方法。 The method for producing an alicyclic diamine compound according to claim 2, wherein the hydrogenation is performed using at least one selected from a ruthenium catalyst, a rhodium catalyst, a palladium catalyst, an iridium catalyst, and a platinum catalyst. 水素化を、アルカリ金属水酸化物および/またはアルカリ土類金属化合物の存在下で行う請求項2または3に記載の脂環式ジアミン化合物の製造方法。
The method for producing an alicyclic diamine compound according to claim 2 or 3, wherein the hydrogenation is carried out in the presence of an alkali metal hydroxide and / or an alkaline earth metal compound.
JP2005079203A 2005-03-18 2005-03-18 New alicyclic diamine compound and method for producing alicyclic diamine compound Pending JP2006257046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005079203A JP2006257046A (en) 2005-03-18 2005-03-18 New alicyclic diamine compound and method for producing alicyclic diamine compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005079203A JP2006257046A (en) 2005-03-18 2005-03-18 New alicyclic diamine compound and method for producing alicyclic diamine compound

Publications (1)

Publication Number Publication Date
JP2006257046A true JP2006257046A (en) 2006-09-28

Family

ID=37096689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005079203A Pending JP2006257046A (en) 2005-03-18 2005-03-18 New alicyclic diamine compound and method for producing alicyclic diamine compound

Country Status (1)

Country Link
JP (1) JP2006257046A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2606925A (en) * 1949-12-15 1952-08-12 Du Pont Ruthenium catalyzed hydrogenation process for obtaining aminocyclohexyl compounds
US3636108A (en) * 1965-12-23 1972-01-18 Du Pont Catalytic hydrogenation of aromatic nitrogen containing compounds over alkali moderated ruthenium
US3697449A (en) * 1970-12-14 1972-10-10 Du Pont Alkali moderation of supported ruthenium catalysts
JPS5197591A (en) * 1975-01-24 1976-08-27
JPS5198244A (en) * 1975-01-24 1976-08-30 ************** **
US4754070A (en) * 1986-01-23 1988-06-28 Air Products And Chemicals, Inc. Hydrogenation of methylenedianiline to produce bis(para-aminocyclohexyl)methane
JP2003183229A (en) * 2001-12-19 2003-07-03 Central Glass Co Ltd Method for producing flurorine-containing alicyclic diamine compound
JP2003183387A (en) * 2001-12-19 2003-07-03 Central Glass Co Ltd Fluorine-containing alicylic diamine and polymer using the same
JP2003313294A (en) * 2002-04-26 2003-11-06 Central Glass Co Ltd Optical part using fluorinated polyimide
JP2006199751A (en) * 2005-01-18 2006-08-03 Jsr Corp Liquid crystal aligning agent

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2606925A (en) * 1949-12-15 1952-08-12 Du Pont Ruthenium catalyzed hydrogenation process for obtaining aminocyclohexyl compounds
US3636108A (en) * 1965-12-23 1972-01-18 Du Pont Catalytic hydrogenation of aromatic nitrogen containing compounds over alkali moderated ruthenium
US3697449A (en) * 1970-12-14 1972-10-10 Du Pont Alkali moderation of supported ruthenium catalysts
JPS5197591A (en) * 1975-01-24 1976-08-27
JPS5198244A (en) * 1975-01-24 1976-08-30 ************** **
US4754070A (en) * 1986-01-23 1988-06-28 Air Products And Chemicals, Inc. Hydrogenation of methylenedianiline to produce bis(para-aminocyclohexyl)methane
JP2003183229A (en) * 2001-12-19 2003-07-03 Central Glass Co Ltd Method for producing flurorine-containing alicyclic diamine compound
JP2003183387A (en) * 2001-12-19 2003-07-03 Central Glass Co Ltd Fluorine-containing alicylic diamine and polymer using the same
JP2003313294A (en) * 2002-04-26 2003-11-06 Central Glass Co Ltd Optical part using fluorinated polyimide
JP2006199751A (en) * 2005-01-18 2006-08-03 Jsr Corp Liquid crystal aligning agent

Similar Documents

Publication Publication Date Title
JPWO2012086808A1 (en) Method for producing aromatic alcohol or heterocyclic aromatic alcohol
JP6739756B2 (en) Method for isomerizing bis(aminomethyl)cyclohexane
JP2008074754A (en) METHOD FOR PRODUCING trans-1,4-DIAMINOCYCLOHEXANE
JP2008143832A (en) Method for producing alicyclic amine or saturated heterocyclic amine
CN1696096A (en) Method for synthesizing Idebenone
JP4349227B2 (en) Method for producing 1,3-cyclohexanediol
JP2006257046A (en) New alicyclic diamine compound and method for producing alicyclic diamine compound
JP6420673B2 (en) Method for producing bis [4- (6-acryloyloxyhexyl) phenyl] cyclohexane-1,4-dicarboxylate
CN112538010A (en) Preparation method of key intermediate for synthesizing artemisinin compound
JP4761024B2 (en) Method for producing alicyclic diamine compound
JP3904915B2 (en) Method for producing fluorine-containing alicyclic diamine compound
JP4757281B2 (en) Novel 4- (4 &#39;-(4 &#34;-hydroxyphenyl) cyclohexyl) -1-hydroxybenzenes
JP2012144508A (en) Method of producing triphenylenes
JP2007210936A (en) Method for producing alicyclic diamine compound
JP5374085B2 (en) Process for producing 4-alkylresorcinol and 4-alkenylresorcinol
JP2003012585A (en) New 4-(4&#39;-(4&#34;-hydroxyphenyl) cyclohexyl)-1-hydroxybenzene compound
JP4472063B2 (en) Method for producing dicyclohexane derivative
JP3904916B2 (en) Method for producing alicyclic diamine compound containing fluorine
JP3089672B2 (en) Diol compound having cyclohexane ring and method for producing diol compound having cyclohexane ring
JP7140347B2 (en) Method for producing 4-(piperidin-4-yl)morpholine
JP3971875B2 (en) Process for producing trans-4- (4&#39;-oxocyclohexyl) cyclohexanols
RU2314302C2 (en) Method for preparing derivative of aminobenzopyrane
JP5564088B2 (en) Process for producing trans-1,4-diaminocyclohexane
JP2019108319A (en) Manufacturing method of fluoroalkane
JP2014125444A (en) Method of manufacturing carbazoles and carbazoles manufactured by the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110302

A521 Written amendment

Effective date: 20110317

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110623

A521 Written amendment

Effective date: 20110730

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20111214

Free format text: JAPANESE INTERMEDIATE CODE: A02