JP3904916B2 - Method for producing alicyclic diamine compound containing fluorine - Google Patents

Method for producing alicyclic diamine compound containing fluorine Download PDF

Info

Publication number
JP3904916B2
JP3904916B2 JP2001386663A JP2001386663A JP3904916B2 JP 3904916 B2 JP3904916 B2 JP 3904916B2 JP 2001386663 A JP2001386663 A JP 2001386663A JP 2001386663 A JP2001386663 A JP 2001386663A JP 3904916 B2 JP3904916 B2 JP 3904916B2
Authority
JP
Japan
Prior art keywords
diamine compound
reaction
hydroxide
fluorine
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001386663A
Other languages
Japanese (ja)
Other versions
JP2003183229A (en
Inventor
秀樹 大森
和男 尾崎
渉 早▲崎▼
一彦 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Maruzen Petrochemical Co Ltd
Original Assignee
Central Glass Co Ltd
Maruzen Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd, Maruzen Petrochemical Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2001386663A priority Critical patent/JP3904916B2/en
Publication of JP2003183229A publication Critical patent/JP2003183229A/en
Application granted granted Critical
Publication of JP3904916B2 publication Critical patent/JP3904916B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はフッ素を含有する芳香族ジアミン化合物を核水素化してフッ素を含有する脂環式ジアミン化合物を製造する方法に関する。
【0002】
【従来の技術】
フッ素を含有するジアミン化合物は、例えば電子材料や光学材料用のポリアミド、ポリベンゾオキサゾール、ポリアミドイミドおよびエポキシ樹脂等の原料として有用である。
【0003】
従来、このような用途では例えば2,2’−ビス(トリフルオロメチル)ベンジジン等の芳香族化合物が使用されている。しかし、芳香環を有する化合物は、一般的に電子密度が高く、その結果、特に高周波域での誘電率が高いといった欠点や、芳香環どうしの分子間パッキングが強く、光透過率が低くなるなどの欠点がある。そこで、芳香環を有しない、例えば脂環式のジアミン化合物が新規な材料として検討されている。ただし、このようなフッ素を含有する脂環式ジアミン化合物を効率よく製造する方法は従来知られておらず、従って、その効率的な製造方法の開発が望まれていた。
【0004】
【発明が解決しようとする課題】
本発明は上記の問題を解決し、電子材料として例えば半導体用の低誘電性パッケージ材料や基板材料、あるいは光学材料として例えば光導波路や光部品などの分野に有用な含フッ素脂環式ジアミン化合物を、簡便に製造する方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは上記課題を解決するため鋭意検討を行った結果、特定の水素化触媒および反応溶媒の存在下に原料化合物を核水素化することにより、容易にフッ素を含有する脂環式ジアミン化合物を製造できることを見出し本発明を完成した。
【0006】
すなわち本発明は、下記一般式(1)で表されるフッ素を含有する芳香族ジアミン化合物をルテニウム触媒を使用し、エーテル系溶媒の存在下、アルカリ金属水酸化物および/またはアルカリ土類金属水酸化物を共存させて核水素化することを特徴とする、一般式(2)で表されるフッ素を含有する脂環式ジアミン化合物の製造方法である。
【0007】
【化3】

Figure 0003904916
【0008】
【化4】
Figure 0003904916
【0009】
【発明の実施の形態】
本発明は下記一般式(1)で表されるフッ素を含有する芳香族ジアミン化合物を、ルテニウム触媒を使用し、エーテル系溶媒の存在下、アルカリ金属水酸化物および/またはアルカリ土類金属水酸化物を共存させて核水素化することを特徴とする。
【0010】
【化5】
Figure 0003904916
【0011】
本発明の出発原料とする一般式(1)の芳香族化合物としては、例えば、2,2’−ビス(トリフルオロメチル)ベンジジン、3,3’−ビス(トリフルオロメチル)ベンジジン等が挙げられる。本発明ではこれらの中でも特に2,2’−ビス(トリフルオロメチル)ベンジジンを原料とする場合に好適に実施することができる。
【0012】
本発明では水素化触媒としてルテニウム触媒を使用する。一般的に水素化触媒としては、ニッケル、パラジウム、ルテニウム、ロジウムおよび白金等の金属触媒が挙げられるが、本発明の上記芳香族化合物を水素化対象物とする場合、ルテニウム触媒の使用下において最も転化率、選択率が高くなることが見出された。ルテニウム触媒としては活性金属種としてのルテニウムを含むものであれば特に限定されないが、取扱いが容易である点で不活性担体に担持したルテニウム担持触媒が推奨される。不活性担体としては例えばカーボン、シリカ、アルミナ、シリカアルミナ、マグネシア等が好ましく、カーボンまたはアルミナが特に好ましい。担体へのルテニウムの担持は含浸法、沈殿法等の通常の方法により可能であり、このときのルテニウムの担持量は特に限定されるものではないが、通常0.5〜10重量%程度が好ましい。また、本発明ではカーボン担持ルテニウム触媒、またはアルミナ担持ルテニウム触媒等として市販されている担持触媒をそのまま使用することもできる。
【0013】
水素化反応におけるルテニウム触媒の使用量は特に限定されないが、通常は原料の重量に対し、金属量として0.1〜5重量%の範囲が好ましく、0.5〜3重量%がさらに好ましい。なお、本発明では一度使用した触媒を回収し、そのまま再生処理を施すことなく次回の水素化反応に使用することができ、このようなリサイクル使用を行うことにより触媒コストを低減することが可能である。
【0014】
本発明では上記ルテニウム触媒と同時に、助触媒としてアルカリ金属水酸化物および/またはアルカリ土類金属水酸化物を併用することを特徴とする。これらの助触媒をルテニウム触媒と組み合わせて使用することにより、ルテニウム触媒を単独で使用する場合に比較して、目的の核水素化物の選択率や反応速度を格段に改善することができる。アルカリ金属水酸化物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等が挙げられ、アルカリ土類金属水酸化物としては、例えば、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム等が挙げられるが、本発明では目的の核水素化物への選択性が高い点で水酸化リチウムまたは水酸化カルシウムが特に好ましい。また、上記に列挙した助触媒はそれぞれを単独で使用することも、2種以上を混合して使用することもできる。助触媒の使用量は特に限定されないが、その添加効果が十分に得られる範囲、および経済的観点から通常は原料化合物の重量に対し1〜100重量%の範囲が好ましい。
【0015】
本発明では反応溶媒としてエーテル系溶媒を使用する。エーテル系溶媒としては例えば、メチルターシャリーブチルエーテル、ジプロピルエーテル、ジブチルエーテル、メチラール、ジメトキシエタン、ジエトキシエタン、テトラヒドロフラン、テトラヒドロピラン、ジオキサン、ジオキソラン等が挙げられ、これらの中でもテトラヒドロフラン、テトラヒドロピラン、ジオキサン、ジオキソラン等の飽和環状エーテル類が好ましく、テトラヒドロフランまたはジオキサンが特に好ましい。反応溶媒の使用量は特に限定されないが、通常は原料化合物の重量に対し、0.5〜20重量倍の範囲で使用することが好ましく、2〜10重量倍がさらに好ましい。
【0016】
本発明における反応温度および反応圧力(水素圧)は特に限定されないが、低温・低圧の条件下では水素化反応の選択率が高くなるものの反応速度が遅くなり、また高温・高圧の条件下では反応速度は向上するものの選択率が低下する傾向にある。従って、これらの条件は適度な反応速度と選択率が得られる範囲で選択すれば良く、通常は、反応温度90〜200℃の範囲、好ましくは110〜150℃の範囲が採用され、水素圧30〜200kg/cm2・Gの範囲、好ましくは70〜180kg/cm2・Gの範囲が採用される。また、水素化反応の終点、すなわち反応時間は反応系内の水素吸収量の低下によって判断されるが、上記の条件下における反応時間は通常2〜20時間程度である。
【0017】
以上のような本発明の方法を実施することによって、フッ素を含有する脂環式ジアミン化合物を高濃度に含む反応液が得られ、当該反応液から、触媒および溶媒を分離することにより容易に目的の核水素化物が得られる。なお、本発明の反応生成物には目的の核水素化物の他、水素化分解物や反応中間体等の副生物が含まれるため、これらは必要に応じて通常の蒸留あるいは再結晶等の手段により精製することにより、更に高純度の製品を得ることができる。
【0018】
【実施例】
以下実施例によって本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0019】
(実施例1)
容量1リットルのオートクレーブに、2,2’−ビス(トリフルオロメチル)ベンジジン100g、テトラヒドロフラン500g、5%ルテニウム/アルミナ担持触媒(エヌイーケムキャット社製)45g、および水酸化カルシウム100gを入れ、系内を窒素、次いで水素で置換した後、内容物を撹拌しながら反応温度135℃、水素圧150kg/cm2・Gで水素化反応を行った。水素吸収は約6.5時間で停止したが、その後1時間撹拌を継続し反応を終了した。反応液を室温まで冷却した後、濾過して触媒を分離した。
【0020】
得られた反応液の組成をガスクロマトグラフにより分析した結果、2,2’−ビス(トリフルオロメチル)−4、4’−ジアミノビシクロヘキシルの選択率は70.8%であった。
【0021】
また、反応液から単蒸留によりテトラヒドロフランを留去し、ついで残留物を塔頂温度156.5〜157℃/3mmHgの条件で蒸留精製したした結果、純度87%の2,2’−ビス(トリフルオロメチル)−4、4’−ジアミノビシクロヘキシルが得られた。
【0022】
(実施例2)
実施例1において水酸化カルシウムに代えて水酸化リチウム・1水和物50gを使用した以外は実施例1と同様にして水素化反応を行った。
【0023】
得られた反応液の組成をガスクロマトグラフにより分析した結果、2,2’−ビス(トリフルオロメチル)−4、4’−ジアミノビシクロヘキシルの選択率は42.7%であった。
【0024】
(比較例1)
実施例1において水酸化カルシウムを混合しなかった以外は実施例1と同様にして水素化反応を行った。
【0025】
得られた反応液の組成をガスクロマトグラフにより分析した結果、2,2’−ビス(トリフルオロメチル)−4、4’−ジアミノビシクロヘキシルの選択率は11%であった。
【0026】
【発明の効果】
本発明によれば、電子材料や光学材料等の原料として好適に使用できるフッ素を含有する脂環式ジアミン化合物を、簡便に製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an alicyclic diamine compound containing fluorine by nuclear hydrogenation of an aromatic diamine compound containing fluorine.
[0002]
[Prior art]
A diamine compound containing fluorine is useful as a raw material for, for example, polyamides, polybenzoxazoles, polyamideimides and epoxy resins for electronic materials and optical materials.
[0003]
Conventionally, aromatic compounds such as 2,2′-bis (trifluoromethyl) benzidine have been used in such applications. However, a compound having an aromatic ring generally has a high electron density, and as a result, a defect such as a high dielectric constant particularly in a high frequency region, a strong intermolecular packing between aromatic rings, and a low light transmittance. There are disadvantages. Thus, an alicyclic diamine compound having no aromatic ring, for example, has been studied as a novel material. However, a method for efficiently producing such an alicyclic diamine compound containing fluorine has not been known so far, and therefore, development of an efficient production method has been desired.
[0004]
[Problems to be solved by the invention]
The present invention solves the above-described problems, and uses a fluorine-containing alicyclic diamine compound useful as an electronic material, for example, in a field such as an optical waveguide or an optical component as a low dielectric packaging material or substrate material for a semiconductor, or as an optical material. An object of the present invention is to provide a method for simple production.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the inventors of the present invention easily fluorinated alicyclic diamine by nuclear hydrogenation of a raw material compound in the presence of a specific hydrogenation catalyst and reaction solvent. The present invention was completed by finding that a compound can be produced.
[0006]
That is, the present invention uses a ruthenium catalyst for a fluorine-containing aromatic diamine compound represented by the following general formula (1), and in the presence of an ether solvent, an alkali metal hydroxide and / or an alkaline earth metal water. It is a method for producing an alicyclic diamine compound containing fluorine represented by the general formula (2), characterized in that nuclear hydrogenation is performed in the presence of an oxide.
[0007]
[Chemical 3]
Figure 0003904916
[0008]
[Formula 4]
Figure 0003904916
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, an aromatic diamine compound containing fluorine represented by the following general formula (1) is converted to an alkali metal hydroxide and / or alkaline earth metal hydroxide using a ruthenium catalyst in the presence of an ether solvent. It is characterized by nuclear hydrogenation in the presence of substances.
[0010]
[Chemical formula 5]
Figure 0003904916
[0011]
Examples of the aromatic compound of the general formula (1) used as a starting material of the present invention include 2,2′-bis (trifluoromethyl) benzidine and 3,3′-bis (trifluoromethyl) benzidine. . Of these, the present invention can be preferably carried out particularly when 2,2′-bis (trifluoromethyl) benzidine is used as a raw material.
[0012]
In the present invention, a ruthenium catalyst is used as the hydrogenation catalyst. In general, the hydrogenation catalyst includes metal catalysts such as nickel, palladium, ruthenium, rhodium and platinum. However, when the aromatic compound of the present invention is used as the hydrogenation target, it is most suitable under the use of the ruthenium catalyst. It has been found that the conversion and selectivity are high. The ruthenium catalyst is not particularly limited as long as it contains ruthenium as an active metal species, but a ruthenium-supported catalyst supported on an inert carrier is recommended in terms of easy handling. As the inert carrier, for example, carbon, silica, alumina, silica alumina, magnesia and the like are preferable, and carbon or alumina is particularly preferable. Ruthenium can be supported on the support by an ordinary method such as an impregnation method or a precipitation method. The amount of ruthenium supported at this time is not particularly limited, but is preferably about 0.5 to 10% by weight. . In the present invention, a supported catalyst commercially available as a carbon-supported ruthenium catalyst, an alumina-supported ruthenium catalyst, or the like can be used as it is.
[0013]
Although the usage-amount of the ruthenium catalyst in a hydrogenation reaction is not specifically limited, Usually, the range of 0.1-5 weight% is preferable as a metal amount with respect to the weight of a raw material, and 0.5-3 weight% is further more preferable. In the present invention, the catalyst once used can be recovered and used as it is for the next hydrogenation reaction without being subjected to regeneration treatment, and the catalyst cost can be reduced by performing such recycling. is there.
[0014]
The present invention is characterized in that an alkali metal hydroxide and / or an alkaline earth metal hydroxide is used in combination as a cocatalyst simultaneously with the ruthenium catalyst. By using these cocatalysts in combination with a ruthenium catalyst, the selectivity of the target nuclear hydride and the reaction rate can be remarkably improved as compared with the case where the ruthenium catalyst is used alone. Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, and potassium hydroxide. Examples of the alkaline earth metal hydroxide include magnesium hydroxide, calcium hydroxide, and barium hydroxide. In the present invention, lithium hydroxide or calcium hydroxide is particularly preferable because of its high selectivity to the target nuclear hydride. In addition, each of the promoters listed above can be used alone or in combination of two or more. The amount of the cocatalyst used is not particularly limited, but it is usually preferably in the range of 1 to 100% by weight with respect to the weight of the raw material compound from the range where the effect of addition is sufficiently obtained and from the economical viewpoint.
[0015]
In the present invention, an ether solvent is used as a reaction solvent. Examples of ether solvents include methyl tertiary butyl ether, dipropyl ether, dibutyl ether, methylal, dimethoxyethane, diethoxyethane, tetrahydrofuran, tetrahydropyran, dioxane, dioxolane and the like. Among these, tetrahydrofuran, tetrahydropyran, dioxane Saturated cyclic ethers such as dioxolane are preferred, and tetrahydrofuran or dioxane is particularly preferred. The amount of the reaction solvent used is not particularly limited, but it is usually preferably used in the range of 0.5 to 20 times by weight and more preferably 2 to 10 times by weight with respect to the weight of the raw material compound.
[0016]
The reaction temperature and reaction pressure (hydrogen pressure) in the present invention are not particularly limited, but the reaction rate is slow although the hydrogenation reaction selectivity is high under conditions of low temperature and low pressure, and the reaction is performed under conditions of high temperature and high pressure. Although the speed is improved, the selectivity tends to decrease. Accordingly, these conditions may be selected within a range where an appropriate reaction rate and selectivity can be obtained. Usually, a reaction temperature range of 90 to 200 ° C., preferably a range of 110 to 150 ° C. is adopted, and a hydrogen pressure of 30 The range of ˜200 kg / cm 2 · G, preferably the range of 70 to 180 kg / cm 2 · G is employed. The end point of the hydrogenation reaction, that is, the reaction time, is determined by a decrease in the amount of hydrogen absorbed in the reaction system. The reaction time under the above conditions is usually about 2 to 20 hours.
[0017]
By carrying out the method of the present invention as described above, a reaction liquid containing a fluorine-containing alicyclic diamine compound at a high concentration can be obtained, and the catalyst and solvent can be easily separated from the reaction liquid. The nuclear hydride is obtained. The reaction product of the present invention contains by-products such as hydrocracked products and reaction intermediates in addition to the target nuclear hydride. By purifying with the above, it is possible to obtain a product with higher purity.
[0018]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
[0019]
Example 1
In a 1 liter autoclave, 100 g of 2,2′-bis (trifluoromethyl) benzidine, 500 g of tetrahydrofuran, 45 g of a 5% ruthenium / alumina supported catalyst (manufactured by NU Chem Cat), and 100 g of calcium hydroxide were placed. After substituting with nitrogen and then with hydrogen, a hydrogenation reaction was carried out at a reaction temperature of 135 ° C. and a hydrogen pressure of 150 kg / cm 2 · G while stirring the contents. The hydrogen absorption stopped after about 6.5 hours, but then the stirring was continued for 1 hour to complete the reaction. The reaction solution was cooled to room temperature and then filtered to separate the catalyst.
[0020]
As a result of analyzing the composition of the obtained reaction solution by gas chromatography, the selectivity for 2,2′-bis (trifluoromethyl) -4,4′-diaminobicyclohexyl was 70.8%.
[0021]
Further, tetrahydrofuran was distilled off from the reaction solution by simple distillation, and then the residue was purified by distillation at a tower top temperature of 156.5 to 157 ° C./3 mmHg. Fluoromethyl) -4,4'-diaminobicyclohexyl was obtained.
[0022]
(Example 2)
A hydrogenation reaction was carried out in the same manner as in Example 1 except that 50 g of lithium hydroxide monohydrate was used instead of calcium hydroxide in Example 1.
[0023]
As a result of analyzing the composition of the obtained reaction solution by gas chromatography, the selectivity for 2,2′-bis (trifluoromethyl) -4,4′-diaminobicyclohexyl was 42.7%.
[0024]
(Comparative Example 1)
A hydrogenation reaction was performed in the same manner as in Example 1 except that calcium hydroxide was not mixed in Example 1.
[0025]
As a result of analyzing the composition of the obtained reaction solution by gas chromatography, the selectivity for 2,2′-bis (trifluoromethyl) -4,4′-diaminobicyclohexyl was 11%.
[0026]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the alicyclic diamine compound containing a fluorine which can be used conveniently as raw materials, such as an electronic material and an optical material, can be manufactured simply.

Claims (5)

一般式(1)で表されるフッ素を含有する芳香族ジアミン化合物をルテニウム触媒を使用し、エーテル系溶媒の存在下、アルカリ金属水酸化物および/またはアルカリ土類金属水酸化物を共存させて核水素化することを特徴とする、一般式(2)で表されるフッ素を含有する脂環式ジアミン化合物の製造方法。
Figure 0003904916
Figure 0003904916
A ruthenium catalyst is used for the fluorine-containing aromatic diamine compound represented by the general formula (1), and an alkali metal hydroxide and / or an alkaline earth metal hydroxide is allowed to coexist in the presence of an ether solvent. A method for producing an alicyclic diamine compound containing fluorine represented by the general formula (2), characterized by performing nuclear hydrogenation.
Figure 0003904916
Figure 0003904916
アルカリ金属水酸化物が水酸化リチウムである請求項1記載の製造方法。2. The method according to claim 1, wherein the alkali metal hydroxide is lithium hydroxide. アルカリ土類金属水酸化物が水酸化カルシウムである請求項1記載の製造方法。The process according to claim 1, wherein the alkaline earth metal hydroxide is calcium hydroxide. エーテル系溶媒がテトラヒドロフランおよびジオキサンから選択された少なくとも1種である請求項1ないし3記載の製造方法。4. The process according to claim 1, wherein the ether solvent is at least one selected from tetrahydrofuran and dioxane. 一般式(1)で表されるフッ素を含有する芳香族ジアミン化合物が、2,2’−ビス(トリフルオロメチル)ベンジジンである請求項1ないし4記載の製造方法。The production method according to claim 1, wherein the fluorine-containing aromatic diamine compound represented by the general formula (1) is 2,2'-bis (trifluoromethyl) benzidine.
JP2001386663A 2001-12-19 2001-12-19 Method for producing alicyclic diamine compound containing fluorine Expired - Fee Related JP3904916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001386663A JP3904916B2 (en) 2001-12-19 2001-12-19 Method for producing alicyclic diamine compound containing fluorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001386663A JP3904916B2 (en) 2001-12-19 2001-12-19 Method for producing alicyclic diamine compound containing fluorine

Publications (2)

Publication Number Publication Date
JP2003183229A JP2003183229A (en) 2003-07-03
JP3904916B2 true JP3904916B2 (en) 2007-04-11

Family

ID=27595754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001386663A Expired - Fee Related JP3904916B2 (en) 2001-12-19 2001-12-19 Method for producing alicyclic diamine compound containing fluorine

Country Status (1)

Country Link
JP (1) JP3904916B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257046A (en) * 2005-03-18 2006-09-28 Arakawa Chem Ind Co Ltd New alicyclic diamine compound and method for producing alicyclic diamine compound

Also Published As

Publication number Publication date
JP2003183229A (en) 2003-07-03

Similar Documents

Publication Publication Date Title
JP2008074754A (en) METHOD FOR PRODUCING trans-1,4-DIAMINOCYCLOHEXANE
CN107406366B (en) Isomerization method of bis (aminomethyl) cyclohexane
JP3904916B2 (en) Method for producing alicyclic diamine compound containing fluorine
JP3904915B2 (en) Method for producing fluorine-containing alicyclic diamine compound
EA000698B1 (en) Process for producing n-methyl-2-(3,4 dimethoxyphenyl)-ethylamine
JP3904854B2 (en) Method for producing fluorine-containing alicyclic dicarboxylic acid compound
JPH01193246A (en) Production of 2,3-dichloropyridine
JP2585737B2 (en) Method for producing terpene alcohol
JP5911468B2 (en) Process for producing asymmetric secondary tert-butylamine in gas phase
JP4079880B2 (en) Method for producing cyclododecanone
WO2020195252A1 (en) Method for producing halogenated cycloalkane compound
JPH02275829A (en) Production of 3,3,3-trifluoropropanol
KR20040036038A (en) Method for preparing of optically pure (R)-form or (S)-form tetrahydro furfuryl alcohol using heterogeneous catalysts
US6429319B1 (en) Continuous process for the production of optically pure (S)-beta-hydroxy-gamma-butyrolactone
JPH02279643A (en) Production of isopropyl alcohol
JP4761024B2 (en) Method for producing alicyclic diamine compound
JP5564088B2 (en) Process for producing trans-1,4-diaminocyclohexane
JP3206161B2 (en) Method for producing aromatic amine
KR100710543B1 (en) Continuous Process for the Production of Optically Pure S- ?-hydroxy- ?-butyrolactone
JPH05148171A (en) Production of 1,1,1,2,2,3,4,5,5,5-decafluoropentane
US5095124A (en) Process for the preparation of alk-1-enyl ether cyclocarbonate
JPH0219346A (en) Production of carbonic acid ester
JPH03197434A (en) Production of alcohols or amines
JPH1087530A (en) Reduction of aldehyde or ketone
JPH09143158A (en) Production of 2-alkylindoline

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060728

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees