JP2006256889A - Nonstoichiometric metal oxide - Google Patents

Nonstoichiometric metal oxide Download PDF

Info

Publication number
JP2006256889A
JP2006256889A JP2005074790A JP2005074790A JP2006256889A JP 2006256889 A JP2006256889 A JP 2006256889A JP 2005074790 A JP2005074790 A JP 2005074790A JP 2005074790 A JP2005074790 A JP 2005074790A JP 2006256889 A JP2006256889 A JP 2006256889A
Authority
JP
Japan
Prior art keywords
metal oxide
type
oxygen
thermoelectric power
nonstoichiometric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005074790A
Other languages
Japanese (ja)
Inventor
Noriyuki Okinaka
憲之 沖中
Takeshi Higashimatsu
剛 東松
Tomohiro Akiyama
友宏 秋山
Hiroyuki Uesugi
浩之 上杉
Masashi Matsushita
昌史 松下
Yoshio Nuitani
芳雄 縫谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISMANJ KK
KINBOSHI KK
Kinboshi Inc
Original Assignee
ISMANJ KK
KINBOSHI KK
Kinboshi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISMANJ KK, KINBOSHI KK, Kinboshi Inc filed Critical ISMANJ KK
Priority to JP2005074790A priority Critical patent/JP2006256889A/en
Publication of JP2006256889A publication Critical patent/JP2006256889A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stable method for manufacturing a nonstoichiometric metal oxide by solving such a problem that a stable production method of a nonstoichiometric metal oxide is not established and quantitative properties of the nonstoichiometric metal oxide as a semiconductor are unknown although it is known that a nonstoichiometric metal oxide of a oxygen excess type exhibits properties as a p-type semiconductor and a nonstoichiometric metal oxide of a oxygen deficiency type exhibits properties as a n-type semiconductor, and to provide a new industrial application of the nonstoichiometric metal oxide manufactured by the method. <P>SOLUTION: A p-type semiconductor of the oxygen excess type and an n-type semiconductor of the oxygen deficiency type, being each a nonstoichiometric metal oxide, can be stably manufactured by a combustion synthesis method. A thermoelectric power generating material having excellent cost performance and heat resistance is obtained by constituting a module by using the oxygen deficiency type metal oxide as an n-type element of the thermoelectric power generating material and the oxygen excess type metal oxide as a p-type element of the thermoelectric power generating material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃焼合成により製造した酸素過剰型不定比金属酸化物および酸素欠乏型不定比金属酸化物と同不定比金属酸化物の工業的活用に関する。 The present invention relates to an oxygen-rich nonstoichiometric metal oxide produced by combustion synthesis, and industrial utilization of the oxygen-deficient nonstoichiometric metal oxide and the nonstoichiometric metal oxide.

酸素過剰型の不定比金属酸化物がp型半導体を酸素欠乏型の不定比金属酸化物がn型半導体特性を示す事は既に理論的には立証されている。 It has already been theoretically proved that oxygen-rich nonstoichiometric metal oxides exhibit p-type semiconductors and oxygen-deficient nonstoichiometric metal oxides exhibit n-type semiconductor characteristics.

特に酸素過剰型の不定比金属酸化物は、優れたp型半導体特性を示し、電気抵抗の優れた温度依存性を活用してサーミスターとして利用されている。 In particular, oxygen-rich nonstoichiometric metal oxides exhibit excellent p-type semiconductor characteristics, and are used as thermistors by utilizing the temperature dependence of electrical resistance.

不定比チタン酸化物の電気抵抗は酸素の不定比の度合いに比例して変化する特性を利用した酸素センサーよく知られている。 It is well known that oxygen sensors using the characteristic that the electrical resistance of non-stoichiometric titanium oxide changes in proportion to the degree of oxygen non-stoichiometry.

最近の報告によると、酸素過剰型の不定比金属をp型に、酸素欠乏型の不定比金属酸化物をn型とした熱電発電素子を構成した熱電発電モジュールは、今までにない優れた発電機能を有する事も報告されている。 According to a recent report, a thermoelectric power generation module comprising a thermoelectric power generation element in which an oxygen-rich non-stoichiometric metal is p-type and an oxygen-deficient non-stoichiometric metal oxide is n-type has an unprecedented superior power generation. It has also been reported to have a function.

不定比金属酸化物はその特性から半導体として更なる幅広い活用が期待されるばかりでなく、遷移金属の中から選択する金属を特定する事により、人体に無害安全な半導体を提供できる可能性もある。   Non-stoichiometric metal oxides are not only expected to be used more widely as semiconductors due to their characteristics, but may also be able to provide harmless and safe semiconductors for the human body by specifying the metal selected from transition metals. .

この様に、不定比金属酸化物の半導体用途への活用は緒についたばかりであるが、広大な将来が期待できると言えよう。
特願2004−111957 小菅皓二「不定比化合物の科学」培風館(1985) 斉藤安俊他「金属酸化物のノンストイキオメトリーと電気伝導度」 内田老鶴圃(1992)
Thus, the use of non-stoichiometric metal oxides for semiconductor applications has just begun, but it can be said that a vast future can be expected.
Japanese Patent Application No. 2004-111957 Junji Kosuge “Science of non-stoichiometric compounds” Baifukan (1985) Yasutoshi Saito et al. “Non-stoichiometry and electrical conductivity of metal oxides” Uchida Otsukuru (1992)

不定比化合物の組成一般的には化合物の定比からのずれ(組成)共存する原子分子の圧力および温度により決定される。目的とする不定比化合物により種々の製造法が試行されている。 The composition of the non-stoichiometric compound is generally determined by the pressure and temperature of the atoms and molecules in which it deviates (composition) from the stoichiometric ratio of the compound. Various production methods have been tried depending on the target non-stoichiometric compound.

1)酸素等ガス分圧を調整法
2)酸化物の熱分解法
3)酸化物の水素還元法
等が目的に応じて採用されているが、確定された量産法がないのが現状である。
1) Method for adjusting partial pressure of gas such as oxygen 2) Pyrolysis method for oxide 3) Hydrogen reduction method for oxide etc. is adopted according to the purpose, but there is no established mass production method at present .

本特許で提案する不定比金属酸化物についても、安定した製造法が確立されていないのが現況である。   As for the non-stoichiometric metal oxide proposed in this patent, a stable production method has not been established.

そこで、不定比金属酸化物の安定した効率の良い製造法で、かつ工業的量産に耐える製法を提案するとともにその製造法を用いて不定比金属酸化物の新たな工業的活用について提案する。 Therefore, a stable and efficient production method for non-stoichiometric metal oxides and a production method that can withstand industrial mass production are proposed, and a new industrial application of non-stoichiometric metal oxides is proposed using the production method.

熱力学的反応式から求めた各種の原料を精密秤量して耐高圧容器に密封し、外部からの着火により反応を開始させるとともに、反応温度と反応圧力を制御して目的とする化合物を合成できる「燃焼合成法」は不定比金属酸化物を合成する手段として最適である。 Various raw materials obtained from thermodynamic reaction formulas are precisely weighed and sealed in a high pressure resistant container, and the reaction is started by external ignition, and the target compound can be synthesized by controlling the reaction temperature and pressure. The “combustion synthesis method” is optimal as a means for synthesizing non-stoichiometric metal oxides.

(表1)に現在知られている不定比金属酸化物化合物を示した。これらは非化学量論的化合物(nonstoichiometic compound)とも呼ばれている。しかし、これらの効率のよい製造法は知られていなし、それぞれの有する半導体としての特性も公知ではない。 Table 1 shows the currently known nonstoichiometric metal oxide compounds. These are also called nonstoichiometic compounds. However, these efficient manufacturing methods are not known, and the characteristics of each of the semiconductors are not known.

Figure 2006256889
Figure 2006256889

TiO1.1およびTiO1.2を燃焼合成法により合成した例を以下に説明する。 An example in which TiO 1.1 and TiO 1.2 are synthesized by a combustion synthesis method will be described below.

1)TiO1.1は以下の反応式に基づいて合成した。
Ti + 0.275NaClO = TiO1.1
+ 0.275NaCl
1) TiO 1.1 was synthesized based on the following reaction formula.
Ti + 0.275 NaClO 4 = TiO 1.1
+ 0.275 NaCl

2)TiO1.2は以下の反応式に基づいて合成した。
Ti + 0.3NaClO =TiO1.2 + 0.3NaCl
2) TiO 1.2 was synthesized based on the following reaction formula.
Ti + 0.3 NaClO 4 = TiO 1.2 + 0.3 NaCl

得られたそれぞれの不定比チタン酸化物の不定比係数は、X線回折法による同定と予め求めておいたチタン酸化物の密度と酸素量の精密同定線図からの同定によって求めた。 The non-stoichiometric coefficient of each non-stoichiometric titanium oxide obtained was determined by identification by an X-ray diffraction method and identification from a precise identification diagram of the density and oxygen content of titanium oxide determined in advance.

その他の不定比金属酸化物も上記の反応式と同様に合成できる事を確認しており、全ての不定比金属酸化物が燃焼合成により合成できる。   It has been confirmed that other non-stoichiometric metal oxides can be synthesized in the same manner as the above reaction formula, and all non-stoichiometric metal oxides can be synthesized by combustion synthesis.

またTiO1.1およびTiO1.2について、成分配合、反応圧力および反応温度を同一に制御してそれぞれN=10の繰り返し合成を行い、係数に関する標準偏差値として、0.001以下を得ている。 In addition, with regard to TiO 1.1 and TiO 1.2 , the composition of components, reaction pressure and reaction temperature were controlled to be the same, and N = 10 was repeatedly synthesized. Yes.

以上より、大型燃焼合成装置により、不定比金属化合物の工業的大量生産が可能である確証を得た。大型燃焼合成装置に関する詳細設計仕様についは、後続する特許で提案していきたい。 From the above, confirmation was obtained that industrial mass production of nonstoichiometric metal compounds was possible with a large-scale combustion synthesizer. The detailed design specifications for the large combustion synthesizer will be proposed in subsequent patents.

燃焼合成に安定的に製造した、各種の不定比金属酸化物について、それぞれの有するp型半導体およびn型半導体特性を測定した。 The various p-type semiconductor and n-type semiconductor characteristics of various non-stoichiometric metal oxides stably produced for combustion synthesis were measured.

その結果
1)高効率熱電発電材料
2)広温度領域用サーミスター材料
3)低温活性化触媒
4)高機能各種ガスセンサー材料
等の工業界で渇望されている材料に適用できる事が明らかにできた。
As a result, it is clear that it can be applied to materials demanded in the industry such as high-efficiency thermoelectric power generation material 2) thermistor material for wide temperature range 3) low-temperature activation catalyst 4) various high-performance gas sensor materials, etc. It was.

不定比金属酸化物がこの様な工業用途に適用できるのは、燃焼合成により安定に不定比金属酸化物が合成できた事に起因するものである。 The reason why the non-stoichiometric metal oxide can be applied to such an industrial application is that the non-stoichiometric metal oxide can be stably synthesized by combustion synthesis.

本発明により、n型およびp型半導体を安価に大量生産できる事による社会的効果は計り知れない程大きい。従来のMCVD法、単結晶法、反応燒結法により非効率的に生産されている種々の半導体が本法により生産されるようになるであろう。 According to the present invention, the social effects of being able to mass-produce n-type and p-type semiconductors at low cost are immense. Various semiconductors produced inefficiently by the conventional MCVD method, single crystal method, and reaction sintering method will be produced by this method.

具体的には、本発明の1つである熱電発電体はコストパーフォーマンスに優れているので、大量生産が可能となり、レシプロエンジンの自動車の排熱エネルギーを電気エネルギーに変換できるばかりでなく、燃費効率が改善できるので、公害対策に有効であるばかりでなく、化石燃料の省資源化にも貢献でき、京都議定書に既定されたGHG低減にも寄与できる。 Specifically, since the thermoelectric generator, which is one of the present invention, is excellent in cost performance, mass production is possible, not only can the exhaust heat energy of a reciprocating engine automobile be converted into electric energy, but also fuel efficiency. As efficiency can be improved, not only is it effective for pollution control, but it can also contribute to resource savings in fossil fuels and can contribute to the reduction of GHG specified in the Kyoto Protocol.

燃焼合成により目的とする不定比金属酸化物を合成する。合成された不定比金属酸化物は粉末状態で得るのが好ましい。 The target nonstoichiometric metal oxide is synthesized by combustion synthesis. The synthesized non-stoichiometric metal oxide is preferably obtained in a powder state.

引き続き、粉体を燒結する。燒結体としての特性を向上するには、粉末粒径は1μm以下が好ましい。焼結密度は大であるほど特性値は良好であるので、PECS(Plus Electric Current Sintering)、Hotpressing,HIP法を適用する本特許に包含されている。
Subsequently, the powder is sintered. In order to improve the properties as a sintered body, the powder particle diameter is preferably 1 μm or less. Since the characteristic value is better as the sintered density is higher, it is included in this patent to which PECS (Plus Electric Current Sintering), Hotpressing, and HIP methods are applied.

本特許で提案する具体的用途の代表は熱電発電用モジュールである。モジュールは(図1)に示す構造で構成する。不定比金属化合物がn型半導体特性を示す金属酸化物の不定比化合物の焼結体で構成したn型熱電素子3と前述した構成のp型素子4とを良導電体2を介して(図3)の様に直列に接続する。良導電体に接して絶縁体で構成された板状の絶縁板1接合するとともに、両端部のp型素子およびn型素子にリード線を配置する。 A typical application proposed in this patent is a module for thermoelectric power generation. The module has the structure shown in FIG. An n-type thermoelectric element 3 composed of a sintered body of a non-stoichiometric compound of a metal oxide in which the non-stoichiometric metal compound exhibits n-type semiconductor properties and the p-type element 4 having the above-described configuration are connected via the good conductor 2 (FIG. Connect in series as in 3). A plate-like insulating plate 1 made of an insulator is bonded to a good conductor, and lead wires are arranged on the p-type element and the n-type element at both ends.

本発明の提案する熱電素子は耐熱温度が高温であるので、素子と基板との接合には、アモルファス箔を用いた、高周波誘導加熱法による固層―液層拡散接合が適している。 Since the thermoelectric element proposed by the present invention has a high heat-resistant temperature, solid-liquid diffusion diffusion bonding using an amorphous foil and a high-frequency induction heating method is suitable for bonding the element and the substrate.

この様にして構成したモジュールの絶縁体1面を温度差△Tの下で、高温側(T1)と低温側(T2)に保持して熱電発電体として機能させる。 The insulator 1 surface of the module configured in this way is held on the high temperature side (T1) and the low temperature side (T2) under a temperature difference ΔT to function as a thermoelectric generator.

熱電発電特性
燃焼合成で製造した酸素過剰型不定比金属酸化物の例としてTiO1.1およびTiO1.2から得た燒結体を用いて無次元性能指数(ZT)を求めた。併せて、熱天秤法により合成した同不定比金属酸化物についても無次元性能指数を測定した。
Thermoelectric power generation characteristics Dimensionless figure of merit (ZT) was obtained using sintered bodies obtained from TiO 1.1 and TiO 1.2 as examples of oxygen-rich non-stoichiometric metal oxides produced by combustion synthesis. . In addition, the dimensionless figure of merit was also measured for the same non-stoichiometric metal oxide synthesized by the thermobalance method.

結果を(表2)に示した。 The results are shown in (Table 2).

Figure 2006256889
Figure 2006256889

まず(表2)から明らかに認められる事は、酸素過剰型不定比チタン酸化物は従来の高温型熱電発電材料のいずれより優れた耐熱性を有する事である。 First, it is clearly recognized from (Table 2) that the oxygen-excess type nonstoichiometric titanium oxide has heat resistance superior to any of the conventional high-temperature type thermoelectric power generation materials.

とくに、本発明の提案する、燃焼合成で製造した酸素過剰型不定比金属酸化物の無次元性能指数は、1100Kで1.64と脅威的な値を示している。   In particular, the dimensionless figure of merit of the oxygen-excess non-stoichiometric metal oxide produced by combustion synthesis proposed by the present invention is 1.64 at 1100K and shows a threatening value.

電気伝導度の温度依存性
(図2)に燃焼合成した酸素過剰型不定比金属酸化物のTiO1.1燒結体のp型半導体としての電気伝導度の温度依存性を示した。
The temperature dependence of electrical conductivity as a p-type semiconductor of TiO 1.1 sintered body of oxygen-rich non-stoichiometric metal oxide combusted and synthesized is shown in the temperature dependence of electrical conductivity (FIG. 2).

300Kから800Kまで優れた直線性を示している。従来各種のp型半導体がサーミスターとして採用されているが、電気伝導度と温度との関係が直線性を示す領域は高々200℃以内であり、しかも低温領域に偏っている。本発明は今までにない広域温度範囲で適用できる新しいサーミスターを提案する。   Excellent linearity from 300K to 800K. Conventionally, various p-type semiconductors have been adopted as thermistors, but the region where the relationship between electrical conductivity and temperature shows linearity is at most 200 ° C., and is biased toward the low temperature region. The present invention proposes a new thermistor that can be applied in an unprecedented wide temperature range.

低温活性触媒としての機能
(図3)に酸化性触媒としての機能を示した。現用されているPtに比較して、極めて低温から触媒機能が認められる。
The function as an oxidizing catalyst was shown in the function as a low temperature active catalyst (FIG. 3). Compared with Pt currently used, a catalyst function is recognized from extremely low temperature.

燃焼合成法で確実に安定して、p型およびn型の不定比金属酸化物半導体が製造できる。従来の半導体製造に新たな一石を投ずる事になる。本特許で提案する半導体は耐熱性が高く今までにない新たな用途の開拓も大いに期待できる。   The p-type and n-type non-stoichiometric metal oxide semiconductors can be produced stably and reliably by the combustion synthesis method. A new stone will be invested in conventional semiconductor manufacturing. The semiconductor proposed in this patent has high heat resistance and can be expected to develop new applications that have never existed before.

熱電素子粉末焼結材のモジュール配置図。Module arrangement of thermoelectric element powder sintered material. 本発明の提案するTiO1.1の電気伝導度の温度依存性を示す図。The figure which shows the temperature dependence of the electrical conductivity of TiO 1.1 proposed by the present invention. 本発明の提案するTiO1.1の触媒機能を示す図。The figure which shows the catalytic function of TiO 1.1 proposed by the present invention.

符号の説明Explanation of symbols

1.絶縁セラミックス板
2.銅電極
3.n型熱電素子
4.p型熱電素子
5.TiO1.1の分解線図
6.Ptの分解線図
1. Insulating ceramic plate 2. 2. Copper electrode n-type thermoelectric element 4. 4. p-type thermoelectric element 5. decomposition diagram of TiO 1.1 Pt decomposition diagram

Claims (6)

燃焼合成法によって製造した酸素過剰型不定比金属酸化物および酸素欠乏型不定比金属酸化物。 An oxygen-rich nonstoichiometric metal oxide and an oxygen-deficient nonstoichiometric metal oxide produced by a combustion synthesis method. 燃焼合成法によって製造した酸素過剰型不定比金属酸化物を基本構成要素として構成した熱電発電用素子用p型半導体素子と燃焼合成により同様に製造した酸素欠乏型不定比金属酸化物を基本構成として構成した熱電発電素子用n型半導体素子とを用いて熱電発電用に構成した事を特徴とする熱電発電体。 The basic composition is a p-type semiconductor element for thermoelectric power generation elements composed of an oxygen-rich non-stoichiometric metal oxide produced by combustion synthesis as a basic component and an oxygen-deficient non-stoichiometric metal oxide produced similarly by combustion synthesis. A thermoelectric power generator configured for thermoelectric power generation using the n-type semiconductor element for thermoelectric power generation elements configured. 請求項2において、熱電発電用のp型素子がTiO,VO,MnO,FeO,CoO,NiO,ZrOおよびUOを基準とする酸素過剰型金属酸化物の何れかであり、熱電発電用のn型素子がTiO,TiO,VO,ZrOおよびUOを基準とする酸素欠乏型金属酸化物の何れかである事を特徴とする請求項2に記載する熱電発電体。 In claim 2, the p-type element for thermoelectric power generation is any one of oxygen-excess type metal oxides based on TiO, VO, MnO, FeO, CoO, NiO, ZrO 2 and UO 2 . 3. The thermoelectric generator according to claim 2 , wherein the n-type element is any one of oxygen-deficient metal oxides based on TiO 2 , TiO, VO, ZrO 2 and UO 2 . 請求項2〜3における熱電発電素子は、請求項2に記載する不定比金属酸化物の微細粉体からの焼結体である事を特徴とする請求項2〜3に記載する熱電発電体。   The thermoelectric power generation element according to claim 2, wherein the thermoelectric power generation element according to claim 2 is a sintered body from a fine powder of non-stoichiometric metal oxide according to claim 2. 燃焼合成によって製造した酸素過剰型不定比金属酸化物を用いて構成した広範囲温度域測定可能なサーミスター。   A thermistor capable of measuring a wide range of temperature, using oxygen-rich nonstoichiometric metal oxides produced by combustion synthesis. 燃焼合成法によって製造した不定比金属酸化物を用いて構成した低温活性触媒。 Low-temperature active catalyst composed of non-stoichiometric metal oxide produced by combustion synthesis method.
JP2005074790A 2005-03-16 2005-03-16 Nonstoichiometric metal oxide Withdrawn JP2006256889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005074790A JP2006256889A (en) 2005-03-16 2005-03-16 Nonstoichiometric metal oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005074790A JP2006256889A (en) 2005-03-16 2005-03-16 Nonstoichiometric metal oxide

Publications (1)

Publication Number Publication Date
JP2006256889A true JP2006256889A (en) 2006-09-28

Family

ID=37096537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005074790A Withdrawn JP2006256889A (en) 2005-03-16 2005-03-16 Nonstoichiometric metal oxide

Country Status (1)

Country Link
JP (1) JP2006256889A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023650A1 (en) * 2006-08-24 2008-02-28 Sumitomo Chemical Company, Limited Thermoelectric material, method for producing the same, and thermoelectric converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023650A1 (en) * 2006-08-24 2008-02-28 Sumitomo Chemical Company, Limited Thermoelectric material, method for producing the same, and thermoelectric converter
US8217256B2 (en) 2006-08-24 2012-07-10 Sumitomo Chemical Company, Limited Thermoelectric material, method for producing the same, and thermoelectric converter

Similar Documents

Publication Publication Date Title
JP6674221B2 (en) Bonded body and method for manufacturing the same
JP5035561B2 (en) Oxide sintered body having n-type thermoelectric properties
Hira et al. Improved high-temperature thermoelectric properties of dual-doped Ca3Co4O9
JP2011035117A (en) Thermoelectric conversion material
Wang et al. A 2 Zr 2 O 7 (A= Nd, Sm, Gd, Yb) zirconate ceramics with pyrochlore-type structure for high-temperature negative temperature coefficient thermistor
Hashimoto et al. Conductivity and expansion at high temperature in Sr 0.7 La 0.3 TiO 3− α prepared under reducing atmosphere
CN115004391A (en) Thermoelectric conversion module
TW200817306A (en) Thermoelectric converting material, manufacturing method thereof and thermoelectric converting element
JP2008263056A (en) Thermoelectric conversion material and method of manufacturing the same
WO2004105144A1 (en) Thermoelectric material and method for producing same
EP1492171B1 (en) DOUBLE OXIDE WITH n TYPE THERMOELECTRIC CHARACTERISTICS
JP4543127B2 (en) Structure of oxide thermoelectric conversion material
JP2006256889A (en) Nonstoichiometric metal oxide
JP3069701B1 (en) Composite oxide with high Seebeck coefficient and high electrical conductivity
Bose et al. Effect of dual-doping on the thermoelectric transport properties of CaMn 1− x Nb x/2 Ta x/2 O 3
JP5024745B2 (en) Metal oxynitride thermoelectric conversion material with excellent thermoelectric conversion performance
JP4257419B2 (en) Composite oxide having n-type thermoelectric conversion characteristics
JP2006100683A (en) Thermoelectric conversion material for titanium oxide
JP5206510B2 (en) N-type thermoelectric conversion material, n-type thermoelectric conversion element, and thermoelectric conversion module
JPWO2006129459A1 (en) Thermoelectric conversion material, thermoelectric conversion element using the same, and electronic device and cooling device provided with the element
JP2007335504A (en) Thermoelectric conversion material and its manufacturing method
JP4790978B2 (en) Oxygen ion conductive solid electrolyte, method for producing the same, electrochemical device using the same, and solid electrolyte fuel cell
JP2008078334A (en) Thermoelectric device
JP2002368292A (en) Thermoelectric conversion module for high temperature
Yasukawa et al. Preparation of dense BaPbO3-based ceramics by a coprecipitation and their thermoelectric properties

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603